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Motivation
Worst-Case End-to-End Performance Analysis

Probability

End-to-end network delay

Worst-case

Deadline

Simulation
Measurements

Bound

Tightness

• Important for critical applications
• Need formal proof on network delay

• Trade-off between computational effort and tightness
• This talk: network analysis method with good tightness and fast execution
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Computation effort

Tightness improvement

Analysis methods

Ideal
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Motivation
Network Calculus – Basics

Time

Data
Basis: Cumulative arrivals and services [Cruz, 1991a]

DA

Arrival curve α: A (t)− A (t − s) ≤ α(s),∀t ≤ s

Service curve β: a server is said to offer a strict
service curve β if, during any backlogged period of
duration u, the output of the system is at least equal to
β(u)

β
α α

′
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Motivation
Network Calculus – Network Analysis

How to compute end-to-end performance?

s1 s2 s3 s4
f1
f2 f3

f4

TFA – Total Flow Analysis [Cruz, 1991b]

Step 1: Compute delay at each server on the path

s1 s2 s3 s4
f1
f2 f s4

3f s3
3

f4

Step 2: Sum delays

Server concatenation [Le Boudec and Thiran, 2001]

β1 β2 β3
α α

′

(min, +) algebra gives us:

β1 ⊗ β2 ⊗ β3
α α

′

→ Pay Bursts Only Once principle
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Motivation
Network Calculus – Network Analysis

SFA – Separate Flow Analysis
[Le Boudec and Thiran, 2001]

Step 1: Compute per-server residual service

s1 s2 s3
lo s4

lof1
f2 f3

f4

Step 2: Concatenate the servers

s1 s2 s3
lo ⊗ s4

lo

f3

Step 3: Compute delay over concatenated server

PMOO – Pay Multiplexing Only Once
[Schmitt et al., 2008b]

Step 1: Concatenate the servers

s1 s2 s3 ⊗ s4
f1
f2 f3

f4

Step 2: Compute residual service

s1 s2 (s3 ⊗ s4)lo

f3

Step 3: Compute delay over concatenated server
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Motivation
Network Calculus – TMA

TMA – Tandem Matching Analysis [Bondorf et al., 2017]

• Main concept: apply concatenation only for some servers
• Exhaustive search to find which concatenations will result in the tightest end-to-end delay→ O

(
2n−1

)
SFA

β1 β2 β3
α α

′

PMOO

β1 ⊗ β2 ⊗ β3
α α

′

Alternative 1

β1 ⊗ β2 β3
α α

′

Alternative 2

β1 β2 ⊗ β3
α α

′
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Motivation
Network Calculus – DeepTMA

Computation effort

Tightness improvement

IdealTFA

SFA

PMOO

Opt.

TMA

Opt.: [Schmitt et al., 2008a][Bouillard et al., 2010]

Question: Can we avoid TMA’s exhaustive search?

→ DeepTMA:
• Main idea: use fast heuristic for predicting best cuts
• Even if the heuristic is wrong, the bounds are still valid

Network
of servers
and flows

Network Calculus
TMA Analysis

Heuristic

End-to-End
Latencies

Cuts Recommendation

Figure 1: Approach
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Outline

Heuristic based on Graph Neural Networks

Numerical evaluation

Conclusion
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Heuristic based on Graph Neural Networks
Introduction

Heuristic

• Use Graph Neural Network
• Classification problem for cuts

Graph formulation

• Nodes: flows, servers, cuts
• Edges: relationships between elements
• Prediction if cut is applied or not

β1 β2 β3
α α

′
Cut? Cut?

Figure 2: Classification problem

β1 β2 β3
α α

′
Cut Cut

β1 ⊗ β2 ⊗ β3
α α

′

β1 ⊗ β2 β3
α α

′
Cut

β1 β2 ⊗ β3
α α

′
Cut

Network
of servers
and flows

Network Calculus
TMA Analysis

Heuristic

End-to-End
Latencies

Cuts Recommendation

Graph Transformation
and Neural Network

Training
Points

Figure 3: Approach
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Heuristic based on Graph Neural Networks
Problem formulation as graph

s1 s2 s3 s4
f1
f2 f3

f4

Path
orderingCut [rate, latency ]

[rate, burst ][path order ]

Input features:

[Pr(cut)]

Output features:
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Heuristic based on Graph Neural Networks
Graph Neural Networks – Introduction

Graph Neural Networks [Scarselli et al., 2009] and related architectures are able to process general graphs and predict
feature of nodes ov

Principle

• Each node has a hidden vector hv ∈ Rk

• . . . computed according to the vector of its neighbors
• . . . and are propagated through the graph

Algorithm

• Initialize h(0)
v according to features of nodes

• for t = 1, ... , T do
• a(t)

v = AGGREGATE
({

h(t−1)
u | u ∈ Nbr(v)

})
• h(t)

v = COMBINE
(

h(t−1)
v , a(t)

v

)
• return READOUT

(
h(T )

v

)
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Heuristic based on Graph Neural Networks
Graph Neural Networks – Illustration

A

B

C

D E
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Heuristic based on Graph Neural Networks
Graph Neural Networks – Implementation

Implementation (simplified)

• Initialize h(0)
v according to features of nodes

• for t = 1, ... , T do
• AGGREGATE → a(t)

v =
∑

u∈Nbr(v) h(t−1)
u

• COMBINE → h(t)
v = Neural Network

(
h(t−1)

v , a(t)
v

)
• READOUT → return Neural Network

(
h(T )

v

)
Training

• Using standard gradient descent techniques

Different approaches

• Gated-Graph Neural Network
• Graph Convolution Network
• Graph Attention Networks
• Graph Spatial-Temporal Networks
• . . .

→ Hot area of research in the ML community
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Numerical evaluation
Dataset generation

• Generation of 100 000 networks with tandem or tree topology
• Random generation of curve parameters for servers and flows
• Evaluation of each network using DiscoDNC and extract intermediary results of TMA
• Dataset available online: https://github.com/fabgeyer/dataset-infocom2019

Parameter Min Max Mean Median

# of servers 2 41 14.2 12.0
# of flows 1 63 23.0 18.0
# of flows per server 1 44 5.8 4.6
# of tandem combinations 2 113 100 596.2 134.0
# of tandem combination per flow 2 32 768 25.9 4.0
# of nodes in analyzed graph 6 717 159.0 127.0

Table 1: Statistics about the generated dataset.
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Numerical evaluation
Prediction accuracy
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Numerical evaluation
Tightness

The impact of these failures to predict the optimal decomposition only results in a relative error below 6%
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Numerical evaluation
Runtime
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Numerical evaluation
Additional results

Three other simpler heuristics defined in the paper

• Random Choice of Tandem Decomposition
• Path Length of Flows up to Location of Interference
• Hop Count Heuristic

Results

• DeepTMA better than random-based heuristics
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Conclusion

Contributions

• Framework combining network calculus and graph-based deep learning
• New NC analysis with fast execution times and good tightness
• Dataset: https://github.com/fabgeyer/dataset-infocom2019

Future work

• Evaluation on more complex networks and curves
• Predictions for other NC analyses

Final thoughts

→ Graph Neural Networks are a promising paradigm for computer networks

Computation effort

Tightness improvement

IdealTFA

SFA

PMOO

Opt.

TMA

DeepTMA
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