DeepTMA: Predicting Effective Contention Models for Network Calculus using Graph Neural Networks

Fabien Geyer^{1,2} and Steffen Bondorf³

INFOCOM 2019

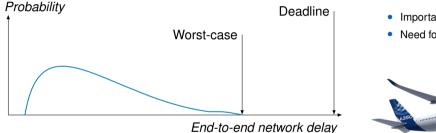
Wednesday 1st May, 2019

¹Chair of Network Architectures and Services Technical University of Munich (TUM)

²Airbus Central R&T Munich

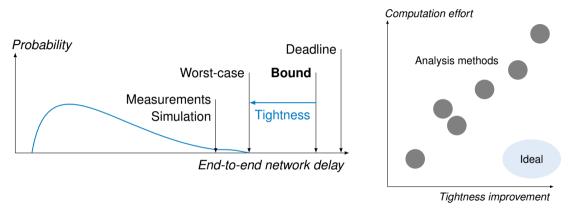
³Dept. of Information Security and Communication Technology Norwegian University of Science and Technology (NTNU)

Worst-Case End-to-End Performance Analysis



- Important for critical applications
- Need formal proof on network delay

Worst-Case End-to-End Performance Analysis

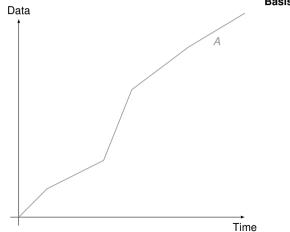


- Trade-off between computational effort and tightness
- This talk: network analysis method with good tightness and fast execution

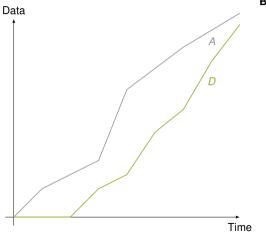
Data

Network Calculus - Basics

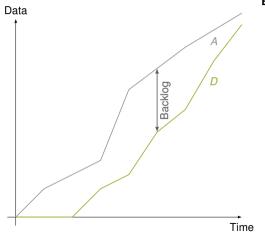
Network Calculus - Basics



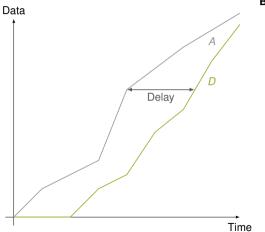
Network Calculus - Basics



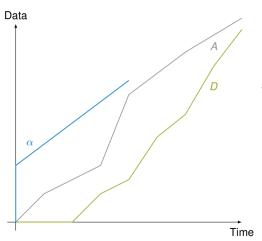
Network Calculus - Basics



Network Calculus - Basics



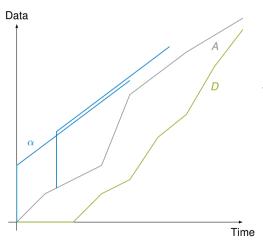
Network Calculus - Basics



Basis: Cumulative arrivals and services [Cruz, 1991a]

Arrival curve α : $A(t) - A(t - s) \le \alpha(s), \forall t \le s$

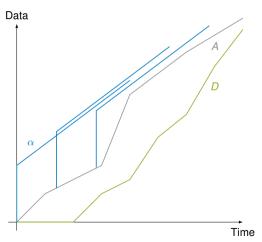
Network Calculus - Basics



Basis: Cumulative arrivals and services [Cruz, 1991a]

Arrival curve α : $A(t) - A(t - s) \le \alpha(s), \forall t \le s$

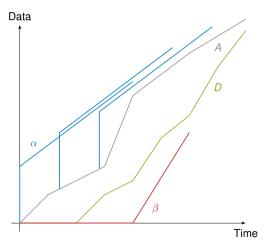
Network Calculus - Basics



Basis: Cumulative arrivals and services [Cruz, 1991a]

Arrival curve α : $A(t) - A(t - s) \le \alpha(s), \forall t \le s$

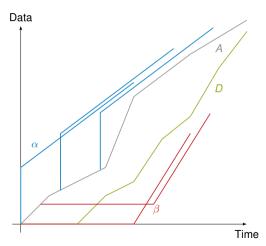
Network Calculus - Basics



Basis: Cumulative arrivals and services [Cruz, 1991a]

Arrival curve α : $A(t) - A(t - s) \le \alpha(s), \forall t \le s$

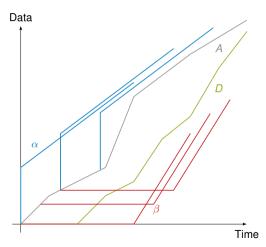
Network Calculus - Basics



Basis: Cumulative arrivals and services [Cruz, 1991a]

Arrival curve α : $A(t) - A(t - s) \le \alpha(s), \forall t \le s$

Network Calculus - Basics



Basis: Cumulative arrivals and services [Cruz, 1991a]

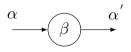
Arrival curve α : $A(t) - A(t - s) \le \alpha(s), \forall t \le s$

Network Calculus - Basics

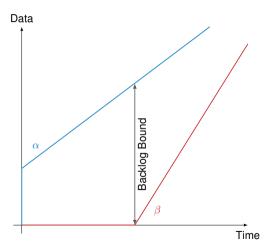


Basis: Cumulative arrivals and services [Cruz, 1991a]

Arrival curve α : $A(t) - A(t - s) \le \alpha(s), \forall t \le s$

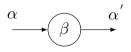


Network Calculus – Basics

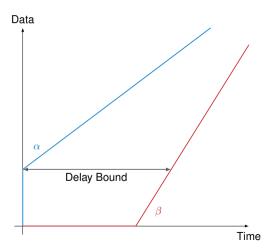


Basis: Cumulative arrivals and services [Cruz, 1991a]

Arrival curve α : $A(t) - A(t - s) \le \alpha(s), \forall t \le s$

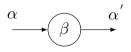


Network Calculus - Basics



Basis: Cumulative arrivals and services [Cruz, 1991a]

Arrival curve α : $A(t) - A(t - s) \le \alpha(s), \forall t \le s$

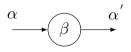


Network Calculus - Basics

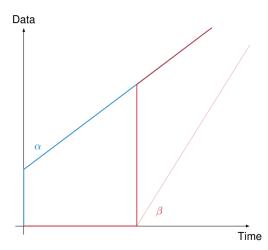


Basis: Cumulative arrivals and services [Cruz, 1991a]

Arrival curve α : $A(t) - A(t - s) \le \alpha(s), \forall t \le s$

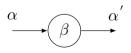


Network Calculus - Basics

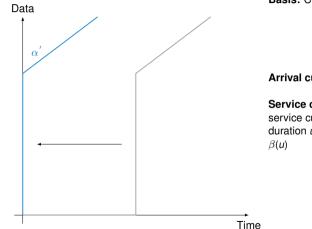


Basis: Cumulative arrivals and services [Cruz, 1991a]

Arrival curve α : $A(t) - A(t - s) \le \alpha(s), \forall t \le s$

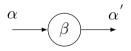


Network Calculus - Basics



Basis: Cumulative arrivals and services [Cruz, 1991a]

Arrival curve α : $A(t) - A(t - s) \le \alpha(s), \forall t \le s$



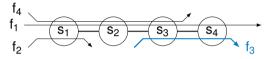
MODELING AND ANALYSIS OF NETWORK INFRASTRUCTURE IN CYBER-PHYSICAL SYSTEMS

LIANG CHENG (LEHIGH UNIVERSITY, BETHLEHEM, USA) STEFFEN BONDORF (NTNU TRONDHEIM, NORWAY)

> ACM SIGCOMM 2019 TUTORIALS 2019-08-23 BEIJING, CHINA

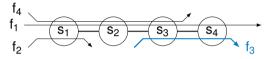
Network Calculus - Network Analysis

How to compute end-to-end performance?



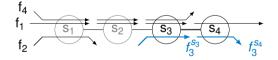
Network Calculus - Network Analysis

How to compute end-to-end performance?



TFA - Total Flow Analysis [Cruz, 1991b]

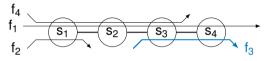
Step 1: Compute delay at each server on the path



Step 2: Sum delays

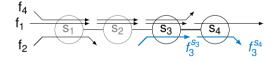
Network Calculus - Network Analysis

How to compute end-to-end performance?



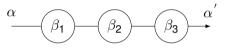
TFA - Total Flow Analysis [Cruz, 1991b]

Step 1: Compute delay at each server on the path



Step 2: Sum delays

Server concatenation [Le Boudec and Thiran, 2001]



(min, +) algebra gives us:

 \rightarrow Pay Bursts Only Once principle

Network Calculus - Network Analysis

SFA – Separate Flow Analysis [Le Boudec and Thiran, 2001]

Step 1: Compute per-server residual service

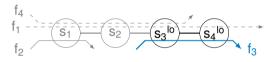
Step 2: Concatenate the servers

Step 3: Compute delay over concatenated server

Network Calculus - Network Analysis

SFA – Separate Flow Analysis [Le Boudec and Thiran, 2001]

Step 1: Compute per-server residual service



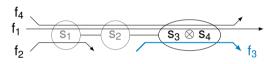
Step 2: Concatenate the servers

Step 3: Compute delay over concatenated server

PMOO – Pay Multiplexing Only Once

[Schmitt et al., 2008b]

Step 1: Concatenate the servers



Step 2: Compute residual service

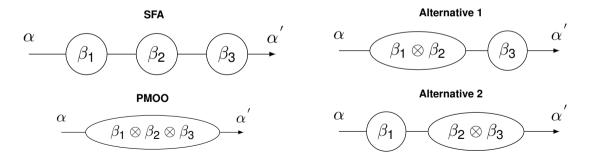
Step 3: Compute delay over concatenated server

4

Network Calculus - TMA

TMA - Tandem Matching Analysis [Bondorf et al., 2017]

- · Main concept: apply concatenation only for some servers
- Exhaustive search to find which concatenations will result in the tightest end-to-end delay $\rightarrow O(2^{n-1})$

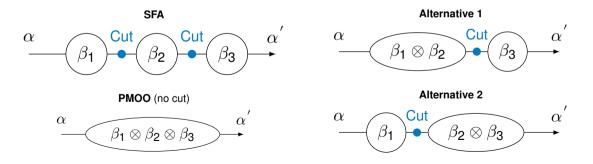


5

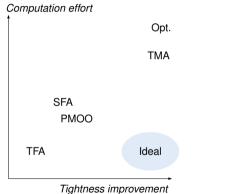
Network Calculus - TMA

TMA – Tandem Matching Analysis [Bondorf et al., 2017]

- Main concept: apply concatenation only for some servers
- Exhaustive search to find which concatenations will result in the tightest end-to-end delay $\rightarrow O(2^{n-1})$

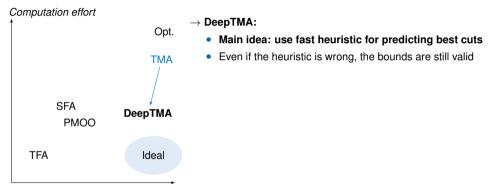


Network Calculus - DeepTMA



Opt.: [Schmitt et al., 2008a][Bouillard et al., 2010]

Network Calculus - DeepTMA

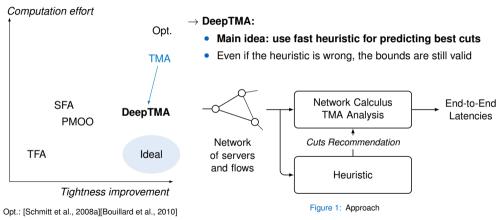


Tightness improvement

Opt.: [Schmitt et al., 2008a][Bouillard et al., 2010]

Question: Can we avoid TMA's exhaustive search?

Network Calculus – DeepTMA



Question: Can we avoid TMA's exhaustive search?

Outline

Heuristic based on Graph Neural Networks

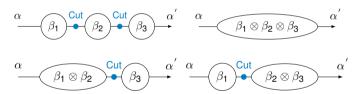
Numerical evaluation

Conclusion

Introduction

Heuristic

- Use Graph Neural Network
- Classification problem for cuts



Introduction



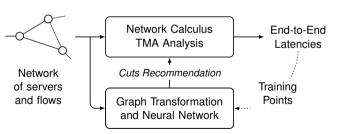
Figure 2: Classification problem

Heuristic

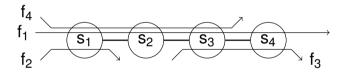
- Use Graph Neural Network
- Classification problem for cuts

Graph formulation

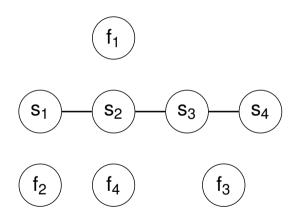
- Nodes: flows, servers, cuts
- Edges: relationships between elements
- Prediction if cut is applied or not



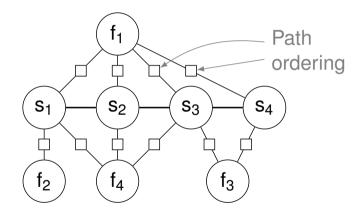
Problem formulation as graph

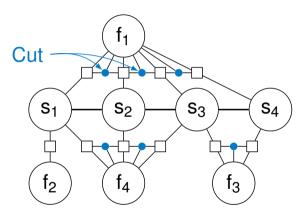


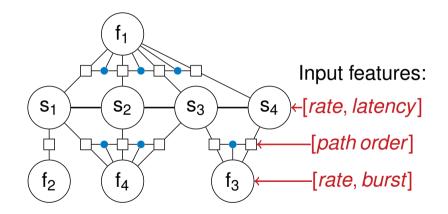
Problem formulation as graph

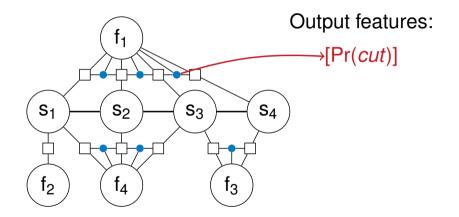












Graph Neural Networks – Introduction

Graph Neural Networks [Scarselli et al., 2009] and related architectures are able to process general graphs and predict feature of nodes o_{ν}

Principle

- Each node has a *hidden* vector $\mathbf{h}_{v} \in \mathbb{R}^{k}$
- ... computed according to the vector of its neighbors
- ... and are propagated through the graph

Algorithm

• Initialize $\mathbf{h}_{v}^{(0)}$ according to features of nodes

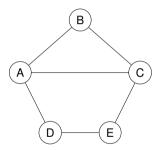
for
$$t = 1, ..., T$$
 do

•
$$\mathbf{a}_{v}^{(t)} = AGGREGATE\left(\left\{\mathbf{h}_{u}^{(t-1)} \mid u \in Nbr(v)\right\}\right)$$

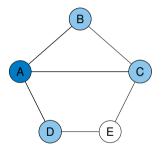
•
$$\mathbf{h}_{v}^{(t)} = COMBINE\left(\mathbf{h}_{v}^{(t-1)}, \mathbf{a}_{v}^{(t)}\right)$$

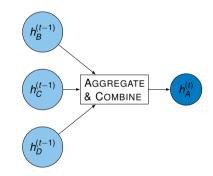
• return READOUT $(\mathbf{h}_v^{(T)})$

Graph Neural Networks – Illustration

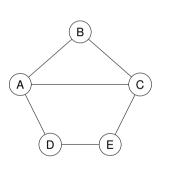


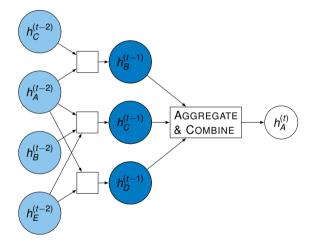
Graph Neural Networks - Illustration



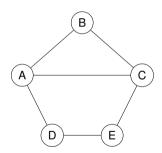


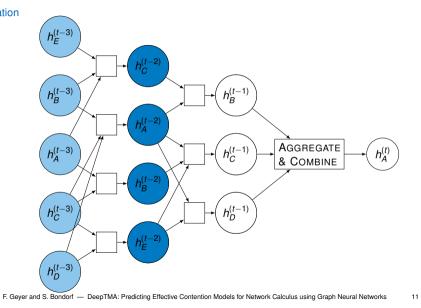
Graph Neural Networks – Illustration



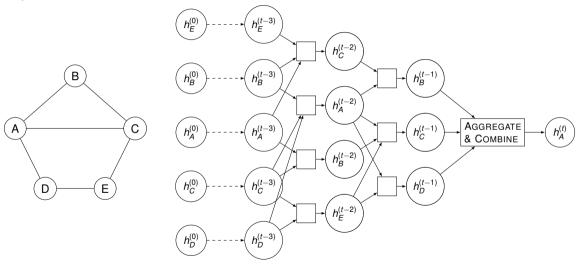


Graph Neural Networks - Illustration

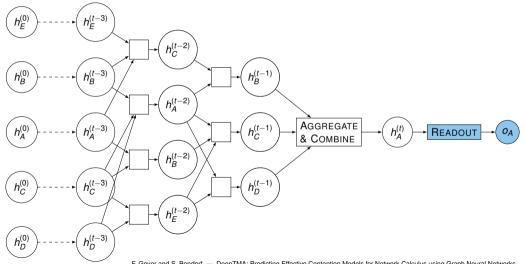




Graph Neural Networks – Illustration



Graph Neural Networks - Illustration



Graph Neural Networks - Implementation

Implementation (simplified)

- Initialize $\mathbf{h}_{v}^{(0)}$ according to features of nodes
- for *t* = 1, ..., *T* do
 - AGGREGATE $\rightarrow \mathbf{a}_v^{(t)} = \sum_{u \in Nbr(v)} \mathbf{h}_u^{(t-1)}$
 - COMBINE $\rightarrow \mathbf{h}_{v}^{(t)}$ = Neural Network $\left(\mathbf{h}_{v}^{(t-1)}, \mathbf{a}_{v}^{(t)}\right)$
- **READOUT** \rightarrow return Neural Network $(\mathbf{h}_{v}^{(T)})$

Training

Using standard gradient descent techniques

Graph Neural Networks - Implementation

Implementation (simplified)

- Initialize $\mathbf{h}_{v}^{(0)}$ according to features of nodes
- for *t* = 1, ..., *T* do
 - AGGREGATE $\rightarrow \mathbf{a}_v^{(t)} = \sum_{u \in Nbr(v)} \mathbf{h}_u^{(t-1)}$
 - COMBINE $\rightarrow \mathbf{h}_{v}^{(t)}$ = Neural Network $\left(\mathbf{h}_{v}^{(t-1)}, \mathbf{a}_{v}^{(t)}\right)$
- READOUT \rightarrow return Neural Network $\left(\mathbf{h}_{v}^{(T)}\right)$

Training

Using standard gradient descent techniques

Different approaches

- Gated-Graph Neural Network
- Graph Convolution Network
- Graph Attention Networks
- Graph Spatial-Temporal Networks
- ...
- \rightarrow Hot area of research in the ML community

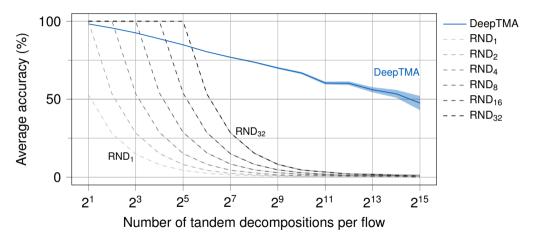
Dataset generation

- Generation of 100 000 networks with tandem or tree topology
- Random generation of curve parameters for servers and flows
- Evaluation of each network using DiscoDNC and extract intermediary results of TMA
- Dataset available online: https://github.com/fabgeyer/dataset-infocom2019

Parameter	Min	Max	Mean	Median
# of servers	2	41	14.2	12.0
# of flows	1	63	23.0	18.0
# of flows per server	1	44	5.8	4.6
# of tandem combinations	2	113100	596.2	134.0
# of tandem combination per flow	2	32768	25.9	4.0
# of nodes in analyzed graph	6	717	159.0	127.0

Table 1: Statistics about the generated dataset.

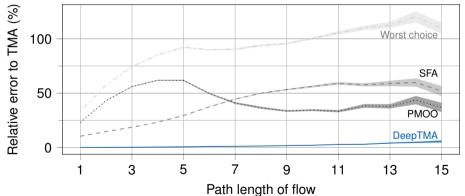
Prediction accuracy



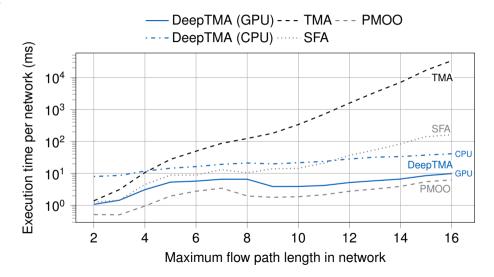
Tightness

The impact of these failures to predict the optimal decomposition only results in a relative error below 6%

---- Consistent worst choice --- SFA ----- PMOO ---- DeepTMA



Runtime



F. Geyer and S. Bondorf — DeepTMA: Predicting Effective Contention Models for Network Calculus using Graph Neural Networks

Numerical evaluation Additional results

Three other simpler heuristics defined in the paper

- Random Choice of Tandem Decomposition
- Path Length of Flows up to Location of Interference
- Hop Count Heuristic

Results

• DeepTMA better than random-based heuristics

Conclusion

Contributions	Computation effort	
 Framework combining network calculus and graph-based deep learning 	Î	Opt.
 New NC analysis with fast execution times and good tightness 		TN 4 A
• Dataset: https://github.com/fabgeyer/dataset-infocom2019	ТМА	
Future work	SFA	DeenTMA
 Evaluation on more complex networks and curves 	PMOO	DeepTMA
 Predictions for other NC analyses 		
	TFA	Ideal
Final thoughts		
\rightarrow Graph Neural Networks are a promising paradigm for computer networks	Tightness improvement	

Bibliography

[Bondorf et al., 2017] Bondorf, S., Nikolaus, P., and Schmitt, J. B. (2017).

Quality and cost of deterministic network calculus – design and evaluation of an accurate and fast analysis.

Proc. ACM Meas. Anal. Comput. Syst. (POMACS), 1(1):16:1-16:34.

[Le Boudec and Thiran, 2001] Le Boudec, J.-Y. and Thiran, P. (2001).

Network Calculus: A Theory of Deterministic Queuing Systems for the Internet.

Springer-Verlag.

[Bouillard et al., 2010] Bouillard, A., Jouhet, L., and Thierry, É. (2010).

Tight performance bounds in the worst-case analysis of feed-forward networks.

In Proc. of IEEE INFOCOM.

[Cruz, 1991a] Cruz, R. L. (1991a).

A calculus for network delay, part I: Network elements in isolation. *IEEE Trans. Inf. Theory*, 37(1):114–131.

[Cruz, 1991b] Cruz, R. L. (1991b). A calculus for network delay, part II: Network analysis. *IEEE Trans. Inf. Theory*, 37(1):132–141.

 [Scarselli et al., 2009] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009).
 The graph neural network model.
 IEEE Trans. Neural Netw., 20(1):61–80.

[Schmitt et al., 2008a] Schmitt, J. B., Zdarsky, F. A., and Fidler, M. (2008a).

Delay bounds under arbitrary multiplexing: When network calculus leaves you in the lurch....

[Schmitt et al., 2008b] Schmitt, J. B., Zdarsky, F. A., and Martinovic, I. (2008b).

Improving performance bounds in feed-forward networks by paying multiplexing only once. In *Proc. of GI/ITG MMB*.