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a b s t r a c t

Modeling the performance of network protocols and communication networks generally
relies on expert knowledge and understanding of the different elements of a network,
their configuration, and the overall architecture and topology. Machine learning is often
proposed as a tool to help modeling such complex systems. One drawback of this method
is that high-level features are generally used – which require full understanding of the
network protocols to be chosen, correctly engineered, and measured – and the approaches
are generally limited to a given network topology.

In this article, we present DeepComNet, an approach to address the challenges of
working with machine learning by using lower-level features, namely only a description
of the network architecture. Our main contribution is a method for applying deep learning
on network topologies via the use of Graph Gated Neural Networks, a specialized recurrent
neural network for graphs. Our approach enables us to make performance predictions
based only on a graph-based representation of network topologies. To evaluate the po-
tential of DeepComNet, we apply our approach to the tasks of predicting the throughput of
TCP flows and the end-to-end latencies of UDP flows. In both cases, the same base model
is used. Numerical results show that our approach is able to learn and predict performance
properties of TCP and UDP flows with a median absolute relative error smaller than 1%,
outperforming related methods from the literature by one order of magnitude.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Understanding network performance is an important task for architecture design and Quality-of-Service in an increasing
number of applications. Traffic engineering aims at bringing an answer to this need in order to provide better services,
avoid congestion, and optimize network topologies to support an increasing number of applications. Models for network
and traffic are an important tool in order to predict how a given network architecture will behave. Different techniques have
been proposed, such as mathematical modeling, simulations or measurements in real networks. While these techniques
can achieve accurate results, they often require precise measurements of key performance indicators such as round-trip
time or loss probability in order to be applied and generate realistic performance predictions. However, limited access to
instrumentation of real networks makes this measurement acquisition usually difficult.

An approach to tackle the challenges of performance modeling is a more data-driven way, where measurements are
used in parallel with machine learning to produce realistic performance predictions. For instance, Tian and Liu [1] applied
the SVR-based (Support Vector Regression) TCP bandwidth prediction application from [2] to improve Quality-of-Service
of media streaming over HTTP. Tariq et al. [3] recently proposed WISE, a framework for evaluating architecture changes
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Fig. 1. Illustration of the two different steps of our approach DeepComNet .

in communication networks using Causal Bayesian Networks (CBNs). While these techniques and applications have been
proven successful, high-level features about the studied network protocols are required, and the trained models are often
limited to a given network topology.

Our main contribution in this work is DeepComNet, an approach combining formal modeling of network topologies and
flows traversing them as graphs with deep learning methods tailored for training and inference on graph structures. This
approach is illustrated in Fig. 1 with its two main steps: we first model computer networks as graph structures, and then
process those graphs using neural networks. We propose to use Gated Graph Neural Networks (GGNNs) [4] as a basis for our
deep learning architecture, a recent extension of Graph Neural Networks (GNNs) [5,6]. By directly training the underlying
machine learning algorithm on the network structure, we avoid the task of engineering high-level protocol-specific input
features such as round-trip time or drop probability, which usually require expert knowledge on the network protocol which
is modeled.We demonstrate in this paper this modeling as graph is independent of a given network architecture or network
protocol, providing a wide range of applicability compared to other methods.

As concrete applications of our approach, we address the two following tasks. First, we are interested in the performance
evaluation of TCP flows, with the goal of predicting the average throughput of each flow in a given topology. Secondly, we
look at the performance evaluation of UDP flows and the prediction of end-to-end latencies (average and quantile value).
We use the same model for both tasks, highlighting the general applicability of our approach and potential for application
to other use-cases for performance evaluation of network topologies and protocols.

We show through a numerical evaluation that our approach is able to predict the performance of TCP and UDP flows
by only using this low-level graph-based representation of the network topology and its flows. Overall, the predictions of
bandwidths and end-to-end latencies have a median absolute relative error smaller than 1%. The results for the TCP dataset
are also compared against two approaches using high-level input features (round-trip time and loss probability), namely
Support Vector Regression (SVR) as used in [1,2] and a standard feed-forward neural network. Compared to both approaches,
our method achieves better accuracy, with a median relative error one order of magnitude lower compared to SVR.

Wealso illustrate the scalability of our approach in termsof execution timebynumerically evaluating our implementation
of GNN. Our measurements illustrate that our implementation scales quadratically with the number of edges, and linearly
with the number of nodes. We show that our approach is able to process graphs with up to 1000 nodes and 150 000 edges
with a prediction time below 200 us. Finally we illustrate a method for visualizing the learned model in order to apply it to
more general questions such as root-cause analysis or bottleneck identification.

This work is structured as follows. In Section 2, we present similar research studies. We describe in Sections 3 and 4
our modeling approach and the neural network architecture used here, with an introduction to Graph Neural Networks
and Gated Graph Neural Networks, followed by the application of those concepts to network topologies and flows. We
numerically evaluate our approach in Section 5 with the prediction of performance of TCP and UDP flows, compare against
two other machine learning approaches, and evaluate our approach in terms of scalability. Section 6 gives some insights on
interpreting the learned weights of the neural network. Finally, Section 7 concludes our work.

2. Related work

As shown in a recent survey by Fadlullah et al. [7], machine learning has been used for computer networks for various
applications such as traffic classification, flow prediction, and mobility prediction. It has also been applied in the area of
performance evaluation of communication networks. Mirza et al. [2] used Support Vector Regression (SVR) using input
features such as transfer duration of files over TCP and active measurements in order to measure queuing latency, loss
probability and available bandwidth. Tariq et al. [3] proposedWISE to study application performance using Causal Bayesian
Networks (CBNs) in order to answer ‘‘what-if’’ questions. Hours et al. [8] also usedCBNs to predict the throughput distribution
of TCP flows, using similar features as in [2]. While these works proved to deliver accurate results, they are essentially based
on high-level engineered features dependent on the studied protocol and those models are not easily transferable to other
protocols. In case of TCP flows, these high level features usually include round-trip time and packet loss – following well
known mathematical models such as [9] – which also often require active measurement. By having a simple process for
abstracting the network topology as graph without such high-level feature, the approach we propose in this article does not
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require such expert knowledge or hand engineered features and is better suited to be used onmultiple use-cases ormultiple
network protocols. Our approach is also able to reason about performance evaluation at network level and not at individual
node level.

Variousmethods have been proposed for applyingmachine learning to graphs-based structures, either based on a spectral
or spatial approach. Spectral approaches [10,11] are usually based on the Graph Laplacian, an analogous method to the
Discrete Fourier Transform, which transforms graph signals to a spectral domain. The main limitation of these approaches
is that the input graph samples are required to be homogeneous. Concretely this means that only a fixed subset of network
types may be analyzed andmultiple machine learning models may be required in case multiple network types are required.

Spatial approaches do not require a homogeneous graph structure, meaning that they can be applied to a broader
range of problems. Gori et al. proposed in [5,6] the Graph Neural Networks (GNNs) architecture, which propagates hidden
representations of nodes to its adjacent nodes until a fixed point is reached. GNNs were applied on different tasks such as
object localization, ranking of web pages, document mining, or prediction of graph properties [12]. This neural network
architecture was subsequently refined in different works. Li et al. [4] proposed Gated Graph Neural Networks (GGNNs), an
extension of GNNs with application of more modern practice of neural networks, namely by using Gated Recurrent Units
(GRU) [13]. GNNs were evaluated against basic logical reasoning tasks and program verification in [4] and shown to be as-
good-as or better than previous state of the art methods. Related approaches were proposed by Kipf and Welling [14] with
Graph Convolutional Networks (GCN) and later extended by Schlichtkrull et al. [15] with Relational Graph Convolutional
Networks (R-GCNs). GCN also use hidden node state information propagated across edges of the graph via convolutions,
while taking into account the type and direction of an edge. Finally, Battaglia et al. [16] recently introduced the graph
networks (GN) framework with the goal of providing a unified formalization of many concepts applied in GNNs and
extensions of GNNs.

Those methods have been used in a variety of applications related to the study of data which can be modeled as graphs.
Grover and Leskovec [17] applied it to link prediction and classification in social networks, protein interactions and natural
language processing. Marcheggiani and Titov [18] studied semantic role labeling in natural language processing. Gilmer et al.
[19] used GNNs for the prediction of chemical properties of molecules. Allamanis et al. [20] performed source code analysis
by modeling source code and interaction between program variables as graphs, in order to predict variable naming. Selsam
et al. [21] modeled the interaction between variables in boolean satisfiability problems (SAT) as graphs, with the goal of
predicting their satisfiability. In all those applications, the results of graph-based deep learning were similar to or better
than previously existing machine learning approaches.

On the challenge of predicting the performance of TCP flows, analytical models have been proposed since the late 1990s.
Mathis et al. [22], and subsequently Padhye et al. [9], modeled the throughput of a single flow using TCP Reno as a function
of round-trip time, drop probability and some configuration parameters of TCP. This work was then extended by Cardwell
et al. [23] to take into account the slow-start phase of TCP. While these models address the mathematical modeling of a
single flow, the interaction between multiple flows on a given topology is of greater interest for the problem addressed in
this paper. Firoiu et al. [24] proposed to reuse the results from [9] to analyze complete topologies. Those analytical models
give great insights in the performance of TCP, but they usually suffer from poor applicability to real-world use-cases due
to newer versions of TCP, simplifications of the mathematical model, or lack of modeling of non-intuitive behavior of TCP
such as ACK compression or TCP Incast. Some later works have partially addressed those shortcomings, such as the work
from Velho et al. [25] and Geyer et al. [26].

This article is an extension of our previous work [27], which applied GGNNs to the performance evaluation of TCP
flows. In this article, we propose more advanced GGNNs architectures, provide an extended numerical evaluation with the
performance of both TCP and UDP flows, compare against two other machine learning approaches using high-level features,
and provide a discussion regarding scalability.

3. Neural networks for graph analysis

Themain intuition behind our approach is to represent network topologies as graphs with additional nodes for modeling
flows and additional edges for the paths followed by the flows. These graph representations are then used as input for a
neural network architecture able to process general graphs. The transformation between a given network topology and its
graph representation will be detailed later in Section 4.

In this section, we review the neural network architecture used for training neural networks on graphs, namely Graph
Neural Networks (GNNs) [5,6] and one of its recent extension, Gated Graph Neural Networks (GGNNs) [4].We also introduce
notation and concepts that will be used throughout this article. Alternate approaches for applying neural networks to graphs
were presented in Section 2.

GNNs and GGNNs are a general neural network architecture able to process graph structures as input. They are an
extension of recursive neural networks which work by assigning hidden states to each node in a graph based on the hidden
states of adjacent nodes. For the purpose of thiswork, our description ofGNNs andGGNNs is limited to undirected graphs. The
concepts presented here can also be applied to directed graph, as presented in the original works on GNNs and GGNNs [4–6].

Let G = (V, E) be an undirected graph with nodes v ∈ V and edges e ∈ E . Edges can be represented as pairs of nodes,
such that e = (v, v′) ∈ V × V . The hidden representation for node v is denoted by the vector hv ∈ RH. Nodes may also have
features lv for each node v, and edges also le = l(v,v′) for each edge e = (v, v′). LetNbr(v) denote the set of neighboring nodes
of v.
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Fig. 2. (a) Example graph. Edge colors denote edge types. (b) One step of the propagation of hidden node representation. (c) Application of Eq. (1) to the
graph.

3.1. Graph neural networks

In Graph Neural Networks (GNNs), each hidden representation hv of a node v is based on the hidden state of its
neighboring nodes Nbr(v). The following propagation model is used for expressing this relationship:

h(t)
v = f ∗

(
lv, lNbr(v),h

(t−1)
Nbr(v)

)
(1)

An illustrative application of Eq. (1) is given in Fig. 2.
As a concrete implementation, [6] recommends to decompose f ∗(·) as the sum of per-edge terms such that:

h(t)
v =

∑
v′∈Nbr

f
(
lv, lv′ , l(v,v′),h

(t−1)
v′

)
(2)

with f (·) a linear function of hv or a feed-forward neural network. For example, f (·) can be formulated as a linear function:

f
(
lv, lv′ , l(v,v′),h

(t)
v′

)
= W(lv ,lv′ ,l(v,v′))h(t−1)

v′ + b(lv ,lv′ ,l(v,v′)) (3)

withW and b learnable weight and bias parameters. The hidden node representations are propagated throughout the graph
until a fixed point is reached. As explained in [6], it implies that f (·) has the property that a fixed point for Eq. (2) can be
reached.

Once a fixed point hv has been reached, a secondmodel is then used to compute the output vector ov for each node v ∈ V
such that:

ov = g (hv, lv) (4)

Practically, g(·) is implemented using a feed-forward neural network [6]. The neural network architecture is differentiable
from end-to-end, so that all parameters can be learned using standard techniques for neural networks based on gradient-
based optimization.

Due to the required fixed-point iterations, training of the parameters of f (·) and g(·) of the GNN is done via the Almeida–
Pineda algorithm [28,29] which works by running the propagation of the hidden representation to convergence, and then
computing gradients based upon the converged solution.

3.2. Gated graph neural networks

Li et al. [4] recently introduced Gated Graph Neural Networks (GGNNs) as an extension of GNNs usingmore recent neural
network techniques, based on Gated Recurrent Units (GRU) [13]. GRUs are special types of neural network blocks with an
internal memory. Such blocks are generally used to process time-dependent inputs such as audio or written words, which
can be mathematically simplified as:

output (t) = function
(
input (t), output (t−1)) (5)

In GGNNs, each node aggregates the hidden representations it receives from all adjacent nodes as in Eq. (2), and uses that
to update its own hidden representation using a GRU cell. More specifically, the propagation of the hidden representations
among neighboring nodes for one time-step is formulated as:

a(t)v = A(v)

[
h(t−1)
1 · · ·h(t−1)

|V |

]T
+ ba (6)

z(t)v = σ
(
Wza(t)v + Uzh(t−1)

v + bz
)

(7)

r(t)v = σ
(
Wra(t)v + Urh(t−1)

v + br
)

(8)
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Fig. 3. Representation of a Gated Graph Neural Network.

h̃(t)
v = tanh

(
Wa(t)v + U

(
r(t)v ⊙ h(t−1)

v

)
+ b

)
(9)

h(t)
v =

(
1 − z(t)v

)
⊙ h(t−1)

v + z(t)v ⊙ h̃(t)
v (10)

where σ (x) = 1/(1 + e−x) is the logistic sigmoid function and ⊙ is the element-wise matrix multiplication. {Wz,Wr ,W}

and {Uz,Ur ,U} are learnable weights matrices, and {ba, br , bz, b} are learnable biases vectors. A ∈ R|V|×|V| is the graph
adjacency matrix, determining how nodes in the graph G communicate with each other.

Eq. (6) corresponds to one time-step of the propagation of the hidden representation of neighboring nodes to node v,
as formulated previously for Graph Neural Networks in Eqs. (1) and (2). Eqs. (7)–(10) correspond to the mathematical
formulation of a GRU cell, with Eq. (7) representing the GRU reset gate vector, Eq. (8) the GRU update gate vector, and
Eq. (10) the GRU output vector as described in Eq. (5). The initial hidden representation h(0)

v is based on the node’s feature
vector lv , padded with zeros according to the dimensions of the hidden representation.

The output vector ov for each node v is computed as in Eq. (4) using a feed-forward neural network. The overall
architecture of the GGNN is illustrated and summarized in Fig. 3.

While with GNNs the node propagation loop is performed until a fixed-point is reached, a fixed number of iterations is
used in GGNNs. This process enables the use of traditional gradient-based training methods used for feed-forward neural
networks such as RMSProp [30]. Since hidden representations are propagated iteratively to node neighbors at each iteration,
the number of iterations necessary for achieving good accuracy depends mainly on the path length between relevant nodes
in the analyzed graph. In the example in Fig. 2, if the output vector of node 1 depends on the input features of node 4, at least
two iterations of the propagation loop are required, since the hidden representation of node 4 is first propagated to node 2
in the first iteration, before reaching node 1 in the second iteration.

While the number of iterations is highly dependent on application, we propose here two simple heuristics for choosing
the number of iterations. The first heuristic is to use the diameter d of the studied graph, namely the greatest distance
between any pair of nodes, which ensures that each node receives at least once the propagated hidden representation of all
other nodes in the graph. The second heuristic is to use 2 × d, which ensures that the hidden representations between any
pairs of nodes in the studied graph could be propagated in both directions. Numerical evaluations in Section 5.7 illustrate
the influence of the number of iteration on the accuracy.

3.3. GGNN-LSTM: Extension of gated graph neural networks with LSTM

In our approach we use an extension of Gated Graph Neural Networks – called here GGNN-LSTM – based on the Long
Short-Term Memory (LSTM) cell [31]. This neural network architecture is based on the Gated Graph Neural Network
architecture where the GRUmemory cell is replaced with a LSTM cell. The overall architecture of the GGNN-LSTM is similar
to the GGNN illustrated in Fig. 3.

Similarly to Eqs. (6)–(10), the propagation of the hidden representations among neighboring nodes for one time-step in
a GGNN-LSTM is formulated as:

a(t)v = A(v)

[
h(t−1)
1 · · ·h(t−1)

|V |

]T
+ ba (11)

i(t)v = σ
(
Wia(t)v + Uih(t−1)

v + bi
)

(12)

f(t)v = σ
(
Wf a(t)v + Uf h(t−1)

v + bf
)

(13)

o(t)
v = σ

(
Woa(t)v + Uoh(t−1)

v + bo
)

(14)

g(t)
v = tanh

(
Wga(t)v + Ugh(t−1)

v + bg
)

(15)

c(t)v = c(t−1)
v ⊙ f(t)v + g(t)

v ⊙ i(t)v (16)

h(t)
v = tanh

(
c(t)v

)
⊙ o(t)

v (17)

with {Wi, . . .} and {Ui, . . .} learnable weight matrices, and {bi, . . .} learnable bias vectors.
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Eq. (11) is the propagation of the hidden representations among neighbors, as in Eq. (6). Eqs. (12)–(14) correspond
respectively to the input, forget and output gates of the LSTM cell. Eq. (15) is a candidate hidden representation, with an
initial value c(0)v set to zero. Eq. (16) is the internal memory of the LSTM cell.

Our rationale for using this alternate neural network architecture is motivated by better accuracy than the GGNN based
on GRU presented in Section 3.2, as shown in the numerical evaluation in Section 5 for the TCP task.

3.4. Stacked gated graph neural networks

Since the neural network architectures introduced earlier are based on a special variant of recurrent neural networks,
advances made for standard RNNs may also be applied here. For this purpose, we make use of stacked RNNs as proposed
by Pascanu et al. [32], and illustrated in the following equation:

h(t;l)
= r

(
A,h(t−1;l),h(t;l−1)) (18)

where h(t;l) corresponds to the hidden representation at timestep t and layer l, and r a function describing the recurrent unit,
i.e. Eqs. (6)–(10) for the GRU or Eqs. (12)–(14) for the LSTM unit.

3.4.1. Edge attention
A recent advance in neural networks has been the concept of attention, which provides the ability to a neural network to

focus on a subset of its inputs. This mechanism has been used in a variety of applications such as computer vision or natural
language processing (e.g. [33]). For the scope of GNNs, we introduce here so-called edge attention, namely we wish to give
the ability to each node to focus only on a subset of its neighborhood. Formally, let a(t)(v,u) ∈ [0, 1] be the attention between
node v and u. Eq. (2) is then extended as:

h(t)
v =

∑
u∈Nbr(v)

a(t)(v,u) · f ∗
(
h(t−1)
u

)
(19)

a(t)(v,u) = fA
(
h(t−1)

v ,h(t−1)
u

)
(20)

We decompose fA(·) as two feed-forward neural networks and use an element-wise matrix multiplication to compute a
modified adjacency matrix.

To make the computation of a(t)(v,u) for all edges more efficient, we use the modified adjacency matrix Ã(t) defined as:

Ã(t)
= A ⊙ softmax

(
fA1

(
H(t))T

⊙ fA2
(
H(t))) (21)

with fA1 (·) and fA2 (·) feed-forward neural networks, and softmax the normalized exponential function such that:

softmax(X)j =
eXj∑
i eXi

(22)

4. Application to performance evaluations of networks

We describe in this section the application of the deep learning architectures presented earlier to the performance
evaluation of network topologies and network protocols. In other words, our goal is to represent network topologies and
the flows traversing them as graphs which can be passed as inputs to a GGNN. Compared to other works on the application
of machine learning to performance evaluation, the main contribution is that this graph representation is a low-level input
feature. Thismeans that specific high-level features of the studied network protocol are not required and the trainedmachine
learning algorithm is not restricted to a specific topology.

The main intuition behind the input feature modeling for the GGNN is to use the network of queues as input graph G,
with additional nodes representing the flows in this network. An illustration of this network of queues is given in Fig. 4b,
which is the representation of the different queues in the example network depicted in Fig. 4a. Note that we represent on
Fig. 4b only the forward path of the flows. Fig. 4b may also be extended to include the queues taken by the acknowledgment
packets used by the flows if necessary, such as TCP ACK packets for example as explained later in Section 5.2.

We formally define here the transformation between an input computer network and the undirected graph G = (V, E)
which will be analyzed by the GGNN. Fig. 4c is an application of this transformation applied to the network presented in
Fig. 4a.

We focus in this article on the study of simple Ethernet networks, where computers are connected via simple store-
and-forward switches and exchanging data via flows. We assume that each flow in the network is unidirectional, with a
single source and a single destination. Each flow f is represented as a node vf in the graph G. As illustrated in Section 5.2,
bidirectional flows such as TCP flows may still be analyzed by using two unidirectional flows, modeled in G by two nodes
connected by an edge.

We assume here that the routing in the studied network is static, namely that the path taken by a flow is fixed. Each
queue traversed by a flow in the network is represented as a node vq in the graph G. For simplifications purpose we only



F. Geyer / Performance Evaluation 130 (2019) 1–16 7

Fig. 4. Graph encoding of an example network topology with three flows.

consider the queues present in the network interfaces and not other queues whichmay be present in operating systems.We
model network interfaces using a simple drop-tail queue. In case of Ethernet switches,multiple nodes are used sincemultiple
interfaces are present. Queues are connected by edges according to the physical topology of the studied network. Let Qf be
the set of queues traversed by flow f . In order to encode the path taken by a flow, edges connect the node representing the
flow vf with the nodes representing the traversed queues {vq|q ∈ Qf }.

Each node v in the graph G is characterized by its input features lv , encoding parameters relevant to the studied network
protocol. In the simple case illustrated here, we only encode the node type – i.e. if a node represents a flow or a queue – using
one-hot encoding. Namely lv is a vector with two values, with [1, 0]T is for queue nodes, and [0, 1]T for flow nodes.

Each node v in the graph G is also characterized by its output features ov corresponding to the values which are predicted.
In this article, we study in Section 5 the case where the output vector ovf of each flow f corresponds to a bandwidth or an
end-to-end latency. Since we do not make prediction on queues here, their corresponding nodes have no output vector. This
is implemented by using a masked loss function for training the neural network, which only take into account the output
vectors of flows.

Note that for simplification purpose, we limited this section – and description of transformation between network and
graph – to the case where all nodes in the network have the same behavior and that all links in the topology have the same
capacity and latency. Additional features for distinguishing between different behaviors or node types (e.g. link capacity,
different vendors, operating system) may easily be added in case differences between nodes are present and relevant to
the prediction, such as different configurations, types or link capacities. In this case, lv is extended with additional values
representing those differences and encoded using standard practices for feature encoding in machine learning. Example
of such scenario where each node has a unique attribute is given later in Section 5 where flow rates and packet sizes are
additionally encoded in lv .

We note that this network transformation process may easily be extended to more complex architectures and more
refined models of queues, such as having network interfaces using multiple queues and a packet scheduler, or modeling
more precisely network switches using additional queues depending on the internal architecture of switches. Since standard
packet processing pipelines can easily be represented as graphs, additional nodes and edges representing more complex
pipelines may be added in the graph.

Compared tomore traditional approaches as in [2,3,8], we note that the graph and feature representations described here
are independent of any studied network protocols or specific metrics (e.g. bandwidth, latency, etc.).

5. Numerical evaluation

In this section, we evaluate Graph Neural Networks in the context of our approach described in Sections 3 and 4 on
two representative use-cases: prediction of the average steady-state bandwidth of TCP flows and prediction of end-to-end
latencies of UDP flows.

5.1. Implementation

For both use-cases, the same implementation, parameters and learning algorithm for the neural network were used. The
GGNN architectures presented in Sections 3.2 and 3.3 were implemented using Tensorflow [34] and trained using a Nvidia
GeForce GTX 1080Ti GPU. The recurrent part of the GGNN and GGNN-LSTM were respectively implemented according to
Eqs. (6)–(10) and Eqs. (11)–(17). The function g(·) in Eq. (4) was implemented using a feed-forward neural networkwith two
dense layers. Additional dropout layers [35] were added according to standard practices for recurrent neural networks [36]
in order to avoid over-fitting.

For each studied use-case, the model was trained multiple times using the parameters listed in Table 1. The learning
rate used for training the models was optimized following standard practices based on Bayesian optimization. The learned
weights producing the best result is then selected for the numerical results presented in the rest of this section. All GNN
models evaluated here were trained for the same number of iterations.
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Table 1
Parameters used for the training phase of the neural networks.
Parameter Value

Size of hidden representation hv 96
Number of loops unrolling 12
Training algorithm RMSProp [30]
Mini-batch size 64
Number of training iterations 20000

Fig. 5. Daisy chain topology used for the numerical evaluation.

The following Graph Neural Network architectures were evaluated:

• GGNN-GRU: A Gated Graph Neural Network using a GRU memory unit as presented in Section 3.2,
• GGNN-LSTM: A Gated Graph Neural Network using a LSTM memory unit as presented in Section 3.3,
• GNN-RNN: A simplified implementation of Graph Neural Network as described in Section 3.1 using a simple Recurrent

Neural Network (RNN) architecture, where the hidden node representation is computed as:

a(t)v = A(v)

[
h(t−1)
1 · · ·h(t−1)

|V |

]T
+ ba (23)

h(t)
v = tanh

(
Wa(t)v + Uh(t−1)

v + b
)

(24)

with W and U learnable weight matrices, and b a learnable bias vector.
• GNN-RNN2 and GNN-RNN3 as stacked versions of GNN-RNN following Section 3.4, with respectively 2 and 3 stacks, as

indicating by the exponent in the architecture label.

In order to compare our approach with other machine learning approaches, we evaluate also the following additional
models:

• SVR: Support Vector Regression for the TCP bandwidth predictions usingmeasured round-trip time and loss probability
as input features. This model is comparable to one proposed by Mirza et al. [2]. We note that the use of such model
requires active measurement in the network. The implementation of SVR from scikit-learn [37] was used for the
evaluation.

• FFNN: A feed-forward neural network with three dense layers for the TCP bandwidth predictions using the same
features as the SVR model.

5.2. Use-case: prediction of average TCP flow bandwidths

In this first use-case, we evaluate the capabilities of our approach at predicting the steady-state bandwidth of TCP flows
sharing different bottlenecks.

For the generation of the topologies, a random number of Ethernet switches is first selected using the discrete uniform
distribution U(1, 6) and connected according to a daisy chain as illustrated in Fig. 5. A random number of nodes is then
generated using the discrete uniform distribution U(2, 32) and connected to a randomly selected Ethernet switch. For each
node, a TCP flow is generated with a randomly selected destination among the other nodes. The default parameters of ns-2
for the TCP stack are used, meaning that TCP Reno is used as a congestion control algorithm. The results of the simulations
are used as a basis for the learning process of the neural network.

Since the performance of TCP flows is highly dependent on the congestion experienced by TCP acknowledgments, we
extend our approach from Section 4 to also include TCP ACKs in the input graph representation. Fig. 6 represents the graph
encoding which has been used for this task on a simple topology. We follow the method explained in Section 4, where
each queue in the network is represented by a node. Each TCP flows is encoded as two nodes in the graph: one node for
representing the data sub-flow and one node for the acknowledgment sub-flow, both connected by an edge. Each node i in the
graph has a feature vector encoding node type as a one-hot vector:
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Fig. 6. Graph encoding used for the TCP prediction task.

• [1, 0, 0]T for nodes representing queues,
• [0, 1, 0]T for TCP data nodes,
• [0, 0, 1]T for TCP acknowledgment nodes.

The output vector yi of each node representing a TCP data sub-flow is a single value corresponding to the normalized steady-
state bandwidth. The output vector of the other nodes is masked in the loss function.

As shown in previous studies about TCP [9,24], the average throughput of TCP flows depends on various parameters such
as the TCP congestion control algorithm, the configuration of the TCP stack, round-trip times or drop probabilities, as well
as the interaction between flows. The graph encoding used here offers a more low-level representation.

The neural network is trained against a mean-square loss function such that the following function is minimized:
1

|flows|

∑
i∈flows

(yi − oi)
2 (25)

5.3. Use-case: prediction of UDP flows end-to-end latencies

In this second use-case, we evaluate the capabilities of our approach at predicting the end-to-end latencies of UDP flows
sharing different bottlenecks.We follow the same approach as for the previous use-case, namelymultiple random topologies
with UDP flows are generated and evaluated using simulations. The same daisy-chain topology presented in Fig. 5 is used
here.

Each UDP flow i generates unidirectional traffic from a given pair of source Si and destination Di, with constant rate ri,
using packets of random size taken from a uniform distribution from 10 to mi Bytes. The parameters Si, Di, ri and mi are
randomly generated for each UDP flow. For this use-case we focus on the prediction of the average and 95% quantile of the
end-to-end delay for each flow in a given topology.

Regarding the graph encoding, we follow the approach illustrated in Section 4 with Fig. 4 since flows are unidirectional.
As for the TCP use-case, the feature vector of each node i encodes the node type as a one-hot value and the traffic parameters:

• [1, 0, r̃i, m̃i]
T for nodes representing flows, with r̃i and m̃i the normalized versions of ri and mi

• [0, 1, 0, 0]T for nodes representing queues

The output vector yi of each node representing a UDP flow corresponds to the normalized end-to-end latency. As for the TCP
use-case, we use Eq. (25) as loss function, where the output vector of the non-flow nodes are masked.

5.4. Prediction accuracy

In order to evaluate the accuracy of the different models presented here, we evaluate the predictions using the relative
absolute error and residual metrics:

Relative absolute error:
|yi − oi|

yi
(26)

Residual: yi − oi (27)

with yi and oi respectively measurements from the simulations, and predicted values.
Fig. 7 illustrates the distributions of relative error of the different neural network architectures for the datasets previously

described.
We first focus our interpretation of Fig. 7 on the TCP use-case with machine learning models using high-level features

(round-trip time and loss probability), namely SVR and FFNN. The median relative absolute error of 11.6% for the SVRmodel
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Fig. 7. Comparison of the evaluated machine learning methods according to the relative error. Bars represent respectively the 25, 50 and 75 percentile
values.

Fig. 8. Comparison of real value against the residual (oi − yi) for the GGNN-GRU and GGNN-LSTM architectures. Values are normalized according to the
studied dataset. Bars represent respectively the 25, 50 and 75 percentile values.

is in line with the results from [2], which reported a 10% median relative error. The feed-forward neural network provides
better results, with a median relative error of 3.5%. Those values will be used as a baseline for comparison purposes.

Regarding the GGNN models, all architectures evaluated here are able to predict the TCP bandwidths with a median
relative error below 1%, outperforming the values from the SVR by one order of magnitude, and also outperforming the
feed-forward neural network using high-level input features. This highlights our main motivation for using GGNNs.

Regarding UDP latencies, we are also able to reach a median relative error below 1%. The GGNN-LSTM architectures
provide better results on the TCP use-case, while the GRU-based ones are more suited to the UDP use-case. We note that
using stacked memory cells for the GGNN enables better accuracy for the TCP use-case, while not providing better results in
the UDP use-case.

Compared to the more simpler GNN-RNN architecture, we notice that we reach better accuracy using a GRU or a LSTM
memory cell, even in case of memory stacks. This motivates our choice of using more recent graph-based neural network
architectures from [4] compared to the earlier results from [5,6].

In order to better understand thedifference betweenbothGRU- and LSTM-based architectures,we investigate the average
residual as illustrated in Fig. 8.

For both use-cases we notice similar values for normalized values below 0.5, where both architecture result in similar
residual. In the TCP use-case, both architectures provide similar results across the range ofmeasured values, with a tendency
for the GRU-based architecture to underestimate bandwidths, while the GGNN-based one overestimates bandwidths. A
similar behavior is exhibited for the UDP use-case.
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Fig. 9. Evaluation of the precision of the architectures against their number of variables.

5.5. Influence of model size

An important factor when comparing machine learning models and neural network architectures is their number of
variables according to their precision, as illustrated in Fig. 9. For the SVR model, we quantify the number of variables as
the size of the support vectors. For the neural network architectures, the number of variables presented in here are based
on the same size for the hidden node representation (as highlighted in Table 1). Since model size directly correlates with
training time and evaluation time, an ideal model would be in the bottom left part of Fig. 9, meaning it would provide the
best accuracy with the lowest possible number of variables.

The difference between SVR and GGNN is also noticeable here, since both types of models use a similar number of
variables, but with large differences in relative error. Fig. 9 illustrates also the motivation for using GGNNs with memory
cells as the GGNN-GRU and GGNN-LSTM architectures outperform the other methods.

We also notice that although the GNN-RNN3 and GGNN-GRU architectures have similar number of variables, the GGNN-
GRU architecture outperforms the GNN-RNN3 one, motiving our choice of more advanced graph-based neural network
architecture.

5.6. Influence of graph size

We investigate in this section the relationship between size of the network topology and the precision of the model.
Fig. 10 illustrates the influence of input graph size against the relative error. While some correlation between graph size
and relative error are visible in Fig. 10, it is dependent on which dataset is investigated. We note that for the TCP use-case,
increase in graph sizes result in an increase in the relative error. In the UDP use-case, the relationship between graph size
and relative error is reversed.

5.7. Influence of number of unrolled loops

We noted in Section 3.2 that GGNNs are unrolled a fixed number of iterations T compared to GNNs. Fig. 11 illustrates
the influence of T against the relative error, where the illustrated GGNNs were trained with different values for T . Since
increasing T also has an impact on training and evaluation time, a trade-off between accuracy and speed has to be established
when designing the graph neural network’s architecture and choosing its hyper-parameters. Increasing T improves the
prediction accuracy in both use-cases for the studied architectures, with smaller effect for T larger than 12, motivating our
choice of T = 12 as presented in Table 1.

We notice that the UDP use-case highlights a larger difference between both architectures, where larger values of T for
the GGNN-GRU provide only minimal impact on the prediction accuracy. This can be explained by the fact that end-to-end
latencies depend more on local queuing effects than topology-wide ones. This is opposed to the performance of TCP flows,
where the interaction between flows on a larger scale across the topology have larger impact than local effects.

5.8. Execution time

In order to understand the scalability of ourmodel presented in Section 3, we evaluate in this section our implementation
in terms of execution time. Since our datasets with TCP or UDP flows contain mainly small networks, we evaluated our
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Fig. 10. Evaluation of architecture precision against the size of the studied graph for the GGNN-GRU and GGNN-LSTMmodels. Bars represent respectively
the 25, 50 and 75 percentile values.

Fig. 11. Evaluation of architecture precision against the number of unrolled iterations of hidden representation propagation. Bars represent respectively
the 25, 50 and 75 percentile values.

implementation against randomly generated graphs. We followed the Erdős–Rényi model [38] for generating random graph
with a randomly selected number of nodes |V| following the uniform distribution U(2, 1000) and a random number of edges
|E| following the uniform distribution U (N − 1,D|V|(|V| − 1)/2) with D the graph density parameter. The average graph
density for both datasets used in Sections 5.2 and 5.3 was approximately 0.2.

Since the propagation of hiddennode representations defined in Eqs. (2) and (6)may either be implemented in Tensorflow
using dense matrix multiplication, or using sparse operations as noted by Allamanis et al. [20], we evaluated a dense and
a sparse version of our model. According to the mathematical operations illustrated in Section 3 the runtime of one loop
unrolling of the GNN correspond to the sum of the following terms:

• Per-node operations, namely Eqs. (7)–(10) for the GGNN-GRU, which scale linearly in execution time with the number
of nodes, namely O (|V|);

• The propagation of hidden node representations defined in Eqs. (2) and (6):

– scaling linearly with the number of edges with sparse operations, namelyO (|E|), i.e.O
(
D|V|

2) following that the
max (|E|) = D|V|(|V| − 1)/2,

– scaling according to the multiplication of the hidden node representations with the graph adjacency matrix of
size |V| × |V| with dense operations, namely O

(
H|N |

2) with H the size of hidden representation.
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Fig. 12. Average execution time of prediction against number of nodes in graph. The fitted lines correspond to a polynomial model of order 2.

Fig. 13. Average execution time of prediction against number of edges in graph. The fitted lines correspond to a linear model.

Those operations are performed multiple times according to the number of loop unrolling, as discussed in Sections 3.2 and
5.7. In summary, our implementations should scale in execution time quadratically with the number of nodes in the graph,
and linearly with the number of edges.

Numerical results are presented in Figs. 12 and 13 for our two different implementations and three values for the
maximal graph density. The execution time measurements were measured on a server equipped with an Intel Xeon CPU
E5-2620 v4 at 2.10 GHz and a Nvidia GeForce GTX 1080Ti. Batching of graphs was used to take advantage of parallelization.
Those measurements validate the theoretical results presented earlier and illustrate the difference between the two
implementations. As expected, the implementation using sparse operations performs faster for small graph densities while
the implementation using dense operations performs the same regardless of graph density.

Those numerical results illustrate also applicability in practical use-cases since the execution time for prediction is below
200 us even for graphswith 1000 nodes and 150 000 edges. This small execution time enable fast operation in real networks,
where the predictions may be used to dynamically configure computer networks.

Finally, while we illustrated in Figs. 12 and 13 the execution time for making a prediction on a given graph, our approach
may still be limited by the size of the required dataset for larger networks in the training phase. Depending on the taskwhich
needs to be predicted, larger datasets may be required on larger graphs, since those larger cases may exhibit more complex
behaviors. In the two use-case described in Sections 5.2 and 5.3, larger networks and larger number of flows will result in
edge cases for the performance, namely low bandwidth for the TCP use-case and high latencies for the UDP one. Since those
performance are inherently limited by link speed and maximum buffer sizes of the underlying topology in those edge cases,
training and prediction on larger networks should still possible with moderate dataset sizes.
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Fig. 14. Influence of nodes, other flows, and flow acknowledgments on the flows’ performance.

6. Interpreting GNNs

An important subject when working with neural network is the interpretability of the learned model and its associated
weights. A method often used for this purpose in computer vision is feature visualization using optimization [39], where
inputs are optimized such that a specific output feature is maximized.

In our case, we are interested in visualizing the interaction between selected flows and the traversed queues. Once the
parameters of the graph neural network learned, we replace the adjacency Awith a modified matrix Ã such that

Ã = A ⊙ σ
(
B + BT ) (28)

with B ∈ R|V|×|V| a learnable matrix. B + BT ensures that Ã is a symmetrical matrix. For a given flow f , we then minimize
the following loss function:(

yf − of
)2

+
1

|V|
2

∑
i,j

Ã{i,j} (29)

Fig. 14 illustrates the result of this optimization on a small topology with four TCP flows. We optimized B for each flow
in the topology using gradient based optimization. The results are then aggregated according to the nodes in the network
topology instead of the respective edges. The influence matrix corresponds to the aggregated value of B.

As expected, bottlenecks and flows sharing the same bottleneck have an influence on each other, as shown for instance
on the influence from SW1 and F0 on F3. Nodes having no influence on the performance of flows can also be found, as
illustrated here by SW2 having no influence on F1. Using this visualization method, root-cause analysis of poor performance
and bottleneck identification may be performed.

7. Conclusion

We presented in this article DeepComNet, a novel approach for the performance evaluation of network topologies and
flows based on graph-based deep learning. Our approach is based on the use of Gated Graph Neural Networks and a low-
level graph-based representation of queues and flows in network topologies. Compared to other approaches using machine
learning for performance evaluation of computer networks, the trained model is not specific to a given topology and high-
level input features requiring more advanced knowledge on the studied protocol are not required.

We applied our approach to the performance evaluation of the bandwidth TCP flows and the performance evaluation
of end-to-end latencies of UDP flows For both tasks, taking into account the topology in the performance evaluation is
important: the throughput of TCP flows is dependent on the network architecture and network conditions (i.e. congestion
and delays), and the end-to-end latencies depend on local queuing effects across the different queues from the topology.
We showed via a numerical evaluation that our approach is able to reach good accuracies, with a median absolute relative
error below 1%, even on large network topologies withmultiple hops.We compared the chosen neural network architecture
against two other approaches based on machine learning using high-level input features, and showed that our method
outperforms those approaches by asmuch as one order ofmagnitude. Different types ofGGNNs and configurationparameters
were evaluated in order to understandwhich GGNN architecture produces the best results according to the studied network
protocol. Finally we also gave some insights into the interpretation of the neural network in order to see which nodes in a
given topology have an influence on protocol performances.

Since the network topology is directly taken as input of the neural network, applications such as network planning and
architecture optimization may benefit from the method developed in this article. Future work may include further study of
end-to-end protocols performance as well as optimization techniques based on this method.
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