
Learning and Generating Distributed Routing Protocols
Using Graph-Based Deep Learning

Fabien Geyer

Technical University of Munich

Garching b. München, Germany

fgeyer@net.in.tum.de

Georg Carle

Technical University of Munich

Garching b. München, Germany

carle@net.in.tum.de

ABSTRACT
Automated network control andmanagement has been a long stand-

ing target of network protocols. We address in this paper the ques-

tion of automated protocol design, where distributed networked

nodes have to cooperate to achieve a common goal without a pri-

ori knowledge on which information to exchange or the network

topology. While reinforcement learning has often been proposed

for this task, we propose here to apply recent methods from semi-

supervised deep neural networks which are focused on graphs. Our

main contribution is an approach for applying graph-based deep

learning on distributed routing protocols via a novel neural net-

work architecture named Graph-Query Neural Network. We apply

our approach to the tasks of shortest path and max-min routing.

We evaluate the learned protocols in cold-start and also in case

of topology changes. Numerical results show that our approach is

able to automatically develop efficient routing protocols for those

two use-cases with accuracies larger than 95 %. We also show that

specific properties of network protocols, such as resilience to packet

loss, can be explicitly included in the learned protocol.

CCS CONCEPTS
•Networks→Networkprotocol design; •Computingmethod-
ologies→Distributed artificial intelligence;Neural networks;

KEYWORDS
Routing, Graph Neural Network, Deep Learning

ACM Reference Format:
Fabien Geyer and Georg Carle. 2018. Learning and Generating Distributed

Routing Protocols Using Graph-Based Deep Learning. In Big-DAMA’18:
ACM SIGCOMM 2018 Workshop on Big Data Analytics and Machine Learning
for Data Communication Networks , August 20, 2018, Budapest, Hungary.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3229607.3229610

1 INTRODUCTION
The current improvements in computational power in packet pro-

cessing devices and the ability to instrument always more mea-

surements about network performance and behavior have resulted

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Big-DAMA’18, August 20, 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5904-7/18/08. . . $15.00

https://doi.org/10.1145/3229607.3229610

in the emergence of a new paradigm in networking, namely data-
driven networks and data-driven protocols [6, 12]. This new paradigm

aims at bringing lessons learned from measurements and data in

protocol behavior and design. A concrete application is the concept

of self-driving network proposed by Feamster and Rexford [6], where

network control is tightly coupled with measurements and perfor-

mance objectives. In this context, machine learning has often been

proposed and applied to various tasks such as routing [3, 25, 28],

computing resource management [16] or packet scheduling [4].

We propose in this paper to investigate the question of auto-

matic network protocol design using recent methods from semi-

supervised deep learning. Our contribution is a novel approach

for training a network of independent agents such that they co-

operatively exchange information and solve a common goal in a

fully distributed manner without central control. We address more

specifically the question of distributed routing protocols. From a net-

work protocol perspective, the routing agents should autonomously

develop a network protocol akin to RIP or OSPF, i.e. exchange topol-
ogy information and perform local path computations based on

the exchanged information. Traditional properties from routing

protocols are also considered, namely handling topology changes

and packet losses.

Our approach is based on a novel extension of Graph Neural

Network (GNN) [10, 21], which we name here Graph-Query Neu-
ral Network (GQNN). GNNs are neural network architectures able

to process graphs as input using the concept of message passing

between nodes in the graph. We evaluate our approach on various

topologies from real networks [13] and show that our approach

leads to the creation of communication protocols able to exchange

data about topology information as well as topology changes. Using

two different path calculation strategies – namely shortest path

routing and max-min fair routing – we show that various routing

objectives can be achieved using the same neural network architec-

ture. The results of our approach are also compared against bounds

on information propagation in topologies and we show that the

routing protocols are efficient in term of number of iterations nec-

essary to reach convergence. We also demonstrate that resilience

to packet loss can be explicitly trained for.

This work is structured as follows. We describe in Sections 2

and 3 our modeling approach and the neural network architecture,

with an introduction on Graph Neural Networks and Graph Gated

Neural Networks, followed by the application of those concepts to

network topologies and distributed routing protocols. We numer-

ically evaluate our approach in Section 4 with the evaluation on

real network topologies. In Section 5, we present similar research

studies. Finally, Section 6 concludes our work.

https://doi.org/10.1145/3229607.3229610
https://doi.org/10.1145/3229607.3229610

Big-DAMA’18, August 20, 2018, Budapest, Hungary Fabien Geyer and Georg Carle

2 NEURAL NETWORKS FOR GRAPHS
The main intuition behind our approach is to map network topolo-

gies to graphs, with nodes representing routers and additional

nodes for each physical interface of the router. Those graph repre-

sentations are then used as input for a neural network architecture

able to process general graphs. The transformation from a network

topology to its graph representation is presented in Section 3.

In this section, we detail the neural network architecture used

for learning on graphs, namely the family of architectures based

on Graph Neural Networks [10, 21], and introduce a new extension

of this architecture.

Let G = (V, E) be an undirected graph with nodes v ∈ V and

edges e ∈ E. Let iv and ov represent respectively the input features

and target values of node v . The concept behind Graph Neural

Networks is calledmessage passing, where hidden representations of
nodes are based on the hidden representations of their neighboring

nodes. Those hidden representations are propagated through the

graph using multiple iterations until a fixed point is found. The

final hidden representation is then used for predicting properties

about nodes. This concept can be expressed as:

h(t)v = f
({
h(t−1)u

��� u ∈ Nbr(v)
})

(1)

ov = д
(
h(t→∞)
v

)
(2)

h(t=0)v = init (iv) (3)

with h(t)v representing the hidden representation of node v at time

t , f (·) a function which aggregates the different hidden representa-

tions, Nbr(v) the set of neighboring nodes of v , д(·) a function for

transforming the final hidden representation to the target values,

and init(·) a function for initializing the hidden representations

based on the input features.

The concrete implementations of the f (·) and д(·) functions are
feed-forward neural networks, with the special case that f (·) in
Equation (1) is the sum of per-edge terms (as recommended by [21])

such that:

h(t)v = f
({
h(t−1)
Nbr(v)

})
=

∑
u ∈Nbr(v)

f ∗
(
h(t−1)u

)
(4)

with f ∗(·) a feed-forward neural network. For init(·), the initial

node features are used and zero-padded to fit the dimensions of the

hidden representations.

In [10, 21], training the neural network architecture, namely the

parameters of f (·), д(·) and h(·), is done via the Almeida-Pineda

algorithm [2, 20] which works by running the propagation of the

hidden representation to convergence, and then computing gradi-

ents based upon the converged solution.

2.1 Extensions of Graph Neural Networks
Various extensions of GNNs have been proposed in the literature in

recent years in order to improve accuracy and applicability. Those

extensions build on the principle of message passing with more

recent development from deep learning. We give here an overview

over the extensions which were used for the final architecture used

in this paper. For easier notation, we define H(t)
as the vector of all

hidden representations at iteration t :
[
h(t)
1

· · · h(t)|V |
]
.

2.1.1 Gated Graph Neural Network. In order to improve the

training of Graph Neural Networks, Li et al. proposed Gated Graph

Neural Networks (GG-NNs) in [14]. This extension implements the

function f (·) using a memory unit called Gated Recurrent Unit

(GRU) [5] and unrolls Equation (1) for a fixed number of iterations.

Formally, the propagation of the hidden representations among

neighboring nodes for one time-step is formulated as:

x(t) = H(t−1)A + ba (5)

z(t) = σ
(
Wzx

(t) + UzH(t−1) + bz
)

(6)

r(t) = σ
(
Wrx

(t) + UrH(t−1) + br
)

(7)

H̃(t) = tanh

(
Wx (t) + U

(
r(t) ⊙ H(t−1)

)
+ b

)
(8)

H(t) =
(
1 − z(t)

)
⊙ H(t−1) + z(t)v ⊙ H̃(t)

(9)

whereσ (x) = 1/(1+e−x) is the logistic sigmoid function and ⊙ is the

element-wise matrix multiplication. {Wz ,Wr ,W} and {Uz ,Ur ,U}
are trainable weight matrices, and {ba , br , bz , b} are trainable bias
vectors. A ∈ R |V |×|V |

is the graph adjacency matrix, determining

how nodes in the graph G communicate with each other.

2.1.2 Edge attention. A recent advance in neural networks has

been the concept of attention, which provides the ability to a neural

network to focus on a subset of its inputs. This mechanism has

been used in a variety of applications such as computer vision or

natural language processing (eg. [26]). For the scope of GNNs, we

introduce here so-called edge attention, namely we wish to give the

ability to each node to focus only on a subset of its neighborhood.

Formally, let a
(t)
(v,u) ∈ [0, 1] be the attention between node v and u.

Equation (4) is then extended as:

h(t)v =
∑

u ∈Nbr(v)
a
(t)
(v,u) · f

∗
(
h(t−1)u

)
(10)

a(t)(v,u) = fA

(
h(t−1)v , h(t−1)u

)
(11)

To make the computation of a
(t)
(v,u) for all edges more efficient, we

use the modified adjacency matrix Ã(t)
defined as:

Ã(t) = A ⊙ σ

(
fA1

(
H(t)

)T
⊙ fA2

(
H(t)

))
(12)

with fA1
(·) and fA2

(·) feed-forward neural networks. Similar con-

cepts of edge attention have already been proposed in the literature

with various implementations (eg. [11, 27]).

3 APPLICATION TO ROUTING
We describe in this section the application of the graph-based deep

learning architectures presented in Section 2 to the task of dis-

tributed routing protocols. We are interested in training neural

networks on two important aspects of those network protocols.

The first one is the network protocol itself, namely how to distrib-

ute topology information among different nodes, and the second

one is how to compute routes given a topology and link weights.

Learning and Generating Distributed Routing Protocols Big-DAMA’18, August 20, 2018, Budapest, Hungary

3.1 Graph representation
For the first aspect, we wish to train routing agents such that they

autonomously exchange data about a given topologywithout explic-

itly specifying which information about the topology to transmit.

Based on this exchanged information, the routing agent can popu-

late routing tables. In comparison to traditional distributed routing

protocols, we essentially wish to train neural networks to trans-

mit information akin to link-state updates (as used in OSPF for

example) or router distances (as used in RIP for example). As for

standard routing protocols, the learned protocol should also deal

with changes in the topology (i.e. link failure, node addition).

The main intuition behind the input feature modeling is to use

the topology as input graph G, with additional nodes representing

the network interfaces as illustrated in Figures 1a and 1b. In order

to enforce communication between nodes according to the physical

network topology, no additional edge is added to the graph. As

for traditional routing protocols, each router in the topology is

assigned an integer identifier, noted Ri . Nodes representing routers
in the graph use this identifier encoded as a one-hot vector for

their initial representation iv . Nodes representing interfaces use a

weight parameter (eg. based on the link bandwidth) for iv .

Router

(a)

Router

Interface

(b)

Destination

Active nodes

(c)

Figure 1: (a) Example network topology. (b) Its associated
graph used for training. (c) The output feature of the inter-
faces according to a selected destination.

3.2 Graph Query Neural Networks
We are interested in this section in the local computation of the

routing table based on the topology information which was dis-

tributed by the different nodes in the graph. Given a destination

router identifier Rd , each router must locally decide which output

interface should be used. Based on the graph representation from

the previous section and a given algorithm for path calculation,

this is modeled by labeling the interfaces with oi = [1] if they are

used for transmitting packets to router Rd , and [0] otherwise, as
illustrated in Figure 1c.

In order to build a routing protocol with local path computa-

tion, we introduce here a new extension to GNNs, called Graph
Query Neural Network (GQNN). The neural network architecture is

illustrated in Figure 2. The hidden node representations h(t)v corre-

spond to the messages which are transfered between nodes. Once

the message passing is finished, each node in the graph has a lo-

cal representation of the network topology h(T)v . For determining

which interface to use for a given destination router Rd , each router

applies the following procedure on each of its interface nodes:

qd = Q (Rd) query vector computation (13)

ov = д
(
qd ⊙ h(T)v

)
output label as in Equation (2) (14)

with Q(·) and д(·) feed-forward neural networks.


h(0)1
...

h(0)n


Gated

Recurrent
Unit


h(t)1
...

h(t)n


Ã(t)


h(T)1
...

h(T)n


�

Feed-Forward
Neural
Network


q1
...

qn



Distributed message passing Local routing table lookup


o1
...

on



Figure 2: Overview of the Graph Query Neural Network ar-
chitecture used in this paper

3.3 Learned routing strategies
For the scope of this paper, we evaluate two algorithms for route

calculation: shortest path and max-min routing.
In the case of shortest path routing, the neural network is trained

against path calculations based on Dijkstra’s algorithm, where each

link is associated with a weight. In case multiple shortest paths are

available, we need to discriminate between them in order to have

stable routing strategies for easier training of the neural network.

This is performed by using the router identifiers as discriminant

between paths.

In the case of max-min fair routing [18], we aim at maximizing

the minimum allocated bandwidth between all possible source-

destination pairs in the network. Such routing strategy should lead

to network topologies with less link overload than shortest path

routing. For our evaluations, we assign an equal demand for all pos-

sible source-destination pairs. The route computation is done using

linear programing. As for shortest path routing, we also give prior-

ity to paths which minimize the identifiers of the traversed routers.

This is performed by defining multiple objectives and solving them

in a hierarchical way.

3.4 Packet losses and topology changes
An important requirement of routing protocols is the ability to cope

with packet losses and dynamic topology changes. In the case of

packet losses, various strategies have been used in existing routing

protocols: either leverage transport protocols (e.g. BGP over TCP),

or design an own transport layer (e.g. OSPF). For this paper, we are
interested in designing network protocols which do not leverage

other transport protocol functionalities.

In order to train the neural network to handle packets loss, the

adjacency matrix A is randomly modified during training such

that some edges are temporarily disabled according to a Bernoulli

distribution with parameter p. We implemented this by using a

dropout layer [23] in the neural network architecture without the

traditional normalization factor used in standard dropout:

Â(t) = r(t) ⊙ A with r(t) ∼ Bernoulli(p), ∀t ∈ [0,T] (15)

Big-DAMA’18, August 20, 2018, Budapest, Hungary Fabien Geyer and Georg Carle

Since routing protocols are designed to run continuously and

handle topology changes, we define here two phases of the protocol:

cold-start when the routing protocol is first initialized on the active

routers, and warm-start when a node fails or a new node joins a

network where the routing protocol already ran for some itera-

tions. More formally, we define graphs pairs {G1 = (V1, E1),G2 =

(V2, E2)} such that some routers are added or removed between

G1 and G2. The neural network is first trained on G1, and the final

hidden representations from this first phase are then reused as

initial hidden representations for the second training phase on G2

for the nodes which did not change between G1 and G2:

∀v ∈ {V1 ∩V2} , h(t=T)v,G1

= h(t=0)v,G2

(16)

3.5 Implementation in routers
Regarding implementation of the resulting network protocol in real

routers, each router has an internal subgraph, with one central node

representing the router connected to multiple nodes representing

its interfaces. Each router then periodically broadcasts its hidden

interface representations to its neighboring routers, and recomputes

its routing table based on the received messages.

4 NUMERICAL EVALUATION
We evaluate in this section the approach presented in Sections 2

and 3 on real network topologies from the Internet Topology Zoo [13],
which is a collection of topologies from Internet providers around

the world. We selected topologies such that the number of nodes is

limited to 20 and the maximum hop count between any two nodes

in the network is less than 10.

In order to generate more topologies for training our neural

network, each topology is modified by either randomly adding a

router and connecting it randomly to other routers, or randomly

deleting one router in the topology. Router identifiers are randomly

assigned to the routers as described in Section 3. Random router

failure or addition are generated as described in Section 3. This

resulted in a dataset with 40 000 graphs in total.

The two routing algorithms presented in Section 3.3 are then

applied on each generated topology to build the datasets used for

this evaluation.

4.1 Implementation
The GG-NN architecture presented in Sections 2 and 3.2 was im-

plemented using Tensorflow [1] and trained using Nvidia GPUs.

Additional dropout layers [23] were added according to standard

practices for neural network and recurrent neural networks [22] in

order to avoid over-fitting. Hidden node representations were cho-

sen with a size of 160. The same parameters were used for training

the neural network for both routing use-cases.

4.2 Accuracy
We evaluate in Figure 3 the accuracy of the computed routes accord-

ing to the two use-cases and routing phases. For a given topology,

we define the accuracy as 1 if the route for a given destination is

correct for all routers in the topology, and 0 otherwise. The learned

protocol is better able to predict shortest path routing, where a per-

fect accuracy is reached for than 50 % of the evaluated topologies.

In average, accuracies of 98 %, respectively 95 %, could be reached

for shortest path routing, respectively min-max routing.

Cold start Warm start

0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0
0.00

0.25

0.50

0.75

1.00

Average accuracy after fixed number of iterations

C
um

ul
at

iv
e

di
st

ri
bu

ti
on Routing type

Max-min

Shortest path

Figure 3: Overview over the accuracy of the predicted routes

4.3 Convergence time
In order to assess the convergence time of the developed protocols,

we first evaluate the accuracy of the routing at different iterations of

the fixed point evaluation presented in Equation (1) in cold-start and

warm-start phases. The numerical results are presented in Figure 4.

In case of topology changes (ie. warm start), better accuracies are

reached faster as routes only need partial reconfiguration. This

shows that the protocol is indeed able to efficiently cope with and

react to topology changes.

Max-min Shortest path

0 5 10 15 0 5 10 15

0.4

0.6

0.8

1.0

Number of iterations of the algorithm

A
ve

ra
ge

ac
cu

ra
cy

Phase
Cold start

Warm start

Figure 4: Accuracy according to the iterations of the proto-
cols. Areas indicate the 25 and 75 percentile.

We then evaluate the developed protocols against minimum

bounds of the number of iterations required to achieve convergence

in the computed routes. According to themessage passing principles

described in Section 2, each node broadcasts learned information

at each iteration of the routing protocol to its neighbors. In order

to achieve a correct computation of the routes, each node needs to

have received at least some piece of information from all the other

nodes in the topology. Hence, the minimum number of iterations

corresponds to the diameter d of the graph of the network topology.

We call this minimum bound the one-way bound. In case any pair

of nodes in the topology needs to have exchanged information in

both directions, the minimum number of iterations needed is 2d ,
called here both-way bound.

We define TC as the iteration when convergence occurs, i.e. the

time when the computed routes for each node in the topology are

stable. Figure 5 compares TC against the two bounds previously

Learning and Generating Distributed Routing Protocols Big-DAMA’18, August 20, 2018, Budapest, Hungary

defined, namely for each graph we compute TC − d and TC − 2d .
Negative values indicate that the learned protocol converged faster

than the theoretical bound.

C
old

start
W

arm
start

-20 -10 0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Convergence difference vs. theoretical protocol

C
um

ul
at

iv
e

di
st

ri
bu

ti
on

Routing type
Max-min

Shortest path

Theoretical protocol
Both-ways

One-way

Figure 5: Evaluation of cold-start and warm-start conver-
gence time of the learned protocols against theoretical
bounds. Negative values indicate fast convergence.

4.4 Resilience to packet loss
We described in Section 3.4 that a crucial property of routing pro-

tocol is resilience to packets loss. Figure 6 illustrates the accuracy

of the protocols in case of different packet loss probabilities in the

network. We also compare in Figure 6 two different variants for

training the neural network, namely explicit or unspecific training

for handling packet loss. Both variants of the protocol are run for

the same number of iterations. Explicit training for packet loss was

done by using a dropout layer as described in Equation (15).

We notice a clear difference between the two training variants.

By explicitly training for packet loss, the learned protocol is able to

reach better accuracy in case of packet loss.

4.5 Visualization
In order to better understand the working of the generated routing

protocol, we propose in this section to visualize information prop-

agation in a topology. Figure 7 illustrates the accuracy of a given

route on a small topology at different iterations of the protocol.

Such visualization can be used to determine protocol convergence

for the different interfaces in the network.

5 RELATEDWORK
The question of distributed routing protocols based on machine

learning has already attracted various researchers. Early work on

this topic include Q-Routing from Boyan and Littman [3], COllective
INtelligence (COIN) from Wolpert et al. [28], or distributed Gradient
Ascent Policy Search (GAPS) from Peshkin and Savova [19]. Their

general approach is to use multi-agent reinforcement learning in

combination with a network-wide utility function. More recently,

Valadarsky et al. [25] also proposed to use reinforcement learning,

with the goal of using past trafficmatrices in order to guide route cal-

culations. Compared to those works, we use here semi-supervised

Max-min Shortest path

U
nspecific

loss
training

Explicitloss
training

0% 10% 20% 30% 0% 10% 20% 30%

0.75

0.80

0.85

0.90

0.95

1.00

0.75

0.80

0.85

0.90

0.95

1.00

Network-wide packet loss probability

A
ve

ra
ge

ac
cu

ra
cy

af
te

r
fix

ed
nu

m
be

r
of

it
er

at
io

ns

Phase
Cold start

Warm start

Figure 6: Accuracy of the protocols in case of packet loss in
the network with explicit or unspecific training for packet
loss. Areas indicate the 25 and 75 percentile.

0

1

23

4

5

6

0 10 20 30 40

0-1
0-2
0-4
0-5

1-0
1-6

2-0
2-3

3-2
3-4

4-0
4-3
4-5
4-6

5-0
5-4

6-1
6-4

Number of iterations of the algorithm

N
et

w
or

k
in

te
rf

ac
e

0.25

0.50

0.75

Prediction
confidence

Figure 7: Visualization of the protocol evolution on a small
network topology. Each network interface is queried for
node 5. Node 6 is first offline and started at iteration 20.

learning in order to more easily specify the routing policy which is

expected. Previous work also often predetermined or constrained

the specification and format of the communication, whereas our

approach leaves the content or format of the exchanged informa-

tion as a parameter to be learned. Our work also evaluates key

aspects of routing protocols, namely resilience against packet loss

and inclusion of network dynamics.

A supervised learning approach was recently proposed by Mao

et al. [15] using Supervised Deep Belief Architectures, with a focus

on speed of route computation. Compared to their approach, our

method can be applied to a wider range of network topologies since

it is independent of the underlying structure of the topology.

The challenge of training agents to communicate and realize a

common goal has attracted work in other domains. Foerster et al. [7]

appliedDeep Distributed Recurrent Q-Networks (DDRQN) for solving
logic riddles. Sukhbaatar et al. [24] proposed a deep neural network

architecture called CommNet for developing communication be-

tween agents on the task of multi-turn games, traffic junction or

Big-DAMA’18, August 20, 2018, Budapest, Hungary Fabien Geyer and Georg Carle

logic riddles. In both approaches, no constraint on communication

structure is enforced as a broadcast channel is used.

Neural networks for graphs have recently attracted a larger in-

terest, and are generally based on the concept of message passing

presented in Section 2. In the context of communication networks,

they have successfully been applied to performance evaluation of

TCP flows in [8]. The model presented here is based on [8] with

novel extensions for edge attention, query as presented in Sec-

tion 3.2, and support training for topology changes. They have also

been used in a variety of other domains such as basic logical reason-

ing tasks and program verification [14], semantic role labeling in

natural language processing [17], prediction of chemical properties

of molecules [9]. To the best of our knowledge, this is the first work

applying GNNs to distributed routing protocols.

6 CONCLUSION
We contributed in this paper a novel approach for automatic net-

work protocol design using graph-based deep learning. Our method

is based on an extension of Graph Neural Networks called Graph

Query Neural Network and a mapping from network topologies to

graphs with special nodes representing network interfaces.

We applied our approach to distributed routing protocols, where

routing nodes need to exchange information about the network

topology in order to reach efficient routes without specifying which

information to exchange. Shortest path and max-min routing were

evaluated as routing strategies. In our numerical evaluation, we

showed that our approach is able to reach good accuracies. We

illustrated that specific properties of network protocols such as

resilience to packet loss can be explicitly included in the learned

protocols by training the neural network with appropriate dropout.

As our approach is not specific to routing protocols, future work

may include evaluations and extensions of our approach to other

network protocols and applications.

Acknowledgments This work was supported by the German Federal Min-

istry of Education and Research (grant 16KIS0538, project DecADe), by

the German-French Academy for the Industry of the Future, and the High-

Performance Center for Secure Networked Systems.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

(2015). http://tensorflow.org/ Software available from tensorflow.org.

[2] Luis B. Almeida. 1990. Artificial Neural Networks. IEEE Press, Piscataway, NJ,

USA, Chapter A Learning Rule for Asynchronous Perceptrons with Feedback in

a Combinatorial Environment, 102–111.

[3] Justin A. Boyan and Michael L. Littman. 1994. Packet Routing in Dynamically

Changing Networks: A Reinforcement Learning Approach. In Advances in Neural
Information Processing Systems 6, J. D. Cowan, G. Tesauro, and J. Alspector (Eds.).

Morgan-Kaufmann, 671–678.

[4] Timothy X. Brown. 2002. Switch Packet Arbitration via Queue-Learning. In

Advances in Neural Information Processing Systems 14, T. G. Dietterich, S. Becker,
and Z. Ghahramani (Eds.). MIT Press, 1337–1344.

[5] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase

Representations using RNN Encoder-Decoder for Statistical Machine Translation.

(June 2014). arXiv:1406.1078

[6] Nick Feamster and Jennifer Rexford. 2017. Why (and How) Networks Should

Run Themselves. (Oct. 2017). arXiv:cs.NI/1710.11583v1

[7] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson.

2016. Learning to Communicate to Solve Riddles with Deep Distributed Recurrent

Q-Networks. (Feb. 2016). arXiv:cs.AI/1602.02672v1

[8] Fabien Geyer. 2017. Performance Evaluation of Network Topologies using Graph-

Based Deep Learning. In Proceedings of the 11th International Conference on
Performance Evaluation Methodologies and Tools (VALUETOOLS 2017). https:

//doi.org/10.1145/3150928.3150941

[9] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.

Dahl. 2017. Neural Message Passing for Quantum Chemistry. In Proceedings
of the 34th International Conference on Machine Learning (Proceedings of Ma-
chine Learning Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR,

International Convention Centre, Sydney, Australia, 1263–1272.

[10] Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A New Model

for Learning in Graph Domains. In Proceedings of the 2005 IEEE International
Joint Conference on Neural Networks (IJCNN’05), Vol. 2. IEEE, 729–734. https:

//doi.org/10.1109/IJCNN.2005.1555942

[11] Yedid Hoshen. 2017. VAIN: Attentional Multi-agent Predictive Modeling. In

Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran

Associates, Inc., 2698–2708.

[12] Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. 2017. Unleashing the Po-

tential of Data-Driven Networking. In Proceedings of 9th International Conference
on COMmunication Systems & NETworkS (COMSNET).

[13] Simon Knight, Hung X. Nguyen, Nick Falkner, Rhys Bowden, and Matthew

Roughan. 2011. The Internet Topology Zoo. IEEE J. Sel. Areas Commun. 29, 9
(Oct. 2011), 1765–1775. https://doi.org/10.1109/JSAC.2011.111002

[14] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2016. Gated

Graph Sequence Neural Networks. In Proceedings of the 4th International Confer-
ence on Learning Representations (ICLR’2016).

[15] Bomin Mao, Zubair Md. Fadlullah, Fengxiao Tang, Nei Kato, Osamu Akashi,

Takeru Inoue, and KimihiroMizutani. 2017. Routing or Computing? The Paradigm

Shift Towards Intelligent Computer Network Packet Transmission Based on

Deep Learning. IEEE Trans. Comput. 66, 11 (Nov. 2017), 1946–1960. https:

//doi.org/10.1109/TC.2017.2709742

[16] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016.

Resource Management with Deep Reinforcement Learning. In Proceedings of
the 15th ACM Workshop on Hot Topics in Networks (HotNets ’16). 50–56. https:

//doi.org/10.1145/3005745.3005750

[17] Diego Marcheggiani and Ivan Titov. 2017. Encoding Sentences with

Graph Convolutional Networks for Semantic Role Labeling. (March 2017).

arXiv:cs.CL/1703.04826v4

[18] Dritan Nace and Michał Pióro. 2008. Max-Min Fairness and Its Applications

to Routing and Load-Balancing in Communication Networks: A Tutorial. IEEE
Commun. Surveys Tuts. 10, 4 (2008), 5–17. https://doi.org/10.1109/SURV.2008.

080403

[19] Leonid Peshkin and Virginia Savova. 2002. Reinforcement Learning for Adap-

tive Routing. In Proceedings of the 2002 International Joint Conference on Neural
Networks (IJCNN). IEEE, 1825–1830. https://doi.org/10.1109/IJCNN.2002.1007796

[20] Fernando J. Pineda. 1987. Generalization of back-propagation to recurrent neural

networks. Phys. Rev. Lett. 59 (Nov. 1987), 2229–2232. Issue 19. https://doi.org/10.
1103/PhysRevLett.59.2229

[21] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele

Monfardini. 2009. The Graph Neural Network Model. IEEE Trans. Neural Netw.
20, 1 (Jan. 2009), 61–80. https://doi.org/10.1109/TNN.2008.2005605

[22] Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. 2016. Recurrent

Dropout without Memory Loss. (March 2016). arXiv:1603.05118

[23] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from

Overfitting. Journal of Machine Learning Research 15, 1 (Jan. 2014), 1929–1958.

[24] Sainbayar Sukhbaatar, Rob Fergus, et al. 2016. Learning Multiagent Communica-

tion with Backpropagation. In Advances in Neural Information Processing Systems.
2244–2252.

[25] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. 2017. Learning

to Route. In Proceedings of the 16th ACM Workshop on Hot Topics in Networks
(HotNets-XVI). ACM, New York, NY, USA, 185–191. https://doi.org/10.1145/

3152434.3152441

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In Advances in Neural Information Processing Systems 30. Curran
Associates, Inc., 6000–6010.

[27] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2017. Graph Attention Networks. (Oct. 2017).

arXiv:stat.ML/1710.10903v1

[28] David Wolpert, Kagan Tumer, and Jeremy Frank. 1999. Using Collective Intel-

ligence to Route Internet Traffic. In Advances in Neural Information Processing
Systems 11, M. J. Kearns, S. A. Solla, and D. A. Cohn (Eds.). MIT Press, 952–960.

http://tensorflow.org/
https://doi.org/10.1145/3150928.3150941
https://doi.org/10.1145/3150928.3150941
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1109/TC.2017.2709742
https://doi.org/10.1109/TC.2017.2709742
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1109/SURV.2008.080403
https://doi.org/10.1109/SURV.2008.080403
https://doi.org/10.1109/IJCNN.2002.1007796
https://doi.org/10.1103/PhysRevLett.59.2229
https://doi.org/10.1103/PhysRevLett.59.2229
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1145/3152434.3152441
https://doi.org/10.1145/3152434.3152441

	Abstract
	1 Introduction
	2 Neural networks for graphs
	2.1 Extensions of Graph Neural Networks

	3 Application to routing
	3.1 Graph representation
	3.2 Graph Query Neural Networks
	3.3 Learned routing strategies
	3.4 Packet losses and topology changes
	3.5 Implementation in routers

	4 Numerical evaluation
	4.1 Implementation
	4.2 Accuracy
	4.3 Convergence time
	4.4 Resilience to packet loss
	4.5 Visualization

	5 Related work
	6 Conclusion
	References

