
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Learning and Generating Distributed Routing Protocols
Using Graph-Based Deep Learning

Fabien Geyer, Georg Carle

Monday 20th August, 2018

ACM SIGCOMM Workshop Big-DAMA’18, Budapest, Hungary

Chair of Network Architectures and Services
Department of Informatics

Technical University of Munich



Motivation
Distributed protocols

Today’s distributed network protocols

• Manually developed, engineered and optimized
• Sometimes hard to configure to achieve good performance
• Not always adapted to evolving networks and requirements (eg. mobile networks, sensor networks, . . . )

Main research questions

• Can we automate distributed network protocol design using high-level goals and data?
• If yes, can properties such as resilience to faults be included (eg. packet loss)?

Contribution

• Method for generating protocols using Graph Neural Networks
• Today’s focus: routing protocols

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 2



Motivation
Why now?

Two recent trends in networking for enabling such data-driven protocols

• More advanced in-network processing resources and capabilities (eg. SDN, P4, DPDK, . . . ) + flexibility
• Data-driven networks and data-driven protocols→ See this year’s SIGCOMM workshops

A more general problem in Artificial Intelligence
• Research question: autonomous agents communicating

and collaborating to reach a common goal

• Human-level performance in multiplayer games:
• DeepMind: 2vs2 Quake 3 Capture The Flag (July 2018)
→ https://deepmind.com/blog/capture-the-flag/

• OpenAI: 5vs5 Dota 2 (August 2018)
→ https://blog.openai.com/openai-five/

(a) Outdoor procedural maps (b) Indoor procedural maps

(c) First-person 
observations 
that the agents 
see

(d) Thousands of parallel 
CTF games generate 
experience to train from

(e) Reinforcement Learning 
updates each agent’s 
respective policy

(f) Population based training provides diverse policies for 
training games and enables internal reward optimisation

Agent

Red flag

Population

Example map

Blue flag carrier

Figure 1: CTF task and computational training framework. Shown are two example maps
that have been sampled from the distribution of outdoor maps (a) and indoor maps (b). Each agent in
the game only sees its own first-person pixel view of the environment (c). Training data is generated
by playing thousands of CTF games in parallel on a diverse distribution of procedurally generated maps
(d), and used to train the agents that played in each game with reinforcement learning (e). We train a
population of 30 different agents together, which provides a diverse set of teammates and opponents to
play with, and is also used to evolve the internal rewards and hyperparameters of agents and learning
process (f). Game-play footage and further exposition of the environment variability can be found in
Supplementary Video https://youtu.be/dltN4MxV1RI.

In our formulation, the agent’s policy ⇡ uses the same interface available to human play-
ers. It receives raw RGB pixel input xt from the agent’s first-person perspective at timestep t,
produces control actions at ⇠ ⇡ simulating a gamepad, and receives game points ⇢t attained
– the points received by the player for various game events which is visible on the in-game
scoreboard. The goal of reinforcement learning (RL) is to find a policy that maximises the ex-
pected cumulative �-discounted reward E⇡[

PT
t=0 �

trt] over a CTF game with T time steps. The
agent’s policy ⇡ is parameterised by a multi-timescale recurrent neural network with external
memory (20) (Figure 2 (a), Figure S10). Actions in this model are generated conditional on
a stochastic latent variable, whose distribution is modulated by a more slowly evolving prior
process. The variational objective function encodes a trade-off between maximising expected
reward and consistency between the two timescales of inference (more details are given in Sup-
plementary Materials Section 2.1). Whereas some previous hierarchical RL agents construct ex-
plicit hierarchical goals or skills (3,65,70), this agent architecture is conceptually more closely
related to work on building hierarchical temporal representations (12, 14, 33, 55) and recurrent

3

Figure 1: Overview of DeepMind’s Quake 3 challenge
(source: https://arxiv.org/abs/1807.01281)

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 3

https://deepmind.com/blog/capture-the-flag/
https://blog.openai.com/openai-five/
https://arxiv.org/abs/1807.01281


Motivation
Why now?

Two recent trends in networking for enabling such data-driven protocols

• More advanced in-network processing resources and capabilities (eg. SDN, P4, DPDK, . . . ) + flexibility
• Data-driven networks and data-driven protocols→ See this year’s SIGCOMM workshops

A more general problem in Artificial Intelligence
• Research question: autonomous agents communicating

and collaborating to reach a common goal

• Human-level performance in multiplayer games:
• DeepMind: 2vs2 Quake 3 Capture The Flag (July 2018)
→ https://deepmind.com/blog/capture-the-flag/

• OpenAI: 5vs5 Dota 2 (August 2018)
→ https://blog.openai.com/openai-five/

(a) Outdoor procedural maps (b) Indoor procedural maps

(c) First-person 
observations 
that the agents 
see

(d) Thousands of parallel 
CTF games generate 
experience to train from

(e) Reinforcement Learning 
updates each agent’s 
respective policy

(f) Population based training provides diverse policies for 
training games and enables internal reward optimisation

Agent

Red flag

Population

Example map

Blue flag carrier

Figure 1: CTF task and computational training framework. Shown are two example maps
that have been sampled from the distribution of outdoor maps (a) and indoor maps (b). Each agent in
the game only sees its own first-person pixel view of the environment (c). Training data is generated
by playing thousands of CTF games in parallel on a diverse distribution of procedurally generated maps
(d), and used to train the agents that played in each game with reinforcement learning (e). We train a
population of 30 different agents together, which provides a diverse set of teammates and opponents to
play with, and is also used to evolve the internal rewards and hyperparameters of agents and learning
process (f). Game-play footage and further exposition of the environment variability can be found in
Supplementary Video https://youtu.be/dltN4MxV1RI.

In our formulation, the agent’s policy ⇡ uses the same interface available to human play-
ers. It receives raw RGB pixel input xt from the agent’s first-person perspective at timestep t,
produces control actions at ⇠ ⇡ simulating a gamepad, and receives game points ⇢t attained
– the points received by the player for various game events which is visible on the in-game
scoreboard. The goal of reinforcement learning (RL) is to find a policy that maximises the ex-
pected cumulative �-discounted reward E⇡[

PT
t=0 �

trt] over a CTF game with T time steps. The
agent’s policy ⇡ is parameterised by a multi-timescale recurrent neural network with external
memory (20) (Figure 2 (a), Figure S10). Actions in this model are generated conditional on
a stochastic latent variable, whose distribution is modulated by a more slowly evolving prior
process. The variational objective function encodes a trade-off between maximising expected
reward and consistency between the two timescales of inference (more details are given in Sup-
plementary Materials Section 2.1). Whereas some previous hierarchical RL agents construct ex-
plicit hierarchical goals or skills (3,65,70), this agent architecture is conceptually more closely
related to work on building hierarchical temporal representations (12, 14, 33, 55) and recurrent

3

Figure 1: Overview of DeepMind’s Quake 3 challenge
(source: https://arxiv.org/abs/1807.01281)

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 3

https://deepmind.com/blog/capture-the-flag/
https://blog.openai.com/openai-five/
https://arxiv.org/abs/1807.01281


Outline

Introduction

Machine learning

Numerical evaluation

Conclusion

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 4



Introduction
Definition

Distributed network protocols

• Distributed nodes need to solve a common high-level goal
• Nodes need to share some information to achieve the goal
• Examples: routing, congestion control, load balancing, content distribution, . . .

Target protocol behavior for this talk: simplified version of OSPF (Open Shortest Path First)

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 5



Introduction
Main assumptions

Protocol properties and requirements

• Routing follows a predetermined path-finding scheme (e.g. shortest path)
• Protocol needs to support routers entering and leaving the network
• Protocol needs to be resilient to packet loss
• Should work on any topology

Assumptions

• Routers start with no information about the network topology
• Routers have only their own local view of the network and need to exchange information

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 6



Introduction
General idea

• Represent the network as a graph
• Nodes↔ Routers (+ some extra nodes)
• Edges↔ Physical links
• Data exchange between nodes↔ Communication between routers

• Use a neural network architecture able to process graphs
• Train on dataset emulating the network protocol’s goal

Figure 2: Computer network

↔
1

2

3

4

5

Figure 3: Graph representation

↔

Figure 4: Neural network

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 7



Graph Neural Networks

Main concept

Graph Neural Networks [Scarselli et al., 2009] and related neural
network architectures are able to process general graphs and predict
features of nodes ov

• Each node has a hidden representation vectors hv ∈ Rk

• . . . computed according to the vector of its neighbors
• . . . and are fixed points: hv = f

(
{hu | u ∈ Nbr(v)}

)
• The vectors are initialized with the nodes’ input features
• They are iteratively propagated between neighbors
• . . . until a fixed point is found or for a fixed number of iterations
• Those vectors are then used for the final prediction: ov = g (hv )

1

2

3

4

5

Figure 5: Example graph

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 8



Graph Neural Networks

Main concept

Graph Neural Networks [Scarselli et al., 2009] and related neural
network architectures are able to process general graphs and predict
features of nodes ov

Principle
• Each node has a hidden representation vectors hv ∈ Rk

• . . . computed according to the vector of its neighbors
• . . . and are fixed points: hv = f

(
{hu | u ∈ Nbr(v)}

)
• The vectors are initialized with the nodes’ input features
• They are iteratively propagated between neighbors
• . . . until a fixed point is found or for a fixed number of iterations
• Those vectors are then used for the final prediction: ov = g (hv )

1

2

3

4

5

Vector Rk

Figure 5: Hidden representations

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 8



Graph Neural Networks

Main concept

Graph Neural Networks [Scarselli et al., 2009] and related neural
network architectures are able to process general graphs and predict
features of nodes ov

Principle
• Each node has a hidden representation vectors hv ∈ Rk

• . . . computed according to the vector of its neighbors

• . . . and are fixed points: hv = f
(
{hu | u ∈ Nbr(v)}

)
• The vectors are initialized with the nodes’ input features
• They are iteratively propagated between neighbors
• . . . until a fixed point is found or for a fixed number of iterations
• Those vectors are then used for the final prediction: ov = g (hv )

1

2

3

4

5
2

= f (neighbors)

Figure 5: Relationship between hidden representations

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 8



Graph Neural Networks

Main concept

Graph Neural Networks [Scarselli et al., 2009] and related neural
network architectures are able to process general graphs and predict
features of nodes ov

Principle
• Each node has a hidden representation vectors hv ∈ Rk

• . . . computed according to the vector of its neighbors
• . . . and are fixed points: hv = f

(
{hu | u ∈ Nbr(v)}

)

• The vectors are initialized with the nodes’ input features
• They are iteratively propagated between neighbors
• . . . until a fixed point is found or for a fixed number of iterations
• Those vectors are then used for the final prediction: ov = g (hv )

1

2

3

4

5

Figure 5: Relationship between hidden representations

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 8



Graph Neural Networks

Main concept

Graph Neural Networks [Scarselli et al., 2009] and related neural
network architectures are able to process general graphs and predict
features of nodes ov

Principle
• Each node has a hidden representation vectors hv ∈ Rk

• . . . computed according to the vector of its neighbors
• . . . and are fixed points: hv = f

(
{hu | u ∈ Nbr(v)}

)
Implementation
• The vectors are initialized with the nodes’ input features

• They are iteratively propagated between neighbors
• . . . until a fixed point is found or for a fixed number of iterations
• Those vectors are then used for the final prediction: ov = g (hv )

1

2

3

4

5
t = 0

l

l

l

l

l

Figure 5: Hidden representations initialization

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 8



Graph Neural Networks

Main concept

Graph Neural Networks [Scarselli et al., 2009] and related neural
network architectures are able to process general graphs and predict
features of nodes ov

Principle
• Each node has a hidden representation vectors hv ∈ Rk

• . . . computed according to the vector of its neighbors
• . . . and are fixed points: hv = f

(
{hu | u ∈ Nbr(v)}

)
Implementation
• The vectors are initialized with the nodes’ input features
• They are iteratively propagated between neighbors

• . . . until a fixed point is found or for a fixed number of iterations
• Those vectors are then used for the final prediction: ov = g (hv )

1

2

3

4

5
ll

llll

llll

lll

ll

t = 1

Figure 5: Hidden representations propagation

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 8



Graph Neural Networks

Main concept

Graph Neural Networks [Scarselli et al., 2009] and related neural
network architectures are able to process general graphs and predict
features of nodes ov

Principle
• Each node has a hidden representation vectors hv ∈ Rk

• . . . computed according to the vector of its neighbors
• . . . and are fixed points: hv = f

(
{hu | u ∈ Nbr(v)}

)
Implementation
• The vectors are initialized with the nodes’ input features
• They are iteratively propagated between neighbors
• . . . until a fixed point is found or for a fixed number of iterations

• Those vectors are then used for the final prediction: ov = g (hv )

1

2

3

4

5
t = 2

llll

lllll

lllll

lllll

llll

Figure 5: Hidden representations propagation

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 8



Graph Neural Networks

Main concept

Graph Neural Networks [Scarselli et al., 2009] and related neural
network architectures are able to process general graphs and predict
features of nodes ov

Principle
• Each node has a hidden representation vectors hv ∈ Rk

• . . . computed according to the vector of its neighbors
• . . . and are fixed points: hv = f

(
{hu | u ∈ Nbr(v)}

)
Implementation
• The vectors are initialized with the nodes’ input features
• They are iteratively propagated between neighbors
• . . . until a fixed point is found or for a fixed number of iterations
• Those vectors are then used for the final prediction: ov = g (hv )

1

2

3

4

5
t = 3

lllll

lllll

lllll

lllll

lllll

Figure 5: Hidden representations fixed point

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 8



Graph Neural Networks

Details

Implementation
• f and g are neural networks which need to be trained
• f and g implemented as standard feed-forward neural

networks in [Scarselli et al., 2009]
• f also implemented using a Gated Recurrent Unit in

[Li et al., 2016]
• GNN extended with edge attention to learn which

edges are important [Veličković et al., 2018]


h(0)1
...

h(0)n


Gated

Recurrent
Unit


h(t)1
...

h(t)n


Ã(t)


h(T )1
...

h(T )n


Feed-Forward

Neural
Network


o1
...

on



Figure 6: Gated Graph Neural Network architecture

Main advantage of GNNs

• Not restricted to a specific graph (i.e. network topology) type such as size, shape, etc.

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 9



Generation of distributed protocols

Basic idea

1

2

3

4

5
ll

llll

llll

lll

ll

Figure 7: Graph analyzed by the GNN

↔

llll

ll

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l

llll

lll

l
l

l
l l

l

Figure 8: Network topology

1. Nodes in the computer network periodically broadcast their hidden representation vector

2. Periodically process locally the received hidden representations using the f function previously trained

3. Go to step 1

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 10



Generation of distributed protocols

Goal: Given a destination, routers need to know the next hop, i.e. which output interface to use

Transformation from topology to graph

• Each router is a node with a router identifier as input feature
• Each interface is a node with a binary output feature: given a destination (i.e. router identifier) use interface or not
• Edges correspond to physical links

Router

Figure 9: Network topology

Router

Interface

Figure 10: Graph encoding of
topology

Destination

Active nodes

Figure 11: Output features
based on queried destination

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 11



Generation of distributed protocols

Extension of Graph Neural Networks

• Exchange data about the network topology→ h(t)
n

• Store a local view of the topology (i.e. the hidden representation vector h(t)
n )

• Query the local view for routing information (i.e. next hop q)→ h(T )
n � q = on


h(0)1
...

h(0)n


Gated

Recurrent
Unit


h(t)1
...

h(t)n


Ã(t)


h(T )1
...

h(T )n


�

Feed-Forward
Neural
Network


q1
...

qn



Distributed message passing Local routing table lookup


o1
...

on



Figure 12: Graph Query Neural Network

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 12



Numerical evaluation
Description

Dataset
• Dataset based on Topology Zoo [Knight et al., 2011]1

• Max number of nodes: 20
• Max hop count: 10

• Randomly add or remove one router in the topologies
• Randomly generate router identifiers
• Total number of generated data points: 40 000

Use-cases
• Shortest-path routing
• Max-min routing

1 http://www.topology-zoo.org F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 13

http://www.topology-zoo.org


Numerical evaluation
Accuracy of predicted routes

In average, 98% accuracy for shortest-path, 95% for max-min

Cold start Warm start

0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0
0.00

0.25

0.50

0.75

1.00

Average accuracy after fixed number of iterations

C
um

ul
at

iv
e

di
st

ri
bu

ti
on Routing type

Max-min

Shortest path

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 14



Numerical evaluation
Convergence time

C
old

start
W

arm
start

0 5 10 15 20

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Number of iterations of the algorithm

A
ve

ra
ge

ac
cu

ra
cy

Routing type
Max-min

Shortest path

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 15



Numerical evaluation
Resilience to packet loss

Max-min Shortest path

U
nspecific

loss
training

Explicitloss
training

0% 10% 20% 30% 0% 10% 20% 30%

0.75

0.80

0.85

0.90

0.95

1.00

0.75

0.80

0.85

0.90

0.95

1.00

Network-wide packet loss probability

A
ve

ra
ge

ac
cu

ra
cy

af
te

r
fix

ed
nu

m
be

r
of

it
er

at
io

ns

Phase
Cold start

Warm start

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 16



Numerical evaluation
Visualization of the protocol evolution

0

1

23

4

5

6

Figure 13: Evaluated topology.
Node 6 is first offline and booted
at iteration 20.

0 10 20 30 40

0-1
0-2
0-4
0-5

1-0
1-6

2-0
2-3

3-2
3-4

4-0
4-3
4-5
4-6

5-0
5-4

6-1
6-4

Number of iterations of the algorithm

N
et

w
or

k
in

te
rf

ac
e

0.25

0.50

0.75

Prediction
confidence

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 17



Conclusion

Summary
• Generation of distributed routing protocol using Graph Neural Networks
• Representation of network topologies as graphs
• Evaluations show that specific protocol properties can be explicitly trained

Key lesson
• Graph Neural Networks are well suited for reasoning about computer networks
• Also been applied to predict bandwidth [Geyer, 2017] and latency of protocols

Future work
• Comparison with manually-engineered protocols
• Generation of other distributed protocols

1

2

3

4

5
ll

llll

llll

lll

ll

↔

llll

ll

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l

llll

lll

l
l

l
l l

l

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 18



Bibliography

[Geyer, 2017] Geyer, F. (2017).
Performance Evaluation of Network Topologies using Graph-Based Deep Learning.
In Proceedings of the 11th International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2017, pages 20–27.

[Knight et al., 2011] Knight, S., Nguyen, H. X., Falkner, N., Bowden, R., and Roughan, M. (2011).
The Internet Topology Zoo.
IEEE J. Sel. Areas Commun., 29(9):1765–1775.

[Li et al., 2016] Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. (2016).
Gated Graph Sequence Neural Networks.
In Proceedings of the 4th International Conference on Learning Representations, ICLR’2016.

[Scarselli et al., 2009] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009).
The Graph Neural Network Model.
IEEE Trans. Neural Netw., 20(1):61–80.

[Veličković et al., 2018] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018).
Graph Attention Networks.
In International Conference on Learning Representations.

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 19



Backup
Convergence time

Comparison with theoretical protocol based on graph diameter

C
old

start
W

arm
start

-20 -10 0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Convergence difference vs. theoretical protocol

C
um

ul
at

iv
e

di
st

ri
bu

ti
on

Routing type
Max-min

Shortest path

Theoretical protocol
Both-ways

One-way

F. Geyer, G. Carle — Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning 20


