
Performance Evaluation of Network Topologies
using Graph-Based Deep Learning

Fabien Geyer

Technical University of Munich

fgeyer@net.in.tum.de

ABSTRACT
Understanding the performance of network protocols and com-

munication networks generally relies on expert knowledge and

understanding of the different elements of a network, their configu-

ration and the overall architecture and topology. Machine learning

is often proposed as a tool to help modeling complex protocols. One

drawback of this method is that high-level features are generally

used – which require expert knowledge on the network protocols

to be chosen, correctly engineered, and measured – and the ap-

proaches are generally limited to a given network topology.

In this paper, we propose a methodology to address the challenge

of working with machine learning by using lower-level features,

namely only a description of the network architecture. Our main

contribution is an approach for applying deep learning on network

topologies via the use of Graph Gated Neural Networks, a special-

ized recurrent neural network for graphs. Our approach enables

us to make performance predictions based only on a graph-based

representation of network topologies. We apply our approach to the

task of predicting the throughput of TCP flows. We evaluate three

different traffic models: large file transfers, small file transfers, and

a combination of small and large file transfers. Numerical results

show that our approach is able to learn the throughput performance

of TCP flows with good accuracies larger than 90%, even on larger

topologies.

CCS CONCEPTS
•Networks→Network performancemodeling; Transport pro-
tocols; • Computing methodologies→ Neural networks;

KEYWORDS
Network performance evaluation, Graph Neural Network, Deep

learning

ACM Reference Format:
Fabien Geyer. 2017. Performance Evaluation of Network Topologies using

Graph-Based Deep Learning. In VALUETOOLS 2017: 11th EAI International
Conference on Performance Evaluation Methodologies and Tools, December
5–7, 2017, Venice, Italy. ACM, New York, NY, USA, 8 pages. https://doi.org/

10.1145/3150928.3150941

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

VALUETOOLS 2017, December 5–7, 2017, Venice, Italy
© 2017 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-6346-4/17/12. . . $15.00

https://doi.org/10.1145/3150928.3150941

1 INTRODUCTION
Understanding network performance is an important task for ar-

chitecture design and Quality-of-Service in an increasing number

of applications. Traffic engineering aims at bringing an answer

to this need in order to avoid congestion and optimize network

topologies to support an increasing number of applications. Net-

work and traffic models are an important tool in order to predict

how a given network architecture will behave. Different techniques

have been developed for this purpose, such as mathematical mod-

eling, simulations or measurements. While those techniques are

usually accurate, they often require precise measurements of key

performance indicators such as round-trip time or loss probability

in order to be applied and generate realistic performance predic-

tions. However, limited access to instrumentation of real networks

make this measurement acquisition usually difficult.

One growing approach to tackle the challenge of performance

modeling has been the use of machine learning. For instance, Tian

and Liu applied in [27] the SVR-based (Support Vector Regres-

sion) TCP bandwidth prediction application from [19] to improve

Quality-of-Service of media streaming over HTTP. Tariq et al. re-

cently proposed WISE in [26], a framework for evaluating architec-

ture changes in communication networks using Causal Bayesian

Networks (CBNs). While those techniques and applications have

been proven successful, they require high-level features about the

studied network protocols and the trained models are often limited

to a given network topology.

Our main contribution in this work is an approach for applying

deep learning on a low-level graph-based representation of network

topologies in order to predict network and protocol performance

using only topology information as input. We propose to use Gated

Graph Neural Networks (GG-NNs) [17] as a basis for our deep learn-

ing architecture. GG-NNs are a recently developed neural network

architecture working on graph-structured inputs. The intuition

behind our approach is to map network topologies and flows to

graphs, and then train GG-NNs on those graphs. This enables us

to avoid the task of engineering high-level protocol-specific input

features such as round-trip time or drop probability, which usually

require expect knowledge on the network protocol which is mod-

eled. Another contribution in this work is the extension of GG-NNs

with an alternative memory cell called LSTM (Long Short Term

Memory) [13], which shows better performance than the initial

architecture from [17].

As a concrete application of our approach, we address the task

of performance evaluation of TCP flows, with the goal of predicting

the average throughput of each flow in a given topology. We eval-

uate our approach against three types of traffic models: large file

transfers, small file transfers, and a combination of small and large

file transfers. As shown in previous studies about TCP, the average

https://doi.org/10.1145/3150928.3150941
https://doi.org/10.1145/3150928.3150941
https://doi.org/10.1145/3150928.3150941

VALUETOOLS 2017, Dec. 5-7, 2017, Venice, Italy Fabien Geyer

throughput of TCP flows depends on various parameters such as the

TCP version, the configuration of the TCP stack, round-trip times

or drop probabilities. We show through a numerical evaluation

that our approach is able to predict the average throughput of TCP

flows without having direct access to those parameters, but only a

low-level graph-based representation of the network topology and

its flows. The results of our approach are also compared against a

simpler recurrent neural network architecture.

This work is structured as follows. In Section 2, we present simi-

lar research studies. We describe in Sections 3 and 4 our modeling

approach and the neural network architecture used here, with an

introduction on Graph Neural Networks and Graph Gated Neural

Networks, followed by the application of those concepts to network

topologies and flows. We numerically evaluate our approach in

Section 5 with the prediction of average flow throughput on three

different use-cases. Finally, Section 6 concludes our work.

2 RELATEDWORK
On the challenge of predicting the performance of TCP flows, ana-

lytical models have been proposed since the late 1990s. Mathis et al.,

and subsequently Padhye et al., modeled the throughput of a single

flow using TCP Reno in [18] and [20] as a function of round-trip

time, drop probability and some configuration parameters of TCP.

This work was then extended by Cardwell et al. in [5] to take into

account the slow-start phase of TCP. While those models address

the mathematical modeling of a single flow, the interaction between

multiple flows on a given topology is of greater interest for the

problem addressed in this paper. Firoiu et al. proposed in [7] to

reuse the results from [20] to achieve this. Those analytical models

give great insights in the performance of TCP, but they usually

suffer from poor applicability in real-world use-cases due to newer

versions of TCP, simplifications of the mathematical model, or lack

of modeling of non-intuitive behavior of TCP such as ACK com-

pression or TCP Incast. Some later works have partially addressed

those shortcomings, such as the work from Velho et al. in [29] and

Geyer et al. in [8].

Adjacent to the mathematical modeling of TCP flows, machine

learning methods were also applied to this problem, although less

frequently than in other domains such as network intrusion de-

tection. Mirza et al. used Support Vector Regression (SVR) in [19]

using input features such as transfer duration of files over TCP and

active measurements in order to measure queuing latency, loss prob-

ability and available bandwidth. Hours et al. used Causal Bayesian

Networks (CBNs) in [14] to predict the throughput distribution of

TCP flows, using similar features than [19]. Both works showed

promising results regarding applicability to real-world use-cases,

but are mainly specific to a given network topology or the studied

protocol.

Variousmethods have been proposed for applyingmachine learn-

ing to graphs-based structures, either based on a spectral or spatial

approach. Spectral approaches [4, 12] are usually based on the

Graph Laplacian, an analogue to the Discrete Fourier Transform,

which transforms graph signals to a spectral domain. The main

limitation of those approaches is that their requires the input graph

samples to be homogeneous.

Spatial approaches do not require a homogeneous graph struc-

ture, meaning that they can be applied to a broader range of prob-

lems. Gori et al. proposed in [10, 23] the Graph Neural Networks

(GNNs) architecture, which propagates hidden representations of

nodes to its adjacent nodes until a fixed point is reached. GNNs

were applied on different tasks such as object localization, ranking

of web pages, document mining, or prediction of graph properties

[22]. This neural network architecture was subsequently refined

in different works. Li et al. proposed an extension of GNNs in [16]

through application of more modern practice of neural networks,

namely by using Gated Recurrent Units (GRU) [6]. GG-NNs were

applied to basic logical reasoning tasks and program verification

in [16]. Relational Graph Convolutional Networks (R-GCNs) were

recently proposed by Schlichtkrull et al. in [24], where hidden state

information is also propagated across edges of the graph via con-

volutions, while taking into account the type and direction of an

edge.

More general neural network architectures such as the Differen-

tiable Neural Computer from Graves et al. in [11] were also applied

to graph-based problems such as shortest path finding.

To the best of our knowledge, this is the first work on applying

graph-based neural networks to the performance evaluation of

network topologies and network protocols.

3 NEURAL NETWORKS FOR GRAPHS
The main intuition behind our approach is to map network topolo-

gies to graphs, with additional nodes for representing flows and

additional edges for the path followed by the flows. Those graph

representations are then used as input for a neural network archi-

tecture able to process general graphs.

In this section, we review the neural network architecture used

for this purpose, namely Graph Neural Networks (GNNs) [10, 23]

and one of its recent extension, Gated Graph Neural Networks

(GG-NNs) [17]. We also introduce notation and concepts that will

be used throughout this paper. The transformation between net-

work topology and its graph representation will be detailed later in

Section 4.

GNNs and GG-NNs are a general neural network architecture

able to process graph structures as input. They are an extension of

recursive neural networks which work by assigning hidden states

to each node in a graph based on the hidden states of adjacent nodes.

For the purpose of this work, our description of GNNs and GG-NNs

is limited to undirected graphs. The concepts presented here can

also be applied to directed graph, as presented in the original works

on GNNs and GG-NNs [10, 17, 23].

Let G = (V, E) be a graph with nodes v ∈ V and edges e ∈ E.

Edges can be represented as pairs of nodes, such that e = (v,v ′) ∈

V × V . The hidden representation for node v is denoted by the

vector hv ∈ RD . Nodes may also have features lv ∈ {1, . . . ,LV }

for each node v , and edges also le ∈ {1, . . . ,LE } for each edge e .
Let Nbr(v) denote the set of neighboring nodes of v .

3.1 Graph Neural Networks
In Graph Neural Networks (GNNs), each hidden representation

hv of a node v is based on the hidden state of its neighboring

nodes. The following propagation model is used for expressing this

Performance Evaluation of Network Topologies using Graph-Based Deep Learning VALUETOOLS 2017, Dec. 5-7, 2017, Venice, Italy

relationship:

h(t)v = f ∗
(
lv , lNbr(v), h

(t−1)
Nbr(v)

)
(1)

An example application of Equation (1) is given in Figure 1.

1
2

3
4

(a)

h(t)
1
= f ∗

(
l1, l2, h

(t−1)
2

)
h(t)
2
= f ∗

(
l2, l1, l3, l4, h

(t−1)
1
, h(t−1)

3
, h(t−1)

4

)
h(t)
3
= f ∗

(
l3, l2, l4, h

(t−1)
2
, h(t−1)

4

)
h(t)
4
= f ∗

(
l4, l2, l3, h

(t−1)
2
, h(t−1)

3

)
(b)

Figure 1: (a) Example graph. Edge colors denote edge types.
(b) Application of Equation (1) to the graph.

As a concrete implementation, [23] recommends to decompose

f ∗(·) as the sum of per-edge terms such that:

h(t)v =
∑

v ′∈Nbr

f
(
lv , lv ′ , l(v,v ′), h

(t−1)
v ′

)
(2)

with f (·) a linear function of hv or a feed-forward neural network.

For example, f (·) can be formulated as a linear function:

f
(
lv , lv ′ , l(v,v ′), h

(t)
v ′

)
= A(lv ,lv′,l(v,v′))h(t−1)v ′ + b(lv ,lv′,l(v,v′)) (3)

with A and b learnable weight and bias parameters. The hidden

node representations are propagated throughout the graph until a

fixed point is reached. As explained in [23], it implies that f (·) has
the property that a fixed point for Equation (2) can be reached.

Once a fixed point hv has been reached, a second model is then

used to compute the output label ov for each node v ∈ V

ov = д (hv , lv) (4)

Practically, д(·) is implemented using a feed-forward neural net-

work. The neural network architecture is differentiable from end-

to-end, so that all parameters can be learned using gradient-based

optimization.

Learning of the parameters of f (·) andд(·) is done via theAlmeida-

Pineda algorithm [3, 21] which works by running the propagation

of the hidden representation to convergence, and then computing

gradients based upon the converged solution.

3.2 Gated Graph Neural Networks
Gated Graph Neural Networks (GG-NNs) [17] are an recent exten-

sion of GNNs using more recent neural network techniques, based

on Gated Recurrent Units (GRU) [6]. In GG-NNs, each node aggre-

gates the hidden representations it receives from all adjacent nodes,

and uses that to update its own hidden representation using a GRU

cell. More specifically, the propagation of the hidden representa-

tions among neighboring nodes for one time-step is formulated

as:

a(t)v = A(v)

[
h(t−1)
1

· · · h(t−1)
|V |

]T
+ ba (5)

z(t)v = σ
(
Wza

(t)
v + Uzh

(t−1)
v + bz

)
(6)

r(t)v = σ
(
Wra

(t)
v + Ur h

(t−1)
v + br

)
(7)

h̃(t)v = tanh

(
Wa

(t)
v + U

(
r(t)v ⊙ h(t−1)v

)
+ b

)
(8)

h(t)v =
(
1 − z(t)v

)
⊙ h(t−1)v + z(t)v ⊙ h̃(t)v (9)

whereσ (x) = 1/(1+e−x) is the logistic sigmoid function and ⊙ is the

element-wise matrix multiplication. {Wz ,Wr ,W} and {Uz ,Ur ,U}
are learnable weights matrices, and {ba , br , bz , b} are learnable

biases vectors. A ∈ R |V |×|V |
is a matrix determining how nodes in

the graph G communicate with each other, as illustrated in Figure 2.

1
2

3
4

(a)

ℎ (t−1)
1

ℎ (t−1)
2

ℎ (t−1)
3

ℎ (t−1)
4

ℎ (t)
1

ℎ (t)
2

ℎ (t)
3

ℎ (t)
4

(b)


0 α 0 0

α 0 β β
0 β 0 α
0 β α 0


(c)

Figure 2: (a) Example graph. Edge colors denote edge types.
(b) One time-step unrolling of Equations (5) to (9). (c) Matrix
A corresponding to the graph. Parameters α and β encode
the edge type.

Equation (5) corresponds to one time-step of the propagation

of the hidden representation of neighboring nodes to node v , as
formulated previously for Graph Neural Networks in Equations (1)

and (2). Equations (6) to (9) correspond to the mathematical formu-

lation of a GRU cell, with Equation (6) representing the GRU reset

gate vector, Equation (7) the GRU update gate vector, and Equa-

tion (9) the GRU output vector. The initial hidden representation

h
(0)
v is based on the node’s feature vector lv , padded with zeros

according to the dimensions of the hidden representation.

The output vector ov for each node v is computed as in Equa-

tion (4) using a feed-forward neural network. The overall architec-

ture of the GG-NN is summarized in Figure 3.

Learning of the weight matrices and bias vectors is performed

using back-propagation through time in order to compute gradients,

namely using standard gradient-based optimization algorithms such

as RMSProp [28] or Adam [15].

3.3 GG-LSTM-NN: Extension of Graph Gated
Neural Networks with LSTM

We propose in this section a new class of Graph Gated Neural Net-

works called GG-LSTM-NN based on the Long Short-Term Memory

(LSTM) cell [13]. This neural network architecture is a variant of the

VALUETOOLS 2017, Dec. 5-7, 2017, Venice, Italy Fabien Geyer


h(0)
1
...

h(0)
|V |



h(t)
1
...

h(t)
|V |



Gated
Recurrent

Unit

Feed-forward
Neural
Network


h(T)
1
...

h(T)
|V |




o1
...

o |V |



Figure 3: Representation of a Gated Graph Neural Network.

Graph Gated Neural Network architecture where the GRU memory

cell is replaced with a LSTM cell. The overall architecture of the

GG-LSTM-NN is similar to the GG-NN illustrated in Figure 3.

Similarly to Equations (5) to (9), the propagation of the hidden

representations among neighboring nodes for one time-step in a

GG-LSTM-NN is formulated as:

a(t)v = A(v)

[
h(t−1)
1

· · · h(t−1)
|V |

]T
+ ba (10)

i(t)v = σ
(
Wia

(t)
v + Uih

(t−1)
v + bi

)
(11)

f (t)v = σ
(
Wf a

(t)
v + Uf h

(t−1)
v + bf

)
(12)

o(t)v = σ
(
Woa

(t)
v + Uoh

(t−1)
v + bo

)
(13)

g(t)v = tanh

(
Wдa

(t)
v + Uдh

(t−1)
v + bд

)
(14)

c(t)v = c(t−1)v ⊙ f (t)v + g
(t)
v ⊙ i(t)v (15)

h(t)v = tanh

(
c(t)v

)
⊙ o(t)v (16)

with {Wi , . . .} and {Ui , . . .} learnableweightmatrices, and {bi , . . .}
learnable bias vectors.

Equation (10) is the propagation of the hidden representations

among neighbors, as in Equation (5). Equations (11) to (13) corre-

spond respectively to the input, forget and output gates of the LSTM
cell. Equation (14) is a candidate hidden representation, with an

initial value c(0)v set to zero. Equation (15) is the internal memory

of the LSTM cell.

Our motivation for proposing this new neural network archi-

tecture is motivated by better numerical performance than the

GRU-based GG-NN presented in Section 3.2, as shown in the nu-

merical evaluation in Section 5.

4 APPLICATION TO PERFORMANCE
EVALUATIONS OF NETWORKS

We describe in this section the application of the deep learning

architectures presented earlier to the performance evaluation of

network topologies and network protocols. In other words, our goal

is to represent network topologies and their flows as graphs which

can be passed as input to a GG-NN. Compared to other works on

the application of machine learning to performance evaluation, the

main contribution is that this graph representation is a low-level

input feature. This means that specific high-level features of the

studied network protocol are not required and the trained machine

learning algorithm is not restricted to a specific topology.

4.1 Input features definition
The main intuition behind the input feature modeling for the GG-

NN is to use the queuing network as input graph G, with additional

nodes representing the flows in this network. An illustration of

this queuing network is given in Figure 5, which is the queuing

representation of the example network illustrated in Figure 4 with

one switch or router interconnecting three PCs with three flows.

Note that we illustrate on Figure 5 only the forward path of the

flows. Figure 5 may also be extended to include the queues taken

by the acknowledgement packets used by the flows if necessary,

such as TCP ACK packets for example.

PC3

PC1

PC2

F1

F2

F3
SW

Figure 4: Example network topology with 3 flows.

PC1
F1

F2

F3

PC2

PC3

Figure 5: Associated queuing network of Figure 4 (here with
only the forward path of each flow).

Regarding the constructed graph G = {V, E}, the nodes V

correspond to the queues traversed by the flows in the network

topology as well as specific nodes representing the flows. For the

node features lv , a vector encoding the node type (i.e. if a node

represents a flow or a queue) with one-hot encoding is used. Namely

lv is a vector with two values, with [1, 0]T is for queue nodes,

and [0, 1]T for flow nodes. Note that for simplification purpose,

we assume here that every PCs and switches or routers to have

the same behavior and all links in the topology to have the same

capacity and latency. Additional features for distinguishing between

different behaviors or node types may be used in case different

configurations, types or link capacities are used. An example of

such node-specific feature is given later in Sections 5.3 and 5.4.

Edges connect the queues which are used by the flows according

to the physical topology of the network. In order to encode flow

routing in the graph, edges between the nodes representing flows

and their traversed queues are used. Figure 6 is an example of

such graph modeling applied to the topology presented in Figure 4.

A labeling of the edge type may be used in order to distinguish

Performance Evaluation of Network Topologies using Graph-Based Deep Learning VALUETOOLS 2017, Dec. 5-7, 2017, Venice, Italy

between queues representing the forward path of flows and the

path used for acknowledgement packets, as illustrated in Figure 2.

PC1 → SW
SW→ PC2

F1

F3
SW→ PC3

F2

PC2 → SW

SW

PC1

PC2

PC3

Figure 6: Graph representing the queuing network from Fig-
ure 5.

We note that the graph and feature representations described

here are independent of any studied network protocols.

4.2 Task-specific modeling
For the scope of this work, we focus on the challenge of evaluating

the performance of TCP flows, namely predicting their average

throughput. As shown in previous works on TCP Reno such as [18],

the average throughput of a TCP flow can be modeled as:

C

RTT
√
p

(17)

with RTT the round-trip time and p the probability of packet loss on
the flow’s path, andC a constant value depending on a configuration

of the TCP stack. In the case of small file transfers, additional

parameters such as file size distributions are also important.

This is an interesting problem since TCP adapts its throughput

according to the perceived level of congestion in the network or

other factors depending on the version of TCP which is used. Since

the flows also contribute themselves to the overall congestion in

the network, the sharing of bandwidth at a given bottleneck is not

trivial to predict.

Based on this task description, the output vector ov of node v
will then be the average throughput of the TCP flow for nodes

representing flows. Practical experimentations showed that using

discretized values across N bins provided better accuracy than

using continuous values for modeling the throughputs. Hence the

regression task essentially becomes a classification task.

The neural network is then trained against a log softmax cross

entropy loss function, as usually done in classification tasks:

Lv = −yv + log
N∑
i=1

eov :i
(18)

where yv corresponds to the index of the binned average through-

put value, and ov :i to the i-th element of the output vector ov .

5 NUMERICAL EVALUATION
We present in this section a numerical evaluation of the concepts

presented in Sections 3 and 4. We focus here on the evaluation of

Ethernet networks with 100Mbit/s links. The evaluated topologies

and flows are randomly generated as follows using [9]. A random

number of Ethernet switches is first selected using a uniform distri-

bution and connected in according to a daisy chain as illustrated

in Figure 7. A random number of nodes is then generated using a

uniform distribution and connected to a randomly selected Ethernet

switch. For each node, a TCP flow is generated with a randomly

selected destination among the other nodes.

PC

PC

SW1 SW2 SWn

PC PC

PC

Figure 7: Daisy chain topology used for the numerical eval-
uation.

In order to build our datasets for learning, each random topology

is evaluated using the ns-2 simulator [1] until the steady-state of

the flows throughput is reached. The defaults parameters of ns-2
for the TCP stack are used, meaning that TCP Reno is used as a

congestion control algorithm. The results of the simulations is used

as a basis for the learning process of the neural network.

We evaluate our approach against three different traffic use-cases,

namely:

(1) Infinite flows, where clients always have data to send, with

results presented in Section 5.2;

(2) Finite flows, where clients follow an ON/OFF loop behavior

where a random amount of data is sent, followed by a random

idle time, with results presented in Section 5.3;

(3) A combination of the two previous traffic models, with re-

sults presented in Section 5.4.

5.1 Implementation
The GG-NN architectures presented in Sections 3.2 and 3.3 was

implemented using Tensorflow [2]. The recurrent part of the GG-

NN and GG-LSTM-NN were respectively implemented according to

Equations (5) to (9) and Equations (10) to (16). The function д(·) in
Equation (4) was implemented using a feed-forward neural network

with two dense layers. Additional dropout layers [25] between each

time-step of the GG-NN were added in order to avoid over-fitting.

For each studied use-case, the model was trained multiple times

using the parameters listed in Table 1 and different seeds for the

random number generators. Randomization of the node indexes was

also performed for each mini-batch. The neural network producing

the best result was then selected for the numerical results presented

in the rest of this section.

As a comparison basis, we also evaluated a simple version of

Graph Neural Network from section 3.1, using a simple Recurrent

Neural Network (RNN) architecture similar. The hidden node rep-

resentation is driven by:

a(t)v = A(v)

[
h(t−1)
1

· · · h(t−1)
|V |

]T
+ ba (19)

h(t)v = tanh

(
Wa(t)v + Uh

(t−1)
v + b

)
(20)

VALUETOOLS 2017, Dec. 5-7, 2017, Venice, Italy Fabien Geyer

Parameter Value

Learning algorithm RMSProp [28]

Size of hidden representation 64

Learning rate 10
−4

Mini-batch size 32

Training iterations 20 000

Table 1: Parameters used for the training phase of the neural
networks.

with W and U learnable weight matrices, and b a learnable bias

vector.

Each set of simulations was split into training and test datasets.

The training dataset was used for training the neural network, while

the test dataset was used for evaluating the prediction performances

of the neural network.

5.2 Evaluation on infinite TCP flows
In this first use-case, we assume an infinite traffic model for TCP

flows. This model illustrates the case of large file transfers over

TCP. Multiple sets of simulations were generated, with different

parameters regarding the size of the network, namely the maximum

number of switches used for the line topology presented in Figure 7

and the maximum number of flows. Statistics about the dataset

with the largest topologies are given in Table 2.

Property Mean Min. Max. Std. dev.

Number of flows 16.38 2 30 8.21

Number of queues 35.54 4 66 16.75

Number of edges 250.47 20 596 133.10

Table 2: Parameters of the dataset with the largest network
topologies.

Numerical results of the average accuracy of the predictions of

the trained neural network are presented on Figure 8. As mentioned

in Section 4.2, the output vector corresponds to a discretized value

of the average throughput of the evaluated TCP flows. The accuracy

is hence defined as the correct prediction from the neural network

of the bins associated to the average throughputs.

We notice in Figure 8 that the GG-NN described in Section 3.2 –

labeled GG-GRU-NN in the plot – is able to reach accuracies higher

than 85 %, even on topologies with a larger number of flows and

number of hops. On small topologies, the neural network is able

to reach accuracies higher than 95 %. We notice that the average

prediction accuracy decreases slightly with the complexity of the

network, namely according to the number of hops traversed by the

TCP flows and overall number of flows in the network.

The results of the GG-LSTM-NN architecture, our proposition

for a modification of the GG-NN architecture, performs better than

the original GG-NN architecture, with overall accuracies higher

than 90 %. Finally, as a comparison, the RNN architecture from

Equation (20) is only able to reach accuracies higher than 90 %,

even on the smaller topologies.

Those numerical results motivates our choice of the GG-LSTM-

NN architecture over the original GG-NN and RNN architectures

for our application.

88%

92%

96%

90%

92%

94%

96%

98%

50%

60%

70%

80%

90%

G
G

−
G

R
U

−
N

N
G

G
−

L
ST

M
−

N
N

R
N

N

5 10 15 20 25 30
Maximum number of flows in dataset

P
re

di
ct

io
n

 a
cc

u
ra

cy Maximum

number of

switches in

dataset

2

3

4

Figure 8: Average prediction accuracy on topologies with
infinite TCP flows. Each data point correspond to another
dataset where the neural networks were trained and evalu-
ated.

5.3 Evaluation on finite TCP flows
In this second use-case, we assume an ON/OFF traffic model for

TCP flows, where clients repeatedly send a random amount of data

followed by a random idle period. It represents the case of small

file transfers over TCP. This traffic model is illustrated in Figure 9

where three flows are sharing the same link. We restrict here the

line topology to a maximum of two switches.

An exponential distribution is used for file sizes, where each

flow is randomly assigned a different mean value between 1MB

and 5MB for the file size distribution. Similarly, an exponential

distribution is used for idle periods, with a mean value of 1 s for all

flows. The feature vector lv is extended here to take into account

the mean of the file size distribution, using one-hot encoding.

Numerical results are presented in Figure 10. Despite less accu-

rate predictions compared to Figure 8, we notice that the neural

networks are still able to learn the bandwidth sharing of the ON/OFF

flows and use the file size distributions. As in the previous results,

the GG-LSTM-NN architecture outperforms the GRU-based GG-NN

architecture.

In order to illustrate the impact of file size distribution on the

prediction accuracy, we also trained the neural network without

this information. Results are presented in Figure 11. As expected,

the prediction accuracy decreases, showing that the network was

able to use the file size distribution previously in Figure 10.

Performance Evaluation of Network Topologies using Graph-Based Deep Learning VALUETOOLS 2017, Dec. 5-7, 2017, Venice, Italy

0.0

2.5

5.0

7.5

10.0

0 1 2 3 4 5
Time (s)

T
h

ro
u

gh
p

u
t

(M
b

it
/s

)

Flow

F1

F2

F3

Figure 9: Illustration of the bandwidth sharing of three
ON/OFF TCP flows using the same bottleneck. Each data
point correspond to another dataset where the neural net-
works were trained and evaluated.

70%

75%

80%

85%

5 10
Maximum number of flows in dataset

P
re

di
ct

io
n

 a
cc

u
ra

cy

Neural network

architecture

GG−GRU−NN

GG−LSTM−NN

RNN

Figure 10: Average prediction accuracy on topologies with
finite ON/OFF TCP flows. Each data point correspond to an-
other dataset where the neural networks were trained and
evaluated.

44%

45%

46%

47%

48%

49%

5 10
Maximum number of flows in dataset

P
re

di
ct

io
n

 a
cc

u
ra

cy

Neural network

architecture

GG−GRU−NN

GG−LSTM−NN

RNN

Figure 11: Average prediction accuracy on topologies with fi-
nite ON/OFF TCPflows, where the neural network is trained
without information on the file size distributions.

5.4 Evaluation on combined infinite and
ON/OFF TCP flows

In this third use-case, we assume a combination of both previous

traffic models on the same network, where some flows are infinite

and some flows are finite. This combined traffic model is often

referred as "mice and elephants" in the literature. The same parame-

ters as in Section 5.3 were used for the file size distributions and

idle time distributions. Topologies were generated such that 1/6
th

of the flows were infinite flows, and the rest finite ON/OFF flows

as presented in Figure 9. We also restrict here the line topology to

a maximum of two switches.

Numerical results are presented in Figure 12. We notice here

similar results than in Figure 10. The neural networks are able

to predict the average throughputs, although with less accuracy

compared to the two previous use-cases.

50%

60%

70%

80%

5 10
Maximum number of flows in dataset

P
re

di
ct

io
n

 a
cc

u
ra

cy

Neural network

architecture

GG−GRU−NN

GG−LSTM−NN

RNN

Figure 12: Average prediction accuracy on topologies with a
combination of finite and infinite TCP flows.

5.5 Interpreting GG-NNs
An important subject when working with neural network is the

interpretability of the learned weights. We propose here to visu-

alize Equation (5) as t increases, namely visualize how the hidden

representation of a node evolves at different time-steps. This is

illustrated in Figure 13 on a sample network with 4 flows and 10

queues.

1
2
3
4

5
6
7
8
9

10
11
12
13
14

F
lo

w
Q

u
eu

e

0 10 20 30
Time−step

N
o

de
 i

de
n

ti
fi

er

−1.0

−0.5

0.0

0.5

1.0

Normalized

difference

Figure 13: Visualization of the hidden representations’ prop-
agation. The color of each cell corresponds to

∑
D h(t)v −h(t−1)v

for each node v in the graph.

We observe that a fixed point for Equation (5) is indeed reached

since there is almost no difference between h(t)v and h(t−1)v in the

last time-steps for all nodes. It is interesting to notice that the fixed

point for each queue is reached at different time-steps, meaning

that some queues (eg. node 13 or 14) have a larger impact on flow

performance than other queues (eg. node 5 or 6).

6 CONCLUSION
We presented in this paper a novel approach for the performance

evaluation of network topologies and flows by using graph-based

deep learning. Our approach is based on the use of a modified Gated

VALUETOOLS 2017, Dec. 5-7, 2017, Venice, Italy Fabien Geyer

Graph Neural Networks called GG-LSTM-NN and a low-level graph-

based representation of queues and flows in network topologies.

Compared to other approaches using machine learning for perfor-

mance evaluation of computer networks, the trained model is not

specific to a given topology and high-level input features requiring

more advanced knowledge on the studied protocol are not required.

We applied our approach to the performance evaluation of TCP

flows with the task of predicting the average throughput for each

flow. This is an interesting task since the throughput of TCP flows

is dependent on the network architecture and network conditions

(i.e. congestion and delays). Different traffic models for the flows

were evaluated: large file transfers, small file transfers, and a combi-

nation of large and small file transfers. We showed via a numerical

evaluation that our approach is able to reach good accuracies, even

on large network topologies with multiple hops. We compared the

chosen neural network architecture against a simpler recurrent

neural network architecture, motivating our choice for GG-NNs. Fi-

nally we also visualized the internal working of the neural network

in order to give some insights on which queues have an influence

on protocol performances.

Since the network topology is directly taken as input of the neu-

ral network, applications such as network planning and architecture

optimization may benefit from the method developed in this paper.

As our approach is not specific to the performance evaluation of

TCP flows, future work may include evaluations and extensions of

our approach to other congestion control algorithms, performance

measure such as latency or other network protocols.

Acknowledgments This work has been supported by the German

Federal Ministry of Education and Research (BMBF) under support

code 16KIS0538 (DecADe).

REFERENCES
[1] 2017. ns-2, Network Simulator (ver. 2.35). (2017). Retrieved July 28, 2017 from

https://www.isi.edu/nsnam/ns/

[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

(2015). http://tensorflow.org/ Software available from tensorflow.org.

[3] Luis B. Almeida. 1990. Artificial Neural Networks. IEEE Press, Piscataway, NJ,

USA, Chapter A Learning Rule for Asynchronous Perceptrons with Feedback in

a Combinatorial Environment, 102–111.

[4] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral

Networks and Locally Connected Networks on Graphs. In Proceedings of the 2nd
International Conference on Learning Representations (ICLR’2014).

[5] Neal Cardwell, Stefan Savage, and Thomas Anderson. 2000. Modeling TCP

Latency. In Proceedings of the 19th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM 2000), Vol. 3. IEEE, 1742–1751. https:
//doi.org/10.1109/INFCOM.2000.832574

[6] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase

Representations using RNN Encoder-Decoder for Statistical Machine Translation.

(June 2014). arXiv:1406.1078

[7] Victor Firoiu, Ikjun Yeom, and Xiaohui Zhang. 2001. A Framework for Practical

Performance Evaluation and Traffic Engineering in IP Networks. In Proceedings
of the IEEE International Conference on Telecommunications.

[8] Fabien Geyer, Stefan Schneele, and Georg Carle. 2013. Practical Performance

Evaluation of Ethernet Networks with Flow-Level Network Modeling. In Proceed-
ings of the 7th International Conference on Performance Evaluation Methodologies

and Tools (VALUETOOLS 2013). 253–262. https://doi.org/10.4108/icst.valuetools.
2013.254367

[9] Fabien Geyer, Stefan Schneele, and Georg Carle. 2014. PETFEN: A Performance

Evaluation Tool for Flow-Level Network Modeling of Ethernet Networks. In

Proceedings of the 8th International Conference on Performance Evaluation Method-
ologies and Tools (VALUETOOLS 2014). https://doi.org/10.4108/icst.valuetools.

2014.258166

[10] Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A New Model

for Learning in Graph Domains. In Proceedings of the 2005 IEEE International
Joint Conference on Neural Networks (IJCNN’05), Vol. 2. IEEE, 729–734. https:
//doi.org/10.1109/IJCNN.2005.1555942

[11] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Ag-

nieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette,

Tiago Ramalho, John Agapiou, Adrià Puigdomènech Badia, Karl Moritz Hermann,

Yori Zwols, Georg Ostrovski, Adam Cain, Helen King, Christopher Summerfield,

Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis. 2016. Hybrid computing

using a neural network with dynamic external memory. Nature 538, 7626 (Oct.
2016), 471–476. https://doi.org/10.1038/nature20101

[12] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep Convolutional Networks

on Graph-Structured Data. (June 2015). arXiv:1506.05163

[13] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.

Neural Computation 9, 8 (Nov. 1997), 1735–1780. https://doi.org/10.1162/neco.

1997.9.8.1735

[14] Hadrien Hours, Ernst W. Biersack, and Patrick Loiseau. 2016. A Causal Approach

to the Study of TCP Performance. ACM Trans. Intel. Syst. Tech. 7, 2 (Jan. 2016),
25:1–25:25. https://doi.org/10.1145/2770878

[15] Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimiza-

tion. In Proceedings of the 3rd International Conference on Learning Representations
(ICLR’2015). https://arxiv.org/abs/1412.6980

[16] Cheng Li, Xiaoxiao Guo, and Qiaozhu Mei. 2016. DeepGraph: Graph Structure

Predicts Network Growth. (Oct. 2016). arXiv:1610.06251

[17] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2016. Gated

Graph Sequence Neural Networks. In Proceedings of the 4th International Confer-
ence on Learning Representations (ICLR’2016).

[18] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. 1997. The

Macroscopic Behavior of the TCP Congestion Avoidance Algorithm. ACM SIG-
COMM Comput. Commun. Rev. 27, 3 (June 1997), 67–82. https://doi.org/10.1145/
263932.264023

[19] Mariyam Mirza, Joel Sommers, Paul Barford, and Xiaojin Zhu. 2010. A Machine

Learning Approach to TCP Throughput Prediction. IEEE/ACM Trans. Netw. 18, 4
(Aug. 2010), 1026–1039. https://doi.org/10.1109/TNET.2009.2037812

[20] Jitendra Padhye, Victor Firoiu, Don F. Towsley, and James F. Kurose. 2000. Mod-

eling TCP Reno Performance: A Simple Model and Its Empirical Validation.

IEEE/ACM Trans. Netw. 8, 2 (April 2000), 133–145. https://doi.org/10.1109/90.

842137

[21] Fernando J. Pineda. 1987. Generalization of back-propagation to recurrent neural

networks. Phys. Rev. Lett. 59 (Nov. 1987), 2229–2232. Issue 19. https://doi.org/10.
1103/PhysRevLett.59.2229

[22] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele

Monfardini. 2009. Computational Capabilities of Graph Neural Networks. IEEE
Trans. Neural Netw. 20, 1 (Jan. 2009), 81–102. https://doi.org/10.1109/TNN.2008.
2005141

[23] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele

Monfardini. 2009. The Graph Neural Network Model. IEEE Trans. Neural Netw.
20, 1 (Jan. 2009), 61–80. https://doi.org/10.1109/TNN.2008.2005605

[24] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan

Titov, and Max Welling. 2017. Modeling Relational Data with Graph Convolu-

tional Networks. (March 2017). arXiv:1703.06103

[25] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from

Overfitting. Journal of Machine Learning Research 15, 1 (Jan. 2014), 1929–1958.

[26] Mukarram Bin Tariq, Kaushik Bhandankar, Vytautas Valancius, Amgad Zeitoun,

Nick Feamster, and Mostafa Ammar. 2013. Answering "What-If" Deployment and

Configuration Questions With WISE: Techniques and Deployment Experience.

IEEE/ACM Trans. Netw. 21, 1 (Feb. 2013), 1–13. https://doi.org/10.1109/TNET.

2012.2230448

[27] Guibin Tian and Yong Liu. 2012. Towards Agile and Smooth Video Adaptation in

Dynamic HTTP Streaming. In Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies (CoNEXT ’12). ACM, 109–120.

https://doi.org/10.1145/2413176.2413190

[28] Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture 6.5-rmsprop: Divide the

gradient by a running average of its recent magnitude. COURSERA: Neural
Networks for Machine Learning 4, 2 (2012), 26–31.

[29] Pedro Velho, Lucas M. Schnorr, Henri Casanova, and Arnaud Legrand. 2011.

Flow-level network models: have we reached the limits? Technical Report 7821.

INRIA.

https://www.isi.edu/nsnam/ns/
http://tensorflow.org/
https://doi.org/10.1109/INFCOM.2000.832574
https://doi.org/10.1109/INFCOM.2000.832574
http://arxiv.org/abs/1406.1078
https://doi.org/10.4108/icst.valuetools.2013.254367
https://doi.org/10.4108/icst.valuetools.2013.254367
https://doi.org/10.4108/icst.valuetools.2014.258166
https://doi.org/10.4108/icst.valuetools.2014.258166
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1038/nature20101
http://arxiv.org/abs/1506.05163
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/2770878
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1610.06251
https://doi.org/10.1145/263932.264023
https://doi.org/10.1145/263932.264023
https://doi.org/10.1109/TNET.2009.2037812
https://doi.org/10.1109/90.842137
https://doi.org/10.1109/90.842137
https://doi.org/10.1103/PhysRevLett.59.2229
https://doi.org/10.1103/PhysRevLett.59.2229
https://doi.org/10.1109/TNN.2008.2005141
https://doi.org/10.1109/TNN.2008.2005141
https://doi.org/10.1109/TNN.2008.2005605
http://arxiv.org/abs/1703.06103
https://doi.org/10.1109/TNET.2012.2230448
https://doi.org/10.1109/TNET.2012.2230448
https://doi.org/10.1145/2413176.2413190

	Abstract
	1 Introduction
	2 Related work
	3 Neural networks for graphs
	3.1 Graph Neural Networks
	3.2 Gated Graph Neural Networks
	3.3 GG-LSTM-NN: Extension of Graph Gated Neural Networks with LSTM

	4 Application to performance evaluations of networks
	4.1 Input features definition
	4.2 Task-specific modeling

	5 Numerical evaluation
	5.1 Implementation
	5.2 Evaluation on infinite TCP flows
	5.3 Evaluation on finite TCP flows
	5.4 Evaluation on combined infinite and ON/OFF TCP flows
	5.5 Interpreting GG-NNs

	6 Conclusion
	References

