Experimental Research Reproducibility and Experiment Workflow Management

Yuri Demchenko
University of Amsterdam, The Netherlands
y.demchenko@uva.nl

Sebastian Gallenmüller
Technical University of Munich, Germany
gallenmu@net.in.tum.de

Serge Fdida
Sorbonne University, France
serge.fdida@sorbonne-universite.fr

Mathias Kirkeng
University of Amsterdam, The Netherlands
m.kirkeng@gmail.com

Panayiotis Andreou
University of Central Lancashire, Cyprus
PGAndreou@uclan.ac.uk

Cédric Crettaz
Mandat International, Switzerland
ccrettaz@mandint.org

Abstract—Research reproducibility is an essential factor to increase the efficiency of modern research; this is especially important for experimental research, where it is required to reproduce the whole experiment environment and equipment setup. This paper presents the results of developing the SLICES Research Infrastructure to enable research reproducibility in modern digital technologies for complex and large-scale experimentation. The paper provides a short overview of existing research and approaches for experimental research reproducibility, generally including git-based experiments deployment and operation, Jupyter Notebook, and the Common Workflow Language (CWL) for workflow management. The paper describes approaches and solutions taken in the SLICES-RI that also address research environment provisioning on demand with the Platform Research Infrastructure as a Service (PRIaaS) and data management infrastructure to ensure data quality and support effective data sharing.

Index Terms—Reproducibility, Experimental Research, Experiment Lifecycle, Experiment Automation, FAIR data principles, Data Management Infrastructure, SLICES Research Infrastructure

I. INTRODUCTION

Modern research is increasingly multidisciplinary and data-driven, emphasizing the need for effective communication between researchers and data sharing. The Open Science initiative and movement among research communities can address these needs and increase the overall efficiency of scientific and technology research [1]. Open Science is strongly supported by policy development and funding bodies in Europe and a mandatory requirement in the current Horizon Europe program. In recent years, major initiatives and projects to create the foundation and e-Infrastructure for Open Science have been funded in Europe (under the past Horizon 2020 and current Horizon Europe programs). This includes the currently operational OpenAIRE [2] and Zenodo [3] services, the development of the European Open Science Cloud (EOSC) [4], all support the FAIR (Findable, Accessible, Interoperable, Reusable) data principles [5]. The FAIR data principles were initially proposed for research data management primarily targeted at consistent metadata management. However, recent initiatives by the Research Data Alliance (RDA) [6] extend the FAIR principles to scientific software as a digital or data object.

Research reproducibility is one of the core principles of Open Science [7]. However, developments in this area are fragmented and lack commonly or widely used approaches. One of the difficulties is that reproducible research requires the recreation or provisioning of on-demand research environments, even for general Data Science and Analytics tasks. Reproducibility of experimental research imposes additional requirements on the reproducible experiment setup, including resources provisioning, experiment environment setup, and experiment lifecycle management, which in its own turn include experimental data lifecycle management.

According to the ACM [8], reproducibility is defined as a three-stage process. The first stage, repeatability, is achieved if the same research group can recreate experiments using the same equipment. The second stage, reproducibility, is reached if a different team can recreate experiments on the same equipment. If an independent team recreates experiments on their own equipment, the final stage is reached: replicability. To incentivize reproducible research, the ACM launched a multi-stage reproducibility award system for scientific papers based on their definition. A study among authors and reviewers considered the results of such a system helpful but time-consuming to implement [9].

The focus of our paper is the investigation of a central component for the reproducible experimental research methodology—a reproducible workflow to execute experiments. It should also be supported by a consistent data management infrastructure. This research is a part of the SLICES Research Infrastructure to support research on digital technologies [10]. We aim to achieve the following goals:

- Analyze different existing approaches for experimental workflows
- Identify the benefits and disadvantages of these existing approaches
- Create guidelines for an ideal experimental workflow to validate hypotheses in computer science

The paper is structured as follows. Section II provides information about European Open Science projects and introduces the SLICES Research Infrastructure for digital technologies experimentation. Section III gives a short overview of existing approaches and practices on research reproducibility and solutions for experiment facilities provisioning and workflow description. Section IV discusses the experiment reproducibility in SLICES-RI. Section V discusses the Data Management Infrastructure requirements, an important component of consistent experimental research reproducibility. The paper concludes with a summary and suggestions for future research in Section VI.

II. OPEN SCIENCE AND FAIR DATA PRINCIPLES IN EOSC

A. European Open Science Cloud (EOSC)

EOSC is an initiative and program by the European Union to provide European researchers, innovators, companies, and citizens with a federated and open multi-disciplinary environment where they can publish, find and re-use data, tools, and services for research, innovation, and educational purposes [4]. So far, the EOSC projects have created the foundation for research data interoperability and integration for European RIs. The EOSC Strategic Research and Innovation Agenda (SRIA) provides a roadmap to achieve the EOSC vision and objectives, namely to deliver an operational "Web of FAIR data and services" for science [11]. The Minimum Viable EOSC (MVE) achieved by the end of 2021 [11], created a starting point for future EOSC development generally coordinated by the EOSCFuture project [12]. MVE defines EOSC Core that is designed to provide a federated data exchange environment for research projects and communities where data comply with FAIR principles. Ongoing developments aim at providing a customizable research environment for researchers and research projects using services provided by the EOSC Portal Catalog and Marketplace [13]. The ongoing RELIANCE project intends to extend the EOSC with a set of services for Research Lifecycle Management in accordance with FAIR principles based on Research Objects (RO), Data Cubes, and Text Mining [14]. ROHub is a service by RELIANCE for the storage, lifecycle management, and preservation of scientific research, campaigns, and operational processes via research objects [15].

B. SLICES-RI to support Digital Technologies Research and Experimentation

The Scientific Large-scale Infrastructure for Computing/Communication Experimental Studies (SLICES) [10] is a distributed Digital Infrastructure designed to support large-scale experimental research focused on networking protocols, radio technologies, services, data collection, parallel and distributed computing, and, in particular, cloud and edge-based computing architectures and services. This encompasses the full range of network, computing, and storage functions required for on-demand services across many verticals and addresses new complex research challenges, supporting disruptive science in IoT, networks, and distributed systems. SLICES will integrate multiple experimental facilities and testbeds operated by partners providing a common services access and integration platform. SLICES will allow academics and industry to experiment and test the whole spectrum of digital technologies whereby the computing, network, storage, and IoT resources can be combined to design, experiment, operate, and automate the full research lifecycle management.

III. RELATED WORK

This section analyzes existing approaches related to the creation of reproducible experiment workflows.

A. General Tools

Experiment results are highly dependent on a system state during the experiment. To allow for experiment repetition and replication, the documentation and recreation of this system state are essential. Bajpai et al. [16] provide several recommendations to simplify and ensure this process. Based on their recommendations and our own experience, we recommend the following tools: Configuration management and deployment frameworks, such as Ansible [17], to help automate this task. At the same time, automation avoids any impact of the experimenter on the results. Version control systems such as git [18] help track the version of investigated source code.

A widely used tool to perform experimental evaluations is Jupyter [19]. Jupyter provides notebooks, a convenient way to combine documentation, code, and visual representations within a single file that can be accessed via a web browser and easily shared with other researchers.

B. Experiment Control

Multiple initiatives maintain and provide testbeds for research, e.g., Fed4Fire (EU) [20], OneLab (EU) [21], Grid’5000 (France) [22], PlanetLab (global) [23], or GENI (USA) [24]. Though not explicitly designed for reproducibility, Nussbaum [25] demonstrates that reproducible experiments are possible. He argues that testbeds, such as Grid’5000 or CloudLab, allow reproducible experiments if used correctly.

Whereas the previously mentioned approaches mainly focus on resource allocation, there are also more high-level approaches. These approaches define the experimental workflow. Examples of such solutions are OMF [26] or NEPI [27], which allow the definition and automated execution of experiment workflows. These controllers may use one of the previously mentioned testbeds as a backend to execute their experiments. Besides the previously mentioned solutions, new approaches emerged that combine resource allocation and experiment control. This integration allows full control over the entire experiment workflow laying the foundation to perform reproducible experiments:
1) Chameleon platform for Computer Science Research: The Chameleon cloud platform [28] is a large-scale, deeply reconfigurable experimental platform built to support an experimental workflow for Computer Sciences systems research. The Chameleon Infrastructure (CHI - Cloud++) is a cloud platform powered by OpenStack with bare metal (re-)configuration (Ironic), using the OpenStack Blazar reservation service for experimental resource reservation.

Chameleon uses Jupyter notebooks as an experiment definition, execution, and sharing format. The testbed can be controlled through libraries accessible from the Jupyter notebook. A collection of various experiments is provided via the Chameleon website [29], [30].

The Chameleon/CHI experimental workflow includes stages related to resource discovery, allocation, dynamic configuration, orchestration, and monitoring. The workflow management service is supported by a rich library of orchestration templates and images created by the research community. Chameleon provides Jupyter integration for orchestration via the JupyterLab service/portal [31], which allows creating and managing reproducible experiment workflows via Jupyter Notebooks that can be created and shared by researchers (or research teams).

2) Plain orchestrating service (pos): The plain orchestrating service (pos) [32], [33] provides two components, a testbed controller and a well-defined experiment workflow. The testbed controller takes care of the allocation and management of experimental resources. It provides bare-metal access to the experiment nodes. Images for the experiment nodes are provided as Linux live images. Using live images for experiments has two benefits: First, rebooting an experiment node helps reset the system to a well-defined state. Second, testbed users are aware of the non-permanence of their configuration, gently pushing users towards documenting and automating experiment configuration.

Figure 1 demonstrates the pos experiment workflow, divided into the setup, measurement, and evaluation phases. Three nodes are participating in the displayed experiment, a device under test (DuT), a load generator (LoadGen), and the controller. An experiment can be started by executing the experiment script on the controller. The controller reboots DuT and LoadGen. After the reboot, the two nodes can be configured using a setup script. The pos controller further provides variables (vars) to parameterize the setup. The measurement phase starts after the setup phase. There, different measurement scripts are executed on the experiment hosts. Measurements are typically parameterized using so-called loop variables. The number of loop variables determines how often the measurement script is run. For each run, a separate set of result files is generated and associated with a specific instance of loop variables acting as metadata to describe the result files. Result files are uploaded to the controller for further processing. After all result files are collected, the evaluation phase begins using an evaluation script to perform the evaluation. A publication script finally collects and prepares all experiment artifacts for release. The well-defined file structure of the experiment allows for an automated collection and processing of files. A possibility to present the results is a website. This website can be generated automatically and hosted on GitHub in conjunction with the other experiment artifacts.

Users can write the different script files in any language of their choice. However, the hosts must be able to execute it. The setup script, for instance, can be a simple shell script or a more complex Ansible configuration.

C. Experiment lifecycle and experiment workflow description

1) GitHub: GitHub is widely used for managing scientific code and data and, in particular, code for running experiments and processing experimental data. In this case, GitHub is used by scientific programmers in the same way as software developers, also benefiting from powerful functionality for code sharing, integration, and deployment (also referred to CI/CD process of Continuous Integration and Continuous Deployment).

However, using GitHub for experiment automation is limited by code portability, which depends on the individual scientific programmer style and may provide insufficient code structure and formalized interfaces to infrastructure computational and storage services.

2) Jupyter Notebook: Jupyter Notebooks are widely used in the scientific community for scientific data analysis and reporting; however, recent developments and uses target the full scientific research cycle, including the full experiment development and exploration cycle.

The CHI uses Jupyter Notebooks for defining and running experimental workflows. However, in Chameleon, Jupyter Notebooks are used primarily for running experiments on already provisioned experimental infrastructure, which is provisioned in the infrastructure provisioning workflow. A Paper by Beg et al. [34] describes other cases using Jupyter Notebooks to support reproducible experimental research. SLICES-RI will leverage the Grid’5000 [35] experience to support
using Jupyter Notebooks for different aspects/activities in the experiment automation and experimental research data management [36]:

- Notebooks as experiment drivers. These notebooks run the experiments from beginning to end, starting with resource reservations and going at least to data collection;
- Notebooks as experimental payload. The code contained within these notebooks is the core of experiments. These notebooks run on the reserved resources, and either contain or control the computation that is the subject matter of the experiment;
- Notebooks for post-processing. These notebooks are executed after an experiment to process the results. Supporting this usage will be dependent on a testbed infrastructure and the type of post-processing expected;
- Notebooks for exploratory programming. Notebooks for exploratory programming are used by users as a form of the enhanced interactive shell to create new code through trial and error;
- Notebooks as tutorials. Notebooks as tutorials are notebooks provided to the users by teachers that aim to present and explain to the users some specific concepts.

The usage of Jupyter Notebooks was already put in place in the context of the Fed4FIRE+ project by several testbeds offering Jupyter Notebooks to reproduce experiments. These testbeds will be included in the SLICES-RI via partners.

To achieve experiment reproducibility, the experimental platform must provide well-defined interfaces to experimental resources and data services that can be connected to the Jupyter programming environment. This is available in the Chameleon scientific cloud and provided by the major public cloud and Big Data infrastructure providers such as AWS with their SageMaker Studio Notebook [37] and Microsoft Azure Data Studio Notebook service [38] that is also supported by the Azure DevOps for Data Science platform [39].

3) Common Workflow Language (CWL): To achieve experiment workflow portability (in addition to experiment reproducibility), the scientific community uses scientific workflow languages. Succeeding a multitude of workflow languages introduced in the past, the CWL is gaining popularity in recent times.

The CWL [40] is a specification to describe digital workflows. It describes how multiple steps in a computational workflow and their connections should be defined. CWL itself is only a specification, so a user needs a program to execute workflows called runner. A reference implementation of such a runner is cwltool [41]; however, several workflow management systems implement CWL support, for example, Apache Airflow [42], Streamflow [43], and Toil [44]. Other workflow management systems offer partial or experimental support, such as Galaxy [45].

The standard defines CWL tools described in `.cwl` files using a subset of YAML. These tools can execute command line tools, evaluate javascript expressions, or define abstract operations to be implemented by a specific CWL runner. For each tool, the inputs and outputs need to be defined. Requirements can be listed, such as required software, the ability to process inline Javascript or specific files or directories to be present during a run time, among other requirements.

These steps can be combined into workflows, also defined in `.cwl` files, using a subset of YAML. Each workflow contains a list of steps, with each step having defined inputs and outputs. These steps are not necessarily supposed to be executed in order but rather according to their dependencies on other steps. Independent steps can thus also be run in parallel. These steps execute CWL tools, either defined in the workflow itself or referencing a tool defined in a separate CWL file. The steps can also execute other CWL workflows, allowing workflows to be nested. This works because, for each workflow, the inputs and outputs need to be defined. Finally, arbitrary metadata and metadata according to certain schemas can be defined in the workflows as well. The inputs of a workflow or tool are listed in a separate `.yaml` file provided to the CWL runner at runtime. A tool or workflow step can also be set to scatter, meaning it runs multiple times for each element of an array of inputs.

4) CWL for a sample experiment: The data processing step in the sample experiment was implemented using CWL, specifically using the reference implementation of a CWL runner. The entire workflow requires the AWS access credentials and the name of the DynamoDB table containing the sensor data. After execution, the workflow has produced the sensor data in CSV format sorted by date-time and a description as well as a line chart of the sensor data. The full details of the example presented here can be found in the project deliverable to be published after the project review [46].

The first step of the processing runs a CWL tool which retrieves the MQTT sensor data from the DynamoDB table using the boto3 python module. This tool uses AWS credentials to authenticate the client as well as the name of the table from which to retrieve the sensor data and outputs the sensor data in JSON format. The next step in the workflow converts the data from the JSON format to a CSV file using the JQ [47] command line tool. This CSV file is then sorted by the date-time of the sensor measurements in the next workflow step. The sorted CSV is one of the outputs of the workflow as well as the input to a CWL tool that uses the python pandas [48] library to create a description of the data, including information such as the mean and standard deviation. This description is the second output of the workflow. Finally, the sorted CSV is also used as input to a CWL tool, using gnuplot [49] to create a line chart of the sensor data.

Listing 1 shows the contents of the CWL workflow used for the data processing step of the sample experiment with comments explaining the code. The tools used in each of the steps are defined in separate CWL files and referenced in the code.

```bash
#!/usr/bin/env cwl-runner
cwlVersion: v1.0
class: Workflow
```
The deployment and execution of the experiment are done with Ansible playbooks and CloudFormation infrastructure component templates. The solution has been deployed and tested on the AWS cloud and proved that the use of templates both for cloud resources and infrastructure and for experiment workflow provides an effective instrument and platform for the SLICES experiments automation for the whole experiment lifecycle.

IV. EXPERIMENTAL RESEARCH REPROducIBILITY IN SLICES-RI

A. Adopting pos and Chameleon in SLICES

In the following, we discuss how different approaches for experimental workflows can be integrated into SLICES. Therefore, we selected the previously discussed approaches for reproducible experiment workflows offered by the Chameleon and pos testbeds. Chameleon achieves that by using Jupyter notebooks to provide a single file to document and describe the experiment workflow and evaluation. The collection of all experimental artifacts within a single file allows for easy sharing of experiments. The pos framework uses Linux live images and a structured collection of scripts to run and describe experiments. Both approaches offer enough flexibility to be combined. The previously separate scripts of the pos approach can be converted to code cells allowing the pos workflow structure within Jupyter notebooks. To demonstrate the integration of pos/chameleon, we created a Jupyter notebook [33] representing an experiment combining both approaches. We see the combined workflow as a prototype for future SLICES experiment workflow, providing reproducibility, easy sharing, and flexibility for researchers.

B. PRIaaS to support RI service provisioning for Experiment Reproducibility

The Platform Research Infrastructure as a Service (PRIaaS) proposed by the authors in the research paper [50] offers an architectural solution to provide an on-demand, fully functional environment for experimental research on SLICES-RI to deliver specialised and community-oriented services. The main component of PRIaaS is the Actualisation platform that leverages the TeleManagement Forum Digital Platform Reference Architecture [51] and allows the composition and instantiation of a fully operational Virtual RI (VRI) configured for specific customer research purposes.

The VRI provisioning process is based on well-known and commonly used DevOps tools and is supported by the management and operation functions. As the PRIaaS platform progresses, the repository of the design patterns, templates, and containerized applications and functions will grow. PRIaaS will allow natural integration with the EOSC Portal and Catalog services, sharing resources and experiment templates.

V. DATA MANAGEMENT INFRASTRUCTURE AND DATA LIFECYCLE

A. Experimental Data Management stages

Management of experimental data is an important aspect of SLICES-RI, and it includes several services that must support all stages of the experimental data lifecycle. As illustrated in Figure 2, SLICES-RI operates a Data Storage and Management Infrastructure to support activities typical

Listing 1. CWL example

```python
# The inputs of the entire workflow are referenced in the 1st workflow step
inputs:
    AWS_ACCESS_KEY_ID: string
    AWS_SECRET_ACCESS_KEY: string
    table_name: string

# In the following list the workflow steps are defined
steps:
    # 1st step, called "get_data" gets sensor data from the DynamoDB table
    get_data:
        run: ./tools/get-dynamodb-data.cwl # CWL tool is defined in this file
        # the following list defines the inputs to the CWL tool
        in:
            AWS_ACCESS_KEY_ID: AWS_SECRET_ACCESS_KEY: table_name: dynamodb_data
        # the output of this workflow step is defined as "dynamodb_data"
        out: [dynamodb_data]

    # 2nd step of the workflow converts the sensor data from JSON to CSV
    convert_to_csv:
        run: ./tools/json-to-csv.cwl
        # the input is the output of the previous step, "dynamodb_data"
        in:
            json_file: get_data/dynamodb_data
        out: [csv_file]

    # 3rd step sorts the sensor data in CSV format
    sort_csv:
        run: ./tools/sort.cwl
        file_to_sort: convert_to_csv/csv_file
        sort_field: default: 2 # which column to sort by
        out: [sorted_file]

    # 4th step creates a description of the data
    describe_data:
        run: ./tools/describe-csv.cwl
        # the input is the sorted CSV file from the previous step
        csv_file: sort_csv/sorted_file
        out: [data_description]

    # 5th step generates a line plot
    generate_graph:
        run: ./tools/graph-csv.cwl
        # the input is also the sorted CSV file from the 3rd step
        csv_to_plot: sort_csv/sorted_file
        out: [plot]

    # outputs of the entire workflow are the sorted CSV file from the 3rd, the data description from the 4th and the line chart from the 5th
    outputs:
        data_csv:
            type: File
            outputSource: sort_csv/sorted_file
            description:
                type: File
                outputSource: describe_data/data_description
        plot:
            type: File
            outputSource: generate_graph/plot
```
for experimental research, such as experiment planning and deployment (as explained in the previous sections), the discovery of data from internal data archives and external sources that are needed for correct experiment planning and setup as well as data publication and sharing. The SLICES Data Management Infrastructure establishes a policy for data governance and management, including data security and quality assurance, that are supported by the corresponding infrastructure tools for data curation. Figure 2 indicates that the SLICES Data Management infrastructure should be inter-connected with the EOSC Scientific Data Infrastructure for data sharing and access.

Each Data Lifecycle stage, i.e., experiment setup, data collection, data analysis, and finally, data archiving—typically works with its own data sets, which are linked and their transformation must be recorded in the process that is called lineage (that can also be extended to provenance for complex linked scientific data). All staged datasets need to be stored for the purpose and possibly reused in later processes.

Many experiments require already existing datasets that will be available in the SLICES data repositories or can be obtained/discovered in EOSC data repositories.

B. Infrastructure components to support the experimental data management

The following are requirements for the robust data management infrastructure (DMI) for experimental data that follows from best practices and use cases analysis in the SLICES-DS project [10]:

RDM1. Distributed data storage and experimental data(set) repositories should support common data and metadata interoperability standards, in particular common data and metadata formats. Outsourcing data storage to the cloud must be protected with appropriate access control and compliant with the SLICES Data Management policies.

RDM2. SLICES DMI should support the whole data lifecycle. It should provide interfaces to experiment workflow and staging.

RDM3. SLICES DMI shall provide PID (Persistent Identifier) and FDO (FAIR Digital Object) registration and resolution services to support linked data and data discovery that should be integrated with EOSC services.

RDM4. SLICES DMI must support (trusted) data exchange and transfer protocols that allow policy-based access control to comply with the data protection regulations.

RDM5. SLICES DMI must enforce user and application access control and identity management policies adopted by the SLICES community that can be potentially federated with the EOSC Federated AAI.

RDM6. Procedures and policies must be implemented for data curation and quality assurance.

RDM7. Certification of data and metadata repositories should be considered at some maturity level following certification and maturity recommendations by RDA.

The strategy for practical SLICES DMI deployment must include well-defined procedures for distributed data storage integration and linking to ensure data is discoverable, findable, and accessible across all SLICES-RI. This should also relate to using external community and cloud-based storage, and a clear procedure should be developed for data migration.Fig. 2. SLICES Data Management stages and supporting infrastructure components(4,7),(994,989)

SLICES will consider connecting to and using EOSC community services to build a hybrid data management infrastructure that may include both its own data storage, as part of the private cloud, and external data storage offered by EOSC and EGI community. The use of public cloud storage and file-sharing services will be regulated by data management policies.

VI. CONCLUSION AND FURTHER DEVELOPMENTS

Methodologies and tools for experimental research reproducibility still have a long way to go to achieve the maturity level to be widely adopted by different scientific disciplines. Following the experience and best practices in recent projects and ongoing research will facilitate the development of commonly accepted standards, specific to their respective field. They will increase scholarly communication and research data sharing. Our paper presented ongoing research and developments in the SLICES-RI-related projects. It proposed approaches and important building blocks toward experimental research reproducibility and automation for digital technologies and computer science. The proposed solution brings together tools and practices used in DevOps, cloud-native and platform design as well as research data management and Open Science.

As future work, focused research and development will be undertaken in the course of the SLICES-RI to provide valuable services for the research community.

ACKNOWLEDGMENT

The research leading to these results has received funding from the Horizon 2020 and Horizon Europe projects SLICES-DS (951850), SLICES-SC (101008468), and SLICES-PP (951850).

REFERENCES

