
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

NET-2021-02-1Network Architectures and Services

Data-Driven Analysis and Modeling
of Packet Processing Systems

Sebastian Gallenmüller

Dissertation

1

Technische Universität München
Lehrstuhl für Netzarchitekturen und Netzdienste

Fakultät für Informatik

Data-Driven Analysis and Modeling
of Packet Processing Systems

Sebastian Gallenmüller

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Jörg Ott
Prüfer der Dissertation: 1. Prof. Dr.-Ing. Georg Carle

2. Ass.-Prof. Dr. Gianni Antichi

Die Dissertation wurde am 24.09.2020 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 17.02.2021 angenommen.

Sebastian Gallenmüller
Data-Driven Analysis and Modeling of Packet Processing Systems
Dissertation, February 2021

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

ISBN 978-3-937201-71-9
DOI 10.2313/NET-2021-02-1
ISSN 1868-2634 (print)
ISSN 1868-2642 (electronic)

Network Architectures and Services NET-2021-02-1
Series Editor: Georg Carle, Technical University of Munich, Garching near Munich, Germany

Acknowledgments
This thesis is not the result of the sole endeavor by a single person, but a continuous process
supported by many individuals. As I cannot list all of you, the following list is a mere excerpt
of the people involved.

First of all, I want to thank my supervisor, Prof. Dr.-Ing. Georg Carle, for the chance to pursue
my PhD as a member of your chair. Our nightly discussions were inspirational to many of the
ideas and concepts presented in this thesis. Furthermore, I am grateful to my second examiner,
Dr. Gianni Antichi, for hosting our research visit to Cambridge and sharing your experience and
insights. I also wish to thank Prof. Dr.-Ing. Jörg Ott for chairing the examination committee
during the exceptional times of 2021.

Further, I want to thank my fellow colleagues and co-authors Paul, Florian, Daniel, Alexander,
Lukas, Torsten, Patrick, Maurice, Stephan, Lukas, Borislava, Wolfgang, Rainer, Maximilian,
Dominik, Quirin, Samuele, Fabio, Richard, Fabien, René, Eric, Stefan, Jan, Andreas, Andreas,
Henning, Onur, Zenit, Johannes, and Iris.

Lastly, I want to mention the two people who made my academic career possible in the first
place, my parents Erich and Ursula. Thank you for your support, financially and emotionally,
which allowed me to start this journey. Without your support, I would not be where I am today.

Abstract
The experiment—the pickax of the scientist—is the instrument of choice to mine scientific knowl-
edge. The defining feature of scientific experiments is their reproducibility. Other researchers
can recreate experiments to verify or falsify the results of the original experiment. The domain
of computer networks rarely reproduces experiments, mostly due to a lack of proper documenta-
tion of the original experiment. This thesis proposes a measurement methodology that embeds
the concept of reproducibility into experiment design, documentation, and execution.

Our main target of investigation is a two-node setup that allows the benchmarking of packet
processing devices. To perform experiments in this setup, we propose an experiment workflow
that relies on full automation for experiment configuration, execution, and evaluation, thereby
creating repeatable experiments. By releasing the experiment artifacts, including the experiment
scripts, the measured data, and their analysis, other researchers can either try to replicate the
results of the original experiment or even create their own experimental setup to reproduce the
original results.

Further, we present measurement tools that allow the effective investigation of the packet pro-
cessing devices. An essential prerequisite of network experiments is the precise definition and
replay of the network traffic at the input of the investigated device. Therefore, we analyze differ-
ent packet generators and develop suitable packet generation strategies. To enable an accurate
delay analysis, we use hardware-generated timestamps.

The measurement methodology and the measurement tools are applied to two different domains:
high-performance packet processing applications and wireless networked control applications.
The former domain typically relies on specialized packet processing frameworks. We analyze
the frameworks themselves and other applications based on them, such as software routers or
intrusion prevention systems. In contrast to traditional kernel-based network processing, these
frameworks offer a ninefold increase in throughput that almost scales linearly with the number
of available processing cores. At the same time, service quality rises. The latency and especially
the worst-case behavior improve when relying on such a high-performance framework. The
requirements and the conditions of the second application domain differ significantly. Wireless
links are lossy and sensitive to interference, poor preconditions for control applications where
low latency and loss rates are crucial. An additional challenge is the execution of repeatable
measurements due to the highly sensitive network links. We present an approach using a shielded
environment for repeatable wireless network experiments. Furthermore, we create our own
platform for control systems consisting of a robot and a benchmarking suite to perform realistic
measurements for this domain.

Models can help quantify the observations of the presented measurements and describe the
behavior of packet processing systems. The thesis presents a novel modeling technique to predict
the performance of packet processing devices. It analyzes the components of packet processing
devices, such as the CPU or system buses, and their individual performance. The performance
of the components is then combined to predict the overall performance of the packet processing
device. We check the validity of our models by applying them to the performed measurements.

Zusammenfassung
Das Experiment — die Spitzhacke des Wissenschaftlers — ist das Werkzeug der Wahl zur Förde-
rung wissenschaftlicher Erkenntnis. Ein entscheidendes Merkmal wissenschaftlicher Experimente
ist deren Reproduzierbarkeit. Andere Wissenschaftler können Experimente wiederholen, um Er-
gebnisse des ursprünglichen Experiments zu bestätigen oder zu widerlegen. Die wissenschaftliche
Disziplin der Informatik reproduziert nur selten Experimente, meist weil die ursprünglichen Ex-
perimente nur unzureichend dokumentiert sind. Im Rahmen dieser Arbeit schlagen wir eine
neue Messmethodik vor, die das Konzept der Reproduzierbarkeit zu einem festen Bestandteil
von Experimentdesign, -dokumentation und -ausführung macht.

Hauptgegenstand der Untersuchung ist ein Messaufbau, bestehend aus zwei Knoten, der es
erlaubt, Benchmarks von Paketverarbeitungssystemen durchzuführen. Zur Durchführung der
Experimente in diesem Messaufbau schlagen wir einen vollautomatisierten Arbeitsablauf für
Konfiguration, Durchführung und Auswertung der Experimente vor, um so wiederholbare Expe-
rimente zu generieren. Durch eine Veröffentlichung aller Bestandteile eines solchen Experiments,
wie der Experimentskripte, der gemessenen Daten und ihrer Analyse, können andere Wissen-
schaftler versuchen, entweder die Ergebnisse des ursprünglichen Experimentes zu replizieren
oder mittels eigenem Messaufbau zu reproduzieren.

Außerdem stellen wir Messwerkzeuge vor, die eine effektive Untersuchung von Paketverarbei-
tungssystemen erst ermöglichen. Eine wesentliche Voraussetzung für Netzwerkexperimente ist
die präzise Beschreibung und Wiedergabe des Netzwerkverkehrs als Eingabe für ein untersuch-
tes System. Dazu analysieren wir unterschiedliche Paketgeneratoren und entwickeln geeignete
Strategien zur Erzeugung von Netzwerkverkehr. Zur genauen Analyse von Latenzen verwenden
wir hardwaregenerierte Zeitstempel.

Messmethodik und -werkzeuge werden auf zwei unterschiedliche Anwendungsbereiche ange-
wandt: hochperformante Paketverarbeitungsprogramme und drahtlose vernetzte Regelungssys-
teme. Erstere verwenden typischerweise spezialisierte Paketverarbeitungsframeworks. Wir unter-
suchen die Frameworks selbst und darauf basierende Programme, zum Beispiel Softwarerouter
oder Intrusion-Prevention-Systeme. Im Gegensatz zu traditioneller kernelbasierter Netzwerk-
verarbeitung, bieten die Paketverarbeitungsframeworks einen um den Faktor 9 gesteigerten
Durchsatz, der nahezu linear mit der Anzahl der Prozessorkerne skaliert. Der Einsatz eines
hochperformanten Paketverarbeitungsframeworks steigert auch die Servicequalität, so wird das
Latenzverhalten auch unter größter Belastung verbessert. Die Anforderungen und die Bedingun-
gen des zweiten Anwendungsbereiches unterscheiden sich fundamental. Drahtlose Verbindungen
sind verlustbehaftet und störungsempfindlich, schlechte Voraussetzungen für Regelungssysteme,
die auf niedrige Latenzen und Verlustraten angewiesen sind. Eine zusätzliche Herausforderung
ist die Durchführung wiederholbarer Messungen aufgrund der störungsempfindlichen Verbin-
dungen. Wir zeigen einen Ansatz für wiederholbare drahtlose Netzwerkexperimente mit Hilfe
einer abgeschirmten Umgebung. Darüber hinaus erstellen wir unsere eigene Plattform für Re-
gelungssysteme, die aus einem Roboter und einer dazugehörigen Benchmarksuite besteht, um
realistische Messungen in diesem Anwendungsbereich durchführen zu können.

Modelle können dabei helfen die Beobachtungen der vorgestellten Messungen zu quantifizieren
und das Verhalten der Paketverarbeitungssysteme zu beschreiben. Diese Arbeit stellt eine neu-
artige Modellierungstechnik zur Performanzvorhersage von Paketverarbeitungssystemen vor. Sie
analysiert die Komponenten von Paketverarbeitungssystemen, wie zum Beispiel die CPU oder
Systembusse und deren jeweilige Performanz. Die Performanz der einzelnen Komponenten wird
dann kombiniert, um die Performanz des Gesamtsystems vorherzusagen. Wir überprüfen die
Validität der so gewonnenen Modelle anhand der durchgeführten Messungen.

Contents

1 Introduction 1
1.1 Research Questions . 2
1.2 Outline . 5

2 Measurement and Benchmarking Methodology 7
2.1 Terminology and Key Performance Indicators . 7
2.2 Reproducible Network Experiments . 8
2.3 Related Work . 8
2.4 Testbed for Reproducible Network Experiments 9
2.5 Limitations . 10
2.6 Key Results . 11
2.7 Author’s Contributions . 11

3 High-Performance Measurement Tools 13
3.1 Motivation . 13
3.2 MoonGen . 14
3.3 Analysis of Software Packet Generators . 16
3.4 FLOWer . 22
3.5 FlowScope . 23
3.6 Key Results . 24
3.7 Author’s Contributions . 25

4 Modeling Framework 27
4.1 Analysis of Software Packet Processing Systems 29

4.1.1 Interconnect Bottlenecks . 30
4.1.2 CPU Bottleneck . 32
4.1.3 Impact of Caching on Data Access Costs 33
4.1.4 Resource model . 34

4.2 Key Results . 35
4.3 Author’s Contributions . 36

5 Measuring and Modeling of High-Speed Packet Processing Systems 37
5.1 Comparison of Packet Processing Frameworks . 37

5.1.1 Packet Processing in Software . 38

5.1.2 Related Work . 41
5.1.3 Performance Considerations . 42
5.1.4 High-Performance Prediction Model . 43
5.1.5 Performance Comparison . 45
5.1.6 Conclusion . 52

5.2 High-Speed Packet Processing for Network Function Chaining 53
5.2.1 Network Function Chain Model . 54
5.2.2 Network Function Chain Measurement . 54
5.2.3 Conclusion . 56

5.3 High-Performance Software Router . 56
5.3.1 High-Performance Design . 57
5.3.2 Flexible Architecture . 58
5.3.3 Evaluation and Modeling . 58
5.3.4 Conclusion . 63

5.4 Ultra-Reliable Low-Latency Communication . 63
5.4.1 Motivation . 64
5.4.2 Background and Related Work . 65
5.4.3 System Architecture . 67
5.4.4 Model . 76
5.4.5 Limitations . 78
5.4.6 Reproducibility . 78
5.4.7 Conclusion . 78

5.5 Key Results . 79
5.6 Author’s Contributions . 79

6 Measuring and Modeling of Networked Control Systems 81
6.1 Benchmarking Networked Control Systems . 81

6.1.1 Related Work . 82
6.1.2 Framework for Reproducible NCS Benchmarking 83
6.1.3 Network Domain KPIs . 85
6.1.4 Control Domain KPIs . 87
6.1.5 Evaluation Platform . 88
6.1.6 NCS Architecture and Scenario Description 89
6.1.7 Timings and Delay Model . 91

6.2 NCSbench Implementation . 93
6.2.1 Control System . 94
6.2.2 Computing Systems . 96
6.2.3 Communication Network . 96
6.2.4 KPI Measurement . 96
6.2.5 Platform Evaluation . 98
6.2.6 KPI Evaluation . 98
6.2.7 Benchmarking . 102

6.3 Repeatable Wireless Measurements . 103

II

6.3.1 System Model . 104
6.3.2 Related Work . 105
6.3.3 Design and Implementation . 105
6.3.4 Testbed and Measurement Setup . 107
6.3.5 Evaluation . 109

6.4 Applying the Resource Model to WLAN . 113
6.5 Key Results . 116
6.6 Author’s Contributions . 117

7 Conclusion 119
7.1 Key Findings . 119
7.2 Future Work . 121

A Appendix 123
A.1 List of Acronyms . 123
A.2 List of Figures . 125
A.3 List of Tables . 127

Bibliography 129

III

Chapter 1

Introduction

232 or 4.3 billion is the theoretical number of possible addresses of the Internet Protocol version
4. The fact that this address space does not suffice to address all devices connected to the
Internet demonstrates the magnitude of today’s computer networks. In view of this sheer size
and complexity, we decided on a slightly less ambitious target of investigation: a two-node
network.

LoadGen DuTI

J

I

J

Figure 1.1: A two-node network consisting of a load generator (LoadGen) and a device under test (DuT)

Figure 1.1 depicts a typical setup of such a network. There, a load generator transmits traffic to
the DuT, which processes the received packets and forwards the resulting traffic back to the load
generator. By observing ingress and egress traffic on the load generator, the behavior and the
performance of the DuT can be determined. However, this radically simplified network setup
is not the result of an aversion against complex systems, but the attempt to create an isolated,
controlled environment. Experiments in such a network allow studying the effects of the DuT
unaffected by other nodes. RFC 2544 [1] defines a benchmarking methodology for network
interconnect devices based on such a setup. Despite dating back to 1999, the fundamental goals
of network benchmarking are still relevant today.

This thesis follows the spirit of RFC 2544, utilizing the well-established recommendations of net-
work performance benchmarking. The proposed two-node setup, for instance, is used throughout
this thesis with only minor additions. The benchmarking methodology itself is updated where
necessary to reflect the technical progress for network devices and measurement equipment,
which has taken place since. Besides the raw bandwidth increase, novel device architectures
have emerged, processing packets entirely in software or hardware with tightly integrated soft-
ware components. The result is a radically changed device behavior that led to the design
of high-precision and high-performance measurement tools. Furthermore, this thesis presents
an updated methodology and the necessary tools to perform network benchmarks reproducibly.

Chapter 1: Introduction

Network experiments in this thesis focus on two main areas: high-performance packet processing
systems and networked control systems (NCS). Both areas feature unique requirements; there-
fore, the benchmarking methodology is extended for each area individually. The experiment
results lay the foundation to devise a modeling framework. This framework incorporates the
experiment results to deduce models being able to predict the performance of packet processing
systems with a particular focus on high-performance systems and NCS.

1.1 Research Questions
The thesis is shaped along the following research questions:

• RQ1: How can we design and execute reproducible experiments for the investigation of
packet processing systems?

• RQ2: How can we create a measurement methodology to identify the main impact factors
on packet processing performance?

• RQ3: How can we create a modeling framework to efficiently and adequately describe the
behavior of packet processing systems in general?

• RQ4: How can we characterize, analyze, and model high-performance packet processing
systems?

• RQ5: How can we characterize, analyze, and model wireless networked control systems?

The following paragraphs define the framework of the research topics covered in this thesis. The
proposed research questions highlight relevant areas of network experiments. They lead the way
towards our contribution to advance the area of applied network experiments with a focus on
reproducibility and modeling.

RQ1: How can we design and execute reproducible experiments for the investigation of packet
processing systems? The network experiments in this thesis typically consider a two-node setup
consisting of a load generator and a DuT. The ultimate goal is the creation of reproducible
experiments in such a setup that allows other researchers to create the same results reliably over
many executions. An initial step towards this goal is a reliable repetition of one’s own experi-
ments. Crucial to this is the ability to observe and record the state of the entire experiment.
Without the means to observe all the relevant aspects of the investigated system, an experiment
cannot be recreated successfully. We consider different aspects as relevant. Before the start of
an experiment, the initial configuration of the entire setup must be recreated. This setup in-
volves the hardware and software for load generator and DuT. During the experiment, the entire
process should be executed the same way like any other run, e.g., using identical measurement
intervals or traffic patterns, to ensure reliable result recreation. We include the evaluation of
results in our experiment. By processing the measurements identically across different test runs,
we additionally provide a consistent and, therefore, repeatable evaluation of the experiments.

Chapter 2 introduces different stages of reproducibility and defines a methodology focused on
the creation of replicable network experiments. We present our testbed based on the plain

2

1.1 Research Questions

orchestrating service (pos), which offers a workflow that supports researchers to design such
experiments ranging from device setup and configuration over execution to the final evaluation.
The workflow relies on a high degree of automation to avoid human influence and hence its
impact on the results of an experiment.

RQ2: How can we create a measurement methodology to identify the main impact factors on
packet processing performance? Employing a testbed and a fully automated workflow allows
network experiments covering a large parameter space. The values of the parameters and the
combination of different experimental parameters can be varied for every execution. The number
of experiments grows exponentially with the number of parameters for the combinations. This
growth puts an upper limit to the searchable parameter space that can be sensibly explored
using experimental evaluation. Our goal is the selection of the parameters that have the most
substantial impact on the performance of packet processing.

Technical progress leads to an ever-increasing performance for network devices. To investigate
such powerful devices, equally capable measurement tools are required. Our first requirement
is the development of tools that allow the measurement of the network device output even for
high-load scenarios. These tools enable the effective identification of high-impact parameters.
The second requirement is the accurate generation of the input for a given experiment. Our
tools must be able to create the input according to the researcher’s specification to enable the
recreation of experimental results.

In Chapter 3, we introduce the packet generator MoonGen that can be used as a reliable source
for packet generation. Further, MoonGen’s recording capabilities are presented that allow the
detailed analysis of delay caused by the investigated network devices. With Ethernet further
developing towards 100G and higher bandwidths, we also present tools that leverage specialized
hardware and optimized data structures to support future high-bandwidth network experiments.

RQ3: How can we create a modeling framework to efficiently and adequately describe the behavior
of packet processing systems in general? Beside identifying the main impact factors on packet
processing performance, we want to gain insight into the connection between these impact factors
and the resulting performance. Therefore, we create models that can describe these connections
to predict the performance of packet processing systems. Models of this kind allow for the design
of packet processing systems performing a specified task at an expected performance level. The
over- or underdimensioning of packet processing systems leads to unnecessarily high costs due
to idling resources or overloaded components. By avoiding these costs, correct predictions can
help to design and build efficient systems.

Another important aspect of modeling is the scalability of packet processing tasks. Network
traffic can be processed independently—typically on a per-packet or on a per-flow basis—which
allows spreading the processing tasks across independent processing units. This independence
allows for efficient multi-core scaling of packet processing tasks. Our models can help to describe
how efficiently packet processing systems scale for specific workloads on a given target.

Packet processing systems are constructed from smaller components. Each of these subcompo-
nents has its own capacity, which may ultimately limit the performance of the overall packet

3

Chapter 1: Introduction

processing system. Models can help to understand how the interaction of these individual bot-
tlenecks determines the performance of the entire system. Knowing these models can help
direct development efforts towards these bottlenecks unlocking the full performance of packet
processing systems.

Chapter 4 introduces a modeling framework to describe the performance of packet processing
tasks based on available system resources. This resource model is used in the following chapter
to describe the behavior of high-performance packet processing systems. Measurements are also
used to validate the performance predictions of the model with real measurements.

RQ4: How can we characterize, analyze, and model high-performance packet processing sys-
tems? Traditional system architectures were equipped with a single CPU, packet processing
happened in the kernel, and applications used the socket API for network communication. New
developments, such as new Ethernet standards with higher bandwidths or new offloading fea-
tures, were fully transparent for the network applications. This transparency meant that the
underlying architecture of network applications remained unchanged for Ethernet bandwidths
up to 1 Gbit/s.

When shifting to 10G Ethernet, the traditional architecture could not cope with the increased
performance. This shortcoming led to the creation of specialized high-performance packet pro-
cessing frameworks, such as the Data Plane Development Kit (DPDK) or netmap, that allow
utilizing high bandwidths. These frameworks employ radically changed architectures, which
were explicitly designed for modern multi-core systems and bypass traditional in-kernel packet
processing and network APIs to increase performance. Fundamental changes result in a changed
behavior for packet processing applications, which requires a reevaluation and further analysis
of such systems. Increasing the performance further impacts the hardware usage. System buses,
which were sufficient for bandwidths of 1 Gbit/s, may become relevant bottlenecks for higher
bandwidths. We explore the handling of packet IO in parallel, which was not possible or relevant
for traditional architectures. Modeling can help to describe the performance of these new packet
processing frameworks and predict their limitations.

Chapter 5 investigates several high-performance packet processing applications: frameworks for
packet processing, software routers, and intrusion prevention systems. We analyze the through-
put and latency behavior of the investigated systems and provide models to predict their per-
formance.

RQ5: How can we characterize, analyze, and model wireless networked control systems? Besides
high-performance packet processing systems for wired networks, there are also applications rely-
ing on wireless systems that operate on bandwidths of several Mbit/s or lower. Control systems
are such an application domain, where a remote controller is connected wirelessly to a mobile
entity that requires reliable, regular inputs to perform critical control tasks. For such systems,
reliable service with stable and low latency is essential. The amount of data to transport is lim-
ited. Therefore, the raw throughput figures are less important in such a use case. The behavior
of WLAN significantly differs from Ethernet. Wireless networks have higher error rates that
impact the reliability of the packet transfer in general and retransmission schemes in WLAN

4

1.2 Outline

may increase the delay. Suitable experiments are needed to cover these aspects relevant to the
requirements of WLANs and wireless NCS.

The shared nature of the wireless medium makes it highly susceptible to interference and other
external factors. A testbed for wireless network experiments must take these factors into account
to gain repeatable experimental results. In addition, the DuTs can be resource-constraint sys-
tems that limit the possibilities for measurements on the DuT without impacting performance.

The shared medium requires complex access mechanisms to allow successful data transmissions
across wireless networks. Access control schemes, resource-constraint systems, and environmen-
tal conditions impact WLAN performance. Adequate models must be designed to reflect these
systems and the requirements of WLAN. Modeling must also consider that WLAN does not
rely on specialized frameworks but kernel network stacks and traditional kernel IO interfaces,
influencing network performance.

Chapter 6 applies our measurement methodology to the application domain of NCS. We chose
a wireless NCS as a target for our investigation. Therefore, we introduce a platform called
NCSbench consisting of a balancing robot and a corresponding control stack. Further, we present
a benchmarking suite focused on replicable experiment execution and present an evaluation
between replicated experiments. A testbed is created to perform repeatable network experiments
using pos.

1.2 Outline
Chapter 2 introduces our measurement methodology for reproducible network experiments and
the testbed designed around this methodology. Measurement tools and their analysis are covered
in Chapter 3. In Chapter 4, a modeling technique is presented that allows performance predic-
tions based on a bottleneck analysis of current packet processing systems. Chapter 5 presents
measurements focused on high-performance packet processing systems, which typically involve
servers handling network traffic of 10G Ethernet and above. The investigation of wireless packet
processing systems is the focus of Chapter 6. There, we apply our measurement methodology to
wireless NCS. Chapter 7 summarizes the contributions of this thesis and discusses open research
questions.

5

Chapter 2

Measurement and Benchmarking Methodology

This chapter introduces our measurement methodology—the underlying frameset applied to the
experiments conducted throughout this thesis. It defines the fundamental terminology and the
necessary performance measures to report experimental results. We present network experi-
ments and benchmarks to characterize the behavior of packet processing systems adequately.
Therefore, we created an experiment workflow to design, execute, and evaluate experiments with
a particular focus on reproducibility.

2.1 Terminology and Key Performance Indicators
Section 2.1 is based on a collaboration between Daniel Raumer, Sebastian Gallemüller, Florian
Wohlfart, Paul Emmerich, Patrick Werneck, and Georg Carle [2].

We define a network experiment as a process where we investigate a DuT in a computer network,
such as the two-node network in Figure 1.1. During this process, measurements are performed
to determine and record the state and the behavior of the investigated network device. From
measurement results, key performance indicators (KPI) are distilled to report the performance
of a device compactly. In a benchmark, network experiments determine the performance of
network devices.

RFC 2544 [1] defines four basic KPIs:

• Throughput: the maximum rate a DuT can process without packet loss.

• Latency: the processing time of a DuT measured from reception on the ingress to the
transmission on the egress port.

• Loss rate: the rate of dropped packets during the steady state of a DuT.

• Back-to-back frames: the maximum number of packets in a burst that a DuT can process
without dropping packets.

Chapter 2: Measurement and Benchmarking Methodology

This thesis conducts measurements of these KPIs for high-performance systems and NCS in
Chapters 3, 5, and 6: throughput benchmarks, to measure the performance of different sys-
tems, loss rates, to determine if and when a DuT is overloaded, and back-to-back frames, to
demonstrate that device behavior changes for bursty traffic patterns. Measurements of the three
previously mentioned KPIs were performed following RFC 2544. For latency measurements, the
RFC proposes the reporting of a single latency value that represents the average of 20 measure-
ments. This average value is not sufficient to describe the network behavior used for critical
NCS or high-performance packet processing systems. Modern measurement equipment allows
the extensive measurement of latency values. The additional amount of information enables
further analysis, such as the determination of worst-case behavior or variance in latency.

2.2 Reproducible Network Experiments
Sections 2.2, 2.3, and 2.4 are based on a collaboration between Sebastian Gallenmüller, Do-
minik Scholz, Florian Wohlfart, Quirin Scheitle, Paul Emmerich, and Georg Carle [3], the
presented experiment artifacts are part of joint work between Sebastian Gallenmüller, Johannes
Naab, Iris Adam, and Georg Carle [4].

This section presents a methodology for reproducible network experiments. We explain how
this methodology is embedded into our own testbed and our self-developed testbed controller,
called plain orchestrating service (pos). Measurements performed in our testbed that follow the
pos methodology can lead the way towards the creation of reproducible network experiments.

2.3 Related Work
Independent reproduction of results is vital to understanding and validating scientific results.
A full reproduction is aided not only by resulting measurement data, which is occasionally
published along with scientific publications but also by including raw measurement data and
configuration descriptions. This additional data may contain tools and scripts used to configure,
run, and evaluate the experiment. An ACM policy [5] considers reproducibility as a three-stage
process, with full experiment reproduction being the final stage:

1. Repeatability is achieved if the same team using the same experimental setup can reliably
recreate their results.

2. Replicability is accomplished if a different team using the same experimental setup can
recreate the original results.

3. Reproducibility requires a different team utilizing a different experimental setup that
can recreate the initial results without reusing the original artifacts.

The ACM developed a series of badges that can be awarded to papers that successfully demon-
strated replicability or reproducibility. The implementation of badging into the review process
is considered a favorable way towards reproducible research [6], [7]. Bajpai et al. [8] suggest
guidelines and tools to conduct reproducible network experiments. All previously mentioned

8

2.4 Testbed for Reproducible Network Experiments

LoadGen DuT

pos

I

J

I

J

1

2 2
3

4 4

5

Figure 2.1: Experiment workflow using the pos testbed controller (cf. Gallenmüller et al. [3])

measures target reproducible network research in general; in this thesis, we focus on specific
experiments. We investigate small-scale network experiments running on real hardware, e.g., in
testbeds.

Nussbaum [9] compares different testbeds and demonstrates how their functionalities, such as
the automated configuration and experiment execution, can be used to create repeatable experi-
ments. However, these testbeds were not built to run experiments involving distributed nodes
with more complex network topologies. Zilberman conducts a case study [10] demonstrating that
even papers awarded with the reproducibility badge may not paint a complete picture of the
investigated system behavior. She observed low robustness, i.e., minor variations of the original
input, such as the investigated packet size, could lead to a substantially different outcome.

We designed our testbed from scratch with reproducibility in mind. Following our experiment
workflow leads to the creation of repeatable experiments. Further, we optimized the testbed to
run the two-node benchmarking setups with full control over the hardware. We rely on fixed,
non-switched wiring to avoid any influence of external components on the measured network
setup. The complete automation of the experiment workflow tries to address the issue of low
robustness. Experiments can be run for different configurations with low additional effort for
the researcher to reduce the number of blind spots not covered by experimental results.

2.4 Testbed for Reproducible Network Experiments
For our network experiments, we set up a testbed with a focus on testing packet processing
systems. This testbed consists of different servers equipped with commodity hardware and 1G,
10G, and 40G Intel or Mellanox network interface cards (NICs) (e.g., I350, X520, X540, X710,
XL710, and ConnectX-4 Lx EN). Figure 2.1 depicts a typical experiment configuration and
workflow in our testbed. A minimal example of our testbed topology consists of a two-server
setup (LoadGen, DuT) and an orchestrating server (pos). The entire experiment workflow is
controlled by pos running on a separate server that deploys (1), configures (2), executes (3), and
collects (4) the measurement artifacts of network experiments, before automatically evaluating
(5) the measured data. As we use live images for our experiments, the configuration state is
lost after a system reboot. This loss of state enforces testbed users to use scripts for configuring
experiment servers and the subsequent evaluation. At first glance, this burdens users and might
be considered a disadvantage; however, it has three major benefits:

9

Chapter 2: Measurement and Benchmarking Methodology

1. Using live images, our experiment hosts start the experiments from a well-defined state.
In addition, the testbed user must include the system configuration into the experiment
scripts. The full automation of the pos experiment workflow creates repeatable experi-
ments and minimizes the chance of accidental misconfiguration.

2. The testbed can be accessed remotely, which allows easy access to our testbed for other
research groups. Experiment results can be recreated by members of these research groups,
thereby creating a replicable experiment.

3. Scripts used for experiment configuration, execution, and evaluation document the entire
experiment workflow. Releasing these scripts together with the experimental results can
provide other research groups with the foundation to perform their own experiments.
The pos experiment workflow cannot create fully reproducible experiments but support a
convenient workflow towards reproducibility.

While our testbed can be accessed remotely, we restricted access to known and trusted persons
(members of our research group and research collaboration partners). We need to rely on trust,
as we provide root access to all testbed machines often required for network experiments. The
remote access enables others to replicate our testbed experiments. Thereby, our experiments
reach the second stage for reproducibility without any additional effort by the researcher. We
call this property replicability by design. Achieving the third stage, reproducibility, cannot
be achieved by relying on the testbed and its processes but instead needs other scientists to
take up the challenge of creating the same results utilizing their tools and test equipment.
Unfortunately, the pos experiment workflow cannot guarantee this kind of reproducibility by
design. However, the experiment artifacts, including the setup, execution, and evaluation scripts,
provide enough information for other scientists to develop their own experiments to reproduce
the initial experimental results. Therefore, pos supports a path towards a reproduction of results
by other research groups. Grosvenor et al. [11] demonstrate an easily accessible way to publish
the results of their paper. Every figure of their paper links to a website containing experiment
setup, description, and results. We followed their example by utilizing the pos artifacts for one
of our publications [4].

Our test setup allows for both black-box tests and white-box tests. For typical black-box tests,
data is collected on the egress and ingress ports of the load generator and used to determine
metrics, such as throughput and latency. White-box tests are also possible by recording the
behavior on the DuT itself, for instance, by profiling the interrupt rate of NICs or the cache load
caused by applications. Our automated testbed can record many features in parallel, leading to
gigabytes of data for tests running only a few minutes. The data generated in the testbed can
be processed, plotted, and used to derive accurate models.

2.5 Limitations
Network experiments depend on the topology of the investigated network. We are typically in-
terested in measuring the behavior of our DuT directly without any influence of other intercon-
necting devices, such as switches or routers. Therefore, all setups in this thesis use networks with

10

2.6 Key Results

direct non-switched connections. Using direct connections has the disadvantage that topologies
cannot be (re)created automatically and require the researcher to wire the network topology
physically. There exist optical L1 switches that allow linking fibers optically, which add a con-
stant delay offset due to the internal wiring of the switch. The impact on the forwarding delay
of such a switch is lower than 15 ns [12], which is considerably lower than an L2 cut-through
switch with approximately 300 ns [13]. Such a setup would allow automating the topology with
a predictable low impact on delay. However, due to the high costs, the testbed is not equipped
with such an optical switch.

The recreation of results is currently limited to configurations accessible from the operating
system (OS). However, there may be configurations influencing packet processing performance,
such as BIOS settings or NIC firmware. Setting these configurations via pos would be possible.
However, BIOS configurations or flashing firmware differs across different manufacturers. Due
to this lack of standardized configuration interfaces, pos does currently not support automated
configuration. For this thesis, we rely on default settings for BIOS and firmware where possible
and specify where the configuration was changed, e.g., in Section 5.4.

2.6 Key Results
This chapter introduces basic terminology, KPIs, a testbed, and its design principles for creat-
ing repeatable and replicable network experiments. It further introduces pos, which employs
these design principles automating the experiment configuration, execution, and evaluation. Au-
tomation still has its limits when it comes to controlling firmware and its configuration with
its non-standardized interfaces. What makes pos and the underlying methodology unique for
academia is its focus on experiment publication. Following the proposed experiment structure,
pos simplifies the preparation of the experiment artifacts for publication, as demonstrated for
one of the author’s publications [4]. The availability of experiment artifacts allows others to
recreate their own experiments, thereby achieving reproducible network experiments.

2.7 Author’s Contributions
Section 2.1 is based on a collaboration between Daniel Raumer, Sebastian Gallemüller, Florian
Wohlfart, Paul Emmerich, Patrick Werneck, and Georg Carle [2]. The author significantly
contributed to the analyses of network KPIs in this paper.

Sections 2.2, 2.3, and 2.4 are based on work by Sebastian Gallenmüller, Dominik Scholz, Florian
Wohlfart, Quirin Scheitle, Paul Emmerich, and Georg Carle [3]. The author contributed to
the development of the methodology and the implementation of pos and the testbed. The
artifacts [4] mentioned were created and published by the author.

11

Chapter 3

High-Performance Measurement Tools

According to specification, 10G Ethernet can transmit approximately 14.88 Mpkts/s. To effec-
tively benchmark DuTs supporting 10G Ethernet, measurement tools must be equally powerful,
if not more powerful, due to additional measurement tasks. This chapter presents various tools
enabling high-performance network experiments of systems that can handle millions of packets
per second.

3.1 Motivation
The motivational example in Figure 3.1 and the following analysis is based on joint work
by Paul Emmerich, Sebastian Gallenmüller, Gianni Antichi, Andrew W. Moore, and Georg
Carle [14].

Figure 3.1 demonstrates how the behavior of high-performance software packet generators can
impact the results of network experiments. There, a two-node setup was used with Open vSwitch
(OvS) in Version 2.0.0 on Debian Linux (kernel v3.7.9) using a 3.3 GHz Intel CPU. Traffic is
generated with MoonGen using rates between 0 and 2 Mpkts/s with a packet length of 64 B.
Timestamps are recorded utilizing hardware timestamps on an Intel 82599 NIC. Figure 3.1
demonstrates how the median forwarding latency of OvS behaves if the inter-packet gap is
varied between experiments. The baseline performance with a burst size of 1 is created using
constant bitrate (CBR) traffic, i.e., the inter-packet gap between consecutive packets is constant.
The same measurement has been repeated several times with bursty traffic patterns, i.e., several
packets are put onto the wire back-to-back with appropriately longer gaps in between bursts.
Figure 3.1 shows the relative deviation between the CBR at x = 0 and the bursty traffic patterns.
Even when ignoring the low-load and high-load scenarios, the median latency almost doubles
compared with the baseline scenario.

To increase efficiency, packet processing frameworks work on batches, i.e., they process several
packets per function call. High-performance packet processing frameworks default to batch sizes
of up to 512 packets. Packet generators relying on these frameworks can create bursty traffic.

Chapter 3: High-Performance Measurement Tools

−100 0 100 200 300 400
0

0.5

1

1.5

2

Relative latency [%]

O
ffe

re
d
lo
ad

[M
pk

ts
/
s]

Burst Sizes
1
4
16
32
64
128

Figure 3.1: Relative deviating latency for measurement traffic with different burst sizes (cf. Emmerich et al. [14])

Figure 3.1 shows that this parameter can have a significant impact on the latency performance
of a DuT. Therefore, the type of traffic used must be documented for every experiment. Ad-
ditionally, the packet generators must be able to control the amount and characteristics of the
generated traffic precisely, to neither overload the DuT nor to measure unwanted side-effects of
the generated traffic. This section presents high-precision measurement tools developed for the
packet rates of 10G Ethernet with 14.88 Mpkts/s or more.

3.2 MoonGen
Section 3.2 is based on work by Sebastian Gallenmüller, Dominik Scholz, Florian Wohlfart,
Quirin Scheitle, Paul Emmerich, and Georg Carle [3]; on a collaboration between Sebastian
Gallenmüller, Paul Emmerich, Daniel Raumer, and Georg Carle [15]; and on a publication
by Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and Georg
Carle [16].

MoonGen [16] is a high-performance, open-source software packet generator based on the high-
speed packet processing framework DPDK. MoonGen can generate minimum-sized packets at
a rate of 10 Gbit/s (14.88 Mpkts/s) using a single core with packets generated by user-defined
Lua scripts.

Figure 3.2 shows the architecture of MoonGen. DPDK offers access to the NICs, with libmoon
on top of it, providing a convenient and straightforward user API. MoonGen is realized as a
libmoon application. Originally, libmoon has been part of MoonGen, but in 2016, MoonGen
was refactored to provide two separate frameworks—a generic packet processing framework
and a dedicated packet generator [3]. User-programmable scripts run on top of MoonGen and

14

3.2 MoonGen

MoonGen

libmoon

DPDK

NIC NIC

Port

q0 qn

Userscript
slaveUserscript

slave spawn

Userscript
slave

Userscript
master

config API data API

config API data API

config API data API

Figure 3.2: Architecture of MoonGen/libmoon (cf. Gallenmüller et al. [3])

perform the packet processing and measurement tasks. There are two different kinds of scripts:
master userscripts, which perform configuration tasks and spawn the slave userscripts that
perform the actual processing tasks. User scripts are written in the Lua language [17], an easy-
to-learn scripting language ideal for rapid prototyping. To improve performance, MoonGen uses
the LuaJIT [18] compiler. Furthermore, LuaJIT includes a foreign function interface (FFI) to
conveniently and efficiently embed existing C code, such as DPDK’s own libraries. The most
relevant features of MoonGen applied in this thesis are its capabilities for high-precision traffic
generation and hardware timestamping.

Timestamping: One important feature is the hardware-assisted timestamping of packets, which
allows delay measurements in the sub-microsecond range. The timestamping resolution is high
enough to measure the cable lengths of an optical fiber utilizing a time-of-flight measurement [15].
There exist two different timestamping implementations in MoonGen:

The first timestamping implementation [16] misuses registers on the Intel 10G NICs (e.g., 82599
and X540) that were originally intended for the precision time protocol (PTP). Misusing this
hardware feature comes with certain limitations concerning the type and the number of packets
that can be timestamped. First, PTP can either run directly on Ethernet or UDP. Therefore,
timestamping packets must either use the PTP Ethertype or UDP. In addition, UDP PTP
increases the minimum packet size to 80 B. Second, to account for the drift between two network
interface ports, even if located on the same NIC, PTP clocks are reset before each timestamp
measurement. This restriction limits the number of timestamped packets to one packet in
flight per round trip. Assuming an end-to-end latency of 1 ms this approach can timestamp
approximately 1 kpkts/s.

The second timestamping implementation in MoonGen uses the hardware capabilities of the
Intel X550 NIC [19], which can append receive timestamps to the packet buffers. This feature
does not come with any limits concerning the type or the number of packets to timestamp.
However, timestamping is only possible for received but not for sent packets. This limitation

15

Chapter 3: High-Performance Measurement Tools

can be circumvented by adapting the measurement setup. An example of such a setup is given
in Section 5.4.3.

The advantage of the first implementation is its simple two-node setup and support across
different Intel 82599 and X710-based chips. A disadvantage is the necessity to change the
timestamped packets and the limited number of timestamped packets per second. The second
implementation requires a more complex setup but allows timestamping arbitrary traffic at line
rate. This second method is suitable to observe rarely happening latency events, whereas the
first method with its simpler setup is preferable in situations where a median latency suffices.

High-precision traffic generation: Controlling the inter-packet gap is key to reliably generating
different specific traffic patterns, such as CBR or bursts. MoonGen offers three methods for
controlling pattern generation [14]:

1. NICs such as the Intel 82599 and X710 offer hardware capabilities for rate control, which
we call hardware-supported approach [20], [21]. These cards offer a possibility to limit the
transmit rate, effectively creating a possibility to generate CBR traffic.

2. The pure software approach tries to control the packet rate by precisely timing the handover
of packets from software to the NIC. However, NICs fetch the packets asynchronously from
RAM with Direct Memory Access (DMA), PCIe, and NIC buffers impacting precision.

3. The third approach fills the inter-packet gap with invalid packets to determine the trans-
mission time of a valid packet on byte-level. Packets are invalidated using wrong frame
check sequences. Hence, we call it corrupt CRC approach. This approach may influence the
performance of a DuT. However, the frames with wrong checksums are typically dropped
early in the processing path, e.g., on the receiving NIC itself, which has no impact on the
overall performance of the investigated packet processing task. This assumption may not
hold for all devices. Therefore, we recommend testing the corrupt CRC approach for each
DuT individually before relying on this approach exclusively.

MoonGen implements all three approaches, whereas other software packet generators only im-
plement the pure software approach. An in-depth analysis follows, which compares the quality of
packet generation for the mentioned three approaches and other state-of-the-art software packet
generators.

3.3 Analysis of Software Packet Generators
Section 3.3 is based on work by Paul Emmerich, Sebastian Gallenmüller, Gianni Antichi,
Andrew W. Moore, and Georg Carle [14].

Multiple software packet generators are available that were specifically designed for Ethernet
with bandwidths of 10 Gbit/s or more (see Table 3.1). To allow repeatable measurements, we
require a tool that allows a high degree of control over the generation process to allow specific
traffic patterns and a reliable creation thereof. Therefore, we analyzed the quality of different
software packet generators along the following criteria:

16

3.3 Analysis of Software Packet Generators

Version IO API

Pktgen-DPDK [23] v2.8.0 DPDK (v1.8.0)
MoonGen [24] git 5cf96c72* DPDK (v1.8.0)
pkt-gen [25] git b24fce99 netmap
pfq-gen [26] v5.2.9 PFQ
zsend [27] v6.3.0.160209 PF_RING ZC
*) Used for CBR traffic and hardware timestamping

Table 3.1: Investigated software packet generators (cf. Emmerich et al. [14])

1. Bandwidth: How fast is a packet generator in terms of packets per second?

2. Accuracy: How close is the average observed rate to the configured one?

3. Precision: How much do individual inter-packet gaps deviate from the configured value?

Figure 3.1 depicts the results of an experiment where only bandwidth and accuracy were con-
sidered. The bursty traffic patterns represent different experiment results for a high deviation
of the inter-packet gap, i.e., a low precision. In contrast to CBR traffic, the bursty traffic has
highly asymmetric inter-packet gaps. Within a burst, packets are sent back-to-back, i.e., an
inter-packet gap of 0. In between bursts, the inter-packet gap is maximized to meet the config-
ured rates. To reliably recreate experiment results, the inter-packet gap must be specified and
the packet generator must offer high precision, i.e., it can create the correct inter-packet gaps.

Experiment Setup
The setup for the following experiments uses a two-node setup with the DuT being the in-
vestigated software packet generator and Open Source Network Tester (OSNT) [22] being the
receiving node. OSNT utilizes the NetFPGA 10G platform and can timestamp packets with a
resolution of 6.25 ns. The DuT is equipped with an Intel i7-960 CPU (3.2 GHz base frequency)
and an Intel X520 NIC (Intel 82599 Ethernet controller) running Ubuntu Linux 14.04 LTS
(kernel 3.16).

Table 3.1 presents the high-performance software packet generators to be evaluated. Every
generator relies on high-performance packet processing frameworks. The frameworks netmap,
PFQ, and PF_RING ZC have included their own packet generators as a part of their example
applications. Pktgen-DPDK and MoonGen are built on top of DPDK. For a fair comparison, two
versions of the packet generators were selected, which use the same version of the underlying
DPDK. Currently, MoonGen is the only packet generator supporting the hardware-assisted
and the corrupt CRC approaches for packet generation. Therefore, MoonGen experiments are
repeated thrice to evaluate the available packet generation approaches.

Section 5.1 contains an in-depth analysis of the frameworks DPDK, PF_RING ZC, and netmap.

Evaluation: Bandwidth, Accuracy, and Precision
Table 3.2 shows that all of the investigated packet generators can create millions of packets
per second. Even the generator with the lowest packet rate, pfq-gen, was still able to generate
5.67 Mpkts/s with default settings. All packet generators were able to accurately match the

17

Chapter 3: High-Performance Measurement Tools

Packet Generator Batch Size Throughput Throughput
(Default) (Default) (Precise)

[Mpkts/s] [Mpkts/s]

MoonGen (HW) 63 14.88 13.521

MoonGen (CRC) N/A N/A2 5.74
MoonGen (SW) 1 N/A2 5.36
zsend 16 14.84 14.713

Pktgen-DPDK 16 14.88 4.54
pfq-gen 32 5.67 3.59
netmap pkt-gen 512 14.88 1.55
1 Intel 82599, highest reliable hardware setting
2 No imprecise generation possible
3 Not precise at high rates despite configuration

Table 3.2: Packet rates of packet generators optimized for maximum throughput and high precision (cf. Em-
merich et al. [14])

configured packet rates as long as they were not overloaded with two exceptions. The hardware-
supported approaches had a precision error of up to 3.3 % (Intel X710). The rate control on
these NICs is intended to limit the traffic of different VMs sharing a common host [21]. For such
a use case, a lower precision or bursty traffic behavior seems acceptable. Pktgen-DPDK failed
to match the configured rates due to a software bug. All of the investigated packet generators
can deliver the bandwidth and accuracy for testing 10G Ethernet devices.

Table 3.2 shows the batch sizes used in their default settings. Due to the undesired effects
of bursty traffic generation, we repeat our measurements with the highest precision settings
for each packet generator. These settings lead to a decreased performance for all investigated
packet generators. In contrast to the other frameworks, netmap relies on costly system calls for
sending packets [28], which is the reason for its high decrease in performance. Table 3.2 further
presents the maximum throughput of precise traffic generation but does not evaluate the quality
of the precision. Therefore, we evaluate the inter-packet gaps while generating CBR traffic. CBR
traffic requires a constant inter-packet gap. Higher rates require shorter gaps leading to a twofold
effect: generating higher packet rates and timing gaps precisely without creating bursty traffic
become more challenging. As the precise settings, for the non-hardware-assisted approaches, do
not allow line rate bandwidth (cf. Table 3.2), we run the following tests with a packet size of
128 B to test high packet rates with high bandwidth.

Figure 3.3 shows the distribution of the inter-packet gaps as histograms, the mean squared error
(MSE) of the inter-packet gap is added as an indicator of precision. Ideally, for CBR traffic, the
inter-packet gaps would all be mapped to a single bucket matching the expected inter-packet gap
leading to an MSE of 0. Figure 3.3a shows the performance of the packet generators at a rate
of 1 Mpkts/s. PF_RING ZC zsend offered the lowest precision, which we attributed to flawed
timekeeping in its architecture. The corrupt CRC approach of MoonGen offered the highest
precision. Its distribution is within the timer granularity of OSNT. In Figure 3.3b, the rate
is increased to 2 Mpkts/s. The packet generator of netmap was not able to generate this rate.
For the other packet generators, the histograms get wider and the MSE increases, except for
MoonGen’s corrupt CRC approach. PFQ and PF_RING ZC have similarly shaped histograms
indicating a common root cause for their performance. Despite their different architectures, they

18

3.3 Analysis of Software Packet Generators

0

5

10 MSE = 36983

0

5

10 MSE = 25937

0

5

10 MSE = 57508

R
el
at
iv
e
pr
ob

ab
ili
ty

[%
]

0

5

10 MSE = 20370

0

5

10 MSE = 38008

750 1000 1250
0

20

40
MSE = 24

Inter-arrival time [ns]

(a) Packet rate of 1 Mpkts/s

0

5

10

15
MSE = 97732

0

5

10

15
MSE = 107660

0

5

10 MSE = 91556

0

4

8
MSE = 24966

250 500 750 1000
0

35

70 MSE = 16

Inter-arrival time [ns]

6250 6750
0

0.01

0.02
Outliers

(b) Packet rate of 2 Mpkts/s

netmap pkt-gen
pfq-gen
PF_RING ZC zsend
Pktgen-DPDK
MoonGen (SW)
MoonGen (CRC)

0

10

20

30
MSE = 37682

0

2

4
MSE = 59838

0

2

4
MSE = 20599

125 250 375 500 625
0

25

50
MSE = 1225

Inter-arrival time [ns]

(c) Packet rate of 4 Mpkts/s

Figure 3.3: Inter-packet gap of packet generators (cf. Emmerich et al. [14])

19

Chapter 3: High-Performance Measurement Tools

500 1000 1500 2000
0

10

20
MSE = 777414

Inter-arrival time [ns]

R
el
at
iv
e
pr
ob

ab
ili
ty

[%
]

(a) Packet rate of 1 Mpkts/s

500 1000 1500 2000
0

10

20
MSE = 20231

Inter-arrival time [ns]

R
el
at
iv
e
pr
ob

ab
ili
ty

[%
]

(b) Packet rate of 4 Mpkts/s

250 500 750 1000
0

10

20
MSE = 5823

Inter-arrival time [ns]

R
el
at
iv
e
pr
ob

ab
ili
ty

[%
]

(c) Packet rate of 7 Mpkts/s

Figure 3.4: Inter-packet gap of hardware-assisted generation on Intel 82599 (cf. Emmerich et al. [14])

share a single common component—an adapted version of the ixgbe driver—which we assume
to be the root cause. For the DPDK-based packet generators, shipping their own drivers, we did
not observe such a histogram shape. We observed high-valued outliers for Pktgen-DPDK being
the reason for its reduced precision. Despite sharing the DPDK framework with Pktgen-DPDK,
MoonGen’s software generation approach did not suffer from these high outliers. Figure 3.3c
displays the performance at a rate of 4 Mpkts/s. The histogram shapes and the MSE improve
compared with the previous measurement for the purely software-based approaches. However,
in this measurement, all three packet generators create bursty traffic with the lowest measured
bucket representing back-to-back frames. The wrongly assumed improvement happens as the
expected inter-packet gap is closer to a bursty traffic pattern than before, so generating a bursty
pattern is less penalized than in the previous measurements. The measurement also shows that
the corrupt CRC approach has its limits. The high MSE value is caused by high outliers in the
µs-range when starting MoonGen.

Figure 3.4 shows the results of the hardware-assisted approach of rate control. The 82599
chip, despite its high performance, proved to be imprecise. It generated bursts of two for any
configured rate. These bursts create a bimodal distribution, with roughly half of the packets
sent back-to-back and the other half of the packets having an inter-packet gap roughly doubled
compared with the expected value.

High MSE values indicate the imprecision (cf. Figures 3.4a and 3.4b). The hardware-assisted
approach enables higher rates than the other two approaches. This imprecision becomes less
relevant with higher rates, indicated by a lower MSE (cf. Figure 3.4c). Therefore, the hardware-
assisted approach delivers a reasonable precision at rates not achievable using the alternative
approaches.

Influence of CPU microarchitectures
Packet generation is a highly demanding task for the CPU. This section explores the impact
of both CPU microarchitecture and clock speed on this process. The comparison investigates
two packet generators: pfq-gen and MoonGen. We selected the latter as an example of the
DPDK userspace driver against one with a patched kernel driver as found in PFQ, netmap, and
PF_RING ZC.

20

3.3 Analysis of Software Packet Generators

Pkt. Gen. CPU Throughput
[GHz] [Mpkts/s]

3.5 12.9MoonGen 1.6 6.8

3.5 7.2pfq-gen 1.6 3.6

(a) Impact on performance

CPU MSE
[GHz] [ns2]

1.6 29318
1.9 24384
2.5 16671

(Turbo) 3.5 15237

(b) Impact on precision of MoonGen (SW) (2 Mpkts/s)

Table 3.3: Impact of CPU frequency on packet generation (cf. Emmerich et al. [14])

Micro Architecture CPU Throughput MSE
[GHz] [Mpkts/s] [ns2]

1 29382
2 29318Ivy Bridge 1.60
3 19628

1 26818
2 19133Ivy Bridge 3.50
3 15237

1 28700
2 24218Nehalem 3.46
3 15239

Table 3.4: Generation rates at different clock frequencies (cf. Emmerich et al. [14])

Impact of CPU frequency on generation rate: Table 3.3a shows the impact of clock frequency
on the generation rate for pfq-gen and MoonGen (pure software approach for rate control). We
use the pure software approach for MoonGen, representing the most challenging approach from
a CPU perspective, as the CPU cannot rely on hardware or corrupted CRCs for precise packet
timing. The experiment is executed on an Intel Xeon E3-1265L v2 with a maximum frequency
of 3.5 GHz with turbo-boost and repeated with the CPU manually throttled to 1.6 GHz. Both
packet generators react similarly: the throughput scales well with the CPU frequency. These
results are expected as high-performance IO frameworks are known to scale linearly with the
CPU frequency (cf. Section 5.1). Therefore, we consider the linear scaling as a property of the
underlying frameworks rather than a property of the packet generators themselves.

Impact of CPU frequency on precision: The following tests concentrate only on the MoonGen
traffic generator, as it proved to be the most precise at rates of 2 Mpkts/s and above. We
configure the software packet rate control to generate 2 Mpkts/s to quantify how the CPU clock
frequency influences the precision. Previous measurements show this rate is well below the
generation limit for any clock frequency, i.e., enough processing cycles are available to cope
with the task. Despite the availability of enough clock cycles to fulfill the task, a difference in
the MSE of the packet distribution is visible in Table 3.3b. The error decreases as the CPU
frequency increases, i.e., faster CPUs achieve higher precision, even if the additional CPU cycles
are not required to generate the desired rate.

Impact of CPU microarchitecture on precision: The third investigation involves two different
CPU microarchitectures: Ivy Bridge released in 2012 (Intel Xeon E3-1265L v2) and Nehalem

21

Chapter 3: High-Performance Measurement Tools

released in 2008 (Intel Core i7-960). We generate 1, 2, and 3 Mpkts/s with MoonGen’s software
rate control and measure the precision as MSE in Table 3.4. As with the previous results in
Figure 3.3, the MSE improves for the software rate control with increasing rates, as burst traffic
patterns are penalized less at higher rates. There is only a small difference between the analyzed
microarchitectures when clock frequencies are almost identical. The clock frequency has a more
substantial impact on the precision than the microarchitecture itself.

The CPU-related measurements show the importance of the clock frequency for performance
and precision. Additionally, there is only a minor influence of the microarchitecture on the
precision, at least the investigated ones. The higher the CPU frequency, the better performance
and precision. With lowering silicon costs and rising consumer needs, manufacturers push one
of two things: clock speed or core count. In particular, higher CPU frequencies entail a lower
number of cores for the CPU, making a higher clock speed more attractive when a CBR traffic
needs to be generated. A higher core count is attractive for more complex scenarios that can be
parallelized.

3.4 FLOWer
Section 3.4 is based on a publication by Paul Emmerich, Sebastian Gallenmüller, and Georg
Carle [29].

Regular server hardware offers a limited number of NIC ports, restricting the bandwidth of
software packet generators. Testing switches with 32 or more ports requires a potent and costly
load generator setup to test the switch at full bandwidth capacity. Hardware generators such as
NetFPGA/OSNT face the same problem. FLOWer [29] solves this problem by combining a reg-
ular load generator platform with a programmable switch to create a cost-efficient measurement
platform with extended bandwidth and measurement capabilities. FLOWer relies on MoonGen
as a packet generator. However, the concept is not limited to a specific packet generator. In
2018, Ramanujam et al. [30] presented a similar concept, the Simple Network Tester, based on
OSNT.

Figure 3.5a shows a setup configuration with a single switch. There, two ports of a switch are
attached to a load generator running MoonGen and the remaining switch ports are connected to
other ports. Previous, similar setups either used broadcast messages [31] or VLAN forwarding
rules [32] to test the bandwidth or power consumption of the switch. FLOWer uses OpenFlow
to configure the switch allowing more sophisticated benchmark scenarios. One of the scenarios
is quality of service (QoS), where MoonGen creates two types of traffic flows—realtime and
background traffic. The background traffic is amplified using the OpenFlow flood action to
create a high load on the switch, while MoonGen timestamps the realtime traffic forwarded
through the switch between MoonGen’s interfaces. Figure 3.5a demonstrates how the OpenFlow
configuration creates a single cycle through the switch for the realtime traffic. The length of
this cycle can be adapted by either increasing or decreasing the number of petals to measure
the forwarding latencies between the different ports. FLOWer was applied to an Edge-Core
Networks AS5712-54X 10 GbE running PicOS (using 48× 10G Ethernet ports). The MoonGen

22

3.5 FlowScope

Switch

Moon-
Gen

Switch wiring
OpenFlow connection
Packet generator wiring

(a) Single-switch self test setup

Moon-
Gen

SwitchSwitch

DuT logic

Load config

DuTDuT

SwitchSwitch

DuT logic
Switch wiring
OpenFlow connection
Packet generator wiring

(b) Two-switch amplification setup

Figure 3.5: Switch measurement setups of FLOWer (cf. Emmerich et al. [29])

server was equipped with a Xeon E3-1230 v2 with a dual-port Intel X520-T2 NIC. With QoS
enabled, we measured a forwarding latency between 1 and 3.5 µs for the realtime traffic. If
background traffic was increased to a value above 10 Gbit/s, latency remained at a level of
3.5 µs. Benchmarking with different cycle lengths, we measured a constant forwarding latency
of approximately 729 ns per 10G port.

In the single-switch setup, the switch—the DuT—additionally performs tasks of the load gen-
erator, such as the amplification of the background traffic. This amplification task can impact
the performance of the DuT. The two-switch setup displayed in Figure 3.5b divides the tasks
between two switches. One switch is a dedicated DuT and the second switch prepares the traffic,
eliminating any potential impact of the benchmarking task on the DuT. OpenFlow rules can
be used to amplify and alter the traffic received from MoonGen to create separate flows. Fur-
ther, OpenFlow meters on the benchmarking switch can be used to collect traffic statistics or to
limit the amount of traffic passed to MoonGen. Latency measurements can be performed using
MoonGen by forwarding the timestamp packets through the benchmarking switch. However,
the benchmarking switch increases the measured latency and may cause additional jitter. The
used switch introduced a forwarding latency of 729 ns and jitter of up to 218 ns.

3.5 FlowScope
Section 3.5 is based on a collaboration between Paul Emmerich, Maximilian Pudelko, Sebastian
Gallenmüller, and Georg Carle [33] and on joint work by Sebastian Gallenmüller, Dominik
Scholz, Florian Wohlfart, Quirin Scheitle, Paul Emmerich, and Georg Carle [3].

FlowScope is a tool to record and analyze packet dumps for network debugging and network
forensics. Established tools fail at recording or analyzing bandwidths of 100 Gbit/s. FlowScope
can capture at a rate of 120 Mpkts/s even with 128-byte packets when using multiple threads.

23

Chapter 3: High-Performance Measurement Tools

QQQQQQ

Producer

Producer

NIC

Dumper

Analyzer

Figure 3.6: Architecture of FlowScope and the QQ data stucture (cf. Gallenmüller et al. [3])

Bro Time Machine [34], a similar tool, managed to process a packet rate of 2.4 Mpkts/s, a 50-fold
performance decrease compared with FlowScope.

FlowScope utilizes Receive Side Scaling (RSS) and multi-queues leading to an efficient multi-
threaded design. However, the key to its performance is founded in the novel in-memory data
structure, organized as a ring buffer, illustrated in Figure 3.6. The elements of this ring buffer
(or outer queue) are queues that contain the actual packets. This structure of queues within
queues coins QQ, the data structure’s name. QQ supports the multi-producer/multi-consumer
scheme. Figure 3.6 depicts the producers on the left and the consumers on the right-hand side.
Every producer has exclusive access to one of these inner queues for recording packets, which
renders explicit synchronization redundant. After an adjustable amount of recorded data or a
specified timeout, the producer stops filling its inner queue. This inner queue is handed over
to the outer queue and the producer begins filling a new inner queue. After releasing an inner
queue, it can be consumed by one of two different processes—the analyzer or the dumper. The
analyzer allows peeking at packets without removing them from the queue. Using libpcap-based
filter expressions, an analyzer can trigger a dumper process that dumps selected packets to
disk. This operation removes the packet from the queue. Access to the outer queue is rare
and hence handled with locks to facilitate multiple accessors. A lock-based outer queue allows
implementing special features such as the time-traveling dumper process that would be hard to
implement in a fully lock-free queue. An inner queue is only handed out to a single producer or
consumer and does not need locks. This design choice allows us to maintain a high performance
despite using locks at the high-level interface, which is accessed rarely.

Whereas QQ offers unprecedented throughput figures, it introduces a considerable amount of
latency. Packets can only be read after a producer hands its inner queue over to the outer ring
of queues. The latency originates from the desired size or specified timeout of the inner queues.
Considering other impact factors on latency, such as the expected data rate or the number of
concurrent producer threads, latencies in the range of up to several hundred milliseconds are
possible. This delay is a significant increase compared with other queues operating in the range
of several hundred nanoseconds [35].

3.6 Key Results
We demonstrated that the packet generator’s quality has a significant impact on the outcome
of a network experiment and thus its repeatability. Therefore, we created MoonGen, our own

24

3.7 Author’s Contributions

packet generator, that allows a high degree of control over the packet generation process, of-
fers bandwidths of up to 10 Gbit/s with minimum-sized packets on a single core, and meas-
ures latency in hardware in the ns-range. An analysis of current software packet generators
demonstrates that MoonGen’s generation quality exceeds the abilities of other software packet
generators. To increase generation performance, we further introduce the FLOWer concept,
combining MoonGen with a programmable switch. We leverage the capabilities of the pro-
grammable switches for the purpose of a packet generator. This setup allows us to benchmark
devices, such as switches, which we could not perform with the limited number of ports on a
software packet generator. Current state-of-the-art network analyzers fail at processing packet
rates of 2.4 Mpkts/s. By trading delay for bandwidth, FlowScope enables the investigation of
network traffic at 120 Mpkts/s.

3.7 Author’s Contributions
Section 3.2 is based on work by Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian
Wohlfart, and Georg Carle [16]. The author contributed to the description, the illustrations,
and the analysis of MoonGen. A demonstrator of MoonGen—a joint publication between Se-
bastian Gallenmüller, Paul Emmerich, Daniel Raumer, and Georg Carle [15]—presents a setup
to measure cable lengths and describes MoonGen’s basic features. The author contributed to
the implementation of the demo, its analysis, and its description. He contributed significantly
to the second timestamping implementation, which is first described in this thesis.

Section 3.3 is based on work by Paul Emmerich, Sebastian Gallenmüller, Gianni Antichi, Andrew
W. Moore, and Georg Carle [14]. The author contributed to the measurements presented in this
paper, focusing on the impact of the CPU on performance.

Section 3.4 is based on a publication by Paul Emmerich, Sebastian Gallenmüller, and Georg
Carle [29]. The author contributed to the analysis, description, and illustration of FLOWer.

Section 3.5 is based on work by Paul Emmerich, Maximilian Pudelko, Sebastian Gallenmüller,
and Georg Carle [33]. The author co-supervised the thesis, in which FlowScope was implemented,
contributing to the ideas and measurements presented.

High-level descriptions of MoonGen, libmoon, FLOWer, and FlowScope are contained in a
publication by Sebastian Gallenmüller, Dominik Scholz, Florian Wohlfart, Quirin Scheitle, Paul
Emmerich, and Georg Carle [3]. The author contributed to the description and analyses of the
mentioned applications.

The author created the architecture illustrations in this chapter. Measurement plots are joint
work with the respective co-authors.

25

Chapter 4

Modeling Framework

Several models are created and used throughout this thesis for different applications and sce-
narios. The models in this thesis are based on a common modeling framework. This chapter
provides the technical background for this modeling framework.

Figure 4.1 depicts a high-level view of a packet processing system s investigated in this work. The
investigated system itself is created from different subcomponents—hardware and software—re-
sulting in a complex packet processing system. Exposed to a vector of input parameters I, this
packet processing system behaves in a certain way creating a vector of output parameters O.
Typical examples for input parameters of packet processing systems are the available bandwidth,
the traffic used for testing, or the configuration of the investigated packet processing system.
The outputs of the packet processing system can be measured, for instance, the packet losses or
the delay caused by packet processing. A mathematical model of this packet processing system
is expressed in Equation 4.1:

s(I) 7→ O (4.1)

Packet processing system s

I0

I1

Ii

…

O0

O1

Oj

…

Figure 4.1: Generic packet processing system

Chapter 4: Modeling Framework

Equation 4.1 describes a complete model of the whole system, i.e., all possible input parameters
generating all possible output parameters. However, such a model comes at a price. A high
number of input parameters n of a model increases the costs for obtaining the required para-
meters, tracking them, and their subsequent processing. Calculating all output parameters may
also be unnecessary as only a subset of the output parameters is required in a particular situ-
ation. Therefore, this work focuses on creating efficient models predicting the output required
for a specific use case. We select the models considering the following goals:

Parsimony: An obvious factor to evaluate the quality of a model is the deviation between its
prediction and the actual measurement. However, the exclusive focus on the prediction error may
lead to complex and expensive models. Information criteria were created to consider additional
properties for the quality estimation of models. Two common information criteria are the Akaike
information criterion (AIC) [36] and the Bayesian information criterion (BIC) [37]. A particular
feature of AIC and BIC is their attention to the number of model input parameters. Both, AIC
and BIC, penalize additional input parameters, thereby preferring simpler models. We consider
two advantages. First, simpler models help to explain and communicate the interconnections
of complex systems on a high level. Second, simplicity can foster the adoption of models in
applications. With a lower number of input variables to track, model implementation becomes
easier, execution faster, and calculation cheaper. Following the parsimony principle regarding the
number of input parameters, we aim for models that require a low number of input parameters.

Expressiveness: The overall performance of a packet processing task can be described as the
combined performance of the involved subcomponents. Our measurements show (cf. Chapters 5
and 6) that typically a single subcomponent presents the bottleneck limiting the overall perfor-
mance of the packet processing task in an investigated scenario. For a packet processing task,
the available Ethernet bandwidth is such a possible bottleneck. As long as no other compo-
nent is overloaded, the overall throughput performance is limited by this bandwidth. In such a
case, a model can ignore the performance of all the other subcomponents. This simple example
demonstrates that the creation of simple models with a limited number of input parameters is
possible—the goal of parsimony can be reached without compromising their expressiveness.

Measurability: Measurements can be divided into two distinct classes, black-box and white-box
measurements. Black-box measurements can be obtained by observing the inputs and outputs
of a DuT. Being non-intrusive, the DuT is not impacted by measurement tasks, which leads
to more accurate measurement results. Additionally, black-box tests are simpler to execute
as a DuT can be easily integrated into existing measurement setups because of the highly
standardized IO interfaces of packet processing systems. White-box tests, executed on the
DuT itself, can lead to additional insight into the packet processing task. However, white-
box measurements can impact the performance of a DuT. On-device measurements require
additional effort to adapt the measurement capabilities to a specific DuT. Additionally, vendors
may restrict access to the system making measurements more difficult or even impossible. In this
work, we prefer measurements obtainable via black-box testing due to the universal applicability

28

4.1 Analysis of Software Packet Processing Systems

Model m

I0

I1

Ii

…

I∗
0

I∗
x

…

O∗
0

O∗
y

…

Figure 4.2: Generic model for packet processing systems

and simplicity. White-box testing is used to investigate assumptions of the underlying system’s
behavior, deduced from black-box measurements.

A model m of system s is shown in Figure 4.2. The modeled system m does not use the entire
input vector I, but a subset of it we denote as I∗. The selection of input parameters I∗

x for model
m is made according to the previously introduced goals: we optimize for a minimal number of
input parameters (parsimony), we remove parameters that are not relevant for a specific use case
(expressiveness), and we prefer input parameters that can be determined easily (measurability).
Model m further describes only a subset of output parameters O∗, which are relevant for a
specific use case, out of the original output parameters O. At the same time, all modeled output
parameters in O∗ should match their measured counterparts in O as closely as possible. The
model is described by Equation 4.2:

m(I∗) 7→ O∗ (4.2)

4.1 Analysis of Software Packet Processing Systems
Section 4.1 is based on joint work by Sebastian Gallenmüller, Paul Emmerich, Florian Wohl-
fart, Daniel Raumer, and Georg Carle [38], this publication itself is based on the Master’s
Thesis [39] by the author.

In the following, we want to analyze typical software packet processing systems. Figure 4.3 visu-
alizes a path of a packet through a typical off-the-shelf system. After arriving at a NIC, packets
are transferred via PCIe either to memory via DMA or using Intel Data Direct I/O (DDIO) [40]
directly into the last level cache (LLC) of the respective CPU. Despite being attached directly to
the CPU, DMA and DDIO work asynchronously. This asynchrony means that packets, from the
perspective of the CPU cores, become available for processing without actively dedicating CPU
cycles to reception. Sending packets utilizes the same asynchronous techniques as reception
without active CPU involvement. Asynchronous transfer helps to reduce the CPU cycles spent
on packet processing as the application only dedicates cycles to the packet processing task after
the packet has been placed in RAM or LLC. The actual packet processing task is executed on
the CPU cores after the packets have been placed in RAM or LLC. On multi-CPU systems,

29

Chapter 4: Modeling Framework

NIC0

LLC

Memory Controller

Core0 Core1

RAM0

LLC

Memory Controller

Core0 Core1 NIC1

RAM1

PCIe PCIeQPI /UPI

Memory BusMemory Bus

CPU0 CPU1

Figure 4.3: System architecture of software packet processing sytems

Interconnect Duplex Maximum Maximum
Bandwidth Packet Rate

[Gbit/s] [Mpkt/s]

10G Ethernet full 10 14.88
40G Ethernet full 40 59.52
100G Ethernet full 100 148.81

PCIe 2.0 8× [43] full 32
PCIe 3.0 8× [43] full 63
PCIe 4.0 8× [43] full 125

DDR3-800 [44] half 51
DDR3-1600 [44] / DDR4-1600 [45] half 102
DDR4-3200 [45] half 205

QPI [41] full 77
UPI [42] full 166

Table 4.1: System interconnect bandwidths

depicted in Figure 4.3, packet processing may involve the CPU interconnect, such as Quick Path
Interconnect (QPI) or Ultra Path Interconnect (UPI) [41], [42]. Packets use this interconnect if
they are received or sent via a NIC attached to a remote CPU.

This system architecture presents two crucial resources to the packet processing task: the in-
terconnect bandwidth between individual components and the CPU time available on the CPU
cores. The packet processing task can be limited if either of these resources run out. In our
model m, each of the different system interconnects or CPU resources are represented by their
own input parameter I∗

x . We aim for a low number of input parameters while keeping the model
accurate. Therefore, we analyze the potential bottlenecks in the following to identify the relevant
input parameters for modeling.

4.1.1 Interconnect Bottlenecks
The hardware possesses hard limitations such as the maximum bandwidth of Ethernet, PCIe
buses, or the RAM, which can act as a bottleneck for packet processing systems. These bot-
tlenecks act as strict upper bounds which cannot be exceeded. Table 4.1 lists different limits

30

4.1 Analysis of Software Packet Processing Systems

that were relevant to the systems investigated in this thesis. The table contains the maximum
bandwidth in one direction, i.e., full-duplex capable connections can transmit the given rates in
both directions simultaneously.

There are two limiting factors for Ethernet, the raw bandwidth determined by the Ethernet
standard and the throughput in packets per second. For the 10G Intel 82599, we did not observe
any limitations independent of the packet rate. The 40G Intel XL710 has hardware restrictions
regarding the maximum packet rate. We measured a maximum packet rate of 33.7 Mpkts/s, i.e.,
a minimum packet length of 128 B is required to reach a bandwidth of 40 Gbit/s [33]. At the
time of writing, we did not have access to 100G hardware; therefore, hardware limitations are
still unknown.

PCIe offers different bandwidths depending on the version and the number of physical lanes
allocated. PCIe offers a point-to-point connection between the NIC and the CPU, i.e., the
bandwidth is not shared across multiple PCIe devices. For 10G, the PCIe 2.0 with 8 lanes is
sufficient even for a dual-port NIC. However, for 40G, the PCIe 3.0 with 8 lanes does not suffice
to support a NIC with two ports at line rate. The Intel XL710 is available in such a configuration
with PCIe 3.0 and 8 lanes being the maximum supported configuration [21]. For 100G, only the
newer PCIe 4.0 with at least 8 lanes can support the needed bandwidth for a single port.

The main memory standards relevant for this thesis are DDR3 and DDR4, each offering many
different standardized bandwidths. Table 4.1 contains only the minimum and maximum stand-
ardized rates for both versions using a single memory channel, respectively. Modern Intel CPUs
offer between 2 (Sandy Bridge microarchitecture) and 6 (Skylake microarchitecture) memo-
ry channels. If each of the memory channels is equipped with memory modules, the available
bandwidth increases by a factor of 2 to 6 [46]. Even the lowest bandwidth of 51 Gbit/s is enough
to support multiple 10G ports per system. For 40G and 100G, the memory bandwidth can have
an impact depending on the number of NIC ports and memory channels in use. In contrast
to Ethernet or PCIe, the memory bandwidth is not a hard limit. Intel’s DDIO [40] technique
allows NICs to copy the packets directly into the LLC. The transfer of packets into and out
of LLC reduces the pressure on the memory bus. The bandwidth of these DDIO-accelerated
systems depends on factors such as the LLC usage of other running tasks. Intel claims an IO
performance of approximately 250 Gbit/s for a DDR3-based system [40].

For systems with multiple CPUs, the CPU interconnect can act as a bottleneck. QPI was
introduced in 2008 and offered an initial bandwidth of 77 Gbit/s. The interconnect bandwidth
was updated several times; the latest version of the CPU interconnect from 2017 is called
UPI that roughly doubled the bandwidth compared with the initial version of QPI. The CPU
interconnect is used by packets forwarded between NIC ports attached to different CPUs. This
bottleneck can become relevant if several dual-port 40G NICs are used. For 100G Ethernet, two
dual-port NICs, attached to different CPUs of a system, can already overload this interconnect.

For 10G Ethernet, the only relevant bottleneck is the Ethernet bandwidth itself, the other
interconnects of modern systems supporting PCIe 3.0, DDR4, and UPI exceed the bandwidth
requirements of 10G. For 40G and 100G interconnect bandwidth, especially PCIe and CPU
interconnect bandwidth may present a bottleneck. For a model predicting the bandwidth of

31

Chapter 4: Modeling Framework

a 10G Ethernet system, the interconnects except for the Ethernet itself are irrelevant and do
not need to be considered by such a prediction. However, for 40G and above, PCIe and CPU
interconnect can become a factor in such a prediction.

4.1.2 CPU Bottleneck
Besides the interconnect bandwidth, the CPU time is another resource needed for software-
driven packet processing. Rizzo [28] models processing costs from the perspective of a packet.
He defines two components:

Per-byte costs: depend on the length of a packet, e.g., the costs for copying or encrypting a
packet that increase linearly with packet length. Packet processing tasks that operate only on
header data can have per-byte costs of 0.

Per-packet costs: are static costs occurring once for every processed packet. These are the
dominating costs for typical processing tasks operating on packet headers, such as forwarding
or routing. With per-packet costs dominating, a high packet rate becomes the most challeng-
ing scenario for packet processing applications. Therefore, worst-case scenarios are typically
conducted at line rate with the minimal Ethernet packet size of 64 B.

We extend the view on CPU costs by taking the root cause of the CPU costs into considera-
tion [39]. CPU time can be spent for two different reasons:

Data access costs: happen if the CPU waits for data to become available for processing. Data
can only be processed if it is available in the CPU registers. The location of the data determines
the actual costs, i.e., the higher a date is placed in the cache/memory hierarchy, the lower the
access costs. Data access costs are essential for packet processing, as packet data must be loaded
from the RAM or cache. Additionally, data structures such as routing tables must be available
to perform packet processing tasks.

Calculation costs: are caused by the time spent on data manipulation. After data is loaded into
the CPU registers, instructions are performed on the data. The complexity of the performed
operations determines the calculation costs. The switching or routing of packets typically in-
volves less complex arithmetic operations. Hence, it takes less time than the computationally
complex encryption or decryption of packet data.

Modern CPUs incorporate independent units for fetching and processing data. Therefore, fetch-
ing and processing data can be performed in parallel, lowering the time either unit idles. How-
ever, this kind of parallelism has its limits as calculation and access costs are rarely evenly
distributed for typical packet processing tasks. Access costs typically dominate for tasks such
as routing or switching, calculation costs for encrypting or decrypting.

Both classifications can be combined, i.e., per-packet costs can be divided into access and cal-
culation costs. The same holds for per-byte costs. As per-packet costs dominate the packet
processing tasks investigated in this thesis, the described resource model focuses on per-packet
rather than per-byte costs.

32

4.1 Analysis of Software Packet Processing Systems

Location Size Access Latency [CPU cycles]

L1 Data 32 kB 4
L2 (unified) 256 kB 12
L3 (shared) up to 8 MB 26-31

Table 4.2: Data Access Cost on Intel Sandy and Ivy Bridge CPUs (cf. Intel [46])

4 k 32 k 256 k 2 M 16 M 128 M 1 G

50

100

150

200

250

300

Working Set Size [B] (log2 scale)

C
P
U

cy
cl
es

Data access cost
L1 cache size
L2 cache size
L3 cache size

Figure 4.4: Ideal model for data access costs using random accesses on Ivy Bridge microarchitecture

4.1.3 Impact of Caching on Data Access Costs
Table 4.2 lists the cache sizes and data access costs for Intel CPUs based on the Sandy or Ivy
Bridge microarchitectures, used for several measurements in this thesis. These access latencies
demonstrate that caches have a significant impact on data access costs. The costs approximately
rise by a factor of three when changing to the next higher level in the cache hierarchy.

The Sandy and Ivy Bridge microarchitectures offer separate instruction and data caches on L1;
higher levels are unified, i.e., instructions and data share the same cache. For the analyses in
this thesis, we focus on data caching abilities. L1 and L2 are non-shared caches. Hence, every
physical CPU core has its own L1 and L2 caches. The L3 or LLC is shared across all available
CPU cores. Through this shared cache, applications running on separate cores may still influence
each other. The size of the LLC depends on the microarchitecture and the actual CPU model,
the respective CPUs in this thesis have a typical LLC size of 8 MB. However, the LLC is an
inclusive cache that includes all data contained in the L2 caches reducing the additional cache
space the LLC effectively offers. [46]

If RAM is accessed, access costs increase further. The value of these costs depends on the type
of RAM in use. The Sandy and Ivy Bridge CPUs support DDR3, we use DDR3-1333. For such
a system, we measured approximately 250 CPU cycles for accessing data residing in RAM (cf.
Section 5.1.5).

Figure 4.4 shows an idealized model for the average data access costs. This model assumes a data
structure with different sizes that can use the cache and RAM exclusively. We do not consider
the initial data access costs that happen if entries are accessed the first time and fetched into the
cache. Besides, we assume that the data structure occupies the cache in the most efficient way
possible, i.e., lower cache levels are preferred as long as space is available. The data accesses

33

Chapter 4: Modeling Framework

happen at a random position in this data structure, so the CPU cannot predict the access
pattern and prefetch data into higher cache levels before the access.

The access costs do not increase linearly but follow a stepwise pattern. Costs rise where the
data structure exceeds the size of a cache level. The increase is not sharp; lower cache levels
are still used but with a lower probability. Figure 4.4 shows that data access costs can rise by
a factor of 50 when comparing L1 to RAM accesses.

4.1.4 Resource model
The resource model combines the relevant system resources to predict an upper bound for the
system’s packet processing performance—the interconnect bandwidth and computing resources.
Our model uses all the individual limits of the available system interconnects for the calculation
of the resulting upper bound for the interconnect bandwidth. For the measurements in this
thesis, the per-packet costs are dominating. Therefore, we model the costs in CPU cycles per
packet.

T interconnect
max = min(T Ethernet

max , T PCIe
max , T memory

max , T QPI
max) (4.3)

T interconnect
max = T Ethernet

max (4.4)

Equation 4.3 describes the maximum achievable throughput on a system. There, the mini-
mum bandwidth of the involved components determines the overall bandwidth rendering all the
other limits irrelevant for modeling. According to our previous analysis, the Ethernet band-
width is typically the lowest and, therefore, the dominant one leading to the simplification in
Equation 4.4.

T CPU
max = fCPU

c
· p (4.5)

The function in Equation 4.5 describes the maximum CPU-bound throughput of a system. The
computation capacity of the system is determined by the clock frequency fCPU of the used
CPU. The variable c represents the average per-packet costs of the packet processing task.
These costs are measured in CPU cycles and contain access and calculation costs. Dividing the
available frequency by the average per-packet costs determines the maximum number of packets
the system can process per second. The packet rate can be converted to the throughput in
Gbit/s by multiplying the packet rate with the average length of the packets. Packet size p

includes the additional bytes between two packets sent on the physical layer, i.e., inter-packet
gap, preamble, start of frame delimiter, and the frame check sequence.

Like the interconnect limits, the resulting overall throughput Tmax is the minimum of the pre-
vious two Equations 4.4 and 4.5. This leads to Equation 4.6.

Tmax = min(T Ethernet
max , T CPU

max) (4.6)

34

4.2 Key Results

0 100 200 300 400 500100

101

102

Per-packet cost [CPU cycles]

T
hr
ou

gh
pu

t
[G

bi
t/

s]

100G limit CPU limit (3× 3.3 GHz)
40G limit CPU limit (2× 3.3 GHz)
10G limit CPU limit (1× 3.3 GHz)

Figure 4.5: Model for packet processing with a packet size of 64 B (cf. Gallenmüller et al. [38])

A visualization of this resource model in Equation 4.6 is shown in Figure 4.5. There, the
Ethernet bandwidth of the respective standard is given as a horizontal line. This Ethernet
limit only considers the bandwidth independent of the packet size; if packet rate limits apply,
additional lines must be introduced. If the Ethernet bottleneck limits the overall throughput of
the system, we call the system bandwidth-bound. For low packet costs, the system is typically
bandwidth-bound. If packet costs increase, the system becomes CPU-bound, meaning that the
computing resources limit the system’s overall throughput.

As long as no other interconnect limit is hit, the bandwidth-bound system performance, i.e.,
T Ethernet

max , can be increased—either by upgrading the Ethernet standard or by adding NIC ports
to the system. Figure 4.5 includes the three Ethernet standards for 10G, 40G, and 100G,
demonstrating the effects of increased bandwidth. Additionally, three CPU configurations are
visualized utilizing 1, 2, or 3 CPU cores. We chose a clock rate of 3.3 GHz. Adding CPU cores
helps increase the system resources f , shifting the point at which the system becomes CPU-
bound. Section 5.3 demonstrates that packet processing applications scale almost linearly with
additional CPU cores. Another way to increase system performance T CPU

max in a CPU-bound
system is to lower the costs per packet c.

4.2 Key Results
This chapter introduces the resource model that predicts the throughput performance of packet
processing systems. The resource model considers the two major bottlenecks that impact perfor-
mance: the interconnect bandwidths and available CPU time. Exhausting either the bandwidth
of one of the many system interconnects or the CPU processing capacity limits the overall
throughput performance of packet processing, which can be predicted using the resource model.

The resource model can be implemented efficiently. We minimize the resource model’s com-
plexity by concentrating on the most relevant interconnects (parsimony). Simultaneously, the
simpler model, which considers only the system interconnect with the lowest bandwidth, is as
expressive as a more complex model considering all system interconnects (expressiveness). In

35

Chapter 4: Modeling Framework

addition, we focus on parameters for the resource model that can be measured easily (measur-
ability).

4.3 Author’s Contributions
Section 4.1 is based on work by Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart,
Daniel Raumer, and Georg Carle [38], this publication itself is based on the Master’s Thesis [39]
by the author. Technical background about the system interconnects was added for this thesis
and the analysis contains a new discussion for 40G and 100G Ethernet.

36

Chapter 5

Measuring and Modeling of High-Speed Packet
Processing Systems

The introduction of 10G Ethernet led to the development of specialized frameworks to support
the increased bandwidth. This chapter investigates the performance of these frameworks and
applications based on them. We analyze a framework for building network functions (NFs)
called Snabb, the high-performance software router MoonRoute, and an accelerated version of
the intrusion prevention system Snort.

5.1 Comparison of Packet Processing Frameworks
Section 5.1 is based on joint work by Sebastian Gallenmüller, Paul Emmerich, Florian Wohl-
fart, Daniel Raumer, and Georg Carle [38], this publication itself is based on the Master’s
Thesis [39] by the author.

Nowadays, 10G Ethernet adapters are commonly used in servers. However, due to overhead
imposed by the network stacks’ architectural design, the CPU quickly becomes the bottleneck,
so that packet handling—even without any complex processing—is impossible at line speed for
small packet sizes. Software frameworks for high-speed packet IO, e.g., netmap [28], DPDK [47],
or PF_RING ZC [27], promise to fix this issue by offering a stripped-down alternative to the
Linux network stack. Their performance increase allows using commodity hardware systems
as routers and (virtual) switches [48], [49], network middleboxes like firewalls [50], or network
monitoring systems [51]. Motivated by the potential gain, we analyzed the performance charac-
teristics of these frameworks.

Chapter 4 introduced a modeling framework utilizing interconnect bandwidths and CPU re-
sources to predict the performance of arbitrary packet processing applications. Here, we investi-
gate how we can apply this modeling framework to programs based on the previously mentioned
packet processing frameworks. Various measurements show the applicability of the resource
model, with packet forwarding as the basic test scenario. Each measurement is designed to

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

investigate the influence of a specific factor on the forwarding throughput, e.g., the clock speed
of the CPU, the number of processed packets per call, or the cache utilization. Moreover, the
latency of packet forwarding is reviewed. All measurements are designed to ensure the compa-
rability of our test results: running on the same CPU, equipped with the same 10G NICs while
using packet forwarders applying the same algorithm for each of three frameworks, respectively,
to provide a fair comparison between them.

Our comparison is organized as follows: In Section 5.1.1, we describe the state of the art in
fast packet processing. Related work that serves as the basis for our research is presented in
Section 5.1.2. Section 5.1.3 investigates potential bottlenecks for packet processing performance.
In Section 5.1.4, we apply the resource model to high-performance packet processing frameworks.
Subsequently, Section 5.1.5 presents our comparison of techniques for fast packet processing. We
conclude with a summary of our results in Section 5.1.6.

5.1.1 Packet Processing in Software
Network traffic processing performance backed by commodity hardware systems has increased
continuously in the last years. The increase came both from software optimizations and hardware
developments like the move from 1G to 10G Ethernet, multi-core CPUs, and offloading features
that save CPU cycles.

Utilization of Hardware Features
On the hardware side, the performance increase, besides the higher bandwidth, came from
offloading features that shifted the workload from the CPU to the NIC. Checksum offloading,
for instance, relieves the CPU from CRC checksum handling. Now the NIC takes care of
calculating the CRC checksum and adding it to the packet before transfer. On the receiving
end, the NIC validates the checksum and drops the packet in case of an error, without involving
the CPU. [20]

DMA allows the NIC to write or read packets directly into or from RAM bypassing the CPU.
Modern NICs can even copy packets directly into the cache of the CPU, which leads to a further
increase in performance [40], [52].

Another part of the speed-up comes from increased CPU performance. In addition to higher
clock rates, the number of CPU cores has changed from one to a growing number of cores. NICs
need to support multi-core architectures explicitly by distributing incoming packets of different
traffic flows to different cores. One of these techniques is RSS, which allows scaling packet
processing with the number of cores. [20]

Linux Network Stack
On the software side, the performance increase came, despite the support of the new hardware
features, from a more efficient way to handle incoming traffic. The first approach of generating
one interrupt per incoming packet was unsuitable for high packet rates due to livelocks caused
by interrupt storms [53]. In such a livelock, the system is almost entirely occupied with handling
the overhead caused by interrupts instead of processing packets.

38

5.1 Comparison of Packet Processing Frameworks

NAPI, a network driver API introduced in the Linux kernel 2.4.20, reduces the number of
interrupts generated by incoming traffic with the ability to switch to polling for packets during
phases of high load, effectively reducing system overhead [53]. The NAPI-based network stack
is sufficiently powerful to scale software routers to multiple Gbit/s [54], [55]. But even though
performance improved, the Linux network stack primarily focuses on offering a full-featured
general-purpose network stack for an OS rather than providing a high-performance interface
needed for software router applications [56].

High-Speed Packet Processing
Compared with a general-purpose network stack like the one implemented in Linux, high-speed
packet IO frameworks offer only basic IO functionality: Layer 3 and above must be implemented
by the application, whereas the Linux network stack handles Layer 3 and Layer 4 protocols like
IP and TCP. As a benefit, these frameworks offer increased performance compared with a full-
blown network stack. In this thesis, we focus on the most important representatives netmap [28],
PF_RING ZC [57], and DPDK [47]. All three frameworks require modified drivers and use the
same techniques for acceleration:

• Bypassing the default network stack, i.e., the packets are only processed by the processing
framework and the applications running on top of them.

• Relying on polling to receive packets instead of interrupts.

• Preallocating packet buffers at the start of an application with no further allocation or
deallocation of memory during the execution of an application.

• No copying of data between user and kernel memory space as a packet is copied once to
memory via DMA by the NIC and this memory location is used by processing frameworks
and applications alike.

• Processing batches of packets with one API call on reception and transmission.

netmap: netmap [28] exposes packet buffers to the application and uses standard system calls,
like poll() or ioctl(), to initiate the data transfer. The work behind these system calls is
reduced compared with a default network stack. These system calls only update the packet
buffers and check the data provided by user programs for their validity to prevent crashes.

The network drivers of netmap are based on regular Linux drivers. As long as no netmap
application is active, the driver works transparently for OS and traditional applications. Upon
starting a netmap-enabled application, the NIC is put into a special netmap mode, i.e., the NIC
becomes inactive for the OS and no packets are delivered to the standard OS interfaces and
traditional applications. Instead, the packets are transferred to netmap-specific data structures
where they are available to the netmap-enabled application. When closing this application, the
driver switches back to transparent mode. Maintaining this compatibility in the driver allows
for easy integration into a general-purpose OS. The FreeBSD kernel includes netmap as a means
for high-performance packet processing [58].

39

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

Multiple applications have shown increased performance by adapting netmap: Click [59], a
software router, the virtual switch VALE [48], and the FreeBSD firewall ipfw [50].

A notable difference between the different network APIs is the usage of system calls. Linux does
the entire packet handling in kernelspace to ensure a high degree of security and robustness.
DPDK and PF_RING ZC perform their packet processing entirely in userspace to provide high
performance. To provide robust and fast packet processing, netmap combines both approaches.
Most of the workload, i.e., packet processing, is done in userspace. System calls perform only
basic checks on the packet buffers to initiate the reception and transfer of packets.

PF_RING ZC: PF_RING ZC does not use standard system calls but offers its own functions.
The API of PF_RING ZC emphasizes convenient multi-core support [60]. It is NUMA aware,
i.e., on systems with multiple CPU sockets, the packet buffers can be allocated in memory
regions a CPU can directly access. Moreover, processes can be clustered for easy data sharing
among them.

PF_RING ZC features a driver with capabilities similar to those of netmap, i.e., the driver is
based on a regular Linux driver acting transparently as long as no special application is started.
When such an application is active, regular applications cannot send or receive packets using
the respective default OS interfaces. This driver may also be configured to deliver a copy of
the packets to the OS, while a PF_RING ZC application is active, but the duplication process
lowers the performance.

Ntop [61] offers several applications running on top of PF_RING ZC, for example, n2disk, a
packet capturing tool, or nProbe, a tool for traffic monitoring.

DPDK: DPDK is a collection of libraries, which not only offer essential functions for send-
ing and receiving packets but provide additional functionality like a longest prefix matching
algorithm for the implementation of routing tables and efficient hash maps. DPDK relies on
a custom userspace API similar to PF_RING ZC instead of traditional system calls used by
netmap. The DPDK API [62] offers multi-core support, additional libraries used for packet pro-
cessing, and features the highest degree of configurability among the investigated frameworks.
The DPDK driver does not feature a transparent mode, i.e., as soon as this driver is loaded,
the NIC becomes available to DPDK but is made unavailable to the Linux kernel regardless of
whether any DPDK-enabled application is running or not. DPDK uses a special kind of driver
aiming to do most of its processing in userspace. This UIO driver [63] still has a part of its code
realized as kernel module, but its tasks are reduced. It only initializes the used PCI devices by
mapping their memory regions into the userspace process.

A notable example of an application using DPDK, which gained attention, is an accelerated
version of OvS [49]. An additional high-performance software switching solution is xDPd [64],
which supports DPDK for network access. Click, a software router, also supports DPDK [59].

Other frameworks: The already mentioned frameworks are not the sole solutions offering high-
speed packet processing capabilities in userspace.

40

5.1 Comparison of Packet Processing Frameworks

PacketShader [65] is a packet processing framework using the general-purpose capabilities of
GPUs for packet processing. It also features a separate engine for fast packet IO. The GPU part
of PacketShader is not publicly available; only the code of the packet engine was released, which
can be used on its own. The packet IO engine is currently not developed further, the repository
was archived [66].

PFQ [67] is a framework that is optimized for fast packet capturing. It does not rely on special-
ized drivers like the other frameworks and can be used with every NIC as long as Linux supports
this card. However, without modified drivers, the NIC cannot push the packets directly to user-
space. The lack of this feature leads to a performance disadvantage when compared with the
previously mentioned frameworks. A notable feature of PFQ is the integration of a Haskell-based
domain-specific language for implementing packet processing algorithms [68]. PFQ focuses on
providing a framework to make packet processing easy and safe rather than providing the high-
est possible performance. Therefore, the typical use cases for PFQ differ from the use cases of
the other frameworks.

Snabb [69] is a packet processing framework with a focus on creating NFs. Similar to MoonGen,
Snabb is optimized for flexibility and extensibility and relies on the scripting language Lua and
the LuaJIT compiler for high performance. The framework provides a simple API to create
user-defined NFs. A unique feature for Snabb is its NIC driver, which is entirely written in Lua.
The Snabb framework, its driver, and the users’ NFs are all written in this easy-to-learn scripting
language. This common language helps users to understand and potentially modify the entire
framework. Due to Snabb’s focus on high-level NFs, it is not included in the detailed comparison
of packet processing frameworks. A separate analysis of Snabb is given in Section 5.2.

5.1.2 Related Work
A survey of various packet IO frameworks was published by García-Dorado et al. [56]. The
theoretical part of their investigation is comprehensive and the paper includes measurements
showing selected aspects of these frameworks, e.g., the influence of the number of available cores
and packet sizes on the throughput. They investigate the packet IO engine of PacketShader,
PFQ, netmap, and PF_RING DNA, a predecessor of PF_RING ZC. DPDK and Snabb are not
investigated. However, the authors only analyze packet capturing capabilities and neglect other
aspects of packet processing.

Throughput measurements of software packet forwarding systems on commodity hardware have
been conducted previously: Bolla and Bruschi [55] analyze a Linux software router. Dobrescu et
al. [54] published studies of software router performance and the influence of various workloads.
The highest throughput of a software solution implementing an OpenFlow switch with DPDK
was presented and measured in [70]. We also measured the throughput of Linux-based forwarding
tools in previous work [71]. These measurements allow a direct comparison with results from
this thesis because they were performed on the same test system.

The latency of a Linux software router was also measured by Bolla and Bruschi [55]. Angrisani
et al. [72] describe a technique to measure different parts of packet processing systems using
commodity hardware based on internal queuing. Rotsos et al. [73] present an FPGA-based

41

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

method to measure the latency of various software and hardware OpenFlow switches. They
present measurements for OvS running on Linux as an example. A discussion of latency in
software routers can also be found in [74]. The authors describe a method that can be used to
distinguish the latency introduced by queuing from the processing delay.

The selected literature shows that the performance of the Linux networking part is thoroughly
researched and well-known. There are also papers investigating a specific framework exclusively.
However, measurements require similar test conditions, i.e., comparable hardware and software
setups, to ensure comparability. The paper by García-Dorado et al. [56] provides those conditions
but measures only a few selected aspects. Therefore, we try to give a fair comparison by
testing each framework on the same hardware. We include additional measurements, such as
the transmission of packets or latency determination. We also introduce a novel model to provide
a basic understanding how packet processing applications work and how their performance can
be estimated.

5.1.3 Performance Considerations
We present a model that provides insights into the performance of the packet processing appli-
cations built for high-speed IO frameworks. It uses the main factors influencing performance
to provide an upper bound for the capabilities of a software-based packet processing system
that were analyzed and modeled in Section 4.1. In this section, we build upon this modeling
framework and derive a model to describe high-performance packet processing frameworks.

Upper Bound for Packet Processing
The investigated system uses 10G Ethernet attached via an 8× PCIe 2.0 port, a single CPU
with a clock frequency of 3.3 GHz, and dual-channel DDR3-1333 memory. With 10G Ethernet
offering the lowest bandwidth of the available interconnects, the entire system can become
bandwidth-bound at a throughput of 10 Gbit/s. The system becomes CPU-bound in case the
computing resources of the CPU are exhausted. According to Equation 4.6, the throughput of
the overall system (Tmax) is the minimum of both upper bounds—bandwidth (T Ethernet

max) and
CPU (T CPU

max).

Equation 4.5 defines a function to calculate T CPU
max based on the clock frequency of the CPU

fCP U , the average per-packet costs c, and the packet size p. In the following, we want to
analyze and model the consumption of CPU resources for high-performance packet processing
frameworks and applications based on them. The value for T CPU

max depends on the resources
provided by the CPU—the cycles. These processing cycles can either be used to handle packets
or to process other tasks. Costs for an individual packet are represented by cpacket

i . All costs for
other processing tasks running on the CPU are summed up in cother. To successfully execute a
task with the given costs, these costs may not exceed the available computing resources fCP U ,
which leads to the Inequation 5.1.

fCP U ≥ cother +
n∑

i=0
cpacket

i (5.1)

42

5.1 Comparison of Packet Processing Frameworks

T CPU
max

c%
busy

c%
IO

c%
task

0 Tequal

0

T Ethernet
max

Cost ctask

T
hr
ou

gh
pu

t
n

Figure 5.1: Model for packet processing (cf. Gallenmüller et al. [38])

The total costs of packet processing in CPU cycles are determined by the right side of Inequa-
tion 5.1. This sum contains the number of processed packets represented by the number of
packets per second n and the individual costs cpacket

i of the packets. The maximum number
of cycles per second fCP U is a fixed value depending on the hardware. To get the maximum
packet rate the system can handle, n has to be maximized with respect to Inequation 5.1.

Figure 5.1 shows the combination of the two upper bounds Tmax as combination of T Ethernet
max and

T CPU
max with respect to growing costs per packet described by the x-axis. For this section, only

the dashed and dotted lines are relevant. As long as T Ethernet
max is reached, the costs T CPU

max are
low enough to be entirely handled by the available CPU, the traffic is bound by the limit of the
NIC. At point Tequal, the throughput begins to decline. Beyond this point, the CPU processing
time does not suffice the traffic capabilities of the NIC, i.e., the traffic becomes CPU-bound and
the throughput subsequently sinks.

The costs per packet determine how many packets can be processed without surpassing the
computational limit T CPU

max . The actual shape of T CPU
max cannot be determined as it depends on

the traffic and the processing task. Regardless of the precise shape of this curve, the outcome
stays the same, i.e., higher per-packet costs decrease the throughput. The hyperbolic shape of
T CPU

max depicted in Figure 5.1 holds for packet processing frameworks and is explained in detail
in the following section.

5.1.4 High-Performance Prediction Model
According to Rizzo, packet processing costs can be divided into per-byte and per-packet costs,
with the latter dominating for IO frameworks; i.e., it is only slightly more expensive to send
a 1.5-kilobyte packet than sending a 64-byte packet [28]. This leads to two assumptions to
be made. The first assumption is that the per-packet costs are constant for high-performance
IO frameworks. The second one is that experiments are performed under the most demanding
circumstances if the highest packet rate is chosen, i.e., 64-byte packets have to be used.

In case of constant costs per packet ∀i : cpacket
i = cpacket

const and a dedicated core for packet
processing leads to cother = 0. If the packet processing application itself also generates a

43

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

constant load per packet and the high-performance frameworks have roughly constant costs per
packet and use dedicated cores for packet processing, Inequation 5.1 can be simplified to the
following inequation:

fCP U ≥ n · cpacket
const (5.2)

If packet processing includes actions that depend on the type of packet or the traffic charac-
teristics, the computation may become infeasible. Such a scenario may be packet monitoring
where certain types of packets require additional CPU cycles for further analysis [75]. Without
restriction to specific traffic patterns, it is still possible to approximate the overall costs with
average per-packet costs or to do a worst-case estimation.

Due to the architecture of the frameworks, which all poll the NIC in a busy waiting manner, an
application uses all the available CPU cycles all the time. If the limit of the NIC is reached, but
n · cpacket

const is lower than the available CPU cycles, the cycles are spent waiting for new packets
in the busy-wait loop. If these costs are included, a new value is introduced c∗packet

const and both
sides of the former Inequation 5.2 are now balanced:

fCP U = n · c∗packet
const (5.3)

The costs per packet c∗packet
const can originate from different sources:

c∗packet
const = cIO + ctask + cbusy (5.4)

1. cIO: These costs are used by the framework for sending and receiving a packet. The
framework determines the amount of these costs. In addition, these costs are constant per
packet due to the design of the frameworks by completely avoiding operations depending
on the length of the packet, e.g., buffer allocation.

2. ctask: The application running on top of the framework determines those costs, which
depend on the complexity of the processing task.

3. cbusy: These costs are introduced by the busy waiting on sending or receiving packets. If
throughput is lower than Tmax, i.e., the throughput becomes CPU-bound, cbusy becomes
0. The cycles spent on cbusy are effectively wasted as no actual processing is done.

Combining Equations 5.3 and 5.4 leads to:

fCP U = n · (cIO + ctask + cbusy) (5.5)

44

5.1 Comparison of Packet Processing Frameworks

Figure 5.1 depicts the behavior of the throughput while gradually increasing ctask as described by
Equation 5.5. The highlighted areas show the relative part of the three components of c∗packet

const .
Each area depicts the accumulated per-packet costs of their respective component x called c%

x .

The relative importance of c%
IO compared with c%

task decreases for higher task complexity because
of two reasons. The first reason is the decreasing throughput with fewer packets needing a lower
amount of processing power. The second reason is that while ctask increases, the relative portion
of cycles needed for IO gets smaller.

Low values of ctask and only parts of the cycles spent on cIO, increase busy waiting that leads
to a high value for cbusy. c%

busy decreases linearly while c%
task grows accordingly until cequal is

reached. This point subsequently marks the cost value, where no cycles are wasted on busy
waiting.

ctask increases steadily, which leads to a growing relative portion of c%
task.

5.1.5 Performance Comparison
The available CPU cycles are the main limiting factor of software packet processing. Subse-
quently, the throughput of a packet processing application heavily depends on the number of
CPU cycles available for its processing task. This number of CPU cycles is influenced by mul-
tiple factors and the following measurements present a selection of factors we consider relevant
for real-world applications: The overhead caused by the complexity of packet processing, the
time the CPU spends waiting for data to arrive in the CPU cache, and the effect of different
batch sizes, i.e., whether the packet throughput rises if more packets are processed per call. For
every factor, a dedicated measurement is performed. We investigate the batch size, as it, in
particular, determines the queuing delay of the packets on the processing system and latency
during packet forwarding.

Initially, we explain the test setup and various methods to precisely determine the used CPU
cycles and check them for the applicability for our tests.

Measurement Setup
Instead of the typical two-server setup, this setup uses three servers with the load generator
split into a load generator and a traffic sink. The split has been necessary due to hardware
restrictions: only single port NICs were available, and the traffic source and sink could only
hold a single NIC. The DuT is configured as a forwarder running the investigated frameworks,
connected to the load generator and the traffic sink via 10G links. The forwarder is equipped
with a dual-port Intel X520-SR2 NIC, the load generator and sink use single port X520-SR1
NICs. These cards use PCIe v2.0 with 8 lanes, which offers a usable link bandwidth of 32 Gbit/s
in both directions. The Intel cards were chosen, as driver implementations exist for each of
the investigated frameworks. This avoids a possible performance impact introduced by different
kinds of NICs. The server acting as forwarder runs on an Intel Xeon E3-1230 V2 CPU. The
clock speed was fixed to 3.3 GHz, with power conserving mechanisms, Turbo Boost, and Hyper-
Threading deactivated to make the measurements consistent and repeatable.

45

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

The forwarder statically forwards packets between the two interfaces without consulting a rout-
ing or flow table. It modifies a single byte in the packet to ensure that the packet is loaded into
the Level 1 cache. Forwarding is done in a single thread pinned to a specific core.

As performance depends on the number of processed packets rather than the length of the
individual packets, we use CBR traffic with the minimum packet size of 64 B for all measurements
in Section 5.1 to maximize the load on the frameworks. The packets are counted on the sink
using the statistics registers of the NIC.

We conducted measurements with a version of netmap, which was published on March 23, 2014,
in the official repository [25], PF_RING ZC version 6.0.2 [27], and DPDK version 1.6.0 [47].

Our packet generator MoonGen [16] was used for latency measurements. It uses hardware
features of our Intel NICs for sub-microsecond latency determination.

Every data point in our performance measurements is an average value. This value is calculated
from 30 single measurements over a period of 30 s. Confidence intervals are omitted as results
are stable and repeatable for all frameworks. An observation also made by Rizzo in the initial
presentation of netmap [28].

Determine the Transmission Efficiency
All of the frameworks can forward packets at full line rate with a single CPU core for the
tested hardware. To measure the transmission efficiency expressed by the CPU load caused
by packet transmission, the CPU load generated by each framework needs to be compared. In
Equation 5.5 this efficiency is referred to as cIO. A low number of cycles spent on cIO increases
the number of cycles available for the actual packet processing task, i.e., ctask. In return,
this allows more demanding applications to be built using more efficient frameworks without
performance penalties.

Known approaches for measuring CPU load: Due to their architecture (cf. Section 5.1.1), ex-
cessive polling on the NIC causes the CPU cores used by the frameworks to be under full load at
all times. Therefore, a simple comparison of CPU usage by a tool like top does not work. For
this kind of measurement, there is no way to tell the relative portions of the three components
of c∗packet

const in Equation 5.5 apart.

The use of a profiling tool would list the relative portion of each called function. By adding
up the result for the functions associated with cIO, this component could be determined. This
method was also rejected as the overhead introduced by the interrupts caused by the profiling
tool itself lowers the throughput and affects the measurement.

Rizzo measured efficiency by reducing the CPU clock frequency until the throughput of the
NIC was beginning to decline [28]. At this point, no busy-wait cycles happen, as depicted in
Figure 5.1. This results in a cbusy value of 0. The packet processing task was simplified so that
this component named ctask can also be neglected. Only the component cIO remains, which is
the efficiency of the framework. However, even at the lowest supported clock speed (1.6 GHz) in

46

5.1 Comparison of Packet Processing Frameworks

our test setup, the forwarders transmitted at line rate. Therefore, this solution could also not
be applied.

Novel method: To overcome the flaws of the previously presented methods for determining
efficiency, we introduce a novel method for our measurements. Therefore, we add a piece of
software, producing a constant load per packet on the CPU. The load can be specified as a
number of CPU cycles to wait. This value can be increased until the throughput begins to
decline. Intel provides a benchmark method [76] based on a clock counter called time stamp
counter (TSC). We used this guide to design and calibrate this load mechanism. The code
containing the load generation and benchmarking mechanisms is publicly available [77].

At the point of decline, cbusy is known to be 0, ctask is known by design. Subsequently, cIO can be
calculated. For this experiment, the forwarders were modified to implement this emulated CPU
load ctask by spending a predefined number of CPU cycles per packet beside the framework’s
packet IO operations. The forwarders do not perform any lookup operation. Hence, the basic
performance tests ignore cache effects that impact more complex packet processing applications
that require lookups in a data structure (e.g., a forwarding or flow table). Therefore, we can
assume that the basic forwarding applications spend a fixed number of CPU cycles per packet.

Measure the Transmission Efficiency
Figure 5.2a presents the results of throughput measurements with different CPU loads for the
task emulator. As anticipated by our model in Figure 5.1, an increasing workload decreases the
measured throughput. In the next step, we get back to our goal of measuring the per-packet
CPU load consumed by each framework. To forward a packet, a CPU core dedicates cycles for
transmission (cIO), i.e., for receiving and sending a packet, cycles for the emulated task (ctask),
and possibly cycles to poll the NIC unnecessarily (cbusy).

Knowing fCP U , and taking T Ethernet
max and T CPU

max from Figure 5.2a allows for the calculation of
cbusy +cIO by applying Equation 5.5. These results are shown in Figure 5.2b for each framework.
Starting at around 220 cycles for cbusy+cIO the graph decreases until the throughput is no longer
limited by the 10 Gbit/s line rate. At this point, the throughput becomes limited by the CPU
and no busy-wait cycles happen any longer, i.e., cbusy = 0. This allows for the separation of the
two components, cbusy and cIO, into two individual graphs, also depicted in Figure 5.2b.

netmap becomes CPU-bound with 50 cycles of additional workload per packet, DPDK and
PF_RING ZC after 150 cycles. At this point, cIO, which describes the cycles needed for a packet
to be received and sent by the respective framework, reaches its lowest value and stays roughly
constant for all higher packet rates. DPDK has the lowest CPU cost per packet forwarding
operation with approximately 100 cycles.

We measured a cIO of approximately 900 cycles for forwarding applications based on the Linux
network stack in previous work [71]. This means that the frameworks discussed in this thesis
can lead to a nine-fold performance increase over traditional network applications.

47

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

0 200 400 600 800 1,000
0

5

10

15

ctask [CPU cycles]

T
hr
ou

gh
pu

t
[M

pk
ts

/
s]

netmap (nm)
PF_RING (PR)

DPDK (DK)

(a) Forwarding with an emulated task

0 200 400 600 800 1000
0

50

100

150

200

250

ctask [CPU cycles]

C
P
U

cy
cl
es

nm (cIO + cbusy) nm (cIO) nm (cbusy)
PR (cIO + cbusy) PR (cIO) PR (cbusy)
DK (cIO + cbusy) DK (cIO) DK (cbusy)

(b) Transmission cycles cIO & busy polling cycles cbusy

Figure 5.2: Transmission efficiency measurements (cf. Gallenmüller et al. [38])

Influence of Caches
The forwarding scenarios in the previous section ignored the influence of caches, which can
introduce a delay when accessing a data structure, e.g., the routing table. To imitate this
behavior, the task emulator described in the preceding section was enhanced to access a data
structure while transferring packets.

The necessary time to access data residing in RAM is shortened by the ability of modern CPUs
to buffer accesses to RAM by integrating a hierarchy of several caches differing in size and access
time. To test for different scenarios with only partly filled caches, the size of the data structure
was made adaptable. The software influences what is put into cache indirectly by accessing data
in RAM, which is then put into the cache or by giving hints to memory addresses via specialized
commands. To optimize for typical access patterns, data close to already accessed addresses can
be prefetched by the CPU before it is accessed [46]. Our tests showed that if a data structure
is accessed linearly, this prefetching is working efficiently enough to hide the slow access speed
to RAM. In the scenario of a routing table, the data to be accessed is determined by the traffic
and the access pattern is likely to be non-linear.

48

5.1 Comparison of Packet Processing Frameworks

1 k 16 k 256 k 4 M 64 M 512 M
0

5

10

15

Working set size [B] (log2 scale)

T
hr
ou

gh
pu

t
[M

pk
ts

/
s]

DK L1 cache size
PR L2 cache size
nm L3 cache size

(a) Performance with memory accesses

1 k 16 k 256 k 4 M 64 M 512 M
100

101

102

103

104

105

106

107

108

Working set size [B] (log2 scale)

C
ac
he

m
is
se
s
[H

z]
(l
og

10
sc
al
e)

L1 misses L1 cache size
L2 misses L2 cache size
L3 misses L3 cache size

(b) Cache misses for DPDK

Figure 5.3: Cache measurements (cf. Gallenmüller et al. [38])

To mimic a worst-case scenario, the addresses accessed were randomized. Aiming for a realistic
scenario, the prefetching was counteracted using a circular linked list with a random access
pattern. This was achieved by randomly chosen links between the list elements while ensuring
that the permutation contains a single cycle so that all memory locations are accessed once
when the entire list is traversed. This guarantees random access on RAM or cache by iterating
one step through the list for each received packet. The size of the linked list can be varied
to emulate different routing or flow table sizes. An implementation of this data structure is
publicly available [77].

Figure 5.3a depicts the throughput of the investigated frameworks in relation to the list size
of our task simulator. For every packet processed, one emulated table lookup was performed.
To investigate CPU-limited, rather than NIC-limited, throughput, a constant CPU load of 100
cycles was introduced, the point in Figure 5.2a where the throughput was beginning to decline
for all three frameworks. This offset explains the lower throughput of netmap in Figure 5.3a, as
expected from the data in Figure 5.2a.

The CPU in our test server has three cache levels, L1, L2, and L3 with 32 kB, 256 kB, and 8 MB,
respectively [46]. Measurements showed that the average access time is 10 cycles for list sizes
≤ 32 kB, grows to 20 cycles for list sizes ≤ 256 kB, increases to 60 cycles for list sizes ≤ 8 MB,
and finally reaches 250 cycles on average for list sizes larger than that. The measured access
times are higher than specified by the manufacturer (cf. Table 4.2). Our measured costs include
the processing costs for the data structure. As the L3 cache is shared across all cores, these
access times include the additional accesses by other running processes.

The graph in Figure 5.3a shows no clear transition from L1 to L2 due to the low 10 cycle increase.
The decline at around 256 kB is visible due to the higher speed difference between L2 cache and
L3 cache. The next drop in the graph is the transition between L3 cache and non-cached RAM
accesses.

49

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

0 250 500 750 1000
0

5

10

15

Ctask [CPU cycles]

T
hr
ou

gh
pu

t
[M

pk
ts

/
s]

8 batch nm 8 batch DK 8 batch PR
32 batch nm 32 batch DK 32 batch PR
256 batch nm

Figure 5.4: Throughput influenced by batch sizes (cf. Gallenmüller et al. [38])

DPDK is slightly slower than PF_RING ZC when the data structure fully occupies the L2 cache.
This means that DPDK has a higher cache footprint than PF_RING ZC.

Figure 5.3b plots the cache misses, obtained by reading the CPU’s performance registers. Only
the results for DPDK are given. The results for netmap and PF_RING ZC are similar and
excluded from the graph to improve readability. The number of cache misses starts at a certain
level and begins to rise as a cache fills until the size of the test data exceeds the respective cache
size. This observation holds for every cache level.

The data of Figure 5.3a can be used to test our model against a different problem. In contrast
to the previously fixed load per packet, in this experiment, the load per packet was determined
by the cache access times. However, even under these circumstances, the model provides a good
estimation if average per-packet costs are used. At a list size of 256 MB, the average costs to
access a list element, ctask, are 250 cycles. Taking the 100 extra cycles into account, leads to
average costs of 350 cycles for ctask. For DPDK, the cIO is roughly 100 cycles and fCP U is
3.3 GHz. The expected throughput is 7.3 Mpkts/s with our model and the measured value in
Figure 5.3a is 7.1 Mpkts/s. The minor difference can be explained by the fact that the test data
structure also competes for cache space with data required by the framework, which results in
additional overhead beyond the cache miss when sending or receiving packets. Therefore, the
size of the data structures required for routing also needs to be considered when designing a
software router.

Influence of Batch Sizes
In the following measurements, we analyze the influence of the batch size, i.e., the number of
packets handled by one API call. The tests shown in Figure 5.4 were conducted using different
batch sizes with increasing CPU load using the task emulator. For each iteration of the test,
the batch size was doubled, starting at a batch size of 8 up to a batch size of 256. The results
show that each framework profits from larger batch sizes. PF_RING and DPDK reach their
highest throughput at a batch size of 32. Therefore, the larger batch sizes are omitted for
those frameworks in Figure 5.4 because they also do not have adverse effects on the throughput.

50

5.1 Comparison of Packet Processing Frameworks

8 16 32 64 128 256
1

10

100

1,000

Batch size

La
te
nc

y
[µ
s]

(l
og

10
sc
al
e)

DK
PR
nm

Figure 5.5: Average latency by batch size (cf. Gallenmüller et al. [38])

netmap needs a batch size of at least 256 to reach a throughput performance close to the other
two frameworks. This is due to the relatively expensive system calls required to send or receive
a batch (cf. Section 5.1.1).

Latency
Increasing the batch size boosts throughput but raises latency because the packets spend a longer
time queued if processed in larger batches. Overloading a software forwarding application causes
a worst-case behavior for the latency because all queues will fill up. Hence, a high latency is
expected for all cases where packets are dropped due to insufficient processing resources.

We used the IEEE 1588 hardware timestamping features of the Intel 82599 controller to measure
the latency of the forwarding applications [20]. The packets are timestamped in hardware on
the source and sink immediately before sending and after receiving them from the physical layer.
The timestamps do not include any software latency or queuing delays on the source and sink.
This achieves sub-microsecond accuracy. [16]

Figure 5.5 shows the average latency for different batch sizes under a packet rate of 99 % of
the line rate and no additional workload. Using line rate with CBR traffic causes delays after
a minor interruption (like printing statistics) because it is not possible to send faster than the
incoming traffic. The latencies were acquired by sending timestamped packets periodically (up
to 350 pkts/s) at randomized intervals using a different transmit queue on the load generator.
The timestamped packets are indistinguishable from the regular load packets for the forwarding
application.

Both DPDK and PF_RING ZC are overloaded with a batch size of 8, netmap with all batch
sizes smaller than 256, as described in the previous section. This causes all queues to fill up and
the applications exhibit a worst-case behavior that is typical for a system that is overloaded.
DPDK and PF_RING achieve an average latency of 9 µs with a batch size of 16 and the latency
then gradually increases with the batch size. PF_RING ZC gets slightly faster than DPDK for
larger batch sizes. netmap achieves an average forwarding latency of 34 µs with a batch size of
256.

51

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

These latencies can be compared with other forwarding methods and hardware switches: Rotsos
et al. [73] measured a latency of 35 µs for OvS under light load and 3 µs to 6 µs for hardware-
based switches. Bolla and Bruschi [55] measured 15 µs to 80 µs for the Linux router in various
scenarios without packet loss and latencies in the order of 1000 µs for overload scenarios.

5.1.6 Conclusion
High-speed packet IO frameworks are no longer in fledgling stages and allow for a multiple of
the packet rates of classical network stacks. The performance increase comes from processing in
batches, preallocated buffers, and avoiding costly interrupts.

We described the processing performance of high-speed packet IO frameworks. Starting with a
model describing packet processing software in general, this model is gradually adapted to reflect
applications using high-performance frameworks. For our experiments, we rely on a precisely
generated load on the CPU. We release the tools that we used for load generation as a separate
library called SHEEP [77]. SHEEP consists of two tools—CPULoader and CacheLoader—that
can be used independently.

Our experiments with these tools showed the performance characteristics predicted by our re-
source model. Thus proving the assumptions right, which we made during the development of
this model. The CPU time spent on receiving and transmitting packets, for instance, remained
constant despite the influence of the varying processing times per packet. Further measurements
showed that this model could be applied to estimate processing tasks, which can be approxi-
mated with a constant average load. A possible use case for this model is to evaluate the PC
systems’ eligibility for specific packet processing tasks.

We also showed the trade-off between throughput and latency with different queue sizes. Larger
batch sizes increase the performance but also the average latency. However, there is also a
minimum batch size where the frameworks are overloaded. In that case, latency is a multiple
of what it could be if the packets would be sent in larger batches. These results can be used
to choose the configuration and the framework best fit for an application’s requirements, i.e.,
smaller batch sizes for applications sensitive to high latency or larger batch sizes for applications
where raw performance is critical.

If merely performance and latency figures are considered, DPDK and PF_RING ZC seem to
be superior to netmap. Though netmap has advantages. It uses well-known OS interfaces
and modified system calls for packet IO, leading to increased performance while remaining a
certain degree of interface continuity and system robustness by performing checks on the user-
provided packet buffers. DPDK and PF_RING ZC favor more radical approaches by breaking
with those concepts, resulting in even higher performance gains, but lack the robustness and
familiarity of the API. An application built on DPDK or PF_RING ZC can crash the system
by misconfiguring the NIC, a scenario that is prevented by netmap’s kernel driver.

We conclude that the modification of the classical design for system interfaces results in higher
performance. The more these interfaces are modified, the higher the packet rates that can be
achieved. As a drawback, this requires applications to be ported to one of these frameworks.

52

5.2 High-Speed Packet Processing for Network Function Chaining

5.2 High-Speed Packet Processing for Network Func-
tion Chaining

Section 5.2 is based on collaborative work between Wolfgang Hahn, Borislava Gajic, Florian
Wohlfart, Daniel Raumer, Paul Emmerich, Sebastian Gallenmüller, and Georg Carle [78].

The availability of high-speed packet processing frameworks allows the creation of powerful
packet processing applications. In the following, we present a methodology for designing and
measuring such applications.

Network function chains (NFCs) are a concept first described by the European Telecommunica-
tions Standards Institute (ETSI) in 2012 [79]. This concept describes the functionality, formerly
running on dedicated hardware devices, shifting into software running on off-the-shelf servers.
To create complex applications, basic packet processing tasks, so-called network functions (NFs),
are combined to form an NFC. Snabb [69] is a packet processing framework fostering such an
architecture, similar to the frameworks presented in Section 5.1.

Overprovisioning of resources harms efficiency and the lack thereof impacts application perfor-
mance; two effects equally unwelcome when it comes to the design and operation of network
applications. Knowing the performance of the available architecture would allow the efficient
operation of NFs [79]. A straightforward way to determine the performance of an NFC is the
measurement of the NFC under different load and configuration scenarios. Creating and setting
up such a realistic measurement environment can be extensive and complex. Section 5.1 demon-
strates that the CPU is the main bottleneck for all packet processing applications except for
simple L2 forwarders. Subsequently, the performance of an NF depends on the CPU load caused
by the application. By emulating the CPU load caused by different NFs, the performance can
be measured without the need to create the actual NF or a complex configuration.

For emulating the CPU load, we use SHEEP [77]. Like MoonGen, Snabb uses LuaJIT’s FFI
to include and call C libraries such as SHEEP conveniently. That feature allowed us to create
an NF implementing SHEEP. The SHEEP-enabled NF can create a static processing load by
waiting for a specified number of CPU cycles for every received packet. This can be used to
create packet processing tasks causing a constant overhead, e.g., the encryption or decryption
of a fixed number of bytes. Besides constant overhead, dynamic costs can occur, e.g., the prefix
lookup during routing or a rule lookup for a firewall NF. Dynamic costs are influenced by the size
of the CPU caches and lookup data structures or the number of lookups per packet. To emulate
the CPU load of an NF, the SHEEP-enabled NF can be configured with three parameters: a
fixed delay of CPU cycles per packet, the number of data structure accesses in the cache loader
data structure per packet, and the size of the data structure. Static and dynamic load can
be used exclusively or combined. Following that approach, the performance of the entire NFC
under specified CPU load conditions can be emulated.

We adapt the resource model to NFC in Section 5.2.1 before validating our assumptions with
measurements in Section 5.2.2. We conclude our findings in Section 5.2.3.

53

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

5.2.1 Network Function Chain Model
An NFC is a packet processing application; therefore, we can use the model introduced in
Section 5.1.3 to predict its performance. The original model, given in Equation 5.5, considers
three cost components cIO, ctask, and cbusy. Snabb receives and sends packets (cIO), processes
packets (ctask), and applies a busy-polling reception (cbusy), enabling an application of our model
to this use case.

A characteristic element of NFCs is their chaining functionality. Chaining costs occur when
handing over packets from one NF to another NF. Therefore, we introduce a new cost component
into our model called cchain. The costs for chaining depend on the number of chain elements
e and the costs for chaining two elements cchain−element. The initial reception and the final
transfer of a packet are not part of the chaining costs but part of cIO. Therefore, an NFC
with a single NF has chaining costs of 0. The per-packet chaining costs can be calculated using
Equation 5.6.

cchain = (e − 1) · cchain−element (5.6)

CPU costs of an application (ctask) can be divided into two components: the calculation and
data access costs (cf. Section 4.1.2). For complex packet processing, a typical task for NFCs,
we consider both components separately to provide a deeper understanding of packet processing
performance and potential bottlenecks. Therefore, we split ctask into two components ctask−calc

and ctask−access, for calculation and access costs. Utilizing SHEEP, we can emulate both com-
ponents separately. Applying these extensions to the original model leads to Equation 5.7.

fCP U = n · (cIO + cchain + ctask−calc + ctask−access + cbusy) (5.7)

Equation 5.5 can be used to predict the upper bound for throughput performance of an NFC.
The model uses the CPU resources, its frequency fCP U , that limits the number of processed
packets n depending on the per-packet costs c∗.

5.2.2 Network Function Chain Measurement
To check the prediction of Equation 5.7, we conduct measurements. For these measurements,
we used the typical two-server setup consisting of a load generator and a DuT. The DuT sever
was equipped with an Intel Xeon E3-1230 CPU (4 cores, 3.2 GHz), 16 GB RAM, and an Intel
10G X540 NIC. The server was running Debian Linux (Jessie, kernel version 3.16) and Snabb in
version 2016.11. The DuT runs Snabb using different NFCs forwarding packets from an ingress
to an egress port. The entire chain uses a single CPU core. The load generator used MoonGen
to generate 64-byte UDP packets in a CBR pattern.

54

5.2 High-Speed Packet Processing for Network Function Chaining

4 k 32 k 256 k 8 M 256 M 8 G
0

0.5

1

1.5

2

2.5

3

Working Set Size [B] (log2 scale)

T
hr
ou

gh
pu

t
[M

pk
ts

/
s]

Working set accesses 100
Working set accesses 200
Working set accesses 400
Model (working set accesses 100)
Model (working set accesses 200)
Model (working set accesses 400)

(a) Throughput measured and modeled

4 k 32 k 256 k 8 M 256 M 8 G
0

0.2

0.4

0.6

0.8

1

1.2
·105

Working Set Size [B] (log2 scale)

C
P
U

cy
cl
es

Working set accesses 100
Working set accesses 200
Working set accesses 400
Cache level sizes

(b) Average measured per-packet costs (cf. Hahn et al. [78])

Figure 5.6: Forwarding with SHEEP-enabled NF

To determine the IO costs for Snabb, we use a SHEEP-enabled NF. We configure per-packet
calculation costs (ctask−calc) of 500 cycles per packet, to avoid spending cycles for busy polling,
i.e., cbusy is 0. Only one chain element is configured, so cchain is 0, ctask−access is configured to
0 in the NF. Using this measurement, we calculate per-packet IO costs, cIO, of approximately
100 cycles.

Chaining costs can be determined using the identical forwarding NF five times in a row. This
longer chain increases the forwarding costs and the 10G line rate could no longer be reached,
i.e., cbusy is 0. Knowing the cIO costs, and setting ctask−∗ to 0, allows us to calculate cchain.
Applying Equation 5.6 to our results leads to chaining costs of 35 cycles (cchain−element) between
two NFs.

With known chaining and IO costs and configurable costs for the processing task, we can try
to predict the per-packet costs of an NFC using Equation 5.7. To model the data access costs,
ctask−access, we used the ideal model presented in Section 4.1.3. To create more realistic ap-
proximations for ctask−access, we add cycles to reflect the overhead of SHEEP. Measurements

55

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

have shown an overhead of 10 cycles per access. We further reduce the cache size that can
effectively be used for storing the data structure, as parts of the caches on L2 or L3 are used as
instruction cache. Measurements have shown that a value of 85 % is realistic for the investigated
application.

Figure 5.6b shows the per-packet data access costs for different configurations of the data set
size and data accesses. We choose data structure sizes between 4 kB and 8 GB and configure the
number of data structure accesses per packet to 100, 200, or 400. The shape of this curve presents
the same step-wise pattern as our ideal model of data accesses (cf. Figure 4.4). Figure 5.6a shows
modeled and measured data for the average throughput.

The modeled data presents a rough estimate of the actual measured data. The model has a
low deviation for RAM accesses. However, the cache accesses show a higher deviation from the
measurement. One reason for that behavior is the higher impact of small deviations for cache
accesses, i.e., a small error in the prediction of cache access costs can lead to a high impact on
the measured throughput. Another reason for the overestimation in the area of the LLC is the
shared nature of this cache level. Other running tasks that use the LLC are not considered by
our data access cost model.

Varying the data set size leads to non-linear behavior, i.e., steep increases of the per-packet
costs are visible at the cache level limits. We observe the most significant difference when the
working set size exceeds the L3 cache. For the number of data structure accesses, a linear trend
is visible—doubling the number of accesses leads to a two-fold increase in per-packet costs.

5.2.3 Conclusion
We demonstrate a successful application of the resource modeling framework to NFC. To meet
the requirements of NFC, we introduce chaining costs as a new component of the resource
model. Our measurements show that Snabb offers IO costs of 100 cycles—the same IO costs
per packet as DPDK. Further, we demonstrate that our model can provide a rough estimation
of the throughput performance of NFCs. The modeling of the access costs is less robust than
calculation costs, due to the dynamic behavior of caches themselves and the shared LLC that
can be influenced by the OS or other applications.

5.3 High-Performance Software Router
Section 5.3 is based on collaborative work between Sebastian Gallenmüller, Paul Emmerich,
Rainer Schönberger, Daniel Raumer, and Georg Carle [80] and a technical report by Paul Em-
merich, Sebastian Gallenmüller, Rainer Schönberger, Daniel Raumer, and Georg Carle [81].

Creating quick and dirty prototypes is a simple and effective way to demonstrate the feasibility of
new ideas in network research. Though, a small-scale proof-of-concept may lack the performance
needed to apply them to real-world test cases. Thanks to powerful packet processing frameworks
such as netmap and DPDK, high-performance packet forwarding systems can be implemented
in software today.

56

5.3 High-Performance Software Router

We present MoonRoute, a framework dedicated to developing powerful software routers. It is
built on top of DPDK and utilizes a highly parallelized architecture to achieve high performance
(see Section 5.3.1). MoonRoute offers methods to reuse existing libraries and a scripting interface
for easy extensibility (see Section 5.3.2). We evaluate an example implementation based on the
MoonRoute framework, demonstrate and model its performance, and compare it with other
relevant software routers (see Section 5.3.3). We end our description of MoonRoute with a short
summary (see Section 5.3.4).

5.3.1 High-Performance Design
MoonRoute leverages hardware features of modern NICs, such as RSS, to distribute packets ac-
cording to specified parameters across multiple CPU cores. This functionality for almost perfect
scaling across CPU cores forms the basis to implement scalable multi-core packet processing
applications. To profit from such a hardware design, the software must be programmed accord-
ingly. The threads must be able to run as independently as possible to not interfere with each
other.

The underlying architecture of MoonRoute consists of two different kinds of threads or packet
processing components—the fast path and the slow path. The fast path is concerned with pro-
cessing many packets requiring rather simple processing, i.e., reaching a routing decision and
forwarding packets—fast paths are simple and fast. Other more complex operations, such as
generating an ICMP response for timed-out IP packets, are handled by the slow path. These op-
erations require a more complex control flow, but occur less often than the simple packets—slow
paths are versatile and slow. Building a router exclusively from slow path components would
be possible; however, many functions would only be used rarely. To achieve high performance,
our reference implementation uses both types of components: Several fast path components are
distributed to different CPU cores and a single slow path component running on a separate core.
All components utilize lock-free queues, avoid shared data structures where possible, and em-
ploy read-only data structures where information sharing between different threads is necessary.
This optimized multi-thread design transfers the multi-core scalability provided by hardware
into software.

A widely-used method to increase the performance of software packet processing systems is
batching. In MoonRoute, functions called by fast path components accept, process, and return
packets in batches to maximize throughput. Modules can exclude packets from further pro-
cessing by building new batches (rebatching) or keeping the batches but flagging the packets
for exclusion from further processing by subsequent functions (flagging). Both methods show
disadvantages in certain situations: rebatching introduces additional overhead for building new
batches and flagging leads to inefficiencies for large batches containing only a few packets to
process. Our router implementation uses both methods to optimize performance. Flagging
is used in between function calls in the fast path. Packets are rarely excluded from routing;
therefore, flagging avoids the overhead for rebatching. Flagged packets need to be handled by
the slow path. As the slow path usually handles only a few packets, sending whole batches
with few flags introduces unnecessary load on the slow path. In this situation, the rebatching
approach would slow down the fast path, whereas the flagging approach would decrease the slow

57

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

path performance. For this situation, MoonRoute introduces a novel hybrid approach between
flagging and rebatching we call drop-out batching. There, packets are flagged and remain in the
batches ensuring optimal performance for the fast path. At the same time, flagged packets are
inserted into a separate queue enabling efficient batch processing for the slow path.

5.3.2 Flexible Architecture
The two primary goals of MoonRoute are its high flexibility and easy extensibility. MoonRoute
does not use DPDK directly but relies on libmoon, presented in Section 3.2, inheriting its pro-
gramming language and compiler—Lua and LuaJIT. Modules provide the typical functionality
of the router. These modules represent a specific step in the packet processing task, such as
the routing table lookup, and take an array of packet buffers and a vector of flags as input.
An optional parameter for these modules is the queue to a slow path component, where packet
buffers can be inserted by the module if necessary. Such a module returns the array of packet
buffers and an output vector of flags, signaling the packets to be processed in the next step.

The supported languages to write modules are C/C++ and Lua. The usage of the Lua language
is intended for the initial implementation of quick, low-effort prototypes. It is possible to switch
the prototype implementation for high-performance C/C++ libraries at a later point in time or
reuse existing libraries conveniently through LuaJIT’s integrated FFI. The included reference
router contains a Lua-written main loop, which connects all modules of the router. Adding
Lua code extensions to this main loop is simple. Most of the performance-critical functionality
is handled by C libraries included in DPDK. The libraries are wrapped by a lightweight Lua
wrapper calling the C library via the FFI. MoonRoute’s default router only supports IPv4 in
its current version.

5.3.3 Evaluation and Modeling
Upcoming many-core CPU architectures make parallelization and scalability the critical aspects
of high-performance designs. The following measurements demonstrate how the default router
implementation of MoonRoute scales with CPU clock and cores.

Scaling with CPU frequency
The measurements in Sections 5.1 and 5.2 focus on the underlying frameworks that are used
as a part of packet processing applications. This section investigates an implementation of
a software router resembling a real-world application—the MoonRoute framework. For the
following evaluation, we use MoonRoute’s default router implementation. The test servers are
equipped with an Intel E3-1230 CPU with a base frequency of 3.2 GHz. The CPU has core-
exclusive L1 and L2 caches with 32 kB and 256 kB and a shared LLC of 8 MB. Further, the
server features an Intel X540-T2 NIC offering a bandwidth of 2× 10 Gbit/s.

Figure 5.7 shows the scaling of MoonRoute’s default router with the CPU frequency under
different test scenarios. The test scenarios were chosen to test the router with a different
number of routing table entries. The routing table utilized by MoonRoute implements the DIR-
24-8 algorithm described by Gupta et al. [82]. This algorithm performs the longest prefix match

58

5.3 High-Performance Software Router

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
0

5

10

15
10 Gbit/s

CPU frequency [GHz]

T
hr
ou

gh
pu

t
[M

pk
ts

/
s]

Single dst IP 20-bit random dst IP
21-bit random dst. IP 24-bit random dst. IP

(a) Throughput for different CPU core frequencies (cf. Emmerich et al. [81])

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
0

50

100

150

200

250

300

CPU frequency [GHz]

C
P
U

cy
cl
es

Single dst IP 20-bit random dst IP
21-bit random dst IPs 24-bit random dst IP

(b) Per-packet costs for different CPU core frequencies

Figure 5.7: Scaling of MoonRoute with CPU frequency

as a two-step process. IP addresses are matched with a single lookup if their subnet has a
prefix length of /24 or shorter; otherwise, two lookups are required. Our measurements focus
on measuring the performance of the single-step lookup, so the control flow of the algorithm is
not changed due to longer prefixes during the measurement. The data structure used for the
first lookup in DIR-24-8 is an array with 224 16-byte entries, resulting in a size of 32 MB.

Figure 5.7a demonstrates that performance is not bandwidth-bound, but CPU-bound for all
investigated scenarios. The per-packet costs for each scenario are displayed in Figure 5.7b.
These costs can be classified into different components, as previously defined in Equation 5.4.
With throughput being CPU-bound cbusy is 0. We already measured the constant costs of 100
cycles on DPDK for cIO in Section 5.1.5. The remaining costs are part of ctask. A router
causes different kinds of CPU load for ctask: processing ctask−calc and lookup ctask−access. The
component ctask−calc sums up all tasks the router performs, which are not lookup-related, e.g.,
checking packet headers or decrementing header fields. Performing the longest prefix match
itself is contained in ctask−access. This leads to Equation 5.8 for the routing costs per packet:

59

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

cpacket
routing = cIO + ctask−calc + ctask−access (5.8)

The ctask−calc component is constant for all packets, as the processing costs for each packet are
the same. The ctask−access component, however, depends on the data access costs. Figure 5.7b
demonstrates different scenarios. The first scenario uses test traffic with only a single destination
IP address. Therefore, the same address is looked up in the routing table on each access. This is
the optimal scenario from a caching perspective; the same 16-byte entry is accessed repeatedly.
The accessed date is therefore put into the fastest cache available, minimizing access costs. The
next scenario uses an IP destination address where the 20 most significant bits are randomized.
This means that 220 different entries are looked up repeatedly over the measurement period
in the routing table. Every entry contains 2 B of information. During the measurement, the
CPU tries to cache the accessed entries, which results in a total amount of 2 MB being cached.
This amount of data uses the caches up to the LLC. The next scenario increases the number of
randomized, most significant bits in the destination address to 21. This doubles the amount of
used data to 4 MB, putting even more stress on the LLC. The final, most demanding scenario
increases the amount of used data to 32 MB. This exceeds the limit of the LLC, leading to
matches requiring access to RAM.

Figure 5.7b shows roughly constant per-packet costs across the investigated CPU frequencies for
up to 21 bit. However, in the case of the 24 bit, per-packet costs rise by approximately 40 cycles.
This is a consequence of the two different components ctask−calc and ctask−access. If the CPU
frequency is doubled from 1.6 GHz to 3.2 GHz, the scenario with the single address also doubles
in throughput. This means that per-packet costs, which are dominated by ctask−calc, remain
constant. If the CPU frequency is doubled from 1.6 GHz to 3.2 GHz, the scenario with the 24-bit
randomized addresses does not double in throughput. The per-packet costs increase, which have
a larger amount of ctask−access. The reason for this sub-linear behavior is that increasing clock
frequencies of the CPU do not accelerate the time needed for accessing data, leading to the
observed behavior.

Knowing the per-packet costs and the available number of CPU cycles, the throughput perfor-
mance of MoonRoute can be predicted. For small routing tables, where the influence of routing
table access costs or ctask−access are low, constant per-packet costs lead to a good approximation
of the throughput. Between the least demanding (1 address) and the most demanding scenario
(222), there is a 5 % difference in per-packet costs. However, in the case of large routing tables
requiring RAM accesses, an approximation becomes more difficult. We cannot give a precise
prediction without knowing the access pattern created by the received traffic. If the test traffic
is known, measurements can help to determine the routing table access costs. With these access
costs, an appropriate prediction of per-packet costs and subsequently throughput performance
becomes possible.

60

5.3 High-Performance Software Router

1 2 3 4 5 6 7
0

5

10

15

20

25

30
2× 10 Gbit/s

Number of cores

T
hr

ou
gh

pu
t

[M
pk

ts
/
s]

2.0 GHz single dst IP 2.0 GHz 24-bit random dst IP
1.2 GHz single dst IP 1.2 GHz 24-bit random dst IP

(a) Throughput for different number of CPU cores (cf. Gallenmüller et al. [80])

1 2 3 4 5 6 7
0

50

100

150

200

250

Number of cores

C
P

U
cy

cl
es

2.0 GHz single dst IP 2.0 GHz 24-bit random dst IP
1.2 GHz single dst IP 1.2 GHz 24-bit random dst IP

(b) Per-packet costs for different CPU core frequencies

Figure 5.8: Scaling of MoonRoute with the number of CPU cores

Scaling across CPU cores
Figure 5.8 shows the scaling with the number of CPU cores. In this measurement, we switched
from a 4-core to an 8-core CPU to test scalability across a higher number of cores. We use an
Intel 2.0 GHz Xeon E5-2640 v2 CPU, with the same L1 and L2 cache sizes but a 20 MB LLC.
In addition, we use bidirectional traffic to increase the non-bandwidth-bound range of the DuT.

Figure 5.8a shows a clear linear trend for scaling across multiple cores. Figure 5.8b visualizes
the per-packet costs of this measurement. CPU cycles spent on busy polling may distort the
per-packet costs. Therefore, we calculate the per-packet costs where no busy polling happens
(cbusy = 0), i.e., where the router is fully loaded. Per-packet costs demonstrate that the scaling
is perfect when considering a scenario with only a single destination IP address. The per-packet
costs are constant at 190 cycles, independent of the core clock rate or the number of cores. In
the scenario where the 24 most significant bits are randomized, there is a difference between
the different clock rates, with the higher clock rate having higher packet costs. At 1.2 GHz,
we measure per-packet costs of 220 cycles and 230 cycles at 2.0 GHz. This difference can be
attributed to the data access costs (ctask−access), which increase as cache and RAM accesses are
not scaled with the CPU core frequency.

61

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

216 217 218 219 220 221 222 223 224
0

5

10

15
10 Gbit/s

L3 cache size

Number of /24 networks used

T
hr
ou

gh
pu

t
[M

pk
ts

/
s]

2× 1.6 GHz
3.2 GHz

Figure 5.9: Comparison of LPM execution on one and two CPU cores (cf. Emmerich et al. [81])

Figure 5.8b does not show rising per-core costs as the 24-bit plot shown in Figure 5.7b. The
measurements use CPUs that offer different LLC sizes (8 MB vs. 20 MB). The larger LLC hides
the high costs for accessing RAM.

Our measurements show that scaling across CPU cores works well for MoonRoute, offering
almost perfect linear scaling with up to 6 CPU cores. Without cache effects, the throughput
can be predicted by using the available CPU cycles on several cores and by measuring the
components of the per-packet costs cIO and ctask−calc. Cache effects, reflected by ctask−access,
increase costs and are not easily predictable without measuring a specific scenario. However,
measurements have shown that a large LLC can help to lower the impact of RAM access on
throughput performance.

Frequency vs. Per-Core Scaling
The measurement depicted in Figure 5.9 uses the Intel E3-1230. There, the two scaling methods,
CPU cores and frequency, are compared directly. The first scenario uses two cores throttled to
a frequency of 1.6 GHz; the second scenario uses a single core with a clock speed of 3.2 GHz.
Although the same number of CPU cycles is available in both setups, the two-core scenario
outperforms the single-core scenario for every investigated routing table size. The relative out-
performance for the two-core scenario starts at a value of 2 % and increases to 12 % after the
routing table size surpasses the capacity of the LLC.

The difference between both setups is the availability of lower-level caches. Both cores in the
two-core setup have their exclusive L1 and L2 caches. With RSS in place, the addresses are
partitioned between the two cores; therefore, the chance for a cache hit increases. Both effects,
the larger amount of lower-level cache and the more efficient cache usage, lead to the outperfor-
mance of the two-core scenario. Using the notation of the model, ctask−access is lower for the
two-core scenario.

Performance prediction is again highly dependent on the access scenario. However, routing
performance profits from the availability of fast caches, therefore a configuration using more
cores and more importantly, a larger amount of fast caches can have a positive performance
impact.

62

5.4 Ultra-Reliable Low-Latency Communication

Router Throughput

[Mpkts/s] [%]

MoonRoute 14.6 100
FastClick (DPDK 2.2) 10.4 72
Click (DPDK 2.2) 4.3 29
Linux 3.7 1.5 10

Table 5.1: Single-core router performance (cf. Gallenmüller et al. [80])

Comparison to Other Software Routers
Table 5.1 demonstrates the single-core performance of MoonRoute compared with other soft-
ware routers, such as the Linux Router, the modular software router Click and FastClick, both
using DPDK as backend. FastClick [59] extends Click with performance-enhancing techniques,
e.g., batch processing. MoonRoute can almost saturate a 10 Gbit/s link utilizing a single core,
improving performance between 30 and 90 % compared with its contestants. These tests demon-
strate the optimal throughput for the respective software routers, each containing only a single
routing table entry.

5.3.4 Conclusion
Modularity and high performance—often considered conflicting goals for optimization—are
achieved by MoonRoute’s careful design choices: the two-path design separating high from low
priority tasks, improved performance with batching techniques, and multi-thread optimized data
structures. The just-in-time compilation for Lua allows leveraging the flexibility of a scripting
language without sacrificing performance and employing a convenient FFI to allow easy code
reuse. The performance evaluation of our reference router offers insights into its scalability.
Routing costs can be divided into two classes, the data access costs and processing costs. We
measured that throughput performance scales perfectly linear with the CPU frequency and
across several CPU cores when considering only the processing costs. This allows a reliable
prediction of throughput performance. However, data access cannot be scaled as easily, which
may lead to sub-linear scalability. The impact of the data access costs on throughput perfor-
mance depends on the specific usage scenario. Measurements of this usage scenario can help to
determine access costs reliably, thus allowing a throughput prediction. Scaling across CPUs can
additionally increase the amount of cache memory, which helps to minimize data access costs.

5.4 Ultra-Reliable Low-Latency Communication
Section 5.4 is joint work between Sebastian Gallenmüller, Johannes Naab, Iris Adam, and
Georg Carle [4].

The flexibility and adaptability of 5G are considered its main features, enabling the creation
of dedicated wireless networks, customized for specific applications with a certain level of QoS.
The International Telecommunication Union (ITU) identifies three distinct services for 5G net-
works [83]: enhanced mobile broadband (eMMB), a service comparable to LTE networks op-
timized for high throughput; the massive machine type communication (mMTC), a service

63

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

designed for spanning large IoT networks optimized for a large number of devices with low
power consumption; and the ultra-reliable low-latency communication (URLLC), a service for
safety-critical applications requiring high reliability and low latency. These different services
can be realized by slicing the network into distinct, independent logical networks, which can
be offered as a service adhering to customer-specific SLAs, called Network Slice-as-a-Service.
A cost-efficient way to realize network slices is the shared use of network resources among cus-
tomers, e.g., virtualization techniques used on off-the-shelf servers. This makes virtualization
and its implications on performance one of the crucial techniques used for 5G. Virtualization
is the natural enemy of predictability and low latency [84], posing a significant obstacle when
realizing URLLC. In this thesis, we investigate if and how the seemingly contradictory opti-
mization goals, virtualization and resource sharing on the one side and low latency and high
predictability on the other side, can go together. The goals of our investigation are threefold:

1. creating a low-latency packet processing architecture for security functions with minimal
packet loss,

2. conducting extensive measurements applying hardware-supported timestamping to pre-
cisely determine worst-case latencies, and

3. introducing a model to predict the capacity of our low-latency system for overload pre-
vention.

Our proposed system architecture relies on well-known applications and libraries, such as Linux,
DPDK, and Snort. Besides the specific measurements for the Snort IPS, we investigate the per-
formance of the underlying OS and libraries in use, namely Linux and DPDK, which emphasizes
that our results are not limited to Snort but are highly relevant to other low-latency packet
processing applications.

The remainder of our investigation is structured as follows: Section 5.4.1 demonstrates the need
for a new system design of security functions. Background and related work are presented in
Section 5.4.2. In Section 5.4.3, we describe our novel system architecture that is evaluated in Sec-
tion 5.4.3. In Section 5.4.4, we present our model for overload prediction. Considerations about
the limitations and the reproducibility of our system architecture are given in Sections 5.4.5 and
5.4.6. Finally, Section 5.4.7 concludes our analysis by summarizing the most relevant findings
and proposes enhancements for future work.

5.4.1 Motivation
The ITU [83] defines the requirements for the URLLC service as follows: the one-way delay
of 5G radio access networks (RAN) from source to destination must not exceed 1 ms and the
delivery success rate must be above 99.999 %. We demonstrate how security functions facing
input/output events, interrupts, and CPU frequency changes behave concerning the challenging
URLLC requirements.

The following example uses Snort as an inline intrusion prevention system, i.e., every packet has
to pass through Snort, which subsequently influences the delay of every packet. For this example,
all filtering rules are removed, turning Snort into a simple forwarder that is not influenced by

64

5.4 Ultra-Reliable Low-Latency Communication

n-th percentiles

50 99 99.9 99.99 99.999

Snort-fwd 69 µs 88 µs 107 µs 1.7 ms 2.5 ms

Table 5.2: Latencies of a Snort forwarder (cf. Gallenmüller et al. [4])

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.5
1

1.5
2

2.5

Measurement time [s]

La
te
nc

y
[m

s]

Figure 5.10: Snort forwarder worst-case latencies (cf. Gallenmüller et al. [4])

any rule processing. Therefore, the observed behavior represents a best-case scenario providing
a lower latency bound for Snort IPS execution. Snort runs in a Virtual Machine (VM), providing
a realistic multi-tenant setup for 5G networks. The packet rate is set to 10 kpkts/s, a moderate
system load without any packet drops. The measurement runs 30 s. As we are not interested in
the latency spikes caused by the application start-up, we exclude the first second of measurements
from Figure 5.10 and Table 5.2.

Table 5.2 shows the percentiles of latency we measured. Up to the 99.9th percentile, the observed
latency budget is low enough to allow additional packet processing tasks while still meeting
URLLC requirements. For higher percentiles, the basic forwarder already exceeds the latency
budget. Figure 5.10 shows a scatter plot displaying the 5000 worst-case latencies measured over
30 s. We see that latencies exceeding the 1 ms latency budget are not only occurring at the
beginning of measurements due to cache warm-up or other ramp-up effects, but in an irregular
and unpredictable pattern throughout the entire measurement. The latency spike pattern did not
change over time. Therefore, we consider this being the steady-state behavior of our investigated
application.

Thus, different system designs for security functions are needed to meet the strict requirements
of URLLC services. In the following, we demonstrate techniques and frameworks, creating a
low-latency software stack to show that meeting URLLC requirements is possible while using
the same hardware as for this motivating example.

5.4.2 Background and Related Work
After introducing the challenges of 5G, this section focuses on techniques impacting the delay
and jitter caused by software packet processing systems.

URLLC in Industry 4.0: 5G has a strong focus on critical infrastructures or industrial applica-
tions, for instance, industrial control applications of cyber-physical systems. These applications
introduce new requirements for cellular networks, e.g., a high level of availability and end-to-end

65

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

realtime support [85]. According to Yoshizawa et al. [86] 5G, and URLLC especially, must be
developed and designed with security in mind, protecting the user equipment and the network
infrastructure from potential attacks. Our target is the definition of an architecture and mecha-
nisms for security (monitoring) functions to guarantee the QoS during design, deployment, and
modification for URLLC use cases.

Polling vs. interrupts: One possible cause for OS interrupts is the occurrence of IO events, e.g.,
arriving packets, to be handled by the OS immediately. Interrupt handling causes short-time
disruptions for currently running processes. The ixgbe network driver and Linux employ modera-
tion techniques to minimize the number of interrupts and the influence on processing latency [87].
Both techniques were introduced as a compromise between throughput and latency optimiza-
tion. For our low-latency design goal, neither technique is optimal, as the interrupts—although
reduced in numbers—cause irregular variations in the processing delay, which should be avoided.
DPDK [47], a framework optimized for high-performance packet processing, prevents triggering
interrupts for network IO entirely. It ships with its own userspace driver, which avoids interrupts
but polls packets actively instead. Avoiding interrupts leads to execution times with only little
variation also due to DPDK’s preallocation of memory and a lack of costly context switches
between userspace and kernelspace. However, polling requires the CPU to wake up regularly,
increasing energy consumption. The Linux kernel’s Express Data Path (XDP) offers similar
capabilities to DPDK [88]. We focus on DPDK as a DPDK-enabled IPS is already available [89].

CPU features: Numerous guides list CPU and OS features, leading to unpredictable behavior
for application performance on which the following recommendations are based on [90]–[92].
HyperThreading (HT) or simultaneous multithreading (SMT) is a feature of modern CPUs that
allows addressing physical cores (p-cores) as multiple virtual cores (v-cores). Each p-core has
its own physically separate functional units (FU) to execute processes. However, multiple v-
cores are hosted on a p-core, sharing FUs between them. Zhang et al. [93] demonstrate that
sharing FUs between v-cores can impact application performance when executing processes on
v-cores instead of the physically separate p-cores. Modern CPUs can be switched into different
sleep states, which lower CPU clock frequency and power consumption. Switching the CPU
from an energy-saving state to an operational state leads to wake-up latencies. Schöne et al. [94]
measured wake-up latencies between 1 and 40 µs for Intel CPUs depending on the state transition
and the processor architecture.

Despite having physically separate FUs, p-cores share a common LLC. Therefore, processes
running on separate p-cores can still impact each other competing on the LLC. Herdrich et
al. [95] observed a performance penalty of 64 % for a virtualized, DPDK-accelerated application
when running in parallel with an application utilizing LLC heavily. The uncontended application
performance can be restored for the DPDK application by dividing the LLC statically between
CPU cores utilizing the cache allocation technology (CAT) [95] of modern Intel CPUs.

OS features: Beside interrupts caused by IO events, an OS uses interrupts for typical tasks,
such as scheduling or timers. Patches for the Linux kernel [96] were introduced to create a more

66

5.4 Ultra-Reliable Low-Latency Communication

predictably behaving kernel, e.g., by reducing the interrupt processing time. Major distribu-
tions, such as Debian, provide this, so-called PREEMPT_RT kernel, as part of their package
repository. Besides, the Linux kernel offers several command-line arguments influencing latency
behavior. Cores can be excluded from the regular Linux scheduler via isolcpu. Isolated CPU
cores should be set to rcu_nocb, lowering the number of interrupts for the specified cores.

Low-latency VM IO: Transferring packets into/out of a VM leads to significant performance
penalties compared with bare-metal systems. In previous work [84], we compared packet for-
warding in bare-metal and VM scenarios, demonstrating that VMs can introduce high tail laten-
cies of 350 µs and more. We demonstrated that DPDK can help improve forwarding latencies but
must be used on the host system and the VM. Furthermore, modern NICs supporting single root
IO virtualization (SR-IOV) can be split into several independent virtual functions, which can be
used as independent NICs and can be bound to VMs exclusively. In this case, virtual switching
is done on the NIC itself, minimizing the software stack involved in packet processing. In an
investigation by Lettieri et al. [97], SR-IOV, among other techniques for high-speed VM-based
NFs, is one of the fastest techniques with the lowest CPU utilization. Therefore, the latency
performance of SR-IOV is superior to software switches, e.g., Xu and Davda [98] measured an
almost 10-fold increase of worst-case latencies for a software switch. Xiang et al. [99] create
and evaluate an architecture for low-latency NFs. Their architecture provides sub-millisecond
latencies, but they do not investigate the worst-case behavior. Zilberman et al. [100] give an
in-depth latency analysis of various applications and switching devices. They stress the need for
tail-latency analysis to analyze application performance comprehensively.

The topic of VM-based NFs has been extensively researched in literature [97]–[99]. However,
given our motivating example in Section 5.4.1 and the importance of the URLLC service, we
argue, similar to Zilberman et al. [100], that the crucial worst-case behavior needs close attention.
Hence, we aim to create the lowest latency system achievable, utilizing available applications on
off-the-shelf hardware.

There are also embedded systems such as jailhouse [101] or PikeOS [102] being able to partition
the available hardware providing realtime guarantees for user processes or VMs. However, they
are either not compatible with standard Linux interfaces such as libvirt or replace the host
OS entirely. Therefore, the tool support for these specialized hypervisors is worse than the
more widespread solutions such as Xen or Kernel Virtual Machine (KVM) utilizing the libvirt
software stack. Thus, we do not consider these specialized solutions for this work but rely on
well-established software tools and hardware.

5.4.3 System Architecture
We investigate the performance of basic components such as RT Linux, KVM, DPDK, SR-IOV,
and CAT. We demonstrate the system architecture of a single server that uses these basic
components to run low-latency applications. Our results are also relevant to large-scale cloud
deployments comprised of the same components, such as OpenStack.

67

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

Host

P-core 0

VM

P-core 1 P-core 2 P-core 3

unused

NIC

VF

N H

N H

Figure 5.11: System architecture overview (cf. Gallenmüller et al. [4])

Figure 5.11 shows the structure of our low-latency VM running on a CPU with four physical
cores (p-cores), following the optimizations presented in Section 5.4.2: disabling SMT to avoid
any influence of v-cores, using a PREEMPT_RT kernel on the host and the VM to minimize
interrupt latencies for the virtualized packet processing application, and utilizing core isolation
to dedicate cores to specific processes to minimize the QoS impact between cores and applica-
tions running on them. The OS of the host is restricted to p-core 0, isolating p-cores 1 and
2 for exclusive VM usage. On the VM itself, the OS runs on p-core 1 exclusively, isolating
p-core 2. P-core 2, isolated from host and VM, runs DPDK and Snort. The core isolation
feature complements DPDK’s design philosophy of statically pinning packet processing tasks to
cores. Utilizing SR-IOV, the NIC is split into virtual functions (VF). One VF is passed through
to the VM attached to p-core 2. The critical network path and its associated CPU resources
are isolated from OS tasks providing a stable service for latency-critical processes. We disable
the energy-saving states in the BIOS or set them to the most reactive state to avoid any delays
caused when waking up the CPU. We use Intel CAT to statically assign a certain amount of the
LLC to p-core 2. USB legacy emulation and system management interrupts should be disabled
in BIOS if possible.

Evaluation
The following measurement series characterizes the latency behavior of the proposed architec-
ture.

Setup
Figure 5.12 shows the setup used for testing based on three machines. The DuT runs Snort, for-
warding traffic between its physical interfaces, the other two machines run the packet generator
MoonGen [16]. The load generator (LoadGen) acts as traffic source/sink generating/receiving
the test traffic, the third machine (timestamper) monitors the entire traffic received/sent by the
DuT. The timestamper monitors the traffic via passive optical Terminal Access Points (TAPs),
timestamping every packet in hardware with a 12.5 ns resolution [19]. Being passive, the opti-
cal TAPs do not introduce variation to the timestamping process. Timestamping every single
packet only works for receiving ports. Therefore, we timestamp on a separate host instead of
the LoadGen itself.

68

5.4 Ultra-Reliable Low-Latency Communication

LoadGen DuTI

J

I

J

Timestamper

J J

Figure 5.12: Setup with Snort as a DuT, MoonGen as a LoadGen, and a Timestamper (cf. Gallenmüller et
al. [4])

The three servers are equipped with Supermicro mainboards (X10SDV-TP8F) featuring Intel
Xeon D-1518 CPUs (4 cores, 2.2 GHz) and an onboard Intel X552 NIC (dual-port SFP+, 10G
Ethernet). On the DuT, we use Debian Buster (kernel v4.19) as OS, KVM as hypervisor,
and the current beta of Snort (v3.0.0) [103] together with a DPDK-enabled data acquisition
plugin (daq, v2.2.2) [89]. Section 5.4.6 lists the repositories, commit ids of the investigated
applications, configuration data, and used measurement tools. The VM configuration is shown
in Figure 5.11. Via Intel CAT [95], we pin 4 MB of the LLC to the core running the packet
processing application; the remaining 2 MB are shared among the other cores.

We opt for UDP-only test traffic to prevent TCP congestion control from impacting the meas-
ured latency. The UDP destination port is set to 53 to trigger Snort’s rules for DNS processing.
The payload of our generated traffic does not contain DNS information but a counter to effi-
ciently track packet loss and forwarding latency. We use CBR traffic for testing and dedicate
Section 5.4.3 to measure the impact of bursty traffic.

Measurements
The following measurements investigate the performance of our proposed architecture regarding
the URLLC requirements. Therefore, we aim for a packet delivery rate above 99.999 % and
a latency below 1 ms. We do not replicate the entire end-to-end communication path of 5G,
but only a security function located in the 5G backend network; therefore, we aim for a lower
latency goal. Faced with a similar problem, Xiang et al. [99] calculated a latency goal of 350 µs
for their NFC. In this thesis, we apply the same latency goal to our measurements, quantifying
the performance of Snort. We try to isolate the influence of the IO framework (DPDK), Snort
overhead, and rule processing through separate measurements. Therefore, we test three related
packet forwarding applications:

1. DPDK-l2fwd, being the most simple forwarder in our comparison, representing the mini-
mum latency of IO without any processing happening;

2. Snort-fwd, forwarding packets with Snort on top of DPDK, which quantifies the overhead
caused by Snort without any traffic filtering happening; and

3. Snort-filter, applying the Snort 3 community ruleset [104] to the forwarded traffic. The
filter scenario does not drop any packet because we are only interested in the overhead
caused by rule application.

We measure between 10 and 120 kpkts/s incremented in 10 kpkts/s steps. Due to space limita-
tions, we only show three selected rates for every scenario in Table 5.3. For each scenario, we

69

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

n-th percentiles

Mode Rate Loss 50 99 99.9 99.99 99.999 Max.
[kpkts/s] [%] [µs] [µs] [µs] [µs] [µs] [µs]

DPDK-
l2fwd

HW 10 - 3.1 3.4 7.7 12.2 13.4 13.6
HW 60 - 3.1 3.3 8.3 13.5 14.4 16.0
HW 120 - 3.1 3.3 8.1 13.2 14.3 14.6

VM 10 - 3.3 4.0 14.7 17.6 19.0 19.2
VM 60 - 3.3 4.0 15.4 18.9 19.9 21.5
VM 120 - 3.3 3.9 16.6 20.2 21.3 22.9

Snort-
fwd

HW 10 - 14.5 24.7 29.7 32.4 33.1 33.1
HW 80 0.1 14.4 29.9 43.7 46.2 47.7 50.6
HW 90 3.3 30 609.5 30 834.8 30 882.7 30 915.3 30 936.1 30 959.1

VM 10 - 15.9 37.6 58.6 66.8 68.0 68.6
VM 80 0.1 18.8 73.9 98.8 115.6 117.7 121.9
VM 90 7.1 2469.6 2657.9 2679.8 2692.2 2700.6 2708.3

Snort-
filter

HW 10 - 17.4 28.2 33.1 35.8 36.4 36.6
HW 60 0.0 17.1 29.0 34.1 36.1 50.4 51.5
HW 70 0.0 79.0 24 897.2 27 521.2 27 847.0 27 947.1 27 992.9

VM 10 - 18.4 40.9 63.1 71.8 73.4 73.7
VM 60 0.1 17.5 62.2 92.9 101.1 114.7 115.7
VM 70 3.0 3036.9 3270.2 3294.4 3313.1 3326.8 3342.5

Table 5.3: Latencies of different software systems (cf. Gallenmüller et al. [4])

list the minimal rate of 10 kpkts/s, the last rate before overloading the DuT, and the first rate
when the DuT has been overloaded. The actual packet rates depend on the individual scenario.
Being able to process millions of packets per second without overloading, we could not overload
the DPDK forwarder within the selected packet rates [38]. Therefore, we present 10, 60, and
120 kpkts/s representing low, medium, and maximum load in this case.

Hardware
Initially, we test the forwarding applications in a non-virtualized setup to measure the perfor-
mance baseline (cf. Table 5.3, mode: HW).

DPDK-l2fwd: We measure the behavior of the DPDK forwarder for packet rates of 10, 60, and
120 kpkts/s. The median forwarding latency is 3.1 µs and increases slightly to a maximum of
3.4 µs for the 99th percentile indicating a stable latency behavior. Only the rare tail latencies,
i.e., above the 99.9th percentile, increase to a maximum value of 16.0 µs. The overall latency
values do not differ significantly between measurements. We did not observe any packet loss for
the three tested rates.

Snort-fwd: Running Snort on top of DPDK increases latency significantly. The median for rates
of 10 and 80 kpkts/s is almost the same with 14.5 and 14.4 µs, respectively. This new median is
almost as high as the worst-case latency for the DPDK forwarder. Tail latencies increase further
and seem to depend on the packet rate, i.e., tail latencies increase for higher packet rates. At a
rate of 80 kpkts/s, packet drops can occur. A closer analysis shows that a consecutive sequence
of packets is lost only at the beginning of the measurement, despite the previous warm-up

70

5.4 Ultra-Reliable Low-Latency Communication

phase. As packet loss does not occur later, we do not consider this configuration as an overload
scenario. We consider the rate of 90 kpkts/s as an overload scenario, which is characterized by
the noticeable packet loss (3.3 %) and the over thousandfold latency increase compared with the
median latency of the previous measurements. The latency increase in the overloaded scenario
results from packets not being processed fast enough, leading to buffers filling up. Therefore,
the worst-case latency remains at this high level for all observed percentiles.

Snort-filter: For this measurement, the Snort forwarder applies the community ruleset. Rule
application introduces additional costs resulting in a latency offset of roughly 3 µs compared with
the previous measurement at 10 and 60 kpkts/s. Only the worst-case latencies differ noticeably
for the latter. The overload scenario already occurs at a lower rate of 70 kpkts/s due to the
higher processing complexity indicated by the high tail latencies. Loss rates and median would
still be tolerable. However, the tail latencies show an increase by a factor of over 1000 compared
with the median. When comparing the load scenarios before overloading, Snort filter processes
packets with lower latency than its respective counterpart for the Snort forwarder. We attribute
this to the relative load, which is higher for the Snort-fwd, i.e., it is more overloaded at 90 kpkts/s
than the Snort-filter at a rate of 70 kpkts/s.

Virtualization
Processing packets in virtualized environments can have a significant impact on latency. To
measure the impact, we repeat the previous measurements in a virtualized environment (cf.
Table 5.3 (Mode: VM), Figure 5.11).

DPDK-l2fwd: In the virtualized environment, latency increases compared with the non-vitual-
ized measurements. The median latency increases by 6 %, but the tail latencies can increase by
almost 60 %. Table 5.3 shows that, up to the 99th percentile, the packet rate has little influence
on latency. For higher percentiles, a trend towards higher latencies seems to manifest.

Snort-fwd: Compared to its hardware counterpart, latency increases by 30 % for the median
and up to more than 100 % for the tail latencies. We observe the same initial packet loss in the
non-overloaded case. Packet loss in the overloaded case is higher, as packet processing is more
expensive in the VM for the same packet rate. In the overloaded case, latencies are over ten
times lower than the hardware measurements, still violating the 1 ms goal. Measurements show
that enabling SR-IOV leads to the decrease for worst-case latencies due to smaller buffers, an
observation confirmed by Bauer et al. [105].

Snort-filter: Comparing Snort-filter in virtualized and non-virtualized environments shows that
the median latency increase is below 1 µs. The values for the tail latencies increase by a factor
of two or more for the virtualized environment.

Looking at Table 5.3, we can conclude that URLLC-compliant latency is only violated if the
DuT is overloaded. Overload latencies rise by a factor of 1000 for the HW scenario and by a
factor of 100 for the VM scenario. Without overloading the system, the latencies are below
URLLC requirements, even for the most challenging scenario. When considering the worst-case

71

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

scenario, Snort-filter (HW), we measure a latency of 50.4 µs at the URLLC-required 99.999th
percentile. The overall observed worst-case latency for the VM scenario for the 99.999th per-
centile is 117.7 µs. Despite the latency difference of over 100 % between HW and VM, both
worst-case scenarios—HW and VM—do not violate our latency goal of 350 µs. In fact, the
remaining latency budget allows for even more complex packet processing tasks.

Tail latencies
We have previously shown that the measured tail latencies in the non-overloaded scenario do
not impair URLLC latency goals. In this section, we want to investigate the effects causing
the tail latencies to exclude potentially harmful consequences such as latency spikes or even
short-term overload. Increased tail latencies are already present in the DPDK-l2fwd scenario,
indicating that their causes are already part of the basic packet processing steps. We investigate
the differences between bare-metal deployment and virtual environment.

HW: We analyze the tail latencies in the non-overloaded scenarios. Figure 5.13a shows a scatter
plot of the 5000 highest latency events measured over 30 s. The figure shows a horizontal line at
approximately 3.4 µs, the area where the majority of latency events happen, which matches the
99th percentile given in Table 5.3, Line 2. Above this horizontal line, a regular linear pattern
over the 30-second measurement period is visible. We assume that the latency events above the
horizontal line of 3.4 µs are a result of packets being delayed due to interrupt processing in the
OS. To investigate our assumption, we record the interrupt counters (/proc/interrupts) of
the OS during the measurement.

We identified the pattern above the horizontal line as an interplay of two clocked processes—OS
interrupt generation on the DuT and generated CBR traffic pattern on the LoadGen. The
observed pattern is created by an effect known as aliasing. Here, we use the generated traffic
as a sampling process, trying to detect interrupts. As the interrupts are too short (≤ 13.6 µs)
to be correctly detected at the generated traffic rate of 10 kpkts/s (100 µs inter-packet gap), we
undersample leading to the observed pattern. The OS interrupt counters (/proc/interrupts)
revealed local timer interrupts (loc) and IRQ work interrupts (iwi) to be the only interrupts
triggered on the packet processing core of the DuT during operation. We measured, using the
TSC of our CPU, constant execution times of 8.2 µs for the iwi and 5.5 µs for the loc. The two
different execution times are visible in Figure 5.13a as longer and shorter lines. Their maximum
values of 10.9 and 13.6 µs differ because additional tasks such as packet IO and context switches
are included. Packets are generated at a rate of 10 kHz, and we measure interrupts being
generated at a rate of 250 Hz. Locs and iwis happen in a regular pattern; an iwi is triggered
after every second loc.

To verify whether the interrupts cause the observed pattern, we create a script simulating the
described process using the measured frequencies and processing times. Figure 5.13a shows
similar patterns for the simulation confirming our assumptions. Measurement and simulation
are highly sensitive to the maximum measured values, the traffic rates, and the interrupt rate.
Even minor parameter changes, e.g., restarting the load generator, can lead to changes in the
generated traffic rate and, therefore, lead to different patterns. The same happens if the traffic

72

5.4 Ultra-Reliable Low-Latency Communication

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

5

10

15

20

Measurement time [s]

La
te
nc

y
[µ

s]

Simulation Measurement

(a) HW (cf. Table 5.3, Line 2)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

5

10

15

20

Measurement time [s]

La
te
nc

y
[µ

s]

Measurement

(b) VM (cf. Table 5.3, Line 5)

Figure 5.13: 5000 worst-case latency events measured for DPDK-l2fwd at 10 kpkts/s (cf. Gallenmüller et al. [4])

rate is increased or lowered. This sensitivity means that repeating the same measurements
may lead to patterns with different shapes and orientations. However, a regular pattern can be
observed as long as the interrupt process is undersampled.

VM: Figure 5.13b shows the 5000 highest latency events measured for the DPDK-l2fwd (VM)
scenario. The entire graph is shifted, the horizontal line is shifted to approximately 4.4 µs, the
long interrupt latency is approximately 19 µs, the shorter approximately 16 µs, indicating the
higher overhead when running in a VM. The number of events above the horizontal line roughly
doubled. This increase can be explained by the fact that now two OS (VM host and VM) trigger
interrupts. We observed the same interrupts for the VM host as in our HW measurement. For
the VM OS, we only observed loc interrupts triggered at a rate of 250 Hz.

Despite our efforts to lower the number of interrupts by applying DPDK, there still remain a
number of interrupts triggered by the OS itself, causing latency spikes. Due to their scarcity and
limited duration, we do not consider them harmful to our pursuit of building a latency-optimized
system considering the URLLC latency goals.

Influence of batch sizes
All previous measurements use CBR traffic. For CBR, the pauses in between packets can be used
for packet processing without delaying subsequent packets leading to optimal latency results.

73

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

However, real traffic may arrive in bursts of packets without pauses between them. There,
packet processing may delay subsequent packets. The following measurements show the impact
of bursty traffic on the latency.

We define a block of packets arriving back-to-back on the wire as a burst and a block of packets
being accepted or processed on a device as batch. Batched packet processing leads to higher
throughput for packet processing frameworks like DPDK (cf. Section 5.1.5).The DPDK-enabled
Snort accepts batches of up to 32 packets, processes them, and then releases the batch of
packets only after all batched packets have been processed. Figure 5.14a shows the results of
this processing strategy for different batch sizes. All graphs show areas of very steep increases
indicating a large number of packets sharing the same latency, i.e., a batch of packets is sent
out. Starting with a batch size of 4, flat areas become visible, indicating that no packets were
observed with this latency, i.e., the batch is processed without any packet sent out. The flat
areas are followed by steep increases where the batches are sent out and the flat areas grow
with increasing batch sizes as batch processing times increase. For a 64-packet burst, a two-step
pattern is observed as two batches of 32 packets are processed in sequence. The plots show
few packets with lower latency for every burst size. This happens if only a few packets of a
burst are put into a batch, processed, and sent out before the remaining packets of the burst
are processed.

As already processed packets are delayed until the batch is fully processed, the median delay
is raised significantly. For low-latency optimized systems, smaller batch sizes can be beneficial.
Therefore, we change the batch size from 32 to the minimal DPDK-supported batch size of 4.
The results can be seen in Figure 5.14b, where the CDFs display a linear trend for growing burst
sizes. This distribution results in a significantly lower median for burst sizes of 16 and above
with little influence on the maximum observed latency.

We have shown that the blocking behavior of this batch-processing strategy may increase latency
unnecessarily. For low-latency systems, small batch sizes or even no-batch processing decrease
latency. However, large bursts may cause latency violations due to short-time overload scenarios.
In our case, burst sizes of 32 and 64 lead to latencies not meeting the URLLC criteria any longer
for the chosen scenario.

Energy consumption
Our proposed low-latency configuration requires deactivating energy-saving mechanisms. There-
fore, we compare the system configuration used for testing with a configuration with default
BIOS settings and kernel arguments for energy saving enabled. For the power measurement,
we use the metered power outlet Gude Expert Power Control 8226-1. We measure the power
consumption of the entire server.

Table 5.4 lists the measured power values. We observe no differences in power consumption
between the different applications (DPDK-l2fwd, Snort-fwd, Snort-filter). We measure the server
while idling, while the application is in an available state, and while the application is actively
processing packets. With power saving enabled, there is a 14-watt difference between idle and
transmitting state and a 3-watt difference between running and transmitting. The latter, rather

74

5.4 Ultra-Reliable Low-Latency Communication

0 100 200 300 400 500 600 700 800 900 1 000
0

0.2

0.4

0.6

0.8

1

Latency [µs]

P
er
ce
nt

Burst 2 Burst 16
Burst 4 Burst 32
Burst 8 Burst 64

(a) 32-batch processing

0 100 200 300 400 500 600 700 800 900 1 000
0

0.2

0.4

0.6

0.8

1

Latency [µs]

P
er
ce
nt

Burst 2 Burst 16
Burst 4 Burst 32
Burst 8 Burst 64

(b) 4-batch processing

Figure 5.14: Latency when forwarding using Snort-filter (VM) at 10 kpkts/s for different burst sizes (cf. Gal-
lenmüller et al. [4])

75

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

Power saving Idle Available Processing

enabled 31 W 42 W 45 W
disabled 46 W 47 W 47 W

Table 5.4: Power consumption (cf. Gallenmüller et al. [4])

CPU

NIC

DMA

RAM

M.bus

CPU

ttransfer
tcpu

Figure 5.15: Sources of delay on modern architectures (cf. Gallenmüller et al. [4])

low difference, is a consequence of DPDK’s design, relying on active polling, therefore, keeping
the system (re-)active even without packet transfer. This intentional design decision of DPDK
makes it a well-suited framework for high-performance scenarios where energy consumption is
always high. However, DPDK is a poor choice for scenarios with low load because of the high
energy consumption.

Disabling power saving increases the previous maximum power consumption by 1 W for the idle
state and 2 W for the other states. Comparing power saving enabled and disabled shows that
low-latency configuration does not come for free. In scenarios with long idling periods, power
consumption and costs rise by 48 %. For other load scenarios, the increase is lower (12 and
4 %), i.e., if the system load is already high for the traditional systems, the additional costs for
the low-latency configuration are significantly lower. The CPU used in our test system has a
thermal design power (TDP) of 35 W, running more powerful CPUs with energy saving disabled
may introduce even higher differences between idle and running states and, therefore, higher
costs.

5.4.4 Model
Our measurements have shown that the packet processing system must not be overloaded to
adhere to URLLC requirements. Therefore, we deduce a model calculating the maximum packet
rate our system can handle without overloading.

Figure 5.15 shows the path of a packet through the different system components and the asso-
ciated time consumptions t. The time a packet travels through the system (ttransfer) includes
delays caused by propagation, serialization, and the transfer from NIC to RAM. tCPU denotes
the time the CPU processes the packet. As packets are received and sent, the path of a packet
involves ttransfer twice, assuming symmetrical receiving and sending delays. This assumption
leads to Equation 5.9 for calculating the end-to-end delay of a single packet.

te2e = tCPU + 2ttransfer (5.9)

76

5.4 Ultra-Reliable Low-Latency Communication

DPDK-l2fwd Med. latency CPUtime Max. Rate
2ttransfer te2e tCPU Rmax

[µs] [µs] [µs] [kpkts/s]

Snort-fwd HW 3.1 14.5 11.4 87.4
VM 3.3 15.9 12.6 78.7

Snort-filter HW 3.1 17.4 14.3 69.7
VM 3.3 18.4 15.1 65.6

Table 5.5: Calculated CPU times and maximum rate (cf. Gallenmüller et al. [4])

lochost iwihost locVM dΣ per s

r [Hz] d [µs] r [Hz] d [µs] r [Hz] d [µs] [µs]

HW 166.7 10.9 83.3 13.6 - - 2949.9
VM 166.7 17.5 83.3 19.2 250 17.5 8891.6

Table 5.6: Trigger rates (r) & delays (d) of interrupts (cf. Gallenmüller et al. [4])

Section 5.1 identifies the CPU as one of the main bottlenecks in software packet processing.
Especially considering the low packet rates (below 120 kpkts/s), neither the Ethernet bandwidth,
the NIC, nor the involved system buses are overloaded. Subsequently, it is crucial to determine
the required calculation time on the CPU, tCPU , for calculating the maximum packet rate.
Table 5.3 lists the measured end-to-end delays of the packets (te2e) not tCPU . However, the
DPDK-l2fwd scenario—representing the most basic forwarder possible without any processing
for the packet—involves only a minimal amount of tCPU .

Measurements in Section 5.1 have shown that DPDK uses 100 CPU cycles for receiving and
transmitting a packet (cIO). On a CPU with a clock frequency of 2.2 GHz, 100 cycles result in
a delay of 45 ns. We measured a median end-to-end delay for DPDK of 3.1 µs, which makes the
impact of the IO operation on the CPU negligible.

Therefore, we can use the median value of the DPDK-l2fwd measurement as an approximation
of 2ttransfer . Using that information, we can calculate an approximation of tCPU for Snort-fwd
and Snort-filter, by deducting the median measured in the DPDK-l2fwd scenario from their
respective end-to-end delays. The results of the approximated tCPU are given in Table 5.5.

Section 5.4.3 shows that a CPU core also performs interrupts. Table 5.6 lists CPU time spent
on interrupts per second dΣ depending on the scenario, the interrupt rates, and the costs of the
individual interrupts. Knowing the amount of CPU time spent on packet processing per packet
(tCPU) and dΣ, Equation 5.10 can be deduced. The maximum packet rates calculated according
to this equation are listed in Table 5.5.

Rmax = 1 s − dΣ

tCPU
(5.10)

Comparing the calculated maximum rates in Table 5.5 with the actual maximum rates measured
in Table 5.3 shows that Equation 5.10 can predict the overload correctly for three out of four
scenarios. For the Snort-fwd (VM) scenario, the maximum rate is underestimated with the

77

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

overload not happening at the predicted rate 78.7 kpkts/s but beyond 80 kpkts/s. We conclude
that the prediction approximates a lower bound for the maximum packet rate. A conservative
approximation is advisable in this scenario, especially considering the devastating impact of
overload on latency and QoS.

5.4.5 Limitations
Despite its benefits in terms of latency and jitter, the proposed architecture has disadvantages.
Statically assigning VMs to cores does not allow sharing a CPU core between several VMs, at
least not the isolated cores dedicated to realtime applications. This core allocation strategy
increases hosting costs for such a VM. Migrating VMs or scaling the VM setup is not possible
as SR-IOV does not allow VM migration due to the non-trivial replication of the NIC’s hard-
ware state [98]. Disabling energy-saving mechanisms increases energy costs for the server (cf.
Section 5.4.3), air conditioning, and increases the thermal load on the hardware, which in turn
may require earlier replacement additionally raising costs.

5.4.6 Reproducibility
As part of our ongoing effort towards reproducible network research, we release the pcap traces
and plotting tools used in the measurements of Section 5.4. Further, we release our measurement
tools and source code of the investigated software, including a detailed description for others to
replicate our measurements as a GitHub repository [106]. Table 5.3 and Figures 5.10, 5.13, and
5.14 are explained in detail, i.e., the used source code, experiment scripts, generated data, and
plotting tools.

5.4.7 Conclusion
Our analysis shows that—in contrast to non-optimized systems—a carefully tuned system archi-
tecture meets the demanding latency and reliability requirements of future 5G URLLC services.
Hardware-timestamped latency measurements of the entire network traffic, allow for a detailed
analysis of worst-case latencies, bursty traffic, and system load. We measured a virtualized
system running a real-world intrusion prevention system causing a worst-case latency of 116 µs
on a steady-state system, leaving enough room for subsequent packet processing tasks. Further,
we show bursty traffic causing short-time overloads violating the latency requirements and in-
troduce a strategy to reduce its impact. By publicly releasing our experiment scripts and data,
we provide the foundation for others to reproduce all measurements described in this thesis.

We introduce a model to predict system overload to avoid the destructive effect of overload
on latency. The benefits of this model are its simplicity requiring only the median forwarding
latency for IO and the interrupt processing times.

Despite the increase in power consumption (48 % for a low-load and 4 % for a high-load scenario),
we demonstrate that off-the-shelf hardware and available open-source software can achieve con-
sistently low latency. Relying on established hardware and tools simplifies the transition towards
URLLC.

78

5.5 Key Results

For future work, we want to investigate the impact of hosting different 5G service classes on the
same system, especially regarding potential QoS cross-talk and potential mitigation strategies.

5.5 Key Results
This chapter presents a series of measurements for high-performance packet processing applica-
tions. These applications are based on specialized frameworks for userspace packet processing
that are optimized for high throughput. We investigate three different frameworks, netmap,
PF_RING ZC, and DPDK. Our measurements demonstrate that DPDK offers the best perfor-
mance considering throughput and latency. Besides, we investigate Snabb, a packet processing
framework with a focus on NFC applications. We show that Snabb can provide similar perfor-
mance to DPDK applications. Further, we present MoonRoute, a DPDK-based software router
that demonstrates a highly scalable software application that can utilize modern multi-core and
many-core architectures. A low-latency software architecture is created and investigated using
a DPDK-enabled intrusion prevention system.

We show that realistic performance emulation of packet processing tasks is possible without an
actual implementation of this task. Therefore, we introduce the tool SHEEP that can emulate
arbitrary CPU and cache load. With the correct parameters, a SHEEP-enabled NF can recreate
the impact of arbitrary complex packet processing operations on performance.

All presented measurements are described using the previously introduced resource model. The
resource model is applied to predict the throughput performance and scalability of various packet
processing tasks—packet forwarding, NFC, and routing. Moreover, the resource model is used
to predict system overload to avoid the impact of overload on the latency of a packet processing
system.

5.6 Author’s Contributions
Section 5.1 is based on joint work by Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart,
Daniel Raumer, and Georg Carle [38]. The author created the measurements, their analysis,
and an early version of the model for his Master’s Thesis [39]. For the paper, the analysis part
was recreated and latency measurements were added. For this thesis, the model was improved
and refined.

Section 5.2 presents a measurement methodology published by Wolfgang Hahn, Borislava Gajic,
Florian Wohlfart, Daniel Raumer, Paul Emmerich, Sebastian Gallenmüller, and Georg Carle [78].
The author contributed significantly to the development and measurements of the emulated NF,
based on the previously introduced SHEEP [77] framework. This thesis applies the resource
model to the data presented in the original paper and gives a detailed analysis of the impact of
caching on NFC performance.

Section 5.3 is based on two joint publications between Sebastian Gallenmüller, Paul Emmerich,
Rainer Schönberger, Daniel Raumer, and Georg Carle [80] and Paul Emmerich, Sebastian Gal-
lenmüller, Rainer Schönberger, Daniel Raumer, and Georg Carle [81]. Design and measurements

79

Chapter 5: Measuring and Modeling of High-Speed Packet Processing Systems

are based on a Master’s Thesis by Rainer Schönberger, supervised by the other co-authors. The
author contributed the description of MoonRoute, the measurement graphs, and the analysis
for this publication.

Section 5.4 is joint work between Sebastian Gallenmüller, Johannes Naab, Iris Adam, and Georg
Carle [4]. The author identified the required system configurations, performed and released the
measurements, conducted their analysis, and derived the model presented.

80

Chapter 6

Measuring and Modeling of Networked Con-
trol Systems

This chapter applies a data-driven measurement methodology to the domain of networked control
systems (NCS). For this application domain, there exists no common benchmarking method-
ology like the RFC 2544 for fixed networks. Therefore, we develop our own benchmarking
suite, called NCSbench, dedicated to the application domain of NCS. NCSbench consists of the
benchmark methodology and a reference platform for NCS, including hardware and software.
Measurements are presented to evaluate the repeatability and replicability of NCSbench.

In a second step, we transfer the ideas and concepts of our fixed-network testbeds to wireless
networks. This testbed demonstrates a possible way towards reproducible network experiments
for IEEE 802.11 WLAN networks.

6.1 Benchmarking Networked Control Systems
Section 6.1 is based on joint publications by Sebastian Gallenmüller, Stephan Günther, Maurice
Leclaire, Samuele Zoppi, Fabio Molinari, Richard Schöffauer, Wolfgang Kellerer, and Georg
Carle [107] and between Samuele Zoppi, Onur Ayan, Fabio Molinari, Zenit Music, Sebastian
Gallenmüller, Georg Carle, and Wolfgang Kellerer [108].

A cyber-physical system (CPS) can be divided into two components: the actual physical system
or plant, and a microcontroller managing this plant. If the microcontroller controls a process
on the plant, both components form a control system. Traditionally, controller and plant are
integrated into the same device, forming a robust, self-contained control system. This thesis in-
vestigates a type of CPS where controller and plant are separate devices exchanging information
through a network creating an NCS [109]. NCS are common in industrial applications, e.g., in
the closed-loop regulatory control of production machines [110]. Due to their importance, NCS
are widely discussed and modeled under different operating conditions [111].

Chapter 6: Measuring and Modeling of Networked Control Systems

Despite a large number of results achieved by the control and networking research communities,
the reproducibility and comparison of experimental NCS results are still obstacles to overcome.
These shortcomings are challenging for different reasons. An NCS requires the expertise of
formerly separated domains, namely the control domain and the network domain. Both disci-
plines have established their own procedures and methodologies for comparing and rating their
systems’ performance. We aim for a unified approach for benchmarking NCS: we describe a
common methodology for benchmarking the control as well as the network aspects of an NCS.
We specify a common benchmark scenario defining the relevant KPIs to determine the quality
of the control process and the network through repeatable experiments. In addition, we de-
scribe the application of this benchmark on an example platform. To that end, we develop an
NCS based on the widely used Lego Mindstorms, which we want to evaluate using our bench-
mark. Construction manuals and software are available as open source to establish a low-cost
benchmarking framework for NCS, which can be replicated easily by other researchers.

Our benchmarking suite is called NCSbench [112]. NCSbench,

1. proposes a novel NCS benchmarking methodology based on the joint expertise of control
and network domain,

2. presents the implementation details of the first open-source NCS benchmarking platform
designed for replicable results, and

3. evaluates the replicability of the platform and the validity of the methodology with ex-
periments in different scenarios.

Section 6.1.1 lists related work on the topic of NCS benchmarking. In Section 6.1.2, we introduce
our benchmark before presenting the KPIs for network and control domain in Sections 6.1.3 and
6.1.4. Sections 6.1.5 and 6.1.6 explain the benchmarking methodology and the architecture of
the benchmarking framework. We model the delay in Section 6.1.7.

6.1.1 Related Work
The problem of modeling the effects and constraints introduced by networks on control systems
is well studied in literature [111], [113], [114]. Zhang et al. [111] study the constraints of the
network on control systems, together with practical applications arising from NCS. A traditional,
control-oriented approach to the problem is to model the network as a source of random delays
and dropouts [113]. Despite being well studied, there are still challenges in modeling the influence
of the network on the control system, e.g., distributed controllers [114].

Lu et al. [115] state that conveying full-scale practical research with a real implementation
of a CPS is a difficult task due to the complexity and the replicability of experimental plat-
forms. Therefore, research work in the field of NCS conducting experimental studies is limited.
Zhang et al. [116] and Chamaken et al. [117] implement a hybrid setup of an NCS combining
hardware-in-the-loop, i.e., a simulation of the plant dynamics, with a real network. Kawka et
al. [118] and Eker et al. [119] use the network-in-the-loop approach, i.e., a simulated network,
with real hardware as a control system. A different research approach provides prominent ex-
amples where the complete NCS consists of real hardware [120]–[124]. Bachhuber et al. [120]

82

6.1 Benchmarking Networked Control Systems

NetworkPlant
Actuator

Sensor
Controller

Figure 6.1: Control loop of an NCS (cf. Gallenmüller et al. [107])

conduct an end-to-end latency analysis of a vision-based NCS. Baumann et al. [121] present
measurement results from the case study of balancing an inverted pendulum over a multi-hop
wireless network. Mager et al. [122] propose a reliable multi-hop wireless protocol that enables
the remote control of multiple experimental inverted pendulums. Ploplys et al. [123] use a
rotating inverted pendulum controlled via WLAN. Peng et al. [124] demonstrate an inverted
pendulum utilizing low-power wireless networks. All these implementations perform real-world
measurements of standard NCS to prove the validity of their contributions. However, they use
specific hardware and software solutions, which, together with different and scattered measure-
ment scenarios, introduce a significant obstacle for reproducibility. For this reason, different
techniques are difficult to compare in a single, repeatable NCS benchmark scenario.

Similarly, there exist standard benchmarks that focus exclusively on the network domain, such as
RFC 2544 [1]. Network-focused benchmarks may provide only limited insight into the behavior
of specialized applications, such as NCS.

Although practical NCS implementations pose a major challenge for reproducing NCS experi-
ments, conceptual CPS benchmarking scenarios have been defined in literature [125]–[129]. Nethi
et al. [125] present a platform for the emulation of NCS to enable their comparison in different
scenarios. Wu et al. [126] develop FARE, a framework for benchmarking the reliability of CPS,
not tackling, however, the specific aspects of NCS. Ding et al. [127] propose a framework for the
design of fault-tolerant industrial NCS, parametrizing the network and the control systems. The
framework allows experiments with real NCS, but does not tackle the aspects of reproducibility
and comparison. Boano et al. [128] elaborate on how to implement experimental benchmarks
and define KPIs to compare experimental results. Nonetheless, they do not conduct a prac-
tical study to verify the proposed methods in their own work. Niemueller et al. [129] present
a definition of the elements needed to enable the benchmarking of different NCS. Here, the
KPIs and context of an industrial CPS are identified and presented in a holistic benchmark sce-
nario. However, this benchmark is limited to high-level multi-robot systems and does not cover
the low-level interconnections of closed-loop NCS. To the best of our knowledge, none of the
existing literature tackles the problem of reproducibility and benchmarking in a full-scale prac-
tical scenario. Therefore, we present the first replicable, experimental platform and practical
benchmarking methodology for NCS.

6.1.2 Framework for Reproducible NCS Benchmarking
A simple model of an NCS is shown in Figure 6.1. This control system involves a single con-
troller and a single plant visualizing the typical flow of information in a control loop—additional
information flows, e.g., the initial configuration of the sensor, are neglected. The sensor and

83

Chapter 6: Measuring and Modeling of Networked Control Systems

the actuator of the plant are connected to the controller over an arbitrary wired or wireless
network. Throughout this thesis, we reduce the investigated systems to the minimum number
of components involved. Here, we opted for a two-node setup, which is still powerful enough to
demonstrate our benchmarking framework while minimizing the chance of misconfiguration and
simplifying the reproduction of experiments.

Benchmarking framework: Our framework defines a benchmark as a series of repeatable ex-
periments. In each experiment, a set of values is measured. In the context of our benchmark, an
experiment is a time-bounded execution of the NCS platform, measuring a real-world setup. Al-
ternatively, values can be obtained through simulation or emulation. A whole series of different
experiments may be necessary to achieve the expected behavior of the NCS. We call the process
of identifying these conditions challenge. The results of the experiments depend on the condi-
tions of the experiment during the time of execution. An entire set of conditions relevant to an
experiment defines a scenario, which includes the set of parameters relevant for evaluation. To
make the experiments and ultimately the benchmarks repeatable, replicable, and reproducible,
all relevant information of a scenario must be documented in a scenario description specifying
the:

1. application software with a specific controller or plant,

2. network stack including the various protocols and technologies,

3. network topology describing the connectivity between the nodes of the network,

4. physical environment such as distance of nodes, model, and parameters of the channel
model and noise floor (signal-to-noise ratio, SNR),

5. interference with other nodes in the network or with external transmitters outside the
network (signal-to-interference-plus-noise ratio, SINR), and

6. hardware of the controller, the network, and the plant.

An example of such a scenario description is given in Table 6.1. The outcome of an experiment
is a set of measured values and parameters. Utilizing these results, we derive key performance
indicators describing the quality of the whole system or subcomponents efficiently and repro-
ducibly. As the CPS and the network require their own KPIs, we decided to split these KPIs
along the layers defined by the ISO/OSI model with the network KPIs on Layers 4 to 1 (see
Section 6.1.3) and the control system KPIs on Layer 7 (see Section 6.1.4). Figure 6.2 depicts the
vantage points of our measurements on the left side. The layers are investigated separately due
to different network behavior. We consider our benchmark to be network-agnostic, i.e., we want
to be able to apply it using different network technologies such as wireless LAN (IEEE 802.11),
Ethernet (IEEE 802.3), or others, e.g., low power wireless networks (IEEE 802.15.4). Therefore,
we specify only the interface to the highest layer we want to investigate. For instance, we specify
using UDP when investigating the network starting at the transport layer.

Challenge: The challenge is central to our benchmarking framework to identify scenarios where
the NCS can operate successfully. When designing an NCS, one usually expects a certain service

84

6.1 Benchmarking Networked Control Systems

L1

L2

L3

L1
PHY

L2
MAC

L3
Network

L4
Transport

L7 App
Controller

L1
PHY

L2
MAC

L3
Network

L4
Link

L7 App
Device

Channel state
(distance, SNR)

Network state
(topology, congestion)

L4 KPIs → Quality of Transport

L7 KPIs → Quality of Control

Figure 6.2: KPIs on different layers of the ISO/OSI stack (cf. Gallenmüller et al. [107])

level from the whole system, i.e., the quality of control (QoC). This QoC can be expressed using
Layer 7 KPIs. Our benchmarking framework aims to find scenarios, i.e., the conditions that can
fulfill these requirements. Based on specific, desired KPIs, it may be possible to directly infer
the required quality of the network KPIs, e.g., the maximum allowable delay. Directly inferring
the required quality reduces the set of possible scenarios for testing. In other cases, the network
KPIs may not be directly inferable from the Layer 7 KPIs. For these cases, scenarios can only
be determined experimentally by gradually modifying the conditions of the scenarios.

In the following, Section 6.1.3 describes KPIs to characterize network links, such as packet rate,
loss rate, delay, inter-packet time, jitter, and bandwidth-delay product. Section 6.1.4 focuses on
the control system, presenting two different sets of KPIs: a set of generic KPIs applicable to a
wide range of different control systems and set of specific KPIs adapted to our specific DuT—a
two-wheeled inverted pendulum.

6.1.3 Network Domain KPIs
The following paragraphs discuss network KPIs with a particular focus on the requirements of
NCS.

Packet rate: The packet rate denotes the number of packets being transmitted or received.
Typically, per-packet costs dominate over the per-byte costs making the packet rate more critical
than the actual throughput in Gbit/s (cf. Section 6.4). Since the maximum packet rate is limited
by per-packet overheads, such as processing time and medium access, it is often more important
than the actual data rate, which additionally depends on the packet size.

The average rate at which packets are transmitted at the source node may differ from the rate
packets are received due to losses. When referring to the rate at the destination, the term
goodput may be used to describe the gross data rate minus actual losses in the network. The
rate may differ depending on the layer of the ISO/OSI model that is being considered: multiple
messages transmitted by a controller may be aggregated at the transport layer and sent as a

85

Chapter 6: Measuring and Modeling of Networked Control Systems

single frame on the link layer. Conversely, a large message may be split into multiple packets at
the network layer and transmitted as multiple individual frames while being reassembled at the
destination’s network layer. Therefore, it is essential to state which layer one is referring to.

Loss rate: The loss rate denotes the fraction of packets transmitted but not received. Given
the number of packets p that were successfully received and the number q of missed packets, the
loss rate is given as ε = q/(p + q). Besides the mere rate, the pattern in which the losses occur
can be described.

In practice, the receiver’s loss rate can most easily be determined using sequence numbers
in each transmitted packet. Sequence numbers can be used on different layers, e.g., Layer 2
for unreliable wireless networks, Layer 4 protocols like TCP, or even the application layer. The
transmitter inserts the sequence numbers. When a receiver detects a gap in the sequence number
of subsequent packets, it can determine the exact number of missed packets in between. Note
that this demands that no reordering occurs after sequence numbers were chosen.

Delay: The term delay commonly refers to the total time needed to transmit (medium access
plus serialization) a packet and forward it to the destination (propagation delay plus processing
and buffering delays at intermediate nodes). It is often referred to as one-way delay to avoid
confusion with the round trip time (RTT). For non-trivial networks, where packets can take
several routes through the network, the delays should be specified for both directions separately,
as delays may differ significantly.

The time for medium access significantly differs depending on the actual implementation of the
medium access and physical layer: while it is in the single-digit microsecond range and rather
constant for switched, full-duplex Gigabit Ethernet networks [74], it is orders of magnitude
larger in wireless networks due to the complex medium access strategy and the shared nature
of the medium [130]. If multiple transmitters contend for medium access, both the delay and
its standard deviation may well be in the range of milliseconds for individual nodes.

Timestamps can be acquired from the hardware of network interfaces for transmitted or received
packets. To timestamp events in software, clock counters of CPUs can be used, such as the
TSC on x86 CPUs. For synchronizing timestamps across different devices, clocks need to be
synchronized, for instance, by utilizing protocols such as PTP. These protocols offer higher
accuracy if the synchronization is done via a wired connection. Therefore, an additional wired
connection beside a wireless connection is beneficial during the execution of the benchmark.

The serialization delay can be approximated by the frame size L and the bitrate R once control
over the medium is gained, i.e., ds = L/R. WLAN [131] prepends signaling information on
the physical layer at a different data rate during the physical layer convergence procedure.
Therefore, the relation between frame length and bitrate is only an approximation. The impact
of the serialization delay on the overall delay decreases for growing bandwidths. For bandwidths
of multiple Gbit/s, serialization delay is in the order of nanoseconds. In NCS, where the delay is
measured in the order of milliseconds, the influence of the serialization delay can be neglected.

86

6.1 Benchmarking Networked Control Systems

The propagation delay depends on the distance s a signal has to travel, the speed of light c,
and a medium-specific constant ν: dp = s/νc. The constant ν is approximately one for wireless
transmissions in air and vacuum, roughly 2/3 for copper cables, and slightly larger in fibers [16].
For transmission in local networks, the propagation delay can be neglected but may be the
dominating part of long-range or satellite transmissions.

Finally, processing and buffering delays differ depending on the nodes along the network path
from source to destination and the current load of the individual nodes. In general, those
delays are challenging to quantize and particularly hard to measure without direct access to the
respective node.

Whether or not individual summands of the delay may be neglected depends on the demands
of the NCS. For our example of the inverted pendulum, we investigated the delay caused by
different subcomponents of the control process (cf. Section 6.1.7).

Inter-packet time & jitter: The inter-packet time (IPT) is defined as the time distance between
two subsequent packets in a packet stream. Sensor values of control systems are typically
read at a fixed rate, which leads to a constant inter-packet time for NCS. Jitter is defined as
the difference between the IPTs at the source and destination for two subsequent packets. In
traditional, tightly integrated control systems, jitter was negligible. This stable environment led
to the design of controllers, which could rely on a constant flow of precisely timed sensor data.
For NCS, the inter-packet time can have a significant impact, especially if running a controller,
which expects sensor data to arrive at a constant delay [132]. Therefore, our benchmark considers
the jitter to be a valuable KPI for controller design.

Bandwidth-delay product: The bandwidth-delay product commonly expresses the amount of
data in flight between source and destination, and is thus expressed in bit. However, it may also
be used to quantify the number of packets currently in flight between source and destination.
For the scope of an NCS, the latter is more relevant as packets containing sensor data or
control feedback are typically small with a constant size. Furthermore, sensor data that arrives
too late at the controller is commonly considered as loss, which is why the aggregation of
multiple sensor values into single packets is expected to be of little help. In the following, we
express the bandwidth-delay product as a number of packets concurrently in flight from source
to destination.

6.1.4 Control Domain KPIs
We design our KPIs to measure the robustness and the performance of a control process. Ro-
bustness is the ability of the control system to counteract disturbances. KPIs measuring the
robustness quantify the effectiveness of a system to revert to its reference state in the presence
of disturbance. The performance of a control system describes its efficiency, e.g., the time a
control process needs to revert to the reference state.

We propose KPIs classified into two groups—generic and specific KPIs. Generic KPIs are
designed to measure arbitrary control systems; specific KPIs are chosen to describe a particular

87

Chapter 6: Measuring and Modeling of Networked Control Systems

type of control system. Specific KPIs allow extending our benchmark to meet the requirements
of different control systems. For NCSbench, we define specific KPIs to measure our network-
controlled two-wheeled inverted pendulum.

Generic KPIs: We consider control systems that steer a system to an individual reference state,
e.g., a two-wheeled inverted pendulum robot (TWIPR) that is trying to maintain an upright
position. Therefore, we define three generic KPIs:

• The maximum disturbance that may occur such that the state can still be steered back to
the reference.

• The time it takes to steer the state back to reference after applying a specific disturbance.

• The energy needed to steer the system back to reference after a specific disturbance. This
energy can be measured and integrated over the entire measurement period.

Specific KPIs: Concerning the example of the inverted pendulum control problem, we define
KPIs specific to the inverted pendulum or similar systems. Further, we assume that the inverted
pendulum starts in its upright position, its reference state. We define the following KPIs:

• Difference of the reference position and the actual position of the inverted pendulum,
which can be expressed as an angle between the current and the upright position of the
pendulum.

• Tracking of the wheel movement, which can be measured as the angle of the current motor
position with respect to its initial reference state.

Both specific KPIs can be integrated over the measurement period. An ideal controller could
control the pendulum with a minimal number of actions, correcting only a small value, which
would result in low values for both KPIs. If the number of actions or the value of the actions
increases, so do the KPIs, indicating a decrease in the QoC.

Reproducibility vs. Non-Determinism
Certain KPIs can behave non-deterministically, such as the delay or packet loss. Reporting
only an aggregated number, such as average or median, as a KPI does not suffice to enable
repeatable experiments. Therefore, we propose to additionally report more descriptive data such
as entire logs or histograms, allowing to model repeatable behavior. Disturbances or interferences
are essential features to explain the CPS KPIs. These should also be quantified and reported
accordingly to aid the process of understanding and repeating the observed behavior of the CPS.

6.1.5 Evaluation Platform
Our goal for the evaluation platform is a simple, low-cost platform that can easily be extended
to allow others to replicate our setup and experiments. We opted for a well-known NCS setup:
an inverted pendulum as shown in Figure 6.3. The inverted pendulum is built from Lego
Mindstorms, which is widely available, reasonably priced, and easily extensible either in software
or hardware.

88

6.1 Benchmarking Networked Control Systems

Controller AP Plant

wireless
or

wired

Figure 6.3: Two-hop network topology used in NCSbench, supporting Ethernet and WLAN USB adapters (cf.
Gallenmüller et al. [107])

NetworkNIC NIC

Computing
System

Computing
System

Network NIC

Computing
System

Control ActuatorSensor

Controller Plant

Control
Computation
Communication
Physical environment
Hardware elements

Figure 6.4: Architecture of the NCS platform (cf. Zoppi et al. [108])

Our benchmark methodology relies on the combined knowledge of control, computation, and
communication domains and the experience gained during the implementation of the proposed
NCS platform. We do not only extend the existing methodologies [128], including experimental
knowledge, but provide a novel approach to model the architectural elements (Section 6.1.6)
and the delays of NCS (Section 6.1.7).

The purpose of the benchmarking methodology is to define the necessary amount of information
to reproduce and evaluate experimental results using the NCS platform. Following ACM’s
reproducibility terminology [5], we first want to recreate our own results, thereby establishing
repeatability. In a second step, we recreate the NCS benchmark across the different involved
research groups making our results replicable. We provide the entire framework containing
the source code, the plotting scripts, and the measurements of our framework as open source,
thereby encouraging others to recreate our results and fostering the development towards a fully
reproducible benchmark.

6.1.6 NCS Architecture and Scenario Description
We propose an architecture for experimental NCS as depicted in Figure 6.4. The architecture
is composed of several software and hardware elements organized according to the three CPS
domains [133]: control, computation, and communication.

The set of elements composing the control system is twofold. On one side, the plant, i.e., the
robot, mounts sensors and actuators capable of sensing the physical system and executing the
actuation commands. On the other side, the controller, detached from the plant, receives the
sensor readings, executes the control logic, and transmits instructions to the actuator.

89

Chapter 6: Measuring and Modeling of Networked Control Systems

Two different computing systems provide computing power and access to the network interfaces
to both controller and plant. The interconnection of the control application with the network
interface is achieved by implementing the upper-layer protocols of the OSI communication stack.

The communication network physically interconnects the computing system of the controller
with the computing system of the plant and enables the flow of information between them. In
our architecture, it defines the lower layers of the OSI communication stack.

To make the experiments and ultimately the benchmarks reproducible, it is vital to document
all relevant information of the NCS architecture in a scenario description. For every component
of the NCS architecture of Figure 6.4, software (algorithms) and hardware parameters must be
specified to replicate the experiments.

Control Parameters
The control application software runs on the computing systems and implements the control
logic that drives the NCS. The physical system describes the physical properties of the robot
itself. Further, we list the hardware used on the robot, such as the used sensors and actuators.

Network Parameters
The network topology describes the connectivity between the nodes of the network.

In the scenario description, all the network parameters are part of the lower layers. These lower
layers involve all functions that are part of the network layer, link layer, and physical layer,
which are implemented in the network stack and network drivers of the OS, and in the firmware
executed by the NICs.

The network hardware is part of the network parameters, listing the hardware models of the
network interfaces used by robot and controller.

The physical environment defines the physical conditions that the network operates in, such as
the interference with other wireless nodes. These properties strongly affect wireless networks,
making them inherently difficult to reproduce without a radiofrequency shielded test environ-
ment. For our benchmark, we try to minimize the impact of the physical environment on the
measured results. Our benchmark should be widely replicable across different research groups.
Therefore, we decided not to require access to a shielded test environment. For this reason, we
suggest executing the benchmark in an environment with low wireless network activity, thereby
minimizing the impact of external interference and moving objects on the measurement results.
For benchmarks using wired networks, such as a full-duplex switched Ethernet, the physical en-
vironment has no impact on the measurement results as long as the network is not overloaded.
Therefore, wired network measurements are easier to reproduce and can even be used to emulate
the behavior of wireless networks on the network layer.

Computing System Parameters
The higher layers, i.e., the transport layer and higher layer protocols, are part of the computing
system, connecting the control and the networking domains of the NCS. The transport protocol
is implemented in the OS; therefore, the OS version is required for describing the computing

90

6.1 Benchmarking Networked Control Systems

Robot Controller

tk−1
A,W

tk
S,R

tk
S,STX

tk
S,NTX

tk
S,NRX

tk
S,SRX

tk
A,STX

tk
A,NTX

tk
A,NRX

tk
A,SRX

tk
A,W

tk+1
S,R

tt

dk
P,S

dk
P,STX

dk
N,S

dk
P,SRX

dk
P,C

dk
P,ATX

dk
N,A

dk
P,ARX

dk
P,A

Control
Computation
Communication

Figure 6.5: Model of the timings of an NCS together with the processing (P) and networking (N) delays of the
control, computation, and communication CPS domains (cf. Zoppi et al. [108])

system parameters. The application protocol is required for the logical exchange of sensor values
and actuation commands between the controller and the plant.

The computing systems utilize hardware, which provides computing power and access to the
communication facilities.

6.1.7 Timings and Delay Model
When all the components of the NCS architecture are interconnected, the information regularly
flows between the plant and the controller over the communication network. In particular, every
sampling period, the sensor measures the state of a plant and sends it to the controller, which
computes and sends a command to the actuator that steers the plant.

91

Chapter 6: Measuring and Modeling of Networked Control Systems

The time evolution of the k-th sampling period is shown in Figure 6.5. At time tk
S,R, the sensor

values (S) of the plant’s sensors are read (R), handed over to the plant’s network stack (STX)
at tk

S,STX and transmitted over the communication network (NTX) at tk
S,NTX. The controller’s

network interface receives the sensor data (NRX) at tk
S,NRX and its network stack delivers the

packet to the control application (SRX) at time tk
S,SRX. Afterward, the controller calculates the

actuation values for the actuators and hands over the actuation message (A) to the network
stack at tk

A,STX, which sends the packet over the network at tk
A,NTX. Finally, at time tk

A,NRX, the
plant’s network interface receives the actuation packet, and, at time tk

A,SRX, its network stack
delivers it to the actuator application, which applies (W) the commands to the actuators at
tk
A,W.

Thanks to the timing diagram shown in Figure 6.5, it is possible to identify the delay components
of the NCS and distinguish the delays arising from the control system, computing system, and
communication network. Control system delays arise from the processing time (P) of the control
algorithms. At the robot during sensing dk

P,S and actuation dk
P,A, and at the controller computing

the control logic dk
P,C. Computing systems delays arise while processing the messages containing

sensor data on the robot (dk
P,STX) and on the controller (dk

P,SRX). Actuation messages are
processed on transmission (ATX) and reception (ARX), causing the corresponding delays dk

P,ARX
and dk

P,ATX. Finally, network delays (N) can be classified in uplink delay dk
N,S, when sensor values

are transmitted, and downlink delays dk
N,A, when actuation commands are transmitted.

In an ideal operation, all the delays are bounded and within the sampling period of the control
loop. However, in a real implementation, the delays vary according to the chosen software and
hardware of the control system, computing system, and communication network. While shorter
delays can be compensated with simple techniques, such as busy waiting, higher delays must
be carefully taken into account using a proper control strategy. The KPIs capture the most
important metrics to analyze and understand the operation of the NCS platform during the
benchmarking experiment.

A fundamental aspect that has emerged during the implementation and analysis of the proposed
NCS platform is the role of time and delays in the system. Delays, i.e., the time needed for
information exchange and processing on the robot and the controller, strongly influence the
overall performance of the NCS. For this reason, an essential part of the proposed KPIs is
relative to time and delays. Delays can arise from control, computation, or communication,
with lower delays offering a better service for the NCS. We assess the time and delay-based
KPIs by proposing a model of the NCS and by measuring the individual delays presented in
Figure 6.5. For each measured delay, additional metrics can be obtained to parametrize a large
class of NCS. By calculating the maximum, minimum, mean, and probability density function
of the measurement values over a time window, it is possible to characterize the stochastic
fluctuations of delay or jitter of the connection.

Moreover, packet loss additionally affects the operation of NCS. In general, packet loss can occur
for several reasons, such as buffer overflows in the OS and in the network elements, or due to
transmission errors arising from the physical transmission of the packet. In our NCS, we assume
that the network introduces packet loss exclusively and that the event of packet loss additionally

92

6.2 NCSbench Implementation

arises whenever a packet experiences a delay higher than a specific delay upper-bound. For the
delays, additional metrics can be calculated to characterize the stochastic fluctuations of the
packet loss.

The packet rate and the bandwidth-delay product are of minor importance. Our investigated
NCS creates less than 1 kpkts/s while transmitting a few sensor or actuator values in each
message. Considering the available bandwidth of up to 54 Mbit/s, we did not observe any
packet or bandwidth limit. High bandwidth combined with short distances, low packet rates,
and equidistant inter-packet gaps, leads to a low bandwidth-delay product. Typically only one
packet containing either sensor values or actuator settings was in flight at any given moment
during the measurements.

In addition, QoC has a vital role in the system and depends on the physical system and the
control logic. QoC KPIs are functions that quantify the evolution of the physical system’s state
and the controller commands over a time window, i.e., the input and output information of the
controller.

6.2 NCSbench Implementation
Section 6.2 is based on a joint publication between Samuele Zoppi, Onur Ayan, Fabio Molinari,
Zenit Music, Sebastian Gallenmüller, Georg Carle, and Wolfgang Kellerer [108].

In this section, the implementation details of the proposed open-source NCS benchmarking
platform are presented following the architecture of Section 6.1.6. Our NCS platform uses a
common IP network and a so-called two-wheeled inverted pendulum robot (TWIPR), a typical
platform for NCS experiments [120], [134].

The implementation was developed with a focus on reproducibility. Other research groups
should be able to recreate the platform itself as well as the results measured on this platform.
Our platform is extensible and adaptable so that it can be deployed for arbitrary research
purposes. All the software and hardware components used in the proposed platform are low-
cost and highly accessible. Our TWIPR is built using the widely-available and affordable Lego
Mindstorms platform, communicates via standard Ethernet and WLAN network interfaces, is
open-source, and is written entirely in the Python programming language that is supported by
the vast majority of operating and computing systems.

This flexibility allows the proposed platform to be used for the benchmarking of arbitrary NCS.
All elements of the NCS architecture of Figure 6.4 can be changed easily: different physical
plants can be built using Lego, new control logics can be programmed in Python, arbitrary
TCP/IP network interfaces can be connected, and the most popular computing systems and OS
can be used.

The description of the implementation is organized as follows. In Sections 6.2.1, 6.2.2, and 6.2.3,
we detail the components of the NCS architecture for every CPS domain. Section 6.2.4 describes
the measurement of the benchmarking KPIs.

93

Chapter 6: Measuring and Modeling of Networked Control Systems

Parameter Description

Control Application SW Python 3 open-source controller implementation (cf. Music et
al. [135])

Control Physical System Gyro Boy robot of the Lego Mindstorms Education EV3 Core Set
Control HW DC brushed EV3 Large Servo Motors, EV3 Gyro Sensor
Network TopologyA Two-node network connected via the access point (AP) TP-Link

TL841ND (cf. Figure 6.3)
Network TopologyB Two-node network connected via the AP Edimax BR6208AC (cf.

Figure 6.3)
Network Stack Controller Ubuntu 18.04 LTS (Kernel version 4.15)
Network Stack Robot Debian Jessie (Kernel version 4.4)
Network HW ControllerA Intel 82579LM 1G NIC
Network HW ControllerB ASIX AX88179 1G NIC
Network HW RobotA (wired) Apple A1277 USB-to-Ethernet dongle
Network HW RobotA (wireless) Edimax EW-7811Un WLAN USB dongle
Network HW RobotB (wired) Edimax EU-4306 USB-to-Ethernet dongle
Network HW RobotB (wireless) Edimax EW-7811Un WLAN USB dongle
Network Physical Env. Quiet office environment (low interference, no moving objects), in-

door, 1 to 2 m distance between robot and controller
Computing Sys. Higher Layers UDP, application protocol described in Section 6.2.2
Computing Sys. HW ControllerA Intel Core i2520M (2 cores, 2.5 GHz, 8 GB RAM)
Computing Sys. HW ControllerB Intel Core i7-6700 (4 cores, 3.4 GHz, 16 GB RAM)
Computing Sys. HW Robot 32-bit ARM9 SoC (1 core, 300 MHz, 64 MB RAM)

Table 6.1: Scenario description parameters for two NCS platforms A and B—initial implementation and bench-
mark replication (cf. Zoppi et al. [108])

Furthermore, we summarize in Table 6.1 the scenario description of platform A and a second
replicated platform B used in our evaluation. The scenario only presents a minimal description
of the basic setup for our TWIPR performing the task of self-balancing. Additional parameters
can be added to the scenario description for more complex scenarios. For instance, a TWIPR
would require the definition of the path and the surrounding environment. Table 6.2 summarizes
the time and control KPI measurements in our implementation.

6.2.1 Control System
The plant is built following the default instructions of the Gyro Boy robot of the Lego Mind-
storms Education EV3 Core Set until Step 61 [136]. Figure 6.6 shows the robot’s body supported
by two wheels, each directly attached to a DC brushed EV3 Large Servo Motor. Voltages be-
tween −8 and 8 V can be applied to the left and right motor. The voltage applied at a certain
point in time t is denoted as νl(t) and νr(t) for the left and right motor, respectively.

An incremental encoder measures the rotation angle of the corresponding wheel. Figure 6.6
presents the rotation angles of both wheels with regard to the z-axis as Φl(t) and Φr(t). Similar
to Kim et al. [134], Φ(t) describes the average rotation angle of the two wheels with regards to
the z-axis, i.e., Φ(t) = 0.5 · [Φl(t) + Φr(t)].

A one-dimensional gyroscope, the EV3 Gyro Sensor, is mounted on the body and measures the
pitch rate Θ̇(t). In Figure 6.6, Θ(t) is called pitch angle and denotes the angle at time t between
the z-axis and the axis passing through the robot’s body. Due to the gravitational force, the
position Θ(t) = 0 exhibits an unstable equilibrium. Thus, the control goal is a balancing robot,
i.e., to hold Θ(t) = 0, while tracking the desired position and orientation in the moving plane

94

6.2 NCSbench Implementation

Θ

Φl,r

x

z

Figure 6.6: Model of the TWIPR, side view (cf. Zoppi et al. [108])

of the robot (x − y plane). This task can be achieved by employing a closed-loop controller,
which receives sensor measurements and computes adequate control actions for the two motors.
The plant is responsible for the periodic operation of the control loop and regularly triggers
sensor readings every Ts. In a real implementation, delays vary according to the chosen software
and hardware, which affect the sampling period, and packets can be lost due to high delays or
network erasure. Both cases are taken into account by the control logic.

Sensor and actuation data, which are sent over an unreliable wireless network, are subject to
high fluctuations. The limited processing capabilities on the robot additionally complicate a
reliable and timely data exchange between controller and robot. We employ two complemen-
tary strategies to increase control performance. First, we deliberately delay the time for the
application of the actuator voltage on the robot. The actuation data is not applied directly
after reception but only after a minimum wait time. Experiments showed that we were able to
stabilize the robot using a maximum sampling time of 35 ms. The application of actuator data
takes up to 6 ms. Therefore, we set the minimum wait time to 29 ms. This time frame can be
used to compensate for uncertainties in the time-critical control path, such as fluctuating sensor
read times, channel access delays, or L2 retransmits. Second, every actuation message of the
controller contains ten additional backup prediction voltages. These backup values can be used
if a more recent actuation value does not reach its destination within its expected timeframe of
29 ms. The backup values are calculated on the controller based on its local model. However,
without sensor feedback, the modeled backup predictions degrade over time. Experiments have
shown that the robot can tolerate up to three consecutive packet losses without falling over.

From the perspective of the control process, the first strategy, introducing an additional delay
before actuation, creates a more reliable communication leading to constant sampling and actu-
ation times. The second strategy increases controller robustness by introducing backup values
to compensate for lost packets.

95

Chapter 6: Measuring and Modeling of Networked Control Systems

6.2.2 Computing Systems
Two different computing systems are deployed in our implementation: one for the controller and
one for the robot.

The robot should be mobile and battery-powered, requiring a computing system optimized for
compact size and low energy consumption. Any PC available to a researcher should be able
to run the controller, i.e., we assume a powerful multi-purpose 64-bit computer and one of the
widely spread OS: Windows, macOS, or Linux. Such a controller offers a flexible platform
for implementing powerful control algorithms that could not be processed on the resource-
constrained robot.

Both computing systems must implement compatible higher-layer communication protocols. For
this reason, they use the widely spread TCP/IP network stack of the respective OS. On the
application layer, they run a self-developed application protocol. The application protocol con-
sists of two messages: the sensor value message, created by the robot and sent to the controller,
and the actuation command message, created by the controller replying to the sensor value mes-
sage, containing the voltages to be applied to both motors. In addition, sequence numbers and
timestamps are transmitted for packet loss or reordering detection, and delay measurements.

6.2.3 Communication Network
Our network is designed to be easily reproducible and flexible concerning possible communi-
cation technologies. It is structured according to the OSI communication model and logically
separated from the computing system at the network layer, i.e., everything below is part of the
communication network.

The network topology defines the connectivity of different network nodes at the network and
link layers. In our case, a simple two-hop topology is implemented and shown in Figure 6.3.
The first hop connects the controller to a WLAN AP via Ethernet. The second hop connects
the AP to the robot in two different configurations: wired or wireless network interfaces. In our
architecture, the network interfaces define the link-layer medium access scheme. The robot has
no native network interface, wired and wireless connections are realized via the USB 2.0 interface.
This allows switching between the network technology easily. For any given experiment in our
analysis, only one of the two connections is used exclusively.

Finally, the physical environment describes the physical characteristics of the communication
and is particularly important for wireless networks. In our platform, the wireless communication
between the robot and the AP takes place in a quiet indoor office environment, at an approximate
distance of 1 to 2 m, and it is subject to low external interference.

6.2.4 KPI Measurement
Table 6.2 lists the network-related and the control-related KPIs.

96

6.2 NCSbench Implementation

KPI Description

dP,S Sensor readings on the robot
dP,C Calculation of controller’s actuation commands
dP,A Execution of actuation commands on the robot
dN Average one-way network delay incl. stack processing on robot and controller
∆̂T − dP,A Robot round-trip delay
∆̂T Measured variable sampling period
ΣΘ Total abs. deviation of the pitch angle
ΣΦ Total abs. deviation of the wheels’ rotation angle
Σν Total abs. deviation of the average motors’ effort
l Number of controller messages lost or arriving too late at the robot

Table 6.2: Summary of time and control KPIs (cf. Zoppi et al. [108])

Network-Related KPIs
We assess the time KPIs by measuring the individual delays presented in Figure 6.5. To evaluate
the influence of the network stack of the controller, we record a packet trace on the ingress/egress
network interface via tcpdump.

Recording network delays and performing clock synchronization required a constant packet
exchange and increased processing, thus overloading the CPU of the robot and impacting the
control performance. Due to this limitation, we did not record the specific delays dP,STX, dN,S,
dP,SRX, and dN,A attributed to the network communication on the robot. Instead, we calculate
the average one-way network delay dN assuming symmetrical network delays, and including the
stack delays of controller and plant using Equation 6.1

dN = 0.5 ·
(
tk
A,SRX − tk

S,STX
)

. (6.1)

As KPI, we report each delay listed in Table 6.2 as median value. We measure the jitter as a
property of the delay fluctuation. Low jitter allows a constant stream of information, supporting
smooth control performance. To determine jitter, we provide quartiles and 99.9th percentiles in
addition to the median delay.

Control-Related KPIs
Section 6.1.4 introduced generic and specific KPIs for the control domain. To keep the bench-
marking simple, we do not introduce additional disturbance into our experiment required for the
generic KPIs. The experiments presented below observe the robot while it tries to balance on
a flat surface. We see this as our baseline scenario, which should be easily replicable by others.
In the following, we focus our evaluation on the specific KPIs for our TWIPR. These specific
KPIs can be measured more easily, additionally fostering replicability.

We select the Integrated Absolute Errors (IAE) of the states Θ and Φ, i.e., Σθ and ΣΦ. Addi-
tionally, we calculate the total control effort over time, i.e., Σν .

ΣΘ = ‖Θ(kTs)‖ (6.2)

97

Chapter 6: Measuring and Modeling of Networked Control Systems

ΣΦ = ‖Φ(kTs)‖ (6.3)

Σν = 0.5 · (‖νl(kTs)‖ + ‖νr(kTs)‖) (6.4)

ΣΘ and ΣΦ represent the cumulative absolute deviation of Θ and Φ from their corresponding
reference values during the experiment. Smaller values of ΣΘ and ΣΦ correspond to a higher
QoC. Σν represents the total control effort spent to balance the robot. A smaller Σν indicates
better stability and hence a higher control performance. The control KPIs are summarized in
Table 6.2

Concerning our specific implementation of the control logic, we included an additional metric l

showing the performance of the control system. The value l is the number of lost or late packets
sent from the controller to the robot. This number is equal to the number of predictions used
by the robot to compensate for packet loss. As detailed by Music et al. [135], a prediction is
applied whenever a packet is not received within the delay upper-bound.

6.2.5 Platform Evaluation
In this section, we provide a comprehensive evaluation of the NCS platform and the bench-
marking methodology. We achieve this by presenting the NCS benchmarking KPIs in detail for
different scenarios. The evaluation captures the essence of the proposed benchmarking method-
ology. Experiments were performed to replicate the platform. We test replicability with different
computers and networks across two different research groups.

Every experiment of our evaluation is conducted as follows. Before the experiment starts, the
robot lies on the ground, continuously sending sensor values to the controller. However, the
controller does not send actuation commands until the robot is manually lifted to the vertical
position. For this reason, the beginning of the experiment is when the robot manually reaches
the vertical position for the first time and corresponds to 0 s in our evaluation.

Afterward, the continuous exchange of information between the robot and the controller takes
place and enables the control loop to balance the TWIPR. The control logic determines the
duration of the experiment. Our experiments have a duration, Te, set to 1400 sampling periods,
i.e., 49 s with a sampling time Ts of 35 ms. We set the delay upper-bound to 29 ms. This value is
smaller than the sampling period and considers the additional time needed to apply the voltage
values to the actuators.

Whenever the experiment ends, the controller stops sending actuation messages to the robot,
opening the control loop. This way the same number of samples is collected for every experiment,
and the KPIs can be correctly calculated and compared.

6.2.6 KPI Evaluation
KPIs belonging to the control, computation, and communication domains need to be evaluated
to understand the dynamics of an NCS. The parameters of platform A describe the scenario
selected for the detailed evaluation of the KPIs in Table 6.1 communicating over WLAN.

98

6.2 NCSbench Implementation

0 5 10 15 20 25 30 35 40 45 50
0

10

20

1
2

3

4

Measurement time [s]

D
el
ay

va
lu
e
[m

s]
1 dP,C 2 dP,S 3 dN 4 dP,A

0 5 10 15 20 25
0

1

2

3

Delay value [ms]

R
el
at
iv
e
pr
ob

ab
ili
ty

[%
]

1 2 3 4

Figure 6.7: Time evolution and empirical distribution of the delays of the controller 1 , sensor 2 , network 3 ,
and actuator 4 (cf. Zoppi et al. [108])

0 5 10 15 20 25 30 35 40 45 50
0

20

40

5

7
6

Measurement time [s]

D
el
ay

va
lu
e
[m

s]

5 ∆̂T − dP,A 6 ∆T 7 ∆̂T

15 20 25 30 35 40 45
0

1

2

3

4

Delay value [ms]

R
el
at
iv
e
pr
ob

ab
ili
ty

[%
]

5 6 7

Figure 6.8: Time evolution and empirical distribution of the round-trip delays 5 , the ideal sampling period 6 ,
and of the measured sampling period 7 (cf. Zoppi et al. [108])

99

Chapter 6: Measuring and Modeling of Networked Control Systems

0 5 10 15 20 25 30 35 40 45 50

−200

0

200

Φ
(k

T
s
)
[d
eg
]

0 5 10 15 20 25 30 35 40 45 50

−4

−2

0

2

Θ
(k

T
s
)
[d
eg
]

0 5 10 15 20 25 30 35 40 45 50

−5

0

5

Measurement time [s]

V
ol
ta
ge

[V
]

Figure 6.9: Time evolution of the filtered pitch angle Θ, the filtered average rotation angle Φ, and the average
applied voltage at the motors ν (cf. Zoppi et al. [108])

100

6.2 NCSbench Implementation

Figure 6.7 shows the time evolution and the histogram of the delays of the controller, sensor,
actuator, and network defined in Figure 6.5. The sensor reading delay dP,S 2 demonstrates a
stable behavior with occasional outliers reaching up to 5.5 ms. Similarly, the controller delay dP,C

1 is stable, showing no outliers. Overhead caused by the controller network stack is constant and
marginal (approximately 37 µs) over the entire experiment. The actuator delay dP,A 4 shows
an unstable behavior over the entire measurement period. Its jitter, also expressed by the width
of its distribution in the histogram, is attributed to the control algorithm, which implements
busy waiting. Therefore, dP,A 4 includes a waiting period that directly depends on the previous
steps and their individual delays. To instruct the motors every 35 ms, actuation commands are
only applied after a delay upper-bound of 29 ms from the beginning of the sampling period. In
our platform, approximately 6 ms are required to actuate the motors.

When analyzing the jitter given in the histograms, dP,C 1 shows the most stable behavior (0.9
to 1.2 ms), indicating that the controller always has enough computing power to handle the
control process on time. The sensor reading delay dP,S 2 shows a minimal time of 2.4 ms for
sensor readings with a tail of up to 11.1 ms. The network delay dN,S 3 roughly resembles a
normal distribution ranging from 4.7 to 15 ms, and it is caused by the CSMA/CA mechanism
of WLAN in our physical environment.

Figure 6.8 shows the time evolution and histogram of the cumulative delays. The timestamp
tA,SRX is collected by the robot application after receiving the actuation message, resulting
in the delay ∆̂T − dP,A 5 . Where ∆̂T is the measured sampling period of the NCS during
the experiment. The histogram of 5 shows a wide distribution, ranging from 13.2 to 35.1 ms,
containing the jitter of all the previous steps. However, if dP,A is included in the plot (∆̂T

7), the jitter decreases, as the actuator algorithm applies the actuation commands only 29 ms
after the beginning of the sampling period. This effect results in a rather constant measured
sampling period ∆̂T 7 , and allows the compensation of the previous delays, leading to a rather
low jitter. Thus, the distribution of ∆̂T 7 is more compact and allows a constant delivery time
for the actuation commands close to the ideal sampling period ∆T 6 . Its jitter is caused by the
precision of the busy-wait technique and the time required to actuate the motors.

The impact of the control logic is reflected in Figure 6.9, showing the evolution of the control
KPIs. The pitch angle Θ (kTs) of the robot is highly varying, with occasional larger spikes
every few seconds. Despite this, we can observe that its dynamic remains bounded during the
execution and that its average value is equal to −0.0014 deg. The evolution of the motors’
applied voltage strongly depends on the pitch angle. Higher voltages are correlated with higher
values of pitch angle. This effect is also shown in the position of the robot Φ (kTs), which
presents faster and slower oscillations. Faster oscillations, visible between 3 and 5 s, are caused
by strong and opposite actuations commands needed to compensate for high values of pitch
angles and balance the robot. Slower oscillations arise whenever the control logic tries to bring
the robot to its initial position. This task has a lower priority than balancing the robot, and it
is performed on a larger time scale.

101

Chapter 6: Measuring and Modeling of Networked Control Systems

n-th percentiles

Delay 50 25 75 99.9
[ms] ±95 % C.I.

A-wired
dP,C 0.94± 0.002 0.91 0.97 1.07
dP,S 3.55± 0.038 3.04 4.24 5.41

dN 4.38± 0.041 4.08 5.03 6.66
dP,A 22.20± 0.087 20.86 23.16 24.98

∆̂T 35.77± 0.042 35.21 36.41 37.73

A-wireless
dP,C 0.95± 0.002 0.92 0.96 1.05
dP,S 3.64± 0.049 3.03 4.36 6.20

dN 8.09± 0.053 7.54 8.54 10.88
dP,A 15.19± 0.118 13.79 16.55 19.94

∆̂T 35.89± 0.057 35.22 36.62 38.97

(a) Platform A

n-th percentiles

Delay 50 25 75 99.9
[ms] ±95 % C.I.

B-wired
dP,C 0.39± 0.001 0.38 0.39 0.45
dP,S 3.89± 0.034 3.55 4.49 5.73

dN 4.61± 0.026 4.40 4.82 6.57
dP,A 22.38± 0.065 21.58 23.10 24.69

∆̂T 36.02± 0.036 35.55 36.54 37.61

B-wireless
dP,C 0.37± 0.001 0.37 0.38 0.43
dP,S 3.84± 0.040 3.49 4.45 6.39

dN 5.25± 0.055 4.85 6.29 8.74
dP,A 21.27± 0.126 19.49 22.38 24.84

∆̂T 36.32± 0.049 35.70 36.95 38.76

(b) Platform B

Table 6.3: Time KPI percentiles of the four evaluation scenarios (cf. Zoppi et al. [108])

ΣΘ ΣΦ Σν l

A-wired 762.91 152090 2066.9 0
A-wireless 938.30 217080 2637.4 10
B-wired 601.51 179590 2804.3 0
B-wireless 785.72 129440 2726.1 1

Table 6.4: Control KPIs of the four evaluation scenarios (cf. Zoppi et al. [108])

6.2.7 Benchmarking
We prove the validity of the proposed benchmarking methodology and test the replicability of
our platform by conducting experiments in different benchmarking scenarios.

For this, we have built a second Lego Mindstorms robot and tested it in different physical
environments. The scenario description of platform B in Table 6.1 contains all the used com-
ponents. It consists of a different computing system for the controller, and different network
hardware interfaces for both controller and robot. The two platforms and the different network
configurations result in a total of four scenarios for our benchmarking evaluation. We call A-
wired the scenario where platform A operates with Ethernet, and A-wireless its operation with
WLAN. Two additional scenarios arise from platform B, B-wired and B-wireless, representing
the replicated platform communicating over Ethernet and WLAN.

Tables 6.3 and 6.4 summarize the benchmark KPIs resulting from the evaluation of the four
scenarios. The time KPIs in Table 6.3 are presented as median with 95 % confidence intervals,
1st and 3rd quartiles, and 99.9th percentiles.

Table 6.3 shows different performances of the deployed computing systems and communication
networks. The median values of dP,C are lower for platform B than platform A, despite similar
jitter and worst-case values. A minor difference is noticeable in the sensor processing delays
dP,S; platform A has lower median delays but higher jitter. Additionally, we observe differences
in the median network delays. The median of dN is always lower in Ethernet than WLAN.

102

6.3 Repeatable Wireless Measurements

In addition, WLAN network delays have a higher variance and worst-case delays up to 10 ms.
The scenario A-wireless shows the worst network performance, with the highest median value
and 99.9th percentile. The actuator processing delays dP,A directly depend on the busy waiting
procedure. Its quartiles reflect the network delays of the wireless setups, fluctuations and the
worst case values increase. Finally, the measured sampling period ∆̂T is comparable in all four
scenarios and mainly depends on the busy waiting performed by the actuator. However, it
presents a higher median in platform B, and a larger jitter when operating with WLAN.

Table 6.4 shows comparable values of QoC, for the two NCS in the four evaluated scenarios. In
general, ΣΘ and ΣΦ are lower in wired than wireless scenarios thanks to lower median delays and
jitter. However, platform A shows a high value of ΣΦ caused by the high oscillations introduced
by the delays of its WLAN network interface. The total controller effort Σν is similar across the
scenarios, showing a lower value only in scenario A-wired. As expected, actuation predictions on
the robot, triggered by packets arriving later than 29 ms, were not observed in wired scenarios.
However, in the scenario A-wireless, 10 prediction events were observed, and, in the more stable
scenario B-wireless, only 1 event was observed, demonstrating its superior QoC.

The proposed KPIs can highlight the differences in performance of the two computing systems
and network interfaces. The platform was replicated across two research groups and used for
benchmarking. Results between the two replicated platforms do not match exactly due to
differences in the hardware and the physical environment. However, we can identify the same
trends despite the differences in values, e.g., we measured the highest variance in the wireless
network for both platforms. These results prove the value of the proposed NCS platform and
the validity of the benchmarking methodology.

In Section 6.3.1, we want to investigate if and how we can improve our measurement capabilities
to increase repeatability and replicability for WLAN experiments.

6.3 Repeatable Wireless Measurements
Section 6.3 is based on joint work between Sebastian Gallenmüller, René Glebke, Stephan
Günther, Eric Hauser, Maurice Leclaire, Stefan Reif, Jan Rüth, Andreas Schmidt, Georg
Carle, Thorsten Herfet, Wolfgang Schröder-Preikschat, and Klaus Wehrle [137].

End-to-end latency is a relevant KPI for network applications. Content delivery networks (CDN)
are an established technology to bring the content closer to the users, thereby shortening the
distance and ultimately the delay between the user and content. Edge computing generalizes
this concept by providing not only caching of web content like CDNs, but also by providing
distributed computing resources. By bringing the compute resources closer to the edge of the
network, i.e., closer to its users, delay decreases [138]. This reduced distance allows realizing
applications depending on low latencies, such as NCS.

Edge computing is a control-agnostic approach where an application moves to a different location
in the network to meet the operating conditions for an NCS. The counterpart to this solution
would be to adapt the control algorithm to the current network conditions for running an NCS.

103

Chapter 6: Measuring and Modeling of Networked Control Systems

HostA HostB AP AP Plant

Unreliable
wireless
channel

Figure 6.10: NCS topology (cf. Gallenmüller et al. [137])

Gain scheduling is such an approach, where the used control algorithm is chosen from a family of
controllers depending on the current conditions of the network—a common approach for control
systems [139].

Common to both approaches—edge computing and gain scheduling—is the need for close ob-
servation of the available network operating conditions. Therefore, we investigate a protocol
specifically designed to measure and report network conditions to the application. We start
by illustrating a typical NCS (Section 6.3.1) and present related work on control over wireless
networks (Section 6.3.2). We then design and implement a prototypical framework that en-
ables the live monitoring of delays and channel conditions of a wireless network based on the
combination of an instrumentable realtime transport protocol (Section 6.3.3) and an automated
shielded testbed for wireless communication (Section 6.3.4). Afterward, we provide an empirical
evaluation of our approach to the collection of channel state information (Section 6.3.5).

6.3.1 System Model
Figure 6.10 shows a physical system or plant attached to a network via a radio link. Two
servers, HostA and HostB , are connected to the network differing in their distance (number of
hops) to the plant. Adding a control application, running on either of the hosts, turns this into
an NCS. The plant itself and the inherent properties of the actual control process determine
the network connection requirements, such as maximum delay, number of exchanged messages,
and maximum packet loss.

We propose installing the control application as close as possible to the controlled plant to reduce
potential network delay or avoid network bottlenecks. In the case of the system in Figure 6.10,
we would prefer HostB over HostA for running control applications due to the lower distance
from the plant. Despite shortening the link between the host and the plant, network behavior
may change over time, especially if wireless links are involved. Gain scheduling allows us to
react to these changes by selecting a control application that fits best to the current operating
conditions of the underlying network. In this work, we do not provide a complete network con-
trol system that dynamically adapts to rapidly changing network conditions and solves all issues
of NCS in general. Instead, we focus on two critical aspects of such a system: First, we investi-
gate a protocol equipped with in-band live-monitoring features that can be used to collect the
information necessary for gain scheduling (Section 6.3.3). Second, we evaluate how this protocol
behaves on a wireless link through a series of reproducible network experiments (Section 6.3.5).
Due to the unreliable nature of wireless links, this part of the network connection is the most
challenging component of the control system.

104

6.3 Repeatable Wireless Measurements

6.3.2 Related Work
This section analyzes the challenges when combining the network and control domain in NCS.
Costa et al. [140] investigate different QoS schemes for WLAN according to IEEE 802.11. Sim-
ulations show that none of the available techniques supports realtime traffic, even for scenarios
with low network load. Therefore, various strategies were proposed to utilize wireless networks
for control systems. Nakashima et al. [141] propose the co-design of network and control when
realizing an NCS. They propose a time-division multiple access (TDMA) strategy to create a de-
terministic network behavior and consider propagation times of the network for their controller
design. Nikolakopoulos et al. [142] use WLAN connections in conjunction with gain scheduling
to create a robust NCS. Xia et al. [143] utilize a co-design of network and control. Their de-
sign adapts the sampling period of the control process to enable a suitable QoS under changing
network conditions.

Common to the mentioned works and our contribution is the idea of co-design between network
and control. However, previous work primarily relies on simulation for evaluation, assuming
specific hardware behavior. Our work performs experiments on real hardware, which allows us
to analyze a realistic behavior between hardware, its driver, and the OS in a typical control
scenario.

The indeterministic behavior of the wireless links makes repeating experiment results challeng-
ing. To gain repeatable results, we perform our experiment in a shielded environment and apply
the pos experiment workflow (cf. Section 2.4) to this wireless testbed. We see our work as a first
step towards a fully reproducible real-world analysis of NCS.

6.3.3 Design and Implementation
We create a runtime support system observing link behavior to enable gain scheduling in wire-
less networks of NCS. As a basis, we use the openly available predictably reliable realtime
transport (PRRT) protocol [144], [145], which provides partial reliability and in-order delivery,
and at the same time, allows making statements about the timing characteristics. The timing
behavior is influenced by the requirements of an application, such as the maximum tolerable
latency. Thereby, one controller instance, designed for a specific latency, can communicate this
requirement to the runtime system and the protocol.

Traditionally, only the control application—but not the network stack—is aware of latency
requirements that are a constraint of the physical process it is designed to control. IP-based
control applications can choose between two services: First, they can use a fully reliable transport
protocol, such as TCP or QUIC, which retransmits messages even if the latency demands cannot
be met any longer. Second, it can use an unreliable transport protocol, namely UDP, which
does not retransmit even if latency demands would allow it. PRRT allows an application to use
a hybrid service combining features of both protocol families, providing partial reliability with
predictable timing. Using the PRRT stack, the application passes its latency requirements to
the network stack, which can handle retransmissions while respecting latency requirements. If
the latency requirements of a message cannot be met any longer, PRRT discards it—thereby
avoiding a waste of time and energy.

105

Chapter 6: Measuring and Modeling of Networked Control Systems

Naturally, there are operating conditions that do not allow for the fulfillment of these constraints,
e.g., meeting a 1 ms end-to-end deadline on a wireless link with 5 ms propagation time. In
these cases, PRRT makes this issue transparent to the application, letting the application pick
remediation, e.g., triggering emergency routines or adapting its general control strategy. In
the case of gain scheduling, this notification is the latest point in time to switch to a different
controller instance that can handle the current conditions. A more efficient way to trigger the
controller switch is to continuously probe the runtime system for a change in observed latencies
or register an event handler.

As long as the operating conditions allow for PRRT to fulfill its requirements, PRRT uses
two techniques to do this reliably and predictably: (a) error control and (b) a combination of
congestion and rate control.

Error control is implemented as a block-based hybrid ARQ scheme, so PRRT aggregates multiple
packets to a block. The packets themselves are sent out as fast as they arrive and proactive
redundancy is sent as soon as a block is filled. Afterward, reactive transmissions of redundancy
are triggered if no acknowledgments arrive within a round-trip time plus processing margin. The
arrival of a sufficient amount of data or redundancy packets for a block allows reconstructing all
packets of the block, e.g., previous sensor readings or actuator inputs. While the relevance of
any sensor reading older than the latest is zero for Markovian controllers, our solution targets
controllers where either (a) there is no Markovian model and the history is important (e.g., to
detect temperature trends) or (b) the controller is fitting such a model during operation. Using
error control, the protocol can optimize resilience under the given latency constraints.

Congestion and rate control minimize queuing that would lead to excessive delays by controlling
both the amount of data in flight and the rate of packets. This combined approach aims to
avoid both self-induced and contention-based queueing delays, a well-known problem of loss-
based TCP congestion control [146].

The controller-supplied latency constraint is further used as a deadline for messages, i.e., mes-
sages that have already exceeded the deadline or are going to exceed it with certainty are not
processed further. Thereby, perturbations of the end-to-end latency that lead to a single packet
not arriving in time do not impede subsequent packets that can still make the deadline. Addi-
tionally, the recv() calls have a receive_window parameter to filter packets that are ready to
be delivered, namely those that expire in between now and now + receive_window.

This timing awareness within PRRT enables our runtime system to select controller instances
dynamically depending on the current operating conditions. The cooperation between the trans-
port layer and the control application is hence symbiotic: the transport protocol provides timing
measurements for controller selection while the control application dynamically reconfigures la-
tency and, indirectly, error control parameters.

PRRT measures the network round-trip time using an algorithm similar to NTP by including
timestamps in its metadata and feedback packets and compensating for processing time. Sim-
ultaneously, PRRT tracks the current data rate by estimating the delivery rate on the sender
side, leveraging a mechanism presented in an IETF draft [147] from 2017. The implemented

106

6.3 Repeatable Wireless Measurements

Plant Controller

Testbed controller

Shielded box Shielded box

Internet

Figure 6.11: Simplified testbed setup (cf. Gallenmüller et al. [137])

congestion control follows the design of BBR [148], including adaptations of recent fixes in the
Linux kernel code for TCP-BBR. This congestion control, together with rate control through
packet pacing, aims to avoid queueing at all stages of the communication, minimizing latency
and jitter.

In summary, our runtime support system exploits PRRT, a partially reliable and latency-aware
transport protocol, for gain scheduling. It enables control applications to adapt dynamically to
the currently faced communication latencies. Simultaneously, the controller selection allows the
transport protocol to minimize the error rate as well as jitter.

6.3.4 Testbed and Measurement Setup
To perform comparable benchmarks of our runtime system in different settings, a reproducible
test environment is essential. Since wireless networks are affected by many different factors such
as noise, networks on the same or neighboring channels, fading channel conditions, and radar
detection, it is challenging to guarantee comparable conditions across different measurements.
Note that we use this testbed setup to ensure the repeatability of our evaluation runs, but it is
not required to operate our system.

To allow comparisons between benchmarks of PRRT at different settings, we use the setup
depicted in Figure 6.11, consisting of two wireless test nodes (plant and controller) placed in
shielded boxes. For these experiments, we use a small computer as plant, not an actual robot
due to space constraints of our shielded boxes. The antenna port of the controller is connected
to a shielded coaxial cable that is connected to an antenna placed in the plant’s shielding box.
An air gap between that antenna and the antenna of the plant within the shielded box ensures
constant channel conditions resembling an undisturbed wireless network allowing for repeatable
wireless conditions across all measurements. We use IEEE 802.11g (54 Mbit/s) in ad-hoc mode
and generate PRRT packets with a constant sampling interval. The test nodes use Debian Linux
(kernel version 4.8). They are equipped with AMD GX-412TC CPUs (4× 1 GHz “Jaguar” cores),
Qualcomm Atheros AR958x IEEE 802.11abgn wireless network adapters, and Intel I210 NICs.

Both nodes are connected via Ethernet to a testbed controller, which is connected to the Internet
for remote testbed operation. The testbed uses the pos framework [3] to execute the network
experiment. It orchestrates a set of measurements by performing the following steps:

107

Chapter 6: Measuring and Modeling of Networked Control Systems

L1 – PHY
L2 – MAC

L3 – Network

L4 – Transport

L7 – App
Plant (P)

L1 – PHY
L2 – MAC

L3 – Network

L4 – Transport

L7 – App
Controller (C)

Wireless channel

mP C
1

mCP
6

mP C
2

mCP
5

mP C
3 mCP

4 mP C
4 mCP

3

mP C
5

mCP
2

mP C
6

mCP
1IC`C

IP `P

Figure 6.12: Stack with timestamping vantage points (cf. Gallenmüller et al. [137])

1. After each measurement run, the test nodes are completely reset by power cycling and
booting a live system via PXE from the testbed controller, eliminating any residual effects
of the previous measurement run, such as the firmware of wireless devices being initialized
with unwanted settings.

2. When the nodes are booted, clocks are synchronized once via PTP utilizing the hardware
support of the I210 NICs. This synchronization is crucial to obtain comparable timestamps
on both nodes. Starting with a deviation below 1 µs after synchronization, the clocks’
deviation does not exceed 10 µs after a single test run of 2 min.

3. When all preparations are finished, the test nodes are ready to execute the actual mea-
surement software.

The software works with two independent threads: the first thread only transmits and receives
packets, while the second thread captures packets using libpcap. This architecture ensures that
packets are processed as soon as they are received to keep the timestamps as accurate as possible.

In order to evaluate PRRT, we integrated it into our measurement software, which allows record-
ing timestamps at various locations throughout the protocol stack, as shown in Figure 6.12.
Considering the direction from plant to controller (denoted as PC), we obtain the timestamps

• mP C
1 when the app transmits a message,

• mP C
2 when a frame becomes visible by libpcap at the transmitting node, i.e., before it is

transmitted,

• mP C
3 when the echo frame1—including the sender’s radiotap header—becomes visible at

the transmitting node,

• mP C
4 when a frame is received,

• mP C
5 when the received frame becomes visible through libpcap at the receiving node, and

• mP C
6 when the measurement software receives a message.

1By echo frame, we refer to the frame including the radiotap header provided by a wireless card’s driver when a
frame has been transmitted successfully.

108

6.3 Repeatable Wireless Measurements

Parameter Minimum Maximum Steps

Packet-to-packet time (I) 1 ms 10 ms 5
Payload size (`) 20 B 1400 B 5
PRRT target delay 1 ms 10 ms 5
PRRT receive window 0.1 ms 2 ms 6

Table 6.5: Parameters of the delay measurement set (cf. Gallenmüller et al. [137])

The radiotap header thereby contains various information about how a frame has been trans-
mitted, e.g., the chosen transmit rate. The same holds for the reverse direction (denoted as
CP). We record both directions separately to investigate the potentially different behavior of
the WLAN connection. Using these timestamps, we can derive delays that are difficult to de-
termine under ordinary circumstances. For instance, mP C

6 − mP C
1 is the one-way delay from

plant to controller. This one-way delay is of particular interest for the evaluation of PRRT as it
allows to verify whether or not datagrams are within the defined receive window. Similarly, the
delay mP C

3 − mP C
2 is primarily influenced by the media access time, which can be determined

precisely when the serialization time of frames is known.

If PRRT cannot deliver a packet within the desired interval due to delays on the wireless channel
or within the OS, the packet is discarded. If a packet is discarded for that reason on the way
from the plant to the controller, the timestamp mP C

6 is missing as PRRT dropped the respective
packet due to a violation of the desired time interval. The same holds for mCP

6 when a packet in
the reverse direction is dropped. The timestamps between m1 and m6 are useful for investigating
the channel’s characteristics or influences of the OS independently from PRRT. They can help
comprehend why PRRT, for instance, could not deliver specific packets in time. The delay
mP C

2 − mP C
1 gives an insight into how long PRRT needs to process packets from the application

and hand them over to the network stack. Correspondingly, the delay mP C
6 − mP C

5 shows how
long packets are delayed before being handed back to the application.

After a measurement run has finished, the files from the test nodes containing the timestamps
are copied to the testbed controller and the parameters of the test run are logged.

6.3.5 Evaluation
We investigate the behavior of PRRT through a series of measurements using a combination
of four configuration parameters: the packet-to-packet time (I) specifies the sampling time of
a control process, the payload size (`) sets the data transmitted by the control process, the
PRRT target delay defines the time data should arrive at the control process, and the PRRT
receive window defines a grace period (cf. Section 6.3.3). Table 6.5 contains the values for the
measurement parameters. All possible combinations result in 750 distinct measurement runs.
Despite almost identical channel conditions, we measured different behavior for both directions
of the communication channel. Therefore, we present our measurements for both directions
separately. The following measurement investigates the two main network-related KPIs relevant
for control systems, latency and packet loss. We consider packets, which arrive late at their
destination as lost.

109

Chapter 6: Measuring and Modeling of Networked Control Systems

0
2
4
6
8

10

mP C
1 → mP C

6 Upper receive win.
Lost/late packets Lower receive win.

0 5 10 15 20 25 30
0
2
4
6
8

10

Measurement time [s]

La
te
nc

y
[m

s]

mCP
6 ← mCP

1 Upper receive win.
Lost/late packets Lower receive win.

Figure 6.13: 1 ms packet-to-packet time, 20 B payload size, 10 ms target delay, 2 ms receive window (upper and
lower limit in green) (cf. Gallenmüller et al. [137])

Packet-to-packet time: Our first measurement measures the impact of the packet-to-packet time.
Therefore, we select the measurement with the most demanding setting for the packet-to-packet
time, i.e., 1 ms, while we relax on all other parameters. We chose the smallest payload size of
20 B, a wide receiving window of 2 ms, and allow a target delay of 10 ms. Figure 6.13 shows this
measurement as a time series over 30 s for PC and CP direction. Both plots show the delay
from the respective sending application to its destination (m1 → m6) as scatter plot. With this
parameter configuration, it is possible to transmit packets within the specified target delay and
receive window visualized by the two green lines. However, for both directions, there are periods
of up to 2 s without any packet delivered on time marked by the shaded areas. We observe that
losses for both directions typically start simultaneously, which hints at a common root cause for
the packet loss. We observe that the CP direction recovers faster than the reverse direction.

Figure 6.14 visualizes the delay measured at different vantage points of the network stack—on the
controller and the plant. This allows a detailed investigation if packets are lost or dropped due to
specific deadline misses by PRRT. Figure 6.14a shows the delay caused by packet processing after
the packet has left the application until the driver accepts the packet. The delay in CP direction
stays below 2 ms. The PC direction already shows that several packets are not received at L2
and that there are packets with a delay higher than the configured target delay of 10 ms. We
attribute the packet loss to buffer overflows, not to an intentional decision of PRRT, as observed
behavior is consistent with typical buffer overflow behavior—buffers begin filling up, increasing
the measured delay. If buffers are not drained fast enough, packet loss occurs. Occasionally,
high-delay packets are transmitted during phases of loss. If buffer overload decreases, packet
delay decreases to its original value. We see that pattern repeating in Figure 6.14a.

Packet processing continues in the driver (L2–L1, cf. Figure 6.14d). There, the target delay
is violated for a number of packets in both directions, but no additional packet loss occurs.
Periods of high delay (above 100 ms) roughly coincide between driver and higher layers, but
these periods start earlier and end later in the driver. This indicates that the driver cannot
process the packets fast enough, propagating these problems up to the higher layers.

110

6.3
R

epeatable
W

ireless
M

easurem
ents

10−1

100

101

102

0 5 10 15 20 25 3010−1

100

101

102

Measurement time [s]

La
te
nc

y
[m

s]

(a) L7–L2

P → C P ← C

Lost/late packets Lost/late packets

L1
L2
L3
L4

L7
P

L1
L2
L3
L4

L7
C

W.-channel

mP C
1

mCP
6

mP C
2

mCP
5

mP C
3 mCP

4 mP C
4 mCP

3

mP C
5

mCP
2

mP C
6

mCP
1

(b) Network stack with vantage points

10−1

100

101

102

0 5 10 15 20 25 3010−1

100

101

102

Measurement time [s]

La
te
nc

y
[m

s]

(c) L2–L7

10−1

100

101

102

0 5 10 15 20 25 3010−1

100

101

102

Measurement time [s]

La
te
nc

y
[m

s]

(d) L2–L1

10−3

10−2

10−1

100

0 5 10 15 20 25 3010−3

10−2

10−1

100

Measurement time [s]

La
te
nc

y
[m

s]

(e) L1–L1 (y-axis shifted)

10−3

10−2

10−1

100

0 5 10 15 20 25 3010−3

10−2

10−1

100

Measurement time [s]

La
te
nc

y
[m

s]

(f) L1–L2 (y-axis shifted)

Figure 6.14: Layered WLAN measurement

111

Chapter 6: Measuring and Modeling of Networked Control Systems

Lo
ss

ra
te

[%
]

0

20

40

60

80

100
× Average

Re
ce
iv
e
wi
nd
ow

[m
s]

Target delay [ms]

0.
10

0.
48

0.
86

1.
24

1.
62

2.
00

0.
10

0.
48

0.
86

1.
24

1.
62

2.
00

0.
10

0.
48

0.
86

1.
24

1.
62

2.
00

0.
10

0.
48

0.
86

1.
24

1.
62

2.
00

0.
10

0.
48

0.
86

1.
24

1.
62

2.
00

1.00 3.25 5.50 7.75 10.0

×
× × × × ×

×

× × × × ×

×

× × × × ×

×

× × × × ×

×

× × × × ×

Figure 6.15: Measurements of PRRT with varying target delay and receive windows (cf. Gallenmüller et al. [137])

Figure 6.14e shows the delay used for transmitting the packet on the medium and processing
steps happening shortly before or after. The distance of 1.5 m causes a propagation delay in
the nanosecond range. Delay is almost consistently below 1 ms, with both directions behaving
similarly. We do not see significant effects of jitter caused by buffers as for the higher layers. In
the next step, shown in Figure 6.14f, the driver of the respective communication partner receives
the packet and transmits it to the network stack. This is the fastest processing step causing a
roughly constant delay of 0.1 ms or lower for both directions.

Figure 6.14c shows the processing of the PRRT network stack on the receiver side. This process-
ing step causes a delay of up to approximately 9 ms. Here, PRRT causes the delay by intention
to meet the configured target delay requirements. In addition, PRRT drops packets that fail to
meet the target delay, leading to many packet drops for both communication directions.

Adding up the losses caused in Figures 6.14a and 6.14c results in the loss pattern observed in
Figure 6.13. For our measurement, we observed losses only from L7 to L2. We did not see
any packet loss or drops between the communication on L2 or lower on any host. All other
packets were discarded intentionally from L2 to L7 on the receiving host because of target delay
limitations. The packet rate in this experiment was limited to 1 kpkts/s. Despite this low load,
the measurement showed typical overload behavior of packet loss and high delays. We identified
the transition from the transmitter to the medium as the main bottleneck of the connection.
For Ethernet, we did not see such a bottleneck in any measurement. Considering the medium
usage, WLAN differs significantly from Ethernet. WLAN uses a more complex access scheme
for its shared medium and it uses only a half-duplex mode. Both differences contribute to the
creation of this additional bottleneck for wireless connections. A gain scheduling approach can
use that information to avoid this bottleneck, selecting a controller instance that operates at a
lower sampling frequency to allow stable control performance over WLAN channels.

We are interested in the behavior of non-overloaded systems. Therefore, we increase the packet-
to-packet time to at least 3.25 ms for the following experiments.

PRRT target delay and receiving window: Figure 6.15 shows the loss rate over a series of
measurements with varying target delay and receive windows. Loss rates for a target delay of
1 ms have a median above 80 %. Figures 6.14a and 6.14d can explain these high loss rates. The
two processing steps alone cause a delay close to or even above the configured target delay of

112

6.4 Applying the Resource Model to WLAN

20 365 710 1055 1400
Packet Size [B]

Lo
ss

ra
te

[%
]

0

20

40

60

80

100
× Average

× ×

×
×

×

× × × × ×

Figure 6.16: Measurement of PRRT for different packet sizes, receive window of 480 µs, target delay of
1000 µs (black) and 3250 µs (orange) (cf. Gallenmüller et al. [137])

1 ms. A narrow receive window also influences the loss rate: for 0.1 ms, the loss rate reaches 25 %
independent of the target delay. For wider receive windows and target delays above 3.25 ms, the
loss rate stays below 3 %. These results indicate that the achievable target delay has the highest
impact on the loss rate. However, even if high target delays are combined with narrow receive
windows, packet loss may remain high. If the packet loss rates are unacceptable for a controller
instance, gain scheduling can switch to another controller instance, respecting both target delay
and receive window sizes.

Payload size: To investigate the influence of the payload size on the loss rate, we pick two
examples from Figure 6.15 for a closer investigation. Figure 6.16 shows an example for a receive
window size of 0.48 ms and a target delay of 1 ms in black. Only for small payload sizes of 20
and 365 B a loss rate below 20 % can be achieved. For larger payload sizes, the loss rate steeply
rises to over 80 %. The second example in Figure 6.16 shows the scenario with a receive window
of 0.48 ms and a target delay of 3.25 ms in orange. There, the packet size has only a minor
influence on the loss rate, rising to 1.75 % in the worst scenario using a payload size of 1400 B.
As the packet size has only a minor influence on the loss rate—compared with the previous
parameters—gain scheduling should consider packet size as a minor input factor.

Our measurements identified the sampling time, target delay, receive window, and payload size,
all impacting the packet loss over IEEE 802.11g networks. In the following section, we try to
model the impact of these factors on network throughput. Therefore, we investigate if our
resource model for wired networks is also applicable to WLAN.

6.4 Applying the Resource Model to WLAN
We chose the same platform we used for our repeatable WLAN measurements to investigate
the applicability of the resource model to WLAN. This platform offers a low power CPU (AMD
GX-412TC CPU, 4× 1 GHz) that could be used for a mobile resource-constrained CPS. We
further chose a WLAN operating according to IEEE 802.11g, which offers a data rate of up to
54 Mbit/s. The data rate is plenty for a typical NCS, e.g., the TWIPR of NCSbench, which
requires approximately 30 pkts/s containing less than 1 kbit per message. We further use the

113

Chapter 6: Measuring and Modeling of Networked Control Systems

ad-hoc mode for WLAN to simplify the network topology by removing the need for a WLAN
access point.

Utilizing the same system architecture, WLANs are subject to the same bottlenecks as wired
Ethernet (cf. Section 4.1). Our chosen platform uses a single lane of PCIe 2.0 that offers a
bandwidth of 4 Gbit/s. The DDR3-1333 memory offers a bandwidth of approximately 85 Gbit/s.
Both bandwidths exceed the maximum bandwidth of 54 Mbit/s for IEEE 802.11g networks by
far. Therefore, neither system interconnect presents a relevant bottleneck to our chosen system.

The main bottleneck of packet processing on high-performance systems is the CPU. To check
if the CPU can act as a possible bottleneck, we performed measurements. We used our typical
two-node setup relying on the hardware mentioned above in our shielded environment under
optimal conditions. Iperf3 was the packet generator of choice, as the WLAN NIC does not
support DPDK or MoonGen. One of the nodes acted as a traffic source, the other node as a
traffic sink. We did not observe a CPU load higher than 20 % at any point during our various
measurements, neither on the receiving nor the sending node. Therefore, we conclude that the
CPU is not a bottleneck for the investigated packet rates in our scenarios.

The only remaining bottleneck is the bandwidth of the WLAN technology in use. WLAN
bandwidth depends on many factors, such as the used encoding scheme or the length of the
transmitted packets. Bordim et al. [149] provide equations for calculating the available band-
width considering these factors.

tavg = 0.15x + 162.43 (6.5)

Equation 6.5 models an ad-hoc network with an encoding scheme allowing the highest bandwidth
of 54 Mbit/s. This equation calculates the average time to transmit a packet in µs depending
on the packet size x in B. Equation 6.5 demonstrates that IEEE 802.11g has average per-packet
costs of approximately 162 µs and per-byte costs of approximately 0.15 µs. Figures 6.17a and
6.17b, show the throughput and the transmission time per packet according to this model as
dashed lines.

To test the applicability of this model to a real-world scenario, we performed our own measure-
ment. We use the hardware listed above and the iperf3 packet generator, creating UDP traffic
to saturate the link. Unidirectional traffic was sent between a traffic source and a traffic sink
equipped with identical hardware. Figure 6.17a shows the measured throughput as a solid line.
When comparing measured and modeled values in Figure 6.17a, the measured throughput is
always lower than the modeled one. However, this performance penalty seems to decrease for
larger packets. To compare the measurements directly with Equation 6.5, we calculated the
average transmission times for our measured throughput figures. The result is depicted as a
solid line in Figure 6.17b.

Bordim et al. [149] also performed measurements and noticed a difference between model and
measurement. They attribute this difference to various factors, such as hardware and software
implementations. In their setup, they determined a constant additional delay of approximately

114

6.4 Applying the Resource Model to WLAN

0 200 400 600 800 1,000 1,200 1,400
0
1
2
3
4
5
6
7

Packet size [B]

Av
er

ag
e

pa
ck

et
ra

te
[k

pk
ts

/
s]

Measurement
Model (based on tavg)

Model (based on t∗
avg , timpl = 120 µs)

(a) Throughput

0 200 400 600 800 1,000 1,200 1,400
0

100

200

300

400

500

Packet size [B]

Av
er

ag
e

tr
an

sf
er

ti
m

e
[µ

s]

Measurement
Model (tavg)

Model (t∗
avg , timpl = 120 µs)

(b) Per-frame transmission time

Figure 6.17: Impact of frame size on IEEE802.11g WLAN

115

Chapter 6: Measuring and Modeling of Networked Control Systems

60 µs. For our measurement, we calculated a constant delay of approximately 120 µs. The
measurement uses the RF-shielded boxes to provide optimal conditions for WLAN. Therefore,
we attribute the differences between the two measurements to the differences in the hardware
and software. To improve the prediction of Equation 6.5, we include this additional delay as an
implementation-specific variable timpl resulting in an improved model noted in Equation 6.6.

t∗
avg = 0.15x + 162.43 + timpl (6.6)

This improved model can be used to determine the per-packet transmission time on a wire-
less link for a specific implementation of WLAN hardware and software. The model requires
the additional delay timpl. This variable can be determined by a throughput measurement
at the maximum available bandwidth. As timpl remains constant for a given implementation,
Equation 6.6 can calculate an average transmission time for the wireless link. This average
transmission time can further be used to calculate the maximum packet rate (T W LAN

max) of a
given wireless link using Equation 6.7.

T W LAN
max = 1

t∗
avg

(6.7)

The original model and the different measurements uncover substantial differences in transmis-
sion times for WLAN networks. Therefore, we recommend measuring the WLAN throughput in
a specific scenario to determine the impact of the implementation expressed by timpl. Using this
implementation-specific variable, Equation 6.7 can be used to provide a realistic upper bound
for the achievable throughput on a wireless link. We added an improved model that respects
timpl with a value of 120 µs in Figure 6.17. This new model can provide realistic upper bounds
for WLANs under the given hardware and operating conditions.

These results are consistent with our measurements in Section 6.3.5. The sampling time and,
therefore, the packet rate and the packet length impact the achievable packet rate, which can
be explained by Equations 6.5 and 6.7. The impact of the other two factors, the receive window
and the target delay, cannot be explained by these equations. Both are a result of the system
architecture of Linux that cannot process the packets with the low delay needed, despite the
availability of enough CPU time.

Our model considers two impact factors, the IEEE 802.11g standard and its implementation.
The measurements demonstrate that both impact factors are essential to determine the link
capacity. Therefore, this model can be used as a foundation for more complex scenarios. Such
scenarios may require additional factors, such as changing operating conditions, e.g., the distance
or the angle of the WLAN antennas.

6.5 Key Results
This chapter demonstrates the application of a data-driven measurement approach towards the
domain of networked control systems (NCS). Initially, we present a novel benchmark suite, called

116

6.6 Author’s Contributions

NCSbench, based on benchmarks from both disciplines joint in NCS, namely the control domain
and the network domain. This allows us to create a new benchmark tailored to the specific needs
of an NCS. Therefore, we identify the relevant parameters to recreate test conditions when
performing the benchmark. The results of our benchmark are reported as KPIs. We define two
sets of indicators that are either used to describe the QoC of a CPS or the quality of transport
of the underlying network.

NCSbench includes an open-source NCS experimental platform based on the Lego Mindstorms.
We evaluate the platform by repeating our own results and replicate results among two research
groups. The evaluation results prove the effectiveness of the proposed KPIs and the validity of
the benchmarking methodology. The platform is built with cost efficiency, flexibility, and ease-
of-use in mind. These design choices lower the barriers for others to recreate our experiments,
thereby creating full reproducibility.

Our NCSbench evaluation shows that, despite our efforts for documenting and replicating the
measurement setup, the results of wireless experiments remain highly sensitive to the physical
environment. To make the experiment independent from environmental influences, we create a
shielded wireless testbed using pos. We conduct a measurement series on the PRRT protocol,
a protocol designed with the requirements of NCS in mind. Our system monitors the channel
properties at runtime, utilizing the PRRT protocol and cooperates with the control application
to select the best available controller instance, i.e., gain scheduling. We further investigate four
main levers for wireless control systems—sampling frequency, target delay, receiving window,
and packet size—influencing the loss rates on wireless connections and identify potential bot-
tlenecks. A detailed analysis of the WLAN network stack on the sender and receiver identifies
medium access as the main bottleneck for wireless networks. Our fully automated evaluation
procedure uses shielded boxes to create repeatable results in a well-defined environment for
wireless measurements. We identify sampling frequency and target delay as the most critical
impact factors on loss rate as long as receive windows are not chosen too narrow. Packet size
only has a limited influence on loss rates.

Based on the previous measurements, we apply the resource model to analyze the potential
bottlenecks for WLANs. All system interconnects and the CPU processing capabilities far
exceed the required bandwidth and computing power. The only remaining bottleneck is the
IEEE 802.11g standard itself that limits the achievable packet rates depending on the frame size
of the transmitted traffic. We measure an additional impact of the WLAN implementation of
our adapters that further decreases the achievable throughput. Utilizing this implementation-
specific decrease and the theoretical throughput, we could successfully predict the maximum
packet rates of IEEE 802.11g networks.

6.6 Author’s Contributions
Section 6.1 is based on a publication by Sebastian Gallenmüller, Stephan Günther, Maurice
Leclaire, Samuele Zoppi, Fabio Molinari, Richard Schöffauer, Wolfgang Kellerer, and Georg

117

Chapter 6: Measuring and Modeling of Networked Control Systems

Carle [107]. The author described the main ideas and concepts for the networking side of the
benchmark.

Sections 6.1 and 6.2 further present NCSbench—a joint effort between Samuele Zoppi, Onur
Ayan, Fabio Molinari, Zenit Music, Sebastian Gallenmüller, Georg Carle, and Wolfgang Keller-
er [108]. The author contributed significantly to the implementation of NCSbench, the experi-
ment platform itself, and the benchmark. In addition, the author performed measurements
(platform A) and contributed significantly to the comparison of the platforms.

Section 6.3 is based on joint work between Sebastian Gallenmüller, René Glebke, Stephan Gün-
ther, Eric Hauser, Maurice Leclaire, Stefan Reif, Jan Rüth, Andreas Schmidt, Georg Carle,
Thorsten Herfet, Wolfgang Schröder-Preikschat, and Klaus Wehrle [137]. The author super-
vised the thesis in which the PRRT measurements were performed and contributed his ideas
and the measurement methodology. Further, significant contributions were made to the analysis
and presentation of the data. The measurements presented in Figures 6.13 and 6.14 were created
for this thesis. Based on the two figures, the analysis goes significantly beyond the investigation
of the original work.

The model presented in Section 6.4 is novel, where the measurements and analysis were con-
ducted by the author.

118

Chapter 7

Conclusion

This chapter summarizes the findings of this thesis on how to measure and model different packet
processing systems. The continuing technical progress in the area of computer networks provides
a fertile ground for new research questions. We want to end this chapter with a discussion of
several open questions worth investigating.

7.1 Key Findings
The key findings are structured according to the research questions introduced in Section 1.1.

RQ1: How can we design and execute reproducible experiments for the investigation of packet
processing systems? We presented our testbed with the testbed controller pos in Chapter 2.
Following the pos experiment workflow, users have to create an experiment that is fully scripted
and can be executed automatically. This kind of automation creates repeatable experiments,
thereby reaching the first stage of reproducibility. In the case of shared testbed access, other
researchers can reuse these scripts to replicate experiments—the second stage of reproducibility.
Repeatability and replicability are an inherent consequence of pos experiment workflow, which
we call replicability by design. We further demonstrated that the experiment results, together
with the experiment and evaluation scripts, can be released with minor additional effort. This
data provides other research groups with the necessary information to reproduce our experiments
reaching the third stage, reproducibility [106].

The testbed and its controller were instrumental to the experiments presented in this thesis
to different application domains. Chapter 5 contains experiments for high-performance packet
processing applications based on off-the-shelf servers. In Chapter 6, we included shielded boxes
into the testbed, which brings repeatable network experiments to the area of wireless networks.

RQ2: How can we create a measurement methodology to identify the main impact factors on
packet processing performance? A tool that is central to the measurements of this thesis is
MoonGen. We show that traffic properties, such as the inter-packet gap, can have a visible
impact on the performance of packet processing systems. MoonGen offers several possibilities

Chapter 7: Conclusion

to precisely determine the inter-packet gap according to the specification of the user. It further
offers hardware timestamping capabilities for specific hardware, even timestamping of every re-
ceived packet. These timestamps allow a detailed analysis of worst-case delays, as demonstrated
in Chapter 5.

We further demonstrate that traditional architectures fail at bandwidths of 100G. Therefore,
we present novel prototypes suitable for such high bandwidths. Both prototypes, FLOWer and
Flowscope, leverage hardware offloading and specialized data structures to allow high-bandwidth
measurements and analysis.

RQ3: How can we create a modeling framework to efficiently and adequately describe the behavior
of packet processing systems in general? We identified different potential bottlenecks in the
current hardware architectures of packet processing systems. Among these potential bottlenecks
are the CPU performing the packet processing task, the maximum supported bandwidth of the
NIC, or various internal system buses, such as PCIe. Depending on the amount and the quality of
the traffic, only a subset of the identified components is responsible for the overall performance
of the packet processing system. We created the resource model that utilizes these different
bottlenecks to predict the overall performance of a system.

We demonstrated the application of the resource model to predict the performance of packet pro-
cessing frameworks, an NFC framework, a software router, and an intrusion prevention system.
The resource model requires the available bottleneck bandwidths and an approximation of the
computational complexity of the processing task to predict the system capacity. Our resource
model can be used to create packet processing systems that meet expected capacity and service
levels. The modeling technique was also picked up by other research groups; Suksomboon et
al. [150] extended the presented resource model to predict performance under the influence of
cache contention.

RQ4: How can we characterize, analyze, and model high-performance packet processing systems?
We demonstrated that, despite the simple two-node setup, many different investigations could be
performed. This thesis presents an in-depth performance analysis of high-speed packet process-
ing frameworks. The measurement methodology is further applied to an NFC framework based
on the high-speed packet processing framework Snabb. In addition, we present MoonRoute, a
high-performance software router, as an example of a high-performance packet processing ap-
plication. Our measurements show that the performance of an adequately designed application
scales almost linearly with CPU clock rate or cores. All measurements demonstrate that, uti-
lizing these frameworks, performance can be improved to process bandwidths of 10 Gbit/s or
more

The most sophisticated setup is applied to our investigation of an intrusion prevention system.
There, we introduce a third measurement host, which timestamps every packet it observes.
The third host allows a more detailed latency analysis compared with the original latency sam-
pling process. Our measurements show that these high-speed processing frameworks are not
only capable of increasing packet throughput, but are also suitable for designing low-latency
applications.

120

7.2 Future Work

RQ5: How can we characterize, analyze, and model wireless networked control systems? The
thesis applies the measurement methodology to the application domain of wireless NCS. The
conditions in this application environment are significantly different from the other investigated
domains—bandwidths decrease and latencies increase by a factor of 1000, respectively. Control
systems are typically resource constraint and wireless networks are susceptible to interference.
All these factors required a revision of the entire measurement methodology.

We created our own platform and benchmark for NCS, which we designed with reproducibility
and measurability in mind. Further, we upgraded our testbed with shielding capabilities to allow
repeatable wireless network experiments. We demonstrate that the proposed resource model is
also applicable to IEEE 802.11 WLAN networks. WLANs behave similar to wired networks, e.g.,
packet rates are more important than raw throughput rates. Our tests demonstrate that the
main bottleneck of the IEEE 802.11g WLAN is the throughput limit contained in the network
standard, which defines a complex medium access scheme. Another critical factor is the imple-
mentation of WLAN in hardware and software, which further limits the maximum achievable
packet rates. System interconnects and the CPU do not present a relevant bottleneck as their
capacity far exceeds the WLAN throughput limits.

7.2 Future Work
Our results show that we successfully established a methodology to perform reproducible network
experiments. The current implementation of our testbeds has limitations, e.g., a residual state
on a DuT that is not fully controllable via the testbed infrastructure, such as BIOS settings or
firmware versions. However, these issues can be solved through additional development efforts
and do not prevent a successful repetition of experiments in general.

This thesis shows that repeatable network experiments are possible even for highly sensitive
wireless networks. We further present NCSbench, a reproducible benchmarking suite for NCS.
Despite its similar focus, this thesis did not combine both approaches. Due to space constraints
of our shielded boxes, we could not run the TWIPR inside the shielded environment. A larger
shielded box would allow for a fully controlled wireless environment for the TWIPR. This con-
trolled environment would allow the creation of interference reliably and repeatably to bench-
mark NCS even under challenging conditions. Additionally, a mechanism is needed to bring the
robot into an upright position as the motors do not allow the robot to erect itself. Combining
both approaches, the testbed and NCSbench, would allow replicable NCS measurements, a goal
that we successfully achieved for wired measurements.

We demonstrated that the testbed could handle the bandwidths for 10G Ethernet; we also intro-
duce tools capable of handling 100G traffic. However, with 400G Ethernet currently being rolled
out, the bandwidths become too high to do complex packet processing on current off-the-shelf
servers. We already showed a possible solution, the FLOWer approach [29], where we combine
a switch with an off-the-shelf server. This switch can be programmed, which allows a partial
offload of packet processing to a highly optimized, powerful switching ASIC. The load on the
critical component of the server—the CPU—is minimized, allowing packet processing at 400G

121

and beyond. New network programming paradigms, such as P4, bring even more flexibility and
processing power to the data plane. However, the CPU-based packet processing system allows
highly complex algorithms that are not possible in the P4-based architectures. Therefore, we be-
lieve that future high-performance packet processing systems will rely on such a combination of
systems to cope with ever-growing traffic. This thesis provides a foundation to measure, under-
stand, and model current high-performance packet processing applications. However, additional
effort will be required to upgrade the measurement capabilities to understand and, subsequently,
model these novel combined packet processing systems.

122

Chapter A

Appendix

A.1 List of Acronyms

AP Access point. Provides network access to end-user devices, often used in WLAN.

CAT Cache allocation technology. Feature of Intel CPUs to partition shared cache among
multiple CPU cores.

CBR Constant bitrate. Rate which does not change over time. Constant bitrate requires
a constant inter-packet gap.

CPS Cyber-physical system. Physical system measured and controlled by a computer.

DDIO Data Direct I/O. Technique to read/write from/into the last level cache instead of
the main memory.

DMA Direct Memory Access. Technique for I/O devices to read/write from/into the main
memory bypassing the CPU.

DPDK Data Plane Development Kit. Framework for creating high-performance packet pro-
cessing applications.

DuT Device under test. Subject of investigation in an experiment.

FFI Foreign function interface. Interface to call functions written in another programming
language.

KPI Key performance indicator. Value to determine the performance of a system.

KVM Kernel Virtual Machine. Virtualization solution that is part of the Linux kernel.

LLC Last level cache. CPU cache between CPU and main memory, typically Level 3 cache.

MSE Mean squared error. Average squared difference between a measured value and its
estimation.

NCS Networked control system. Control system controlled over a network connection.

Chapter A: Appendix

NF Network function. A packet processing task running in software.

NFC Network function chain. Concatenation of network functions to perform complex
packet processing tasks.

NIC Network interface card. Network adapter typically used in a host or server.

OS Operating system. Basic system software.

OvS Open vSwitch. An open-source software switch.

pos Plain orchestrating service. Testbed controller for designing and executing repeatable
and replicable network experiments.

PRRT Predictably reliable realtime transport. Transport layer protocol with configurable
reliability and realtime properties.

QoC Quality of control. Property to describe the quality of a control process.

QoS Quality of service. Property to describe the quality of a service, typically an applica-
tion.

QPI Quick Path Interconnect. Intel CPU interconnect.

RSS Receive Side Scaling. Distribution of received packets across a number of NIC queues
to support multicore network applications.

SR-IOV Single root IO virtualization. Technology to efficiently share PCIe devices, often used
for VM IO.

TSC Time stamp counter. Precise timer on modern x86 CPUs.

TWIPR Two-wheeled inverted pendulum robot. Common experimental platform for control
systems.

UPI Ultra Path Interconnect. Intel CPU interconnect.

124

A.2 List of Figures

1.1 A two-node network consisting of a load generator (LoadGen) and a device under
test (DuT) . 1

2.1 Experiment workflow using the pos testbed controller (cf. Gallenmüller et al. [3]) 9

3.1 Relative deviating latency for measurement traffic with different burst sizes (cf.
Emmerich et al. [14]) . 14

3.2 Architecture of MoonGen/libmoon (cf. Gallenmüller et al. [3]) 15
3.3 Inter-packet gap of packet generators (cf. Emmerich et al. [14]) 19
3.4 Inter-packet gap of hardware-assisted generation on Intel 82599 (cf. Emmerich et

al. [14]) . 20
3.5 Switch measurement setups of FLOWer (cf. Emmerich et al. [29]) 23
3.6 Architecture of FlowScope and the QQ data stucture (cf. Gallenmüller et al. [3]) 24

4.1 Generic packet processing system . 27
4.2 Generic model for packet processing systems . 29
4.3 System architecture of software packet processing sytems 30
4.4 Ideal model for data access costs using random accesses on Ivy Bridge microar-

chitecture . 33
4.5 Model for packet processing with a packet size of 64 B (cf. Gallenmüller et al. [38]) 35

5.1 Model for packet processing (cf. Gallenmüller et al. [38]) 43
5.2 Transmission efficiency measurements (cf. Gallenmüller et al. [38]) 48
5.3 Cache measurements (cf. Gallenmüller et al. [38]) 49
5.4 Throughput influenced by batch sizes (cf. Gallenmüller et al. [38]) 50
5.5 Average latency by batch size (cf. Gallenmüller et al. [38]) 51
5.6 Forwarding with SHEEP-enabled NF . 55
5.7 Scaling of MoonRoute with CPU frequency . 59
5.8 Scaling of MoonRoute with the number of CPU cores 61
5.9 Comparison of LPM execution on one and two CPU cores (cf. Emmerich et al. [81]) 62
5.10 Snort forwarder worst-case latencies (cf. Gallenmüller et al. [4]) 65
5.11 System architecture overview (cf. Gallenmüller et al. [4]) 68
5.12 Setup with Snort as a DuT, MoonGen as a LoadGen, and a Timestamper (cf.

Gallenmüller et al. [4]) . 69
5.13 5000 worst-case latency events measured for DPDK-l2fwd at 10 kpkts/s (cf. Gal-

lenmüller et al. [4]) . 73
5.14 Latency when forwarding using Snort-filter (VM) at 10 kpkts/s for different burst

sizes (cf. Gallenmüller et al. [4]) . 75
5.15 Sources of delay on modern architectures (cf. Gallenmüller et al. [4]) 76

6.1 Control loop of an NCS (cf. Gallenmüller et al. [107]) 83
6.2 KPIs on different layers of the ISO/OSI stack (cf. Gallenmüller et al. [107]) . . . 85

125

6.3 Two-hop network topology used in NCSbench, supporting Ethernet and WLAN
USB adapters (cf. Gallenmüller et al. [107]) . 89

6.4 Architecture of the NCS platform (cf. Zoppi et al. [108]) 89
6.5 Model of the timings of an NCS together with the processing (P) and networking

(N) delays of the control, computation, and communication CPS domains (cf.
Zoppi et al. [108]) . 91

6.6 Model of the TWIPR, side view (cf. Zoppi et al. [108]) 95
6.7 Time evolution and empirical distribution of the delays of the controller 1 , sensor

2 , network 3 , and actuator 4 (cf. Zoppi et al. [108]) 99
6.8 Time evolution and empirical distribution of the round-trip delays 5 , the ideal

sampling period 6 , and of the measured sampling period 7 (cf. Zoppi et al. [108]) 99
6.9 Time evolution of the filtered pitch angle Θ, the filtered average rotation angle

Φ, and the average applied voltage at the motors ν (cf. Zoppi et al. [108]) 100
6.10 NCS topology (cf. Gallenmüller et al. [137]) . 104
6.11 Simplified testbed setup (cf. Gallenmüller et al. [137]) 107
6.12 Stack with timestamping vantage points (cf. Gallenmüller et al. [137]) 108
6.13 1 ms packet-to-packet time, 20 B payload size, 10 ms target delay, 2 ms receive

window (upper and lower limit in green) (cf. Gallenmüller et al. [137]) 110
6.14 Layered WLAN measurement . 111
6.15 Measurements of PRRT with varying target delay and receive windows (cf. Gal-

lenmüller et al. [137]) . 112
6.16 Measurement of PRRT for different packet sizes, receive window of 480 µs, target

delay of 1000 µs (black) and 3250 µs (orange) (cf. Gallenmüller et al. [137]) 113
6.17 Impact of frame size on IEEE 802.11g WLAN . 115

126

A.3 List of Tables

3.1 Investigated software packet generators (cf. Emmerich et al. [14]) 17
3.2 Packet rates of packet generators optimized for maximum throughput and high

precision (cf. Emmerich et al. [14]) . 18
3.3 Impact of CPU frequency on packet generation (cf. Emmerich et al. [14]) 21
3.4 Generation rates at different clock frequencies (cf. Emmerich et al. [14]) 21

4.1 System interconnect bandwidths . 30
4.2 Data Access Cost on Intel Sandy and Ivy Bridge CPUs (cf. Intel [46]) 33

5.1 Single-core router performance (cf. Gallenmüller et al. [80]) 63
5.2 Latencies of a Snort forwarder (cf. Gallenmüller et al. [4]) 65
5.3 Latencies of different software systems (cf. Gallenmüller et al. [4]) 70
5.4 Power consumption (cf. Gallenmüller et al. [4]) 76
5.5 Calculated CPU times and maximum rate (cf. Gallenmüller et al. [4]) 77
5.6 Trigger rates (r) & delays (d) of interrupts (cf. Gallenmüller et al. [4]) 77

6.1 Scenario description parameters for two NCS platforms A and B—initial imple-
mentation and benchmark replication (cf. Zoppi et al. [108]) 94

6.2 Summary of time and control KPIs (cf. Zoppi et al. [108]) 97
6.3 Time KPI percentiles of the four evaluation scenarios (cf. Zoppi et al. [108]) . . . 102
6.4 Control KPIs of the four evaluation scenarios (cf. Zoppi et al. [108]) 102
6.5 Parameters of the delay measurement set (cf. Gallenmüller et al. [137]) 109

127

Bibliography

Work with author’s contribution
[2] D. Raumer, S. Gallenmüller, F. Wohlfart, P. Emmerich, P. Werneck, and G. Carle, “Revisiting

Benchmarking Methodology for Interconnect Devices”, in Proceedings of the 2016 Applied Net-
working Research Workshop, ANRW 2016, Berlin, Germany, July 16, 2016, 2016, pp. 55–61. doi:
10.1145/2959424.2959430. [Online]. Available: https://doi.org/10.1145/2959424.2959430.

[3] S. Gallenmüller, D. Scholz, F. Wohlfart, Q. Scheitle, P. Emmerich, and G. Carle, “High-Per-
formance Packet Processing and Measurements”, in 10th International Conference on Commu-
nication Systems & Networks, COMSNETS 2018, Bengaluru, India, January 3-7, 2018, 2018,
pp. 1–8. doi: 10.1109/COMSNETS.2018.8328173. [Online]. Available: https://doi.org/10.
1109/COMSNETS.2018.8328173.

[4] S. Gallenmüller, J. Naab, I. Adam, and G. Carle, “5G QoS: Impact of Security Functions on
Latency”, in NOMS 2020 - IEEE/IFIP Network Operations and Management Symposium, Bu-
dapest, Hungary, April 20-24, 2020, IEEE, 2020, pp. 1–9. doi: 10.1109/NOMS47738.2020.
9110422. [Online]. Available: https://doi.org/10.1109/NOMS47738.2020.9110422.

[14] P. Emmerich, S. Gallenmüller, G. Antichi, A. W. Moore, and G. Carle, “Mind the Gap - A
Comparison of Software Packet Generators”, in ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ANCS 2017, Beijing, China, May 18-19, 2017, 2017,
pp. 191–203. doi: 10.1109/ANCS.2017.32. [Online]. Available: https://doi.org/10.1109/
ANCS.2017.32.

[15] S. Gallenmüller, P. Emmerich, D. Raumer, and G. Carle, “MoonGen: Software Packet Generation
for 10 Gbit and Beyond”, in 12th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2015, Oakland, CA, USA, May 4-6, 2015, Poster, 2015.

[16] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle, “MoonGen: A Scriptable
High-Speed Packet Generator”, in Proceedings of the 2015 ACM Internet Measurement Confer-
ence, IMC 2015, Tokyo, Japan, October 28-30, 2015, 2015, pp. 275–287. doi: 10.1145/2815675.
2815692. [Online]. Available: https://doi.org/10.1145/2815675.2815692.

[29] P. Emmerich, S. Gallenmüller, and G. Carle, “FLOWer - Device Benchmarking Beyond 100
Gbit/s”, in 2016 IFIP Networking Conference, Networking 2016 and Workshops, Vienna, Aus-
tria, May 17-19, 2016, 2016, pp. 109–116. doi: 10 . 1109 / IFIPNetworking . 2016 . 7497198.
[Online]. Available: https://doi.org/10.1109/IFIPNetworking.2016.7497198.

[33] P. Emmerich, M. Pudelko, S. Gallenmüller, and G. Carle, “FlowScope: Efficient Packet Cap-
ture and Storage in 100 Gbit/s Networks”, in 2017 IFIP Networking Conference, IFIP Net-
working 2017 and Workshops, Stockholm, Sweden, June 12-16, 2017, 2017, pp. 1–9. doi: 10.

https://doi.org/10.1145/2959424.2959430
https://doi.org/10.1145/2959424.2959430
https://doi.org/10.1109/COMSNETS.2018.8328173
https://doi.org/10.1109/COMSNETS.2018.8328173
https://doi.org/10.1109/COMSNETS.2018.8328173
https://doi.org/10.1109/NOMS47738.2020.9110422
https://doi.org/10.1109/NOMS47738.2020.9110422
https://doi.org/10.1109/NOMS47738.2020.9110422
https://doi.org/10.1109/ANCS.2017.32
https://doi.org/10.1109/ANCS.2017.32
https://doi.org/10.1109/ANCS.2017.32
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1109/IFIPNetworking.2016.7497198
https://doi.org/10.1109/IFIPNetworking.2016.7497198
https://doi.org/10.23919/IFIPNetworking.2017.8264852
https://doi.org/10.23919/IFIPNetworking.2017.8264852

23919 / IFIPNetworking . 2017 . 8264852. [Online]. Available: https : / / doi . org / 10 . 23919 /
IFIPNetworking.2017.8264852.

[38] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle, “Comparison of Frame-
works for High-Performance Packet IO”, in Proceedings of the Eleventh ACM/IEEE Symposium
on Architectures for networking and communications systems, ANCS 2015, Oakland, CA, USA,
May 7-8, 2015, 2015, pp. 29–38. doi: 10.1109/ANCS.2015.7110118. [Online]. Available: https:
//doi.org/10.1109/ANCS.2015.7110118.

[39] S. Gallenmüller, “Comparison of Memory Mapping Techniques for High-Speed Packet Process-
ing”, Master’s thesis, Technical University of Munich, 2014.

[77] ——, SHEEP: Simulation algoritHms for Empirical Evaluation of Processor performance, Last
accessed: 2021-05-31, 2015. [Online]. Available: https://github.com/gallenmu/SHEEP.

[78] W. Hahn, B. Gajic, F. Wohlfart, D. Raumer, P. Emmerich, S. Gallenmüller, and G. Carle,
“Feasibility of Compound Chained Network Functions for Flexible Packet Processing”, in Inter-
national Workshop on 5G Enabling Technologies for the Internet of Things (GET-IoT) at the
23rd European Wireless (EW2017), Dresden, Germany, May 17-19, 2017, 2017.

[80] S. Gallenmüller, P. Emmerich, R. Schönberger, D. Raumer, and G. Carle, “Building Fast but
Flexible Software Routers”, in ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ANCS 2017, Beijing, China, May 18-19, 2017, 2017, pp. 101–102.
doi: 10.1109/ANCS.2017.21. [Online]. Available: https://doi.org/10.1109/ANCS.2017.21.

[81] P. Emmerich, S. Gallenmüller, R. Schönberger, D. Raumer, and G. Carle, “Architectures for
Fast and Flexible Software Routers”, Technical University of Munich, Garching near Munich,
Germany, Tech. Rep., 2015. [Online]. Available: https://www.net.in.tum.de/fileadmin/
bibtex/publications/papers/MoonRoute_draft1.pdf.

[84] P. Emmerich, D. Raumer, S. Gallenmüller, F. Wohlfart, and G. Carle, “Throughput and Latency
of Virtual Switching with Open vSwitch: A Quantitative Analysis”, J. Network Syst. Manage.,
vol. 26, no. 2, pp. 314–338, 2018. doi: 10 . 1007 / s10922 - 017 - 9417 - 0. [Online]. Available:
https://doi.org/10.1007/s10922-017-9417-0.

[87] P. Emmerich, D. Raumer, A. Beifuß, L. Erlacher, F. Wohlfart, T. M. Runge, S. Gallenmüller, and
G. Carle, “Optimizing Latency and CPU Load in Packet Processing Systems”, in Proceedings of
the International Symposium on Performance Evaluation of Computer and Telecommunication
Systems, Chicago, IL, USA, July 26-29, 2015, 2015, 6:1–6:8. doi: 10 . 1109 / SPECTS . 2015 .
7285275. [Online]. Available: https://doi.org/10.1109/SPECTS.2015.7285275.

[106] S. Gallenmüller, J. Naab, I. Adam, and G. Carle, Reproducing Evaluation Results, Last accessed:
2021-05-31, 2020. [Online]. Available: https://gallenmu.github.io/low-latency.

[107] S. Gallenmüller, S. M. Günther, M. Leclaire, S. Zoppi, F. Molinari, R. Schöffauer, W. Kellerer,
and G. Carle, “Benchmarking Networked Control Systems”, in Workshop on Benchmarking
Cyber-Physical Networks and Systems, Bench@CPSWeek 2018, Porto, Portugal, April 10, 2018,
2018, pp. 7–12. doi: 10.1109/CPSBench.2018.00008. [Online]. Available: https://doi.org/10.
1109/CPSBench.2018.00008.

[108] S. Zoppi, O. Ayan, F. Molinari, Z. Music, S. Gallenmüller, G. Carle, and W. Kellerer, “NCS-
bench: Reproducible Benchmarking Platform for Networked Control Systems”, in IEEE 17th
Annual Consumer Communications & Networking Conference, CCNC 2020, Las Vegas, NV,
USA, January 10-13, 2020, IEEE, 2020, pp. 1–9. doi: 10.1109/CCNC46108.2020.9045199.
[Online]. Available: https://doi.org/10.1109/CCNC46108.2020.9045199.

[112] ——, NCSbench repository, Last accessed: 2021-05-31, 2020. [Online]. Available: https : / /
github.com/tum-lkn/NCSbench.

130

https://doi.org/10.23919/IFIPNetworking.2017.8264852
https://doi.org/10.23919/IFIPNetworking.2017.8264852
https://doi.org/10.23919/IFIPNetworking.2017.8264852
https://doi.org/10.23919/IFIPNetworking.2017.8264852
https://doi.org/10.1109/ANCS.2015.7110118
https://doi.org/10.1109/ANCS.2015.7110118
https://doi.org/10.1109/ANCS.2015.7110118
https://github.com/gallenmu/SHEEP
https://doi.org/10.1109/ANCS.2017.21
https://doi.org/10.1109/ANCS.2017.21
https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/MoonRoute_draft1.pdf
https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/MoonRoute_draft1.pdf
https://doi.org/10.1007/s10922-017-9417-0
https://doi.org/10.1007/s10922-017-9417-0
https://doi.org/10.1109/SPECTS.2015.7285275
https://doi.org/10.1109/SPECTS.2015.7285275
https://doi.org/10.1109/SPECTS.2015.7285275
https://gallenmu.github.io/low-latency
https://doi.org/10.1109/CPSBench.2018.00008
https://doi.org/10.1109/CPSBench.2018.00008
https://doi.org/10.1109/CPSBench.2018.00008
https://doi.org/10.1109/CCNC46108.2020.9045199
https://doi.org/10.1109/CCNC46108.2020.9045199
https://github.com/tum-lkn/NCSbench
https://github.com/tum-lkn/NCSbench

[135] Z. Music, F. Molinari, S. Gallenmüller, O. Ayan, S. Zoppi, W. Kellerer, G. Carle, T. Seel, and
J. Raisch, “Design of a Networked Controller for a Two-Wheeled Inverted Pendulum Robot”,
IFAC-PapersOnLine, vol. 50, pp. 169–174, 20 2019. doi: 10.1016/j.ifacol.2019.12.153.
[Online]. Available: https://doi.org/10.1016/j.ifacol.2019.12.153.

[137] S. Gallenmüller, R. Glebke, S. M. Günther, E. Hauser, M. Leclaire, S. Reif, J. Rüth, A. Schmidt,
G. Carle, T. Herfet, W. Schröder-Preikschat, and K. Wehrle, “Enabling Wireless Network Sup-
port for Gain Scheduled Control”, in Proceedings of the 2nd International Workshop on Edge
Systems, Analytics and Networking, EdgeSys@EuroSys 2019, Dresden, Germany, March 25,
2019, 2019, pp. 36–41. doi: 10.1145/3301418.3313943. [Online]. Available: https://doi.org/
10.1145/3301418.3313943.

References
[1] S. O. Bradner and J. McQuaid, “Benchmarking Methodology for Network Interconnect Devices”,

RFC, vol. 2544, pp. 1–31, 1999. doi: 10.17487/RFC2544. [Online]. Available: https://doi.org/
10.17487/RFC2544.

[5] ACM, Artifact Review and Badging, Last accessed: 2021-05-31. [Online]. Available: http://www.
acm.org/publications/policies/artifact-review-badging.

[6] Q. Scheitle, M. Wählisch, O. Gasser, T. C. Schmidt, and G. Carle, “Towards an Ecosystem for
Reproducible Research in Computer Networking”, in Proceedings of the Reproducibility Work-
shop, Reproducibility@SIGCOMM 2017, Los Angeles, CA, USA, August 25, 2017, ACM, 2017,
pp. 5–8. doi: 10.1145/3097766.3097768. [Online]. Available: https://doi.org/10.1145/
3097766.3097768.

[7] N. Zilberman and A. W. Moore, “Thoughts about Artifact Badging”, Computer Communication
Review, vol. 50, no. 2, pp. 60–63, 2020. doi: 10.1145/3402413.3402422. [Online]. Available:
https://doi.org/10.1145/3402413.3402422.

[8] V. Bajpai, A. Brunström, A. Feldmann, W. Kellerer, A. Pras, H. Schulzrinne, G. Smaragdakis, M.
Wählisch, and K. Wehrle, “The Dagstuhl Beginners Guide to Reproducibility for Experimental
Networking Research”, Computer Communication Review, vol. 49, no. 1, pp. 24–30, 2019. doi:
10.1145/3314212.3314217. [Online]. Available: https://doi.org/10.1145/3314212.3314217.

[9] L. Nussbaum, “Testbeds Support for Reproducible Research”, in Proceedings of the Reproducibil-
ity Workshop, Reproducibility@SIGCOMM 2017, Los Angeles, CA, USA, August 25, 2017, ACM,
2017, pp. 24–26. doi: 10.1145/3097766.3097773. [Online]. Available: https://doi.org/10.
1145/3097766.3097773.

[10] N. Zilberman, “An Artifact Evaluation of NDP”, Computer Communication Review, vol. 50,
no. 2, pp. 32–36, 2020. doi: 10.1145/3402413.3402418. [Online]. Available: https://doi.org/
10.1145/3402413.3402418.

[11] M. P. Grosvenor, M. Schwarzkopf, I. Gog, and A. W. Moore, “Jump the Queue to Lower
Latency”, ;login:, vol. 40, no. 2, 2015. [Online]. Available: https : / / www . usenix . org /
publications/login/apr15/grosvenor.

[12] Molex, PXC3096 Datasheet.
[13] O. S. Sella, A. W. Moore, and N. Zilberman, “FEC Killed The Cut-Through Switch”, in Pro-

ceedings of the 2018 Workshop on Networking for Emerging Applications and Technologies,
NEAT@SIGCOMM 2018, Budapest, Hungary, August 20, 2018, 2018, pp. 15–20. doi: 10.1145/
3229574.3229577. [Online]. Available: https://doi.org/10.1145/3229574.3229577.

131

https://doi.org/10.1016/j.ifacol.2019.12.153
https://doi.org/10.1016/j.ifacol.2019.12.153
https://doi.org/10.1145/3301418.3313943
https://doi.org/10.1145/3301418.3313943
https://doi.org/10.1145/3301418.3313943
https://doi.org/10.17487/RFC2544
https://doi.org/10.17487/RFC2544
https://doi.org/10.17487/RFC2544
http://www.acm.org/publications/policies/artifact-review-badging
http://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3097766.3097768
https://doi.org/10.1145/3097766.3097768
https://doi.org/10.1145/3097766.3097768
https://doi.org/10.1145/3402413.3402422
https://doi.org/10.1145/3402413.3402422
https://doi.org/10.1145/3314212.3314217
https://doi.org/10.1145/3314212.3314217
https://doi.org/10.1145/3097766.3097773
https://doi.org/10.1145/3097766.3097773
https://doi.org/10.1145/3097766.3097773
https://doi.org/10.1145/3402413.3402418
https://doi.org/10.1145/3402413.3402418
https://doi.org/10.1145/3402413.3402418
https://www.usenix.org/publications/login/apr15/grosvenor
https://www.usenix.org/publications/login/apr15/grosvenor
https://doi.org/10.1145/3229574.3229577
https://doi.org/10.1145/3229574.3229577
https://doi.org/10.1145/3229574.3229577

[17] R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho, “Lua-An Extensible Extension Lan-
guage”, Softw., Pract. Exper., vol. 26, no. 6, pp. 635–652, 1996. doi: 10.1002/(SICI)1097-
024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P. [Online]. Available: https://doi.org/10.
1002/(SICI)1097-024X(199606)26:6%3C635::AID-SPE26%3E3.0.CO;2-P.

[18] M. Pall, LuaJIT website, Last accessed: 2021-05-31. [Online]. Available: https://luajit.org/
luajit.html.

[19] Intel Ethernet Controller X550 - Datasheet, 333369-005, Rev. 2.3, Intel, Nov. 2018.
[20] Intel 82599 10 GbE Controller - Datasheet, 331520-005, Rev. 3.4, Intel, Nov. 2019.
[21] Intel Ethernet Controller X710/ XXV710/XL710 Datasheet, 332464-020, Rev. 3.65, Intel, Aug.

2019.
[22] G. Antichi, M. Shahbaz, Y. Geng, N. Zilberman, G. A. Covington, M. Bruyere, N. McKeown,

N. Feamster, B. Felderman, M. Blott, A. W. Moore, and P. Owezarski, “OSNT: Open Source
Network Tester”, IEEE Network, vol. 28, no. 5, pp. 6–12, 2014. doi: 10.1109/MNET.2014.
6915433. [Online]. Available: https://doi.org/10.1109/MNET.2014.6915433.

[23] K. Wiles, Pktgen-DPDK repository, Last accessed: 2021-05-31. [Online]. Available: http://git.
dpdk.org/apps/pktgen-dpdk/refs/.

[24] P. Emmerich, MoonGen repository, Last accessed: 2021-05-31. [Online]. Available: https://
github.com/emmericp/moongen.

[25] L. Rizzo, netmap repository, Last accessed: 2021-05-31. [Online]. Available: https://github.
com/luigirizzo/netmap.

[26] N. Bonelli, PFQ repository, Last accessed: 2021-05-31. [Online]. Available: https://github.
com/pfq/PFQ.

[27] ntop, PF_RING ZC repository, Last accessed: 2021-05-31. [Online]. Available: https://github.
com/ntop/PF_RING.

[28] L. Rizzo, “netmap: a novel framework for fast packet I/O”, in 2012 USENIX Annual Technical
Conference, Boston, MA, USA, June 13-15, 2012, 2012, pp. 101–112. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/
rizzo.

[30] M. Ramanujam and N. Zilberman, “Towards a Highly Scalable Network Tester”, in Proceedings
of the 2018 Symposium on Architectures for Networking and Communications Systems, ANCS
2018, Ithaca, NY, USA, July 23-24, 2018, 2018, pp. 154–155. doi: 10.1145/3230718.3232104.
[Online]. Available: https://doi.org/10.1145/3230718.3232104.

[31] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “A Power Benchmarking Frame-
work for Network Devices”, in NETWORKING 2009, 8th International IFIP-TC 6 Network-
ing Conference, Aachen, Germany, May 11-15, 2009. Proceedings, 2009, pp. 795–808. doi:
10.1007/978-3-642-01399-7_62. [Online]. Available: https://doi.org/10.1007/978-3-
642-01399-7_62.

[32] J. Harrington, TEST – THROUGHPUT ALCHEMY USING A SNAKE TOPOLOGY, Last
accessed: 2021-05-31, 2013. [Online]. Available: http : / / thenetworksherpa . com / test -
throughput-alchemy-using-a-snake-topology/.

[34] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and R. Sommer, “Building a Time Machine
for Efficient Recording and Retrieval of High-Volume Network Traffic”, in Proceedings of the 5th
Internet Measurement Conference, IMC 2005, Berkeley, California, USA, October 19-21, 2005,
2005, pp. 267–272. [Online]. Available: http://www.usenix.org/events/imc05/tech/kornexl.
html.

[35] M. Egorushkin, AtomicQueue - Scalability Benchmark, Last accessed: 2021-05-31, 2019. [Online].
Available: https://max0x7ba.github.io/atomic_queue/html/benchmarks.html.

132

https://doi.org/10.1002/(SICI)1097-024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1097-024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1097-024X(199606)26:6%3C635::AID-SPE26%3E3.0.CO;2-P
https://doi.org/10.1002/(SICI)1097-024X(199606)26:6%3C635::AID-SPE26%3E3.0.CO;2-P
https://luajit.org/luajit.html
https://luajit.org/luajit.html
https://doi.org/10.1109/MNET.2014.6915433
https://doi.org/10.1109/MNET.2014.6915433
https://doi.org/10.1109/MNET.2014.6915433
http://git.dpdk.org/apps/pktgen-dpdk/refs/
http://git.dpdk.org/apps/pktgen-dpdk/refs/
https://github.com/emmericp/moongen
https://github.com/emmericp/moongen
https://github.com/luigirizzo/netmap
https://github.com/luigirizzo/netmap
https://github.com/pfq/PFQ
https://github.com/pfq/PFQ
https://github.com/ntop/PF_RING
https://github.com/ntop/PF_RING
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rizzo
https://doi.org/10.1145/3230718.3232104
https://doi.org/10.1145/3230718.3232104
https://doi.org/10.1007/978-3-642-01399-7_62
https://doi.org/10.1007/978-3-642-01399-7_62
https://doi.org/10.1007/978-3-642-01399-7_62
http://thenetworksherpa.com/test-throughput-alchemy-using-a-snake-topology/
http://thenetworksherpa.com/test-throughput-alchemy-using-a-snake-topology/
http://www.usenix.org/events/imc05/tech/kornexl.html
http://www.usenix.org/events/imc05/tech/kornexl.html
https://max0x7ba.github.io/atomic_queue/html/benchmarks.html

[36] H. Akaike, “A New Look at the Statistical Model Identification”, in IEEE Transactions on
Automatic Control, IEEE, 1974, pp. 716–723.

[37] G. Schwarz, “Estimating the Dimension of a Model”, The Annals of Statistics, vol. 6, no. 2,
pp. 461–464, 1978.

[40] Intel Data Direct I/O Technology (Intel DDIO): A Primer, Rev. 1.0, Intel, Feb. 2012.
[41] An Introduction to the Intel QuickPath Interconnect, 320412-001US, Intel, Jan. 2009.
[42] D. Mulnix, Intel Xeon Processor Scalable Family Technical Overview, Last accessed: 2021-05-31.

[Online]. Available: https://software.intel.com/en-us/articles/intel-xeon-processor-
scalable-family-technical-overview.

[43] PCI-SIG, Express Base Specification Revision 4.0, 2017.
[44] JEDEC Solid State Technology Association, “JEDEC Standard: DDR3 SDRAM”, 2008.
[45] ——, “JEDEC Standard: DDR4 SDRAM”, 2012.
[46] Intel 64 and IA-32 Architectures Optimization Reference Manual, 248966-042b, Intel, Sep. 2019.
[47] DPDK Project, DPDK repository, Last accessed: 2021-05-31. [Online]. Available: http://git.

dpdk.org.
[48] L. Rizzo and G. Lettieri, “VALE, a Switched Ethernet for Virtual Machines”, in Conference

on emerging Networking Experiments and Technologies, CoNEXT ’12, Nice, France - December
10 - 13, 2012, 2012, pp. 61–72. doi: 10.1145/2413176.2413185. [Online]. Available: https:
//doi.org/10.1145/2413176.2413185.

[49] Linux Foundation, Open vSwitch Release Notes, Last accessed: 2021-05-31. [Online]. Available:
https://www.openvswitch.org/releases/NEWS-2.3.0.txt.

[50] L. Rizzo, netmap-ipfw repository, Last accessed: 2021-05-31. [Online]. Available: https : / /
github.com/luigirizzo/netmap-ipfw.

[51] F. Fusco and L. Deri, “High Speed Network Traffic Analysis with Commodity Multi-core Sys-
tems”, in Proceedings of the 10th ACM SIGCOMM Internet Measurement Conference, IMC 2010,
Melbourne, Australia - November 1-3, 2010, 2010, pp. 218–224. doi: 10.1145/1879141.1879169.
[Online]. Available: https://doi.org/10.1145/1879141.1879169.

[52] R. Huggahalli, R. R. Iyer, and S. Tetrick, “Direct Cache Access for High Bandwidth Network
I/O”, in 32st International Symposium on Computer Architecture (ISCA 2005), 4-8 June 2005,
Madison, Wisconsin, USA, 2005, pp. 50–59. doi: 10.1109/ISCA.2005.23. [Online]. Available:
https://doi.org/10.1109/ISCA.2005.23.

[53] J. H. Salim, “When NAPI Comes to Town”, in Linux 2005 Conference, 2005, Swansea, Wales,
United Kingdom, 4-7 August, 2005, 2005.

[54] M. Dobrescu, K. J. Argyraki, and S. Ratnasamy, “Toward Predictable Performance in Software
Packet-Processing Platforms”, in Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2012, San Jose, CA, USA, April 25-27, 2012, 2012,
pp. 141–154. [Online]. Available: https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/dobrescu.

[55] R. Bolla and R. Bruschi, “Linux Software Router: Data Plane Optimization and Performance
Evaluation”, JNW, vol. 2, no. 3, pp. 6–17, 2007, [Online, alternative link]. Available: https:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.844&rep=rep1&type=pdf.
doi: 10.4304/jnw.2.3.6-17. [Online]. Available: https://doi.org/10.4304/jnw.2.3.6-17.

[56] J. L. Garcı́a-Dorado, F. Mata, J. Ramos, P. M. S. del Rı́o, V. Moreno, and J. Aracil, “High-
Performance Network Traffic Processing Systems Using Commodity Hardware”, in Data Traffic
Monitoring and Analysis - From Measurement, Classification, and Anomaly Detection to Quality
of Experience, 2013, pp. 3–27. doi: 10.1007/978-3-642-36784-7_1. [Online]. Available: https:
//doi.org/10.1007/978-3-642-36784-7_1.

133

https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
http://git.dpdk.org
http://git.dpdk.org
https://doi.org/10.1145/2413176.2413185
https://doi.org/10.1145/2413176.2413185
https://doi.org/10.1145/2413176.2413185
https://www.openvswitch.org/releases/NEWS-2.3.0.txt
https://github.com/luigirizzo/netmap-ipfw
https://github.com/luigirizzo/netmap-ipfw
https://doi.org/10.1145/1879141.1879169
https://doi.org/10.1145/1879141.1879169
https://doi.org/10.1109/ISCA.2005.23
https://doi.org/10.1109/ISCA.2005.23
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/dobrescu
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/dobrescu
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.844&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.844&rep=rep1&type=pdf
https://doi.org/10.4304/jnw.2.3.6-17
https://doi.org/10.4304/jnw.2.3.6-17
https://doi.org/10.1007/978-3-642-36784-7_1
https://doi.org/10.1007/978-3-642-36784-7_1
https://doi.org/10.1007/978-3-642-36784-7_1

[57] L. Deri, “nCap: Wire-speed Packet Capture and Transmission”, in Third IEEE/IFIP Workshop
on End-to-End Monitoring Techniques and Services, E2EMON 2005, 15th May 2005, Nice,
France, 2005, pp. 47–55. doi: 10 . 1109 / E2EMON . 2005 . 1564468. [Online]. Available: https :
//doi.org/10.1109/E2EMON.2005.1564468.

[58] The FreeBSD Project, “FreeBSD 10.0-RELEASE Release Notes”, Last accessed: 2021-05-31,
2014. [Online]. Available: https://www.freebsd.org/releases/10.0R/relnotes.html.

[59] T. Barbette, C. Soldani, and L. Mathy, “Fast Userspace Packet Processing”, in Proceedings of the
Eleventh ACM/IEEE Symposium on Architectures for networking and communications systems,
ANCS 2015, Oakland, CA, USA, May 7-8, 2015, 2015, pp. 5–16. doi: 10.1109/ANCS.2015.
7110116. [Online]. Available: https://doi.org/10.1109/ANCS.2015.7110116.

[60] ntop, PF_RING API, Last accessed: 2021-05-31. [Online]. Available: http://www.ntop.org/
guides/pf_ring_api/pfring__zc_8h.html.

[61] ——, ntop website, Last accessed: 2021-05-31. [Online]. Available: https://ntop.org.
[62] DPDK Project, DPDK Programmer’s Guide, Last accessed: 2021-05-31. [Online]. Available:

https://doc.dpdk.org/guides/prog_guide/.
[63] J. Corbet, UIO: user-space drivers, Last accessed: 2021-05-31, 2007. [Online]. Available: http:

//lwn.net/Articles/232575/.
[64] M. Sune, A. Koepsel, V. Alvarez, and T. Jungel, xdpd repository, Last accessed: 2021-05-31.

[Online]. Available: https://github.com/bisdn/xdpd.
[65] S. Han, K. Jang, K. Park, and S. B. Moon, “PacketShader: A GPU-Accelerated Software Router”,

in Proceedings of the ACM SIGCOMM 2010 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications, New Delhi, India, August 30-September
3, 2010, 2010, pp. 195–206. doi: 10.1145/1851182.1851207. [Online]. Available: https://doi.
org/10.1145/1851182.1851207.

[66] S. Han, K. Jang, S. Huh, and J. Kim, Packet-IO-Engine repository, Last accessed: 2021-05-31.
[Online]. Available: https://github.com/ANLAB-KAIST/Packet-IO-Engine.

[67] N. Bonelli, A. D. Pietro, S. Giordano, and G. Procissi, “On Multi-gigabit Packet Capturing
with Multi-core Commodity Hardware”, in Passive and Active Measurement - 13th International
Conference, PAM 2012, Vienna, Austria, March 12-14, 2012. Proceedings, 2012, pp. 64–73. doi:
10.1007/978-3-642-28537-0_7. [Online]. Available: https://doi.org/10.1007/978-3-642-
28537-0_7.

[68] N. Bonelli, S. Giordano, G. Procissi, and L. Abeni, “A Purely Functional Approach to Packet
Processing”, in Proceedings of the tenth ACM/IEEE symposium on Architectures for networking
and communications systems, ANCS 2014, Los Angeles, CA, USA, October 20-21, 2014, 2014,
pp. 219–230. doi: 10.1145/2658260.2658269. [Online]. Available: https://doi.org/10.1145/
2658260.2658269.

[69] SnabbCo, Snabb, Last accessed: 2021-05-31. [Online]. Available: https://github.com/snabbco/
snabb.

[70] G. Pongrácz, L. Molnár, and Z. L. Kis, “Removing Roadblocks from SDN: OpenFlow Soft-
ware Switch Performance on Intel DPDK”, in Second European Workshop on Software De-
fined Networks, EWSDN 2013, Berlin, Germany, October 10-11, 2013, 2013, pp. 62–67. doi:
10.1109/EWSDN.2013.17. [Online]. Available: https://doi.org/10.1109/EWSDN.2013.17.

[71] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Assessing Soft- and Hardware Bottlenecks
in PC-based Packet Forwarding Systems”, in Fourteenth International Conference on Networks
(ICN 2015), Barcelona, Spain, April 19-24, 2015, 2015. [Online]. Available: http://www.net.
in.tum.de/fileadmin/bibtex/publications/papers/ICN2015.pdf.

134

https://doi.org/10.1109/E2EMON.2005.1564468
https://doi.org/10.1109/E2EMON.2005.1564468
https://doi.org/10.1109/E2EMON.2005.1564468
https://www.freebsd.org/releases/10.0R/relnotes.html
https://doi.org/10.1109/ANCS.2015.7110116
https://doi.org/10.1109/ANCS.2015.7110116
https://doi.org/10.1109/ANCS.2015.7110116
http://www.ntop.org/guides/pf_ring_api/pfring__zc_8h.html
http://www.ntop.org/guides/pf_ring_api/pfring__zc_8h.html
https://ntop.org
https://doc.dpdk.org/guides/prog_guide/
http://lwn.net/Articles/232575/
http://lwn.net/Articles/232575/
https://github.com/bisdn/xdpd
https://doi.org/10.1145/1851182.1851207
https://doi.org/10.1145/1851182.1851207
https://doi.org/10.1145/1851182.1851207
https://github.com/ANLAB-KAIST/Packet-IO-Engine
https://doi.org/10.1007/978-3-642-28537-0_7
https://doi.org/10.1007/978-3-642-28537-0_7
https://doi.org/10.1007/978-3-642-28537-0_7
https://doi.org/10.1145/2658260.2658269
https://doi.org/10.1145/2658260.2658269
https://doi.org/10.1145/2658260.2658269
https://github.com/snabbco/snabb
https://github.com/snabbco/snabb
https://doi.org/10.1109/EWSDN.2013.17
https://doi.org/10.1109/EWSDN.2013.17
http://www.net.in.tum.de/fileadmin/bibtex/publications/papers/ICN2015.pdf
http://www.net.in.tum.de/fileadmin/bibtex/publications/papers/ICN2015.pdf

[72] L. Angrisani, G. Ventre, L. Peluso, and A. Tedesco, “Measurement of Processing and Queuing
Delays Introduced by an Open-Source Router in a Single-Hop Network”, IEEE Trans. Instrumen-
tation and Measurement, vol. 55, no. 4, pp. 1065–1076, 2006. doi: 10.1109/TIM.2006.876542.
[Online]. Available: https://doi.org/10.1109/TIM.2006.876542.

[73] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, “OFLOPS: An Open Framework
for OpenFlow Switch Evaluation”, in Passive and Active Measurement - 13th International
Conference, PAM 2012, Vienna, Austria, March 12-14th, 2012. Proceedings, 2012, pp. 85–95.
doi: 10.1007/978-3-642-28537-0_9. [Online]. Available: https://doi.org/10.1007/978-3-
642-28537-0_9.

[74] S. Larsen, P. Sarangam, R. Huggahalli, and S. Kulkarni, “Architectural Breakdown of End-
to-End Latency in a TCP/IP Network”, International Journal of Parallel Programming, vol. 37,
no. 6, pp. 556–571, 2009. doi: 10 . 1007 / s10766 - 009 - 0109 - 6. [Online]. Available: https :
//doi.org/10.1007/s10766-009-0109-6.

[75] L. Braun, C. Diekmann, N. Kammenhuber, and G. Carle, “Adaptive Load-Aware Sampling
for Network Monitoring on Multicore Commodity Hardware”, in IFIP Networking Conference,
2013, Brooklyn, New York, USA, 22-24 May, 2013, 2013, pp. 1–9. [Online]. Available: http:
//ieeexplore.ieee.org/document/6663536/.

[76] G. Paoloni, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set
Architectures, Sep. 2010.

[79] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen, W. Khan, M. Fargano,
C. Cui, H. Deng, J. Benitez, U. Michel, H. Damker, K. Ogaki, T. Matsuzaki, M. Fukui, K.
Shimano, D. Delisle, Q. Loudier, C. Kolias, I. Guardini, E. Demaria, R. Minerva, A. Manzalini,
D. López, F. J. R. Salguero, F. Ruhl, and P. Sen, “Network Functions Virtualisation”, in SDN
and OpenFlow World Congress, Darmstadt, Germany, October 22-24, 2012, 2012. [Online].
Available: http://portal.etsi.org/NFV/NFV_White_Paper.pdf.

[82] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in Hardware at Memory Access Speeds”,
in Proceedings IEEE INFOCOM ’98, The Conference on Computer Communications, Seven-
teenth Annual Joint Conference of the IEEE Computer and Communications Societies, Gateway
to the 21st Century, San Francisco, CA, USA, March 29 - April 2, 1998, IEEE Computer
Society, 1998, pp. 1240–1247. doi: 10.1109/INFCOM.1998.662938. [Online]. Available: https:
//doi.org/10.1109/INFCOM.1998.662938.

[83] ITU, Report ITU-R M.2410-0 (11/2017) Minimum requirements related to technical performance
for IMT-2020 radio interface(s), Last accessed: 2021-05-31. [Online]. Available: https://www.
itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2410-2017-PDF-E.pdf.

[85] 3GPP, 3GPP TS 22.104 V17.2.0 (2019-12), Last accessed: 2021-05-31, Dec. 2019. [Online].
Available: https://www.3gpp.org/ftp/Specs/archive/22_series/22.104.

[86] T. Yoshizawa, S. B. M. Baskaran, and A. Kunz, “Overview of 5G URLLC System and Security
Aspects in 3GPP”, in 2019 IEEE Conference on Standards for Communications and Networking,
CSCN 2019, Granada, Spain, October 28-30, 2019, IEEE, 2019, pp. 1–5. doi: 10.1109/CSCN.
2019.8931376. [Online]. Available: https://doi.org/10.1109/CSCN.2019.8931376.

[88] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Herbert, D. Ahern, and
D. Miller, “The eXpress Data Path: Fast Programmable Packet Processing in the Operating
System Kernel”, in Proceedings of the 14th International Conference on emerging Networking
EXperiments and Technologies, CoNEXT 2018, Heraklion, Greece, December 04-07, 2018, 2018,
pp. 54–66. doi: 10.1145/3281411.3281443. [Online]. Available: https://doi.org/10.1145/
3281411.3281443.

135

https://doi.org/10.1109/TIM.2006.876542
https://doi.org/10.1109/TIM.2006.876542
https://doi.org/10.1007/978-3-642-28537-0_9
https://doi.org/10.1007/978-3-642-28537-0_9
https://doi.org/10.1007/978-3-642-28537-0_9
https://doi.org/10.1007/s10766-009-0109-6
https://doi.org/10.1007/s10766-009-0109-6
https://doi.org/10.1007/s10766-009-0109-6
http://ieeexplore.ieee.org/document/6663536/
http://ieeexplore.ieee.org/document/6663536/
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://doi.org/10.1109/INFCOM.1998.662938
https://doi.org/10.1109/INFCOM.1998.662938
https://doi.org/10.1109/INFCOM.1998.662938
https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2410-2017-PDF-E.pdf
https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2410-2017-PDF-E.pdf
https://www.3gpp.org/ftp/Specs/archive/22_series/22.104
https://doi.org/10.1109/CSCN.2019.8931376
https://doi.org/10.1109/CSCN.2019.8931376
https://doi.org/10.1109/CSCN.2019.8931376
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443

[89] Napatech, Snort DAQ repository, Last accessed: 2021-05-31. [Online]. Available: https : / /
github.com/napatech/daq_dpdk_multiqueue.

[90] M. Beierl, Nfv-kvm-tuning, Last accessed: 2021-05-31. [Online]. Available: https://wiki.opnfv.
org/pages/viewpage.action?pageId=2926179.

[91] J. Mario and J. Eder, Low Latency Performance Tuning for Red Hat Enterprise Linux 7, Version
2.1, Last accessed: 2021-05-31, Nov. 2017. [Online]. Available: https://access.redhat.com/
sites / default / files / attachments / 201501 - perf - brief - low - latency - tuning - rhel7 -
v2.1.pdf.

[92] AMD, Performance Tuning Guidelines for Low Latency Response on AMD EPYC-Based Servers,
Last accessed: 2021-05-31. [Online]. Available: http://developer.amd.com/wordpress/media/
2013/12/PerformanceTuningGuidelinesforLowLatencyResponse.pdf.

[93] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “SMiTe: Precise QoS Prediction on Real-
System SMT Processors to Improve Utilization in Warehouse Scale Computers”, in 47th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2014, Cambridge, United
Kingdom, December 13-17, 2014, 2014, pp. 406–418. doi: 10.1109/MICRO.2014.53. [Online].
Available: https://doi.org/10.1109/MICRO.2014.53.

[94] R. Schöne, D. Molka, and M. Werner, “Wake-up latencies for processor idle states on current x86
processors”, Computer Science - R&D, vol. 30, no. 2, pp. 219–227, 2015. doi: 10.1007/s00450-
014-0270-z. [Online]. Available: https://doi.org/10.1007/s00450-014-0270-z.

[95] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal, and R. Iyer, “Cache
QoS: From Concept to Reality in the Intel® Xeon® Processor E5-2600 v3 Product Family”, in
2016 IEEE International Symposium on High Performance Computer Architecture, HPCA 2016,
Barcelona, Spain, March 12-16, 2016, 2016, pp. 657–668. doi: 10.1109/HPCA.2016.7446102.
[Online]. Available: https://doi.org/10.1109/HPCA.2016.7446102.

[96] P. McKenney, A realtime preemption overview, Last accessed: 2021-05-31. [Online]. Available:
https://lwn.net/Articles/146861/.

[97] G. Lettieri, V. Maffione, and L. Rizzo, “A Survey of Fast Packet I/O Technologies for Net-
work Function Virtualization”, in High Performance Computing - ISC High Performance 2017
International Workshops, DRBSD, ExaComm, HCPM, HPC-IODC, IWOPH, IXPUG, P3MA,
VHPC, Visualization at Scale, WOPSSS, Frankfurt, Germany, June 18-22, 2017, Revised Se-
lected Papers, 2017, pp. 579–590. doi: 10.1007/978-3-319-67630-2_40. [Online]. Available:
https://doi.org/10.1007/978-3-319-67630-2_40.

[98] X. Xu and B. Davda, “SRVM: Hypervisor Support for Live Migration with Passthrough SR-IOV
Network Devices”, in Proceedings of the 12th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, Atlanta, GA, USA, April 2-3, 2016, 2016, pp. 65–77. doi:
10.1145/2892242.2892256. [Online]. Available: https://doi.org/10.1145/2892242.2892256.

[99] Z. Xiang, F. Gabriel, E. Urbano, G. T. Nguyen, M. Reisslein, and F. H. P. Fitzek, “Reducing
Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine Co-Working”, IEEE
Journal on Selected Areas in Communications, vol. 37, no. 5, pp. 1098–1116, 2019. doi: 10.1109/
JSAC.2019.2906788. [Online]. Available: https://doi.org/10.1109/JSAC.2019.2906788.

[100] N. Zilberman, M. P. Grosvenor, D. A. Popescu, N. M. Bojan, G. Antichi, M. Wójcik, and A. W.
Moore, “Where Has My Time Gone?”, in Passive and Active Measurement - 18th International
Conference, PAM 2017, Sydney, NSW, Australia, March 30-31, 2017, Proceedings, 2017, pp. 201–
214. doi: 10.1007/978-3-319-54328-4_15. [Online]. Available: https://doi.org/10.1007/978-
3-319-54328-4_15.

136

https://github.com/napatech/daq_dpdk_multiqueue
https://github.com/napatech/daq_dpdk_multiqueue
https://wiki.opnfv.org/pages/viewpage.action?pageId=2926179
https://wiki.opnfv.org/pages/viewpage.action?pageId=2926179
https://access.redhat.com/sites/default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf
https://access.redhat.com/sites/default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf
https://access.redhat.com/sites/default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf
http://developer.amd.com/wordpress/media/2013/12/PerformanceTuningGuidelinesforLowLatencyResponse.pdf
http://developer.amd.com/wordpress/media/2013/12/PerformanceTuningGuidelinesforLowLatencyResponse.pdf
https://doi.org/10.1109/MICRO.2014.53
https://doi.org/10.1109/MICRO.2014.53
https://doi.org/10.1007/s00450-014-0270-z
https://doi.org/10.1007/s00450-014-0270-z
https://doi.org/10.1007/s00450-014-0270-z
https://doi.org/10.1109/HPCA.2016.7446102
https://doi.org/10.1109/HPCA.2016.7446102
https://lwn.net/Articles/146861/
https://doi.org/10.1007/978-3-319-67630-2_40
https://doi.org/10.1007/978-3-319-67630-2_40
https://doi.org/10.1145/2892242.2892256
https://doi.org/10.1145/2892242.2892256
https://doi.org/10.1109/JSAC.2019.2906788
https://doi.org/10.1109/JSAC.2019.2906788
https://doi.org/10.1109/JSAC.2019.2906788
https://doi.org/10.1007/978-3-319-54328-4_15
https://doi.org/10.1007/978-3-319-54328-4_15
https://doi.org/10.1007/978-3-319-54328-4_15

[101] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look Mum, no VM Exits! (Almost)”,
CoRR, vol. abs/1705.06932, 2017. arXiv: 1705.06932. [Online]. Available: http://arxiv.org/
abs/1705.06932.

[102] R. Kaiser and S. Wagner, “Evolution of the PikeOS Microkernel”, in First International Work-
shop on Microkernels for Embedded Systems, vol. 50, Jan. 2007.

[103] Cisco Inc., Snort, Last accessed: 2021-05-31. [Online]. Available: https://github.com/snort3/
snort3.

[104] Snort, Snort3 community ruleset, Last accessed: 2021-05-31. [Online]. Available: https://www.
snort.org/downloads/#rule-downloads.

[105] S. Bauer, D. Raumer, P. Emmerich, and G. Carle, “Intra-Node Resource Isolation for SFC with
SR-IOV”, in 7th IEEE International Conference on Cloud Networking, CloudNet 2018, Tokyo,
Japan, October 22-24, 2018, 2018, pp. 1–6. doi: 10.1109/CloudNet.2018.8549547. [Online].
Available: https://doi.org/10.1109/CloudNet.2018.8549547.

[109] K. Kim and P. R. Kumar, “Cyber-Physical Systems: A Perspective at the Centennial”, Proceed-
ings of the IEEE, vol. 100, no. Centennial-Issue, pp. 1287–1308, 2012. doi: 10.1109/JPROC.
2012.2189792. [Online]. Available: https://doi.org/10.1109/JPROC.2012.2189792.

[110] R. A. Gupta and M. Chow, “Networked Control System: Overview and Research Trends”, IEEE
Trans. Industrial Electronics, vol. 57, no. 7, pp. 2527–2535, 2010. doi: 10.1109/TIE.2009.
2035462. [Online]. Available: https://doi.org/10.1109/TIE.2009.2035462.

[111] L. Zhang, H. Gao, and O. Kaynak, “Network-Induced Constraints in Networked Control
Systems—A Survey”, IEEE Trans. Industrial Informatics, vol. 9, no. 1, pp. 403–416, 2013.
doi: 10.1109/TII.2012.2219540. [Online]. Available: https://doi.org/10.1109/TII.2012.
2219540.

[113] L. Zhang, Y. Shi, T. Chen, and B. Huang, “A New Method for Stabilization of Networked
Control Systems With Random Delays”, IEEE Trans. Automat. Contr., vol. 50, no. 8, pp. 1177–
1181, 2005. doi: 10.1109/TAC.2005.852550. [Online]. Available: https://doi.org/10.1109/
TAC.2005.852550.

[114] X. Zhang, Q. Han, and X. Yu, “Survey on Recent Advances in Networked Control Systems”,
IEEE Trans. Industrial Informatics, vol. 12, no. 5, pp. 1740–1752, 2016. doi: 10.1109/TII.
2015.2506545. [Online]. Available: https://doi.org/10.1109/TII.2015.2506545.

[115] C. Lu, A. Saifullah, B. Li, M. Sha, H. González, D. Gunatilaka, C. Wu, L. Nie, and Y. Chen,
“Real-Time Wireless Sensor-Actuator Networks for Industrial Cyber-Physical Systems”, Pro-
ceedings of the IEEE, vol. 104, no. 5, pp. 1013–1024, 2016. doi: 10.1109/JPROC.2015.2497161.
[Online]. Available: https://doi.org/10.1109/JPROC.2015.2497161.

[116] W. Zhang, M. S. Branicky, and S. M. Philips, “Stability of Networked Control Systems”, IEEE
Control Systems Magazine, vol. 21, no. 1, pp. 88–99, 2001. doi: 10.1109/37.898794. [Online].
Available: https://doi.org/10.1109/37.898794.

[117] A. Chamaken and L. Litz, “Joint Design of Control and Communication in Wireless Networked
Control Systems: A Case Study”, 2010, pp. 1835–1840. doi: 10 . 1109 / ACC . 2010 . 5531426.
[Online]. Available: https://doi.org/10.1109/ACC.2010.5531426.

[118] P. A. Kawka and A. G. Alleyne, “Stability and Feedback Control of Wireless Networked Sys-
tems”, 2005, pp. 2953–2959. doi: 10. 1109 / ACC . 2005. 1470423. [Online]. Available: https:
//doi.org/10.1109/ACC.2005.1470423.

[119] J. Eker, A. Cervin, and A. Hörjel, “Distributed Wireless Control Using Bluetooth”, IFAC Pro-
ceedings Volumes, vol. 34, no. 22, pp. 360–365, 2001. doi: 10.1016/S1474-6670(17)32965-8.
[Online]. Available: https://doi.org/10.1016/S1474-6670(17)32965-8.

137

https://arxiv.org/abs/1705.06932
http://arxiv.org/abs/1705.06932
http://arxiv.org/abs/1705.06932
https://github.com/snort3/snort3
https://github.com/snort3/snort3
https://www.snort.org/downloads/#rule-downloads
https://www.snort.org/downloads/#rule-downloads
https://doi.org/10.1109/CloudNet.2018.8549547
https://doi.org/10.1109/CloudNet.2018.8549547
https://doi.org/10.1109/JPROC.2012.2189792
https://doi.org/10.1109/JPROC.2012.2189792
https://doi.org/10.1109/JPROC.2012.2189792
https://doi.org/10.1109/TIE.2009.2035462
https://doi.org/10.1109/TIE.2009.2035462
https://doi.org/10.1109/TIE.2009.2035462
https://doi.org/10.1109/TII.2012.2219540
https://doi.org/10.1109/TII.2012.2219540
https://doi.org/10.1109/TII.2012.2219540
https://doi.org/10.1109/TAC.2005.852550
https://doi.org/10.1109/TAC.2005.852550
https://doi.org/10.1109/TAC.2005.852550
https://doi.org/10.1109/TII.2015.2506545
https://doi.org/10.1109/TII.2015.2506545
https://doi.org/10.1109/TII.2015.2506545
https://doi.org/10.1109/JPROC.2015.2497161
https://doi.org/10.1109/JPROC.2015.2497161
https://doi.org/10.1109/37.898794
https://doi.org/10.1109/37.898794
https://doi.org/10.1109/ACC.2010.5531426
https://doi.org/10.1109/ACC.2010.5531426
https://doi.org/10.1109/ACC.2005.1470423
https://doi.org/10.1109/ACC.2005.1470423
https://doi.org/10.1109/ACC.2005.1470423
https://doi.org/10.1016/S1474-6670(17)32965-8
https://doi.org/10.1016/S1474-6670(17)32965-8

[120] C. Bachhuber, S. Conrady, M. Schütz, and E. G. Steinbach, “A Testbed for Vision-Based
Networked Control Systems”, in Computer Vision Systems - 11th International Conference,
ICVS 2017, Shenzhen, China, July 10-13, 2017, Revised Selected Papers, 2017, pp. 26–36. doi:
10.1007/978-3-319-68345-4_3. [Online]. Available: https://doi.org/10.1007/978-3-319-
68345-4_3.

[121] D. Baumann, F. Mager, H. Singh, M. Zimmerling, and S. Trimpe, “Evaluating Low-Power
Wireless Cyber-Physical Systems”, in Workshop on Benchmarking Cyber-Physical Networks and
Systems, Bench@CPSWeek 2018, Porto, Portugal, April 10, 2018, 2018, pp. 13–18. doi: 10.1109/
CPSBench.2018.00009. [Online]. Available: https://doi.org/10.1109/CPSBench.2018.00009.

[122] F. Mager, D. Baumann, R. Jacob, L. Thiele, S. Trimpe, and M. Zimmerling, “Feedback Control
Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks”, in Proceedings of the
10th ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS 2019, Montreal,
QC, Canada, April 16-18, 2019, 2019, pp. 97–108. doi: 10.1145/3302509.3311046. [Online].
Available: https://doi.org/10.1145/3302509.3311046.

[123] N. J. Ploplys, P. A. Kawka, and A. G. Alleyne, “Closed-Loop Control over Wireless Networks”,
IEEE Control Systems Magazine, vol. 24, no. 3, pp. 58–71, 2004. doi: 10.1109/MCS.2004.
1299533. [Online]. Available: https://doi.org/10.1109/MCS.2004.1299533.

[124] C. Peng, D. Yue, and M. Fei, “A Higher Energy-Efficient Sampling Scheme for Networked
Control Systems over IEEE 802.15.4 Wireless Networks”, IEEE Trans. Industrial Informatics,
vol. 12, no. 5, pp. 1766–1774, 2016. doi: 10 . 1109 / TII . 2015 . 2481821. [Online]. Available:
https://doi.org/10.1109/TII.2015.2481821.

[125] S. Nethi, M. Pohjola, L. Eriksson, and R. Jäntti, “Platform for Emulating Networked Control
Systems in Laboratory Environments”, in 2007 International Symposium on a World of Wire-
less, Mobile and Multimedia Networks (WoWMoM 2007), 18-21 June 2007, Helsinki, Finland,
Proceedings, 2007, pp. 1–8. doi: 10.1109/WOWMOM.2007.4351727. [Online]. Available: https:
//doi.org/10.1109/WOWMOM.2007.4351727.

[126] L. Wu and G. Kaiser, “FARE: A Framework for Benchmarking Reliability of Cyber-Physical
Systems”, in IEEE Long Island Systems, Applications and Technology Conference 2013, May 3,
Farmingdale, NY, USA, 2013. doi: 10.1109/LISAT.2013.6578226. [Online]. Available: https:
//doi.org/10.1109/LISAT.2013.6578226.

[127] S. X. Ding, P. Zhang, S. Yin, and E. L. Ding, “An Integrated Design Framework of Fault-Tolerant
Wireless Networked Control Systems for Industrial Automatic Control Applications”, IEEE
Trans. Industrial Informatics, vol. 9, no. 1, pp. 462–471, 2013. doi: 10.1109/TII.2012.2214390.
[Online]. Available: https://doi.org/10.1109/TII.2012.2214390.

[128] C. A. Boano, S. Duquennoy, A. Förster, O. Gnawali, R. Jacob, H. Kim, O. Landsiedel, R.
Marfievici, L. Mottola, G. P. Picco, X. Vilajosana, T. Watteyne, and M. Zimmerling, “IoTBench:
Towards a Benchmark for Low-Power Wireless Networking”, in Workshop on Benchmarking
Cyber-Physical Networks and Systems, Bench@CPSWeek 2018, Porto, Portugal, April 10, 2018,
2018, pp. 36–41. doi: 10.1109/CPSBench.2018.00013. [Online]. Available: https://doi.org/
10.1109/CPSBench.2018.00013.

[129] T. Niemueller, G. Lakemeyer, S. Reuter, S. Jeschke, and A. Ferrein, “Benchmarking of Cyber-
Physical Systems in Industrial Robotics: The RoboCup Logistics League as a CPS Benchmark
Blueprint”, pp. 193–207, 2016. doi: 10.1016/B978-0-12-803801-7.00013-4. [Online]. Available:
https://doi.org/10.1016/B978-0-12-803801-7.00013-4.

[130] S. M. Günther, M. Leclaire, J. Michaelis, and G. Carle, “Analysis of Injection Capabilities and
Media Access of IEEE 802.11 Hardware in Monitor Mode”, in 2014 IEEE Network Operations
and Management Symposium, NOMS 2014, Krakow, Poland, May 5-9, 2014, 2014, pp. 1–9. doi:

138

https://doi.org/10.1007/978-3-319-68345-4_3
https://doi.org/10.1007/978-3-319-68345-4_3
https://doi.org/10.1007/978-3-319-68345-4_3
https://doi.org/10.1109/CPSBench.2018.00009
https://doi.org/10.1109/CPSBench.2018.00009
https://doi.org/10.1109/CPSBench.2018.00009
https://doi.org/10.1145/3302509.3311046
https://doi.org/10.1145/3302509.3311046
https://doi.org/10.1109/MCS.2004.1299533
https://doi.org/10.1109/MCS.2004.1299533
https://doi.org/10.1109/MCS.2004.1299533
https://doi.org/10.1109/TII.2015.2481821
https://doi.org/10.1109/TII.2015.2481821
https://doi.org/10.1109/WOWMOM.2007.4351727
https://doi.org/10.1109/WOWMOM.2007.4351727
https://doi.org/10.1109/WOWMOM.2007.4351727
https://doi.org/10.1109/LISAT.2013.6578226
https://doi.org/10.1109/LISAT.2013.6578226
https://doi.org/10.1109/LISAT.2013.6578226
https://doi.org/10.1109/TII.2012.2214390
https://doi.org/10.1109/TII.2012.2214390
https://doi.org/10.1109/CPSBench.2018.00013
https://doi.org/10.1109/CPSBench.2018.00013
https://doi.org/10.1109/CPSBench.2018.00013
https://doi.org/10.1016/B978-0-12-803801-7.00013-4
https://doi.org/10.1016/B978-0-12-803801-7.00013-4

10.1109/NOMS.2014.6838262. [Online]. Available: https://doi.org/10.1109/NOMS.2014.
6838262.

[131] D. Vassis, G. Kormentzas, A. N. Rouskas, and I. Maglogiannis, “The IEEE 802.11g Standard
for High Data Rate WLANs”, IEEE Network, vol. 19, no. 3, pp. 21–26, 2005. doi: 10.1109/
MNET.2005.1453395. [Online]. Available: https://doi.org/10.1109/MNET.2005.1453395.

[132] B. Wittenmark, J. Nilsson, and M. Torngren, “Timing Problems in Real-time Control Systems”,
1995, pp. 2000–2004. doi: 10.1109/ACC.1995.531240. [Online]. Available: https://doi.org/
10.1109/ACC.1995.531240.

[133] C. Liu, F. Chen, J. Zhu, Z. Zhang, C. Zhang, C. Zhao, and T. Wang, “Characteristic, Ar-
chitecture, Technology, and Design Methodology of Cyber-Physical Systems”, in International
Conference on Industrial IoT Technologies and Applications, 2017. doi: 10.1007/978-3-319-
60753-5_25. [Online]. Available: https://doi.org/10.1007/978-3-319-60753-5_25.

[134] Y. H. Kim, S. Kim, and Y. K. Kwak, “Dynamic Analysis of a Nonholonomic Two-Wheeled
Inverted Pendulum Robot”, Journal of Intelligent and Robotic Systems, vol. 44, no. 1, pp. 25–
46, 2005. doi: 10.1007/s10846-005-9022-4. [Online]. Available: https://doi.org/10.1007/
s10846-005-9022-4.

[136] LEGO Group, LEGO MINDSTORMS Education EV3 Core Set, Last accessed: 2021-05-31.
[Online]. Available: https : / / education . lego . com / en - us / products / lego - mindstorms -
education-ev3-core-set-/5003400.

[138] M. Satyanarayanan, “The Emergence of Edge Computing”, IEEE Computer, vol. 50, no. 1,
pp. 30–39, 2017. doi: 10.1109/MC.2017.9. [Online]. Available: https://doi.org/10.1109/MC.
2017.9.

[139] D. J. Leith and W. E. Leithead, “Survey of Gain-Scheduling Analysis & Design”, International
Journal of Control, vol. 73, no. 11, pp. 1001–1025, 2000. doi: 10 . 1080 / 002071700411304.
[Online]. Available: https://doi.org/10.1080/002071700411304.

[140] R. Costa, P. Portugal, F. Vasques, C. Montez, and R. Moraes, “Limitations of the IEEE 802.11
DCF, PCF, EDCA and HCCA to handle real-time traffic”, in 13th IEEE International Con-
ference on Industrial Informatics, INDIN 2015, Cambridge, United Kingdom, July 22-24, 2015,
2015, pp. 931–936. doi: 10.1109/INDIN.2015.7281860. [Online]. Available: https://doi.org/
10.1109/INDIN.2015.7281860.

[141] K. Nakashima, T. Matsuda, M. Nagahara, and T. Takine, “Cross-Layer Design of an LQG
Controller in Multihop TDMA-Based Wireless Networked Control Systems”, in 28th IEEE An-
nual International Symposium on Personal, Indoor, and Mobile Radio Communications, PIMRC
2017, Montreal, QC, Canada, October 8-13, 2017, 2017, pp. 1–7. doi: 10.1109/PIMRC.2017.
8292181. [Online]. Available: https://doi.org/10.1109/PIMRC.2017.8292181.

[142] G. Nikolakopoulos, A. Panousopoulou, A. Tzes, and J. Lygeros, “Multi-hopping Induced Gain
Scheduling for Wireless Networked Controlled Systems”, Asian Journal of Control, vol. 9, no. 4,
pp. 450–457, 2007. doi: 10.1111/j.1934-6093.2007.tb00433.x. [Online]. Available: https:
//doi.org/10.1111/j.1934-6093.2007.tb00433.x.

[143] F. Xia, L. Ma, C. Peng, Y. Sun, and J. Dong, “Cross-Layer Adaptive Feedback Scheduling of
Wireless Control Systems”, Sensors, vol. 8, no. 7, pp. 4265–4281, 2008. doi: 10.3390/s8074265.
[Online]. Available: https://doi.org/10.3390/s8074265.

[144] A. Schmidt and S. Reif, PRRT repository, Last accessed: 2021-05-31. [Online]. Available: https:
//prrt.larn.systems.

[145] S. Reif, A. Schmidt, T. Hönig, T. Herfet, and W. Schröder-Preikschat, “∆ELTA: Differential
Energy-Efficiency, Latency, and Timing Analysis for Real-Time Networks”, SIGBED Review,

139

https://doi.org/10.1109/NOMS.2014.6838262
https://doi.org/10.1109/NOMS.2014.6838262
https://doi.org/10.1109/NOMS.2014.6838262
https://doi.org/10.1109/MNET.2005.1453395
https://doi.org/10.1109/MNET.2005.1453395
https://doi.org/10.1109/MNET.2005.1453395
https://doi.org/10.1109/ACC.1995.531240
https://doi.org/10.1109/ACC.1995.531240
https://doi.org/10.1109/ACC.1995.531240
https://doi.org/10.1007/978-3-319-60753-5_25
https://doi.org/10.1007/978-3-319-60753-5_25
https://doi.org/10.1007/978-3-319-60753-5_25
https://doi.org/10.1007/s10846-005-9022-4
https://doi.org/10.1007/s10846-005-9022-4
https://doi.org/10.1007/s10846-005-9022-4
https://education.lego.com/en-us/products/lego-mindstorms-education-ev3-core-set-/5003400
https://education.lego.com/en-us/products/lego-mindstorms-education-ev3-core-set-/5003400
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1080/002071700411304
https://doi.org/10.1080/002071700411304
https://doi.org/10.1109/INDIN.2015.7281860
https://doi.org/10.1109/INDIN.2015.7281860
https://doi.org/10.1109/INDIN.2015.7281860
https://doi.org/10.1109/PIMRC.2017.8292181
https://doi.org/10.1109/PIMRC.2017.8292181
https://doi.org/10.1109/PIMRC.2017.8292181
https://doi.org/10.1111/j.1934-6093.2007.tb00433.x
https://doi.org/10.1111/j.1934-6093.2007.tb00433.x
https://doi.org/10.1111/j.1934-6093.2007.tb00433.x
https://doi.org/10.3390/s8074265
https://doi.org/10.3390/s8074265
https://prrt.larn.systems
https://prrt.larn.systems

vol. 16, no. 1, pp. 33–38, 2019. doi: 10.1145/3314206.3314211. [Online]. Available: https:
//doi.org/10.1145/3314206.3314211.

[146] J. Gettys and K. M. Nichols, “Bufferbloat: Dark Buffers in the Internet”, Commun. ACM,
vol. 55, no. 1, pp. 57–65, 2012. doi: 10.1145/2063176.2063196. [Online]. Available: https:
//doi.org/10.1145/2063176.2063196.

[147] Y. Cheng, N. Cardwell, S. H. Yeganeh, and V. Jacobson, “Delivery Rate Estimation draft-
cheng-iccrg-delivery-rate-estimation-00”, pp. 1–15, 2017.

[148] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, “BBR: Congestion-Based
Congestion Control”, ACM Queue, vol. 14, no. 5, pp. 20–53, 2016. doi: 10.1145/3012426.
3022184. [Online]. Available: http://doi.acm.org/10.1145/3012426.3022184.

[149] J. L. Bordim, A. V. Barbosa, M. F. Caetano, and P. S. Barreto, “IEEE802.11b/g Standard:
Theoretical Maximum Throughput”, in First International Conference on Networking and Com-
puting, ICNC 2010, Higashi Hiroshima, Japan, November 17-19, 2010. Proceedings, IEEE Com-
puter Society, 2010, pp. 197–201. doi: 10.1109/IC-NC.2010.40. [Online]. Available: https:
//doi.org/10.1109/IC-NC.2010.40.

[150] K. Suksomboon, M. Fukushima, S. Okamoto, and M. Hayashi, “A Dilated-CPU-Consumption-
Based Performance Prediction for Multi-Core Software Routers”, in IEEE NetSoft Conference
and Workshops, NetSoft 2016, Seoul, South Korea, June 6-10, 2016, IEEE, 2016, pp. 193–201.
doi: 10.1109/NETSOFT.2016.7502413. [Online]. Available: https://doi.org/10.1109/NETSOFT.
2016.7502413.

140

https://doi.org/10.1145/3314206.3314211
https://doi.org/10.1145/3314206.3314211
https://doi.org/10.1145/3314206.3314211
https://doi.org/10.1145/2063176.2063196
https://doi.org/10.1145/2063176.2063196
https://doi.org/10.1145/2063176.2063196
https://doi.org/10.1145/3012426.3022184
https://doi.org/10.1145/3012426.3022184
http://doi.acm.org/10.1145/3012426.3022184
https://doi.org/10.1109/IC-NC.2010.40
https://doi.org/10.1109/IC-NC.2010.40
https://doi.org/10.1109/IC-NC.2010.40
https://doi.org/10.1109/NETSOFT.2016.7502413
https://doi.org/10.1109/NETSOFT.2016.7502413
https://doi.org/10.1109/NETSOFT.2016.7502413

	Introduction
	Research Questions
	Outline

	Measurement and Benchmarking Methodology
	Terminology and Key Performance Indicators
	Reproducible Network Experiments
	Related Work
	Testbed for Reproducible Network Experiments
	Limitations
	Key Results
	Author's Contributions

	High-Performance Measurement Tools
	Motivation
	MoonGen
	Analysis of Software Packet Generators
	FLOWer
	FlowScope
	Key Results
	Author's Contributions

	Modeling Framework
	Analysis of Software Packet Processing Systems
	Interconnect Bottlenecks
	CPU Bottleneck
	Impact of Caching on Data Access Costs
	Resource model

	Key Results
	Author's Contributions

	Measuring and Modeling of High-Speed Packet Processing Systems
	Comparison of Packet Processing Frameworks
	Packet Processing in Software
	Related Work
	Performance Considerations
	High-Performance Prediction Model
	Performance Comparison
	Conclusion

	High-Speed Packet Processing for Network Function Chaining
	Network Function Chain Model
	Network Function Chain Measurement
	Conclusion

	High-Performance Software Router
	High-Performance Design
	Flexible Architecture
	Evaluation and Modeling
	Conclusion

	Ultra-Reliable Low-Latency Communication
	Motivation
	Background and Related Work
	System Architecture
	Model
	Limitations
	Reproducibility
	Conclusion

	Key Results
	Author's Contributions

	Measuring and Modeling of Networked Control Systems
	Benchmarking Networked Control Systems
	Related Work
	Framework for Reproducible NCS Benchmarking
	Network Domain KPIs
	Control Domain KPIs
	Evaluation Platform
	NCS Architecture and Scenario Description
	Timings and Delay Model

	NCSbench Implementation
	Control System
	Computing Systems
	Communication Network
	KPI Measurement
	Platform Evaluation
	KPI Evaluation
	Benchmarking

	Repeatable Wireless Measurements
	System Model
	Related Work
	Design and Implementation
	Testbed and Measurement Setup
	Evaluation

	Applying the Resource Model to WLAN
	Key Results
	Author's Contributions

	Conclusion
	Key Findings
	Future Work

	Appendix
	List of Acronyms
	List of Figures
	List of Tables

	Bibliography

