
Building Fast but Flexible Software Routers

Sebastian Gallenmüller, Paul Emmerich, Rainer Schönberger, Daniel Raumer, and Georg Carle
Technical University of Munich

Department of Informatics
Chair of Network Architectures and Services

{gallenmu|emmericp|schoenbr|raumer|carle}@in.tum.de

1. INTRODUCTION
Creating quick and dirty prototypes is a simple and effec-

tive way to demonstrate the feasibility of new ideas in net-
work research. Though, small scale proof-of-concepts may
lack the performance needed to apply them to real world
test cases. Thanks to powerful packet processing frame-
works such as netmap and DPDK, high-performance packet
forwarding systems can be implemented in software today.

We present MoonRoute, a framework dedicated to devel-
oping powerful software routers. It is built on top of DPDK
and utilizes a highly parallelized architecture to achieve high
performance (see Section 2). MoonRoute offers methods
to reuse existing libraries and a scripting interface for easy
extensibility (see Section 3). An example implementation
based on the MoonRoute framework is carefully evaluated
to demonstrate the performance and compare it to other
relevant software routers (see Section 4).

The entire MoonRoute framework including a reference
implementation of a software router is available as free soft-
ware under MIT license [2]. A technical report featuring
details about our architecture and more profiling results is
available [1].

2. HIGH-PERFORMANCE DESIGN
MoonRoute leverages hardware features of modern NICs

such as receive side scaling to distribute packets according
to specified parameters across a number of CPU cores. This
functionality for almost perfect scaling across CPU cores
forms the basis to implement scalable multi-core packet pro-
cessing applications. To profit from such a hardware design,
the software must be programmed accordingly. The threads
must be able to run as independently as possible to not in-
terfere with each other.

The basic architecture of MoonRoute is made up of two
different kinds of threads or packet processing components
– the fast path and the slow path. The fast path is con-
cerned with processing many packets requiring rather simple
processing, i.e., reaching a routing decision and forwarding
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packets – fast paths are simple & fast. Other more com-
plex operations, such as generating an ICMP response for
timed out IP packets, are handled by the slow path. These
operations require a more complex control flow but occur
less often than the simple packets – slow paths are versa-
tile & slow. Building a router exclusively from slow path
components would be possible, however, lots of functions
would only be rarely used. To achieve high performance,
our reference implementation uses both types of compo-
nents: There are several fast path components distributed
to different CPU cores and a single slow path component
running on a separate core. All components utilize lock-free
queues, avoid shared data structures where possible, and
employ read-only data structures where information sharing
between different threads is necessary. This optimized multi-
thread design transfers the multi-core scalability provided by
hardware into the software. A diagram of our architecture
can be found on the accompanying poster or in [1].

An important method to increase the performance of soft-
ware packet processing systems is batching. In MoonRoute
functions called by fast path components accept, process,
and return packets in batches to maximize throughput. Mod-
ules can exclude packets from further processing either by
building new batches (rebatching) or keeping the batches but
flagging the packets for subsequent functions to ignore them
(flagging). Both methods have disadvantages, rebatching in-
troduces additional overhead for building new batches and
flagging leads to inefficiencies for large batches containing
only a few packets to process. Our router implementation
uses both methods. Flagging is used in between function
calls in the fast path. Packets are rarely excluded from rout-
ing, therefore, flagging avoids the overhead for rebatching.
Flagged packets need to be handled by the slow path. As the
slow path usually handles only a few packets, sending whole
batches with few flags introduces unnecessary load on the
slow path. Therefore, packets are flagged and remain in the
batches for the fast path, but are at the same time inserted
into a queue to the slow path. We call this hybrid approach
between flagging and rebatching drop-out batching.

3. FLEXIBLE ARCHITECTURE
One of the main goals of MoonRoute is to enable a high

flexibility and easy extensibility of software routers. Moon-
Route uses libmoon [4] which is a Lua wrapper built on top
of DPDK and allows using the easy-to-learn scripting lan-
guage Lua to implement software routers. With just-in-time
compilation (provided by LuaJIT [5]) it is possible to process
minimum sized packets at line rate (10 Gbit/s) [4].
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Figure 1: Scaling with the number of CPU cores
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Figure 2: Hardware events (3.2GHz)

The functionality used by the router is usually provided
by modules, these modules represent a specific step in the
packet processing task, such as the routing table lookup.
These modules take an array of packet buffers and vector of
flags as input. An optional parameter for these modules is
the queue to a slow path component, where packet buffers
can be inserted by the module if necessary. Such a module
returns the array of packet buffers and an output vector of
flags, signaling the packets to be processed in the next step.

The supported languages to write modules are C/C++
and Lua. The usage of the Lua language is intended for the
initial implementation of quick, low-effort prototypes. It is
possible to switch the prototype implementation for high-
performance C/C++ libraries at a later point in time or
to reuse already existing libraries conveniently through an
integrated foreign function interface (FFI) provided by Lu-
aJIT [5]. The included reference router has its main loop,
which connects all modules in a component, written in Lua,
i.e., Lua code extensions are simple to add. Most of the
performance-critical functionality is handled by C libraries
included in DPDK. The libraries are wrapped by a light-
weight Lua wrapper calling the C library via the FFI.

4. EVALUATION
For evaluation, we use the default router integrated into

MoonRoute. The test servers are equipped with an Intel
X520-T2 NIC offering a bandwidth of 2× 10 Gbit/s. Upcom-

Router Mpps Relative

MoonRoute 14.6 100%
FastClick (DPDK 2.2) 10.4 72%
Click (DPDK 2.2) 4.3 29%
Linux 3.7 1.5 10%

Table 1: Single core router performance

ing many-core CPU architectures make parallelization and
scalability the key aspects of high-performance designs. Fig-
ure 1 shows the scaling with the number of CPU cores (Intel
2.0 GHz Xeon E5-2640 v2 8-core CPU), indicating a linear
trend with multiple cores. The importance of scalability is
likely to grow for future many-core systems. Further, we run
extensive profiling tests with hardware events to character-
ize the performance and find sweet spots for parameters such
as batch size. Figure 2 shows how the performance peaks at
a receive batch size of 128 as higher values overload the L1
cache and smaller values affect branch prediction.

Table 1 demonstrates the single core performance of Moon-
Route compared to other software routers, such as the Linux
Router, the modular software router Click and FastClick
both using DPDK as backend. FastClick [3] extends Click
with performance enhancing techniques, e.g., batch process-
ing. MoonRoute can almost saturate a 10 Gbit/s link uti-
lizing a single core, improving performance between 30% –
90% compared to its contestants. These tests demonstrate
the optimal throughput for the respective software routers
each containing only a single routing table entry.

5. CONCLUSION
Modularity and high performance – often considered as

conflicting goals for optimization – are achieved by Moon-
Route’s careful design choices: the two-path design separat-
ing high from low priority tasks, improved performance with
batching techniques and multi-thread optimized data struc-
tures. The just-in-time compilation for Lua allows leverag-
ing the flexibility of a scripting language without sacrificing
performance, as well as employing a convenient foreign func-
tion interface to allow easy code reuse. The performance
evaluation of our reference router offers insights in its scala-
bility, the positive effects of batching, and profiling data of
a realistic complex packet forwarding system.
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