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ABSTRACT
The Domain Name System (DNS) is thought of as having the simple-
sounding task of resolving domains into IP addresses. With its
stub resolvers, different layers of recursive resolvers, authoritative
nameservers, a multitude of query types, and DNSSEC, the DNS
ecosystem is actually quite complex.

In this paper, we introduce DNS Observatory: a new stream
analytics platform that provides a bird’s-eye view on the DNS.
As the data source, we leverage a large stream of passive DNS
observations produced by hundreds of globally distributed probes,
acquiring a peak of 200 kDNS queries per second between recursive
resolvers and authoritative nameservers. For each observed DNS
transaction, we extract traffic features, aggregate them, and track
the top-k DNS objects, e.g., the top authoritative nameserver IP
addresses or the top domains.

We analyze 1.6 trillion DNS transactions over a four month pe-
riod. This allows us to characterize DNS deployments and traffic
patterns, evaluate its associated infrastructure and performance,
as well as gain insight into the modern additions to the DNS and
related Internet protocols. We find an alarming concentration of
DNS traffic: roughly half of the observed traffic is handled by only
1 k authoritative nameservers and by 10 AS operators. By evalu-
ating the median delay of DNS queries, we find that the top 10 k
nameservers have indeed a shorter response time than less popular
nameservers, which is correlated with less router hops.

We also study how DNS TTL adjustments can impact query
volumes, anticipate upcoming changes to DNS infrastructure, and
how negative caching TTLs affect the Happy Eyeballs algorithm.
We find some popular domains with a a share of up to 90 % of empty
DNS responses due to short negative caching TTLs. We propose
actionable measures to improve uncovered DNS shortcomings.

CCS CONCEPTS
• Networks → Naming and addressing; Network measure-
ment; • Information systems → Data stream mining.

ACM Reference Format:
Pawel Foremski, Oliver Gasser, and Giovane C. M. Moura. 2019. DNS Ob-
servatory: The Big Picture of the DNS. In Internet Measurement Conference
(IMC ’19), October 21–23, 2019, Amsterdam, Netherlands. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3355369.3355566

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’19, October 21–23, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6948-0/19/10. . . $15.00
https://doi.org/10.1145/3355369.3355566

1 INTRODUCTION
Although the DNS dates back to 1983, when Mockapetris published
its original specification in RFCs 882 and 883 [45, 46], it still re-
mains one of the key protocols of the Internet. Since then, various
authors have published a staggering number of 3200 pages of RFC
documents (counting Internet Standard, Proposed Standard, and
Informational documents), which demonstrates how deceptive it
is to think that DNS is simple, well understood, or already stud-
ied enough [31–33, 67]. In this context, we see Internet engineers
struggling for a faster, better connected, and more secure Web—
through the adoption of IPv6, HTTP/2, QUIC, and TLS 1.3—all of
which are directly affected by the DNS. We believe that big-scale
measurements of the DNS in the wild are essential to understand
and revise it, so that the DNS stays on par with the improvements
made to other key protocols of the Internet.

Modern, large-scale authoritative DNS servers employ high lev-
els of complexity. First, they employ IP anycast [1], meaning that
the same prefix can be announced from multiple locations around
the globe. Secondly, the contents of a DNS response may depend on
where the user is located: authoritative servers can be configured
to give different DNS answers based on geo-location, latency, and
content filtering policy [6]. As such, any researchers attempting to
evaluate DNS will—depending on their vantage point—have only
a partial view of a DNS zone. Besides, whenever they employ ac-
tive measurements on DNS zones, they have to actively query for
pre-obtained domain lists, which skews the results even more [60].

This paper introduces DNS Observatory, a novel stream analyt-
ics platform that mitigates the issue of vantage point location by
collecting data from hundreds of DNS resolvers distributed around
the world, and which stores only aggregate information extracted
from the traffic between resolvers and authoritative nameservers.

We analyze the data collected in DNS Observatory from January
until April 2019, totaling 1.6 trillion DNS transactions, and report
on our findings. We present the Big Picture of the DNS, which
helps us to better understand DNS traffic distributions, global DNS
performance, impact and dynamics of the TTLs, and the possible
consequences of the Happy Eyeballs algorithm on IPv4-only sites,
due to negative caching misconfigurations. We believe our work
can help in making informed improvements to the DNS, and to
bolster DNS research in general.

Our main contributions include:

DNS Observatory This work presents DNS Observatory (DO),
which is built on hundreds of globally distributed resolver
vantage points (VPs). It aggregates up to 200 k DNS queries
per second in a stream of top-k DNS objects, which can be
used for various analyses. We elaborate on the design and
architecture of DO in section 2.

Big Picture We analyze the big picture of DNS in terms of traffic
distributions, query types, response delays, Autonomous

87

https://doi.org/10.1145/3355369.3355566
https://doi.org/10.1145/3355369.3355566


IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Foremski, Gasser, and Moura

Systems, and QNAMEminimization deployment in section 3.
We find that 50% of observed DNS traffic is likely handled
by just top 1,000 nameservers, and by IP prefixes managed
by just 10 organizations.

Dissecting TTLs We perform an in-depth analysis of TTLs, specif-
ically their correlationwith traffic and infrastructure changes
in section 4.

Happy Eyeballs and Negative Caching We evaluate the effect
of low negative caching TTLs and the Happy Eyeballs al-
gorithm used by IPv6 enabled clients in section 5. We find
some domains with more than 90 % of all responses being
empty due to low negative caching TTLs. Finally, we propose
actionable steps to ameliorate the current state.

We begin the paper by introducing terminology, describing raw
DNS traffic data sources, and elaborating onmethodology in Section
2. Then, in Sections 3, 4, and 5 we present our findings on the DNS.
In Section 6, we refer the reader to related works and datasets. We
conclude in Section 7, inviting academic researchers to access the
data collected in DNS Observatory.

2 DNS OBSERVATORY
In this section, we present our methodology, i.e., our data process-
ing pipeline, which involves: obtaining raw data, preprocessing,
tracking objects, measuring DNS traffic, and producing time se-
ries data for various time aggregations. The overall design of DNS
Observatory is presented in Figure 1.

Before we describe our system in detail, we make a note on the
terminology used in this paper. We use the terms “resolver” and
“nameserver” to refer to a particular IP address used by a recursive
DNS resolver and authoritative DNS name server, respectively. The
terms “Top-Level Domain” (TLD) and “Second-Level Domain” (SLD)
refer to, respectively, the last 1 and the last 2 labels in Fully-Qualified
Domain Names (FQDNs). The term “effective TLDs” (eTLDs) refer
to the ICANN domains listed in the Public Suffix List [49] (e.g.,
.co.uk), and “effective SLD” (eSLD) is simply a label directly under
an eTLD (e.g., bbc.co.uk).

2.1 Preprocessing raw data
Our data comes from a large stream of passive observations of DNS
traffic between recursive resolvers and authoritative nameservers,
i.e., essentially we analyze the DNS cache-miss query-response
transactions above DNS resolvers. The stream comes from the Se-
curity Information Exchange (SIE), an open platform operated by
Farsight Security, Inc.. SIE resembles an Internet Exchange Point
(IXP) and allows the cooperating parties to exchange Internet secu-
rity information in real-time [22].

DNS Observatory ingests the main passive DNS stream available
on the platform, which peaks at 200 k DNS transactions per second
and comes from hundreds of resolvers. The data is contributed
by many parties spread around the world, including: North and
Central America, Western Europe and UK, Eastern Europe and
Russia, Middle East, Southeast Asia, and Australia. The contrib-
utors include large ISPs, recursive DNS providers, hosting farms,
social media platforms, Internet security companies, universities,
financial institutions, etc. The data is generated by open source
software—usually deployed directly on the resolver machine—that

reconstructs the DNS transactions by capturing raw IP packets
from network interfaces [20].

In more detail, we analyze UDP/53 transactions with either both
the query and the response packets, or the query alone (in case
of no response). Support for TCP/53 is planned as future work,
but note that it constitutes only <3% of Internet traffic [36, 63].
Each transaction includes raw packets, starting at the IP header,
and detailed timestamps. Transactions are serialized using Protocol
Buffers [29] and submitted to the platform. From there, we read the
stream, deserialize the data, parse IP headers and DNS payloads,
and summarize each transaction with a line of text.

We retain only the relevant pieces of information, e.g., resolver
and nameserver IP address, response delay, DNS header contents,
queried name, and select DNS record data. Our goal is to make the
data easier to process in the next steps, given the data volume.

2.2 Tracking Top-k objects
The basic tool we use for DNS Observatory is the Space-Saving
algorithm (SS) [44], which allows us to keep track of the most fre-
quently queried nameservers—or, in more general, to continuously
track the Top-k DNS objects in our data stream—while keeping
memory usage under control.

A DNS object is any entity within the DNS, identified with a
textual key: the value of any transaction detail, or a combination
thereof. For example—although the primary objects we consider
are the nameserver IP addresses—we may study the most popular
FQDNs, returned IP addresses, or combinations of the FQDN and
its IP address. When desirable, we may also filter the input traffic,
e.g., consider only the transactions involving root nameservers, or
the responses with the Authoritative Answer (AA) flag set.

Note that usually the number of DNS objects is too large to keep
track of all of them, e.g., all FQDNs seen in DNS. However, their
distributions are often heavy-tailed, i.e., a relatively small number
of the most frequent objects cover a large fraction of all observed
DNS transactions. Thus, the usage of the SS algorithm allows us to
obtain a big picture of the DNS.

When a new transaction is observed, we extract its key (e.g.,
the nameserver IP address) and check if the corresponding object
exists in the SS cache. If yes, we update its frequency estimate—
an exponentially decaying moving average that tracks the rate of
transactions per second for this object. If no, we evict the least
frequent object, and insert the new object instead, but keeping
(and updating) the frequency estimate of the evicted entry. In the
latter case, we optionally consult a Bloom Filter [7] before doing
the eviction, in order to skip incidental observations of rare keys.

Note that although at this point we already know the estimated
rates of traffic for each object, e.g., hits per second for a nameserver
IP address, we do not use them after this step. We only maintain a
list of the currently most popular objects in the input data stream.
Each live object in the SS cache has a separate state used for traffic
statistics, which we update in the next step.

2.3 Measuring traffic features
Each transaction ends up either being aggregated in statistics of a
particular DNS object from the SS cache, or being dropped in case
the corresponding object is not in the cache.
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Figure 1: DNS Observatory data processing pipeline: A) recursive resolvers submitting cache-miss traffic (subsection 2.1);
B) summarizing DNS query-response transactions (subsection 2.1); C) tracking Top-k objects for given key definition, e.g.,
nameserver IP address (subsection 2.2); D) collecting statistics in time windows of 60 seconds (subsection 2.3); E) writing time
series to disk (subsection 2.4); F ) aggregating in time, e.g., producing daily files after 24 hours (subsection 2.4).

We characterize each object in the cache using traffic features,
enumerated and briefly documented below:

• srvips: number of nameserver IP addresses;
• srcips: number of recursive resolver IP addresses;
• sources: number of SIE contributors that saw this object;
• hits: total number of transactions seen so far;
• unans: number of unanswered queries;
• ok, nxd, rfs, fail: responses with the RCODE of respectively:
NoError, NXDOMAIN, Refused, and ServFail;
• ok_ans, ok_ns, ok_add: NoError responses: non-empty AN-
SWER section, non-zero NS records in AUTHORITY, non-empty
ADDITIONAL section (skipping EDNS0 OPT);
• ok_nil: neither ok_ans nor ok_ns satisfied (NoData);
• ok6, ok6nil: AAAA queries: all NoError vs. NoData;
• ok_sec: DNSSEC-signed responses: EDNS0 DO flag set, ok_ans
or ok_ns satisfied, sections have RRSIG records;
• qnamesa, qnames: number of distinct QNAMEs in all queries
vs. those that resulted in a NoError response;
• tlds, eslds: number of Top-Level and effective Second-Level Do-
mains in NoError responses;
• qtypes: number of QTYPEs in all queries;
• qdots, lvl, nslvl: number of labels in all QNAMEs, records in
ANSWER, NS records in AUTHORITY, respectively;
• ip4s, ip6s: number of distinct IPv4/IPv6 addresses in NoError
responses to A/AAAA or ANY queries;
• ttl, nsttl: the top-3 TTL values (and distributions) for records in
ANSWER and nameservers in AUTHORITY;
• resp_delays: quartiles of server response delays;
• network_hops: quartiles of inferred number of network hops
(routers) between resolvers and nameservers [39];
• resp_size: quartiles of the response packet sizes.

The underlying data structure for each feature is either a sim-
ple counter (e.g., hits), an average (e.g., qdots), a histogram (e.g.,
resp_delays), or a cardinality estimate (e.g., ip4s). For estimat-
ing the number of elements in possibly large sets of values (e.g.,
qnamesa) we use the HyperLogLog algorithm, as improved in [30].

2.4 Producing time series
Every 60 seconds, we dump all data to disk and reset all statistics,
but without affecting the SS cache, i.e., we keep the list of the most
popular objects, but we clear their internal state used for traffic
features. This way we produce time series data that characterize
a select aspect of the DNS minute by minute, e.g., a time series of
queries per minute for the world’s most popular nameservers.

Because the popularity of objects may change at arbitrary points
in time (not synchronized with our 1-minute time ticks), we skip
the data from objects recently inserted in the SS cache. That is, if
we included an object in the data dump, this means it survived the
SS cache eviction for 60 seconds.

A separate process aggregatesminutely files into new, decaminutely
files that represent 10-minute time windows. These in turn get ag-
gregated into hourly files, then into daily files, then into monthly
files, and finally into yearly files. In order to keep disk usage under
control, each of these time granularities have a data retention policy,
i.e., after some time we delete old files for short time windows, and
keep only the longer aggregates.

In general, we aggregate time series of a particular feature using
the arithmetic mean. The value of a counter feature for a particular
object in a decaminutely file is the average rate per minute, esti-
mated using 10 data points (each 1 minute apart); for the hourly
file, we use 6 data points (each 10 minutes apart), etc. If the object
is missing in some of the files being aggregated, we use a value of
0 for counters. For features that are not counters (e.g., cardinality
estimates), we just skip the missing data point.

The data is stored on disk in the TSV file format, where the file
name encodes both the time granularity, and the moment of time
when we started collecting the data. The first TSV row contains
column names, and the last row contains data collection statistics,
which include the total number of DNS transactions seen before
and after filtering. TSV files may easily be imported into many
data analysis tools, from ordinary spreadsheet software to time
series databases. For this paper, we mainly used Python and the
JupyterLab environment.

2.5 Ethical considerations
The intent of DNS Observatory is to track only the big picture of
the DNS—e.g., its performance, robustness, and security—and never
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to track Internet users—i.e., individuals and/or groups of people. We
store only highly aggregated data that does not contain Personally
Identifiable Information (PII), and as such minimize the risk of
violating users’ privacy.

There are three layers of user privacy protection involved in
our research. First, the raw DNS data is captured above recursive
resolvers, which means we only see the stream of DNS queries
aggregated for all users of a particular resolver—without the user
IP address—and only for FQDNs not in the resolver cache, which
again is shared by all of the resolver clients. Moreover, we do not
know the exact locations of resolvers beyond their IP addresses, and
each resolver can in general be used by people located anywhere.

Second, early in our data pipeline we drop DNS transaction de-
tails except for those that will end up aggregated in traffic statistics
described in subsection 2.3. This means we drop possibly sensitive
EDNS0 data, including DNS cookies [17] and client subnet infor-
mation [12]. The detailed timestamps of the query and response
packets are used only to compute the nameserver response delay
and are subsequently dropped.

Third, we aggregate traffic in Top-k lists for various DNS objects,
as described in subsection 2.2. The k parameter is finite and rela-
tively small compared with, e.g., the cardinality of the DNS FQDN
space. Given the global reach of our raw data collection system, this
means a particular object must be popular enough—compared with
the rest of the world—in order to survive the SS cache eviction for
60 seconds. In an unlikely event it does survive for short periods
of time, the final time aggregation step described in subsection 2.4
will drop it when producing, e.g., the hourly or daily files.

To conclude, we believe that these three layers protect user
privacy. Besides, as we do not perform active measurements, we
do not induce harm on individuals [4, 15, 54].

3 THE BIG PICTURE
In this section we present results from our evaluations based on
data from DNS Observatory. Since our data comes from passive
observations of real DNS traffic—recorded between hundreds of
recursive resolvers spread around the world and over 1M authori-
tative nameservers (subsection 3.7)—we report on the Big Picture
of the DNS, which is not visible through active measurements, data
collected at TLD level, or from a single ISP or recursive resolver
operator.

3.1 Collected datasets
In general, we use datasets collected from January 1st 2019 until
April 30th 2019, i.e., the first 120 days of 2019. In this time period,
we processed over 1.6 trillion DNS transactions, i.e., over 13 billion
per day. On average, in a 1-minute time window, we see over 1.5M
existing, and 1.1M non-existing, unique FQDNs.

The measurement process runs without any interruptions, but
the capabilities of our system improved with time, which allowed
us to collect new aggregations and features starting at a later time.
We collected the following datasets:

• srvip: Top-100K authoritative nameservers, i.e., transactions ag-
gregated using the nameserver IPv4/IPv6 address;

• etld: Top-10K effective TLDs (note that we include NXDOMAIN
traffic), i.e., transactions aggregated using the last 1 or more labels
in QNAME (since Jan. 8, 2019);
• esld: Top-100K effective SLDs, i.e., transactions aggregated using
the last 2 or more labels in QNAME (since Feb. 19, 2019);
• qname: Top-100K FQDNs, i.e., transactions aggregated using the
full QNAME (since Feb. 19, 2019);
• qtype: All QTYPE aggregations (since Feb. 15, 2019);
• rcode: All RCODE aggregations (since Apr. 10, 2019);
• aafqdn: Top-20K FQDNs in authoritative answers (cf. subsec-
tion 4.2), i.e., QNAME in transactions where the response has the
AA flag set (since Apr. 15, 2019);
• srcsrv: Top-30K pairs of resolvers and nameservers (cf. subsec-
tion 2.1), i.e., transactions aggregated using the combined IP ad-
dresses as key (Apr. 10, 2019 until May 9, 2019);

3.2 Traffic distributions
In Figure 2, we analyze traffic distributions for various Top-k ag-
gregations. First, in (a), we consider the 100K most popular name-
servers, ranked by their traffic volumes. The data aggregation step
described in subsection 2.2 allowed us to capture in this top list
94.9% of all DNS transactions seen in our raw data source. That is,
although we skip many unpopular nameservers (see subsection 3.7),
we know that they handle only 5.1% of the observed DNS traffic.

In total, all NoError responses account for 68.1% of the trans-
actions captured in the top list, but in the plot we distinguish the
NoData (4.7%) and the opposite “NoError + Data” case, i.e., when a
successful response either had the answer, or delegated to another
nameserver (64.4%). On the other hand, all NXDOMAIN responses
account for 20.7% of the top list traffic. For brevity, we skip other
RCODEs and unanswered queries, 11.2% in total. Note that we plot
an independent CDF curve that ends at 1.0 for each case, so the
curves are not to scale with respect to each other.

We find evidence that the majority of observed DNS traffic is
likely handled by only≈1,000 authoritative nameserver IP addresses
(i.e., IPv4 and IPv6 addresses). This suggests that considering raw
DNS transaction volumes, a big chunk of the DNS is not well
distributed in the IP address space, and instead relies on shared
infrastructure—or at least, on shared addressing—as already shown
in [2] from another perspective.

Moreover, the surprising starting point of the NXDOMAIN traf-
fic above 20% is caused by a large botnet, likely “Mylobot” [50].
The botnet’s Domain Generation Algorithm (DGA) produced mil-
lions of FQDNs under thousands of non-existing SLDs within the
.com TLD, which caused spikes of NXDOMAIN traffic towards the
gTLD nameservers. This, however, demonstrates howmore popular
nameservers—usually higher in the DNS hierarchy—are more likely
to receive queries for non-existing names, and are thus the DNS’s
“first line of defence” against artificially generated and otherwise
erroneous FQDNs.

In Figure 2 (b), we analyze the list of Top-100K FQDNs, reflecting
23.2% of all DNS transactions seen (the top 10K FQDNs correspond
to 18.6% of the observed traffic). Comparingwith (a), the lower share
simply means that there are much more FQDNs than nameserver
IPs in the DNS, and that many FQDNs are ephemeral, i.e., used only
once [10]. Thus, we see a heavy-tailed distribution on the plot.
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Figure 2: Traffic distributions for various Top-100K DNS objects, ranked by traffic. Note that the x-axis is log-scaled for im-
proved readability.

About 10% of queries captured by the list result in a NoData re-
sponse, linked to AAAA queries and the Happy Eyeballs algorithm,
which we analyze in detail in section 5. The NXDOMAIN traffic
(1.5%) is heavily shifted towards less popular FQDNs, which shows
the Internet’s most popular non-existing—yet queried—names are
still well behind the top existing FQDNs. The ordinary “NoError +
Data” responses correspond to 70.2% of aggregated transactions.

Finally, in Figure 2 (c), we analyze 68.5% of observed DNS trans-
actions, aggregated in a list of Top-100K effective SLDs. The distri-
bution shows a high accumulation of queries towards the Top-100
domains, foremost belonging to the biggest CDNs, cloud providers,
social media and e-commerce sites, etc. In addition to the sites al-
ready known from various web popularity top lists—e.g., [42]—we
found popular domains used by anti-virus software, and by the re-
verse DNS, both of which are not normally queried when browsing
the Web.

NXDOMAIN responses accounted for 18.9% of transactions cap-
tured in the list. The shape of CDF curves for ranks 2-4K is due to
the botnet already described in (a) above—this time, however, the
result is spread on more entries in our top list.

In summary, our results presented in Figure 2 show that a big
part of the DNS relies on a relatively small number of authoritative
nameserver IPs and domains, which confirms findings by other
researchers, e.g., [2, 5].

3.3 Autonomous Systems
In order to evaluate how DNS traffic is distributed on the Au-
tonomous Systems comprising the Internet, we associate each IP
address in our Top-100K nameserver list with its corresponding
AS number, using the data collected by the University of Oregon’s
Route Views project [64]. Next, for each ASN, we lookup its name
using the AS Names dataset [35]. Finally, we extract the organiza-
tion name from each AS Name string, and aggregate nameservers
in groups based on the result.

We present the top 10 names, ranked by the total volume of DNS
transactions in Table 1. The basic observation we make is that the
IP prefixes managed by just 10 organizations receive more than
half of the world’s DNS queries.

Name ASes global servers delay hops

1 AMAZON 3 16% 5,026 60.9 12.0
2 VERISIGN 7 10% 62 53.5 9.6
3 CLOUDFLARE 2 6.6% 995 26.5 6.6

4 AKAMAI 6 6.4% 6,844 14.9 7.3

5 MICROSOFT 5 2.7% 475 74.8 13.5

6 PCH 2 2.4% 178 29.9 7.2
7 ULTRADNS 1 2.3% 925 24.6 8.2
8 GOOGLE 1 2.1% 243 89.9 13.3

9 DYNDNS 1 1.8% 598 56.0 10.5
10 GODADDY 2 1.2% 372 63.0 11

Table 1: Top 10 AS names, by volume of DNS transactions:
Name) organization name, extracted from WHOIS data;
ASes) number of matching ASes; global) share in observed
DNS transactions; servers) nameserver IP count; delay, hops)
average response delay [ms] and hop count. Highlighted val-
ues are analyzed in subsection 3.3.

Note that the fact that a particular organization announces a
particular IP prefix does not automatically mean it also runs all
of the nameservers within that prefix. Most importantly, this is
the case for AMAZON, MICROSOFT, and GOOGLE—all of which
provide VPS cloud services besides dedicatedDNS hosting services—
where we see relatively high response delays, correlated with higher
hop counts.

Surprisingly, AMAZON leads the table with 16% share in DNS
transactions measured in DNS Observatory. This is likely due to
>5K of the most popular nameservers being VPS instances hosted
in AWS. Next, VERISIGN is rather expected, since it operates the
gTLD nameservers. The world’s 2 largest CDNs, AKAMAI and
CLOUDFLARE together handle 13% of observed DNS traffic. How-
ever, since CLOUDFLARE generally uses IP anycast, we see a few
times less nameserver IPs in the servers column than for AKAMAI.
We also note substantially lower response delays and hop counts,
which demonstrates that CDNs optimize these performance factors.
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3.4 Query types
In Table 2, we analyze the top 10 QTYPEs, which in total represent
99.5% of all DNS transactions seen. The A query, used for fetching
the IPv4 address, is clearly the dominant query type, being ≈3 times
more popular than the AAAA query, used for fetching the IPv6
address (64% vs. 22% in global), which gives insight into the client-
side adoption of IPv6 and its Happy Eyeballs algorithm (which
we describe and analyze in depth in section 5). Moreover, while
only 0.6% of responses to A queries neither contain the answer nor
a delegation, for AAAA queries we see >40 times more NoData
responses (25%), which in turn gives insight into the server-side
IPv6 adoption, and into the issue of low negative caching TTLs
(see section 5). Also note the 22% rate of NXDOMAIN responses
for A queries vs. the 5.9% for AAAA: the data suggests A queries
are more likely to be used for DNS scanning and other automated
activity, such as Pseudo-Randomized Subdomain (PRSD) attacks
[23].

We were surprised to learn that PTR is so popular, accounting
for 6.4% of the DNS traffic. These queries are not normally issued
by web users, and rather come from servers and other Internet in-
frastructure. The higher value for qdots of 6.8 was expected, given
that reverse DNS records for IPv4 and IPv6 addresses have many
labels (resulting in 6 and 34 dots, respectively). However, we saw
25 TLDs per minute, which demonstrates some use of PTR beyond
reverse DNS [11] (normally only under the .arpa TLD). Note the
highest among other QTYPEs response delay of 44 ms, which sug-
gests that reverse DNS queries take ≈2 times longer than forward
DNS queries.

Only 1.4% of all transactions seen were NS queries, of which a
staggering 86% resulted in an NXDOMAIN response. By compar-
ing in the valid column the number of existing FQDNs seen per
minute vs. all FQDNs seen, we speculate that this is an indicator of
ongoing PRSD attacks. In this context, note the substantially higher
response size of 835 bytes, which puts additional strain on the DNS
infrastructure.

We found TXT transactions to be as popular as NS transactions,
yet surprisingly—comparing with other QTYPEs—the nameservers
handling TXT queries are more distant from the resolvers (the value
of hops equals to 10). Given the high value of qdots, the average
number of FQDNs per SLD, and generally low TTL value of 5 sec-
onds, we found the TXT records are often used for implementing
custom, proprietary protocols over the DNS. More careful inspec-
tion revealed the origin of these queries in anti-virus and anti-spam
systems.

3.5 Response delays
In Figure 3, we analyze response delays, i.e., the time difference
between sending the DNS query at the recursive to the authoritative
and receiving the response back at the recursive. Note that this
delay generally comes from two sources: the Internet transmission
delay, and the server processing delay. In order to better understand
the possible network delay, we additionally consider the number
of network hops between resolvers and nameservers, derived from
the IP initial TTL value, e.g., [39]. Our assumption is that in general
nameservers closer to resolvers (in terms of hop count) will have
lower network delay, and thus should respond faster.

We use the Top-100K nameserver list, already characterized in
subsection 3.2. On that list, only <0.9% of nameservers had the me-
dian response delay above 1 second. Thus, we plot the distribution
of response delays in the range of 1-1000ms in Figure 3 (a). Here,
we see roughly 4 sections of the CDF curve, marked with blue lines
for readability: 1) consistent 0-5ms delays (3.1% of nameservers),
presumably where the nameserver is co-located with the resolver
within the same or adjacent AS (a common practice for large CDNs);
2) 5-35ms delays (22.3% of nameservers), presumably where the
nameserver is located in the same or neighboring country; 3) 35-
350ms (71.5% of nameservers), presumably where the nameserver is
at distant location; 4) over 350ms (2.3% of nameservers), presumably
where the nameserver or its Internet connectivity is impaired.

Next, we try to answer the question if the world’s most popular
nameservers are faster than the rest. In Figure 3 (b), we plot delays
and hop counts for the top 25K nameservers: for readability, we
present the data in groups of 100 neighboring nameservers, using
their mean values. We find a pattern especially visible for the top
10K nameservers (which handle >50% of all DNS transactions, see
subsection 3.2): lower response delays indeed seem correlated with
the nameserver popularity. Moreover, the hop count statistic hints
at nameservers simply being located closer to the resolvers.

Finally, in Figure 3 (c) and (d), we characterize the root and gTLD
nameservers, respectively. In each case, there are 13 nameservers
labeled ‘A’ through ‘M’, each deployed using IP anycast. We find
varying median response delays for the root nameservers—yet
roughly correlated with the hop count—which reflects the diversity
in organizations and deployments behind the root nameservers.
As expected, root nameservers with the most mirrors at different
locations, namely E, F, and L, are also the fastest. In total, the root
nameservers handle 3.0% of all DNS queries seen, 96.2% of which,
however, result in an NXDOMAIN response [9].

The performance of gTLD nameservers is more consistent, re-
vealing groups of servers with similar characteristics, and thus
likely deployed in a similar way and at close locations. The B gTLD
nameserver is the fastest, and thus the most affected by the bot-
net traffic described in subsection 3.2. In total, gTLD nameservers
handle 9.6% of all DNS queries seen, 26.4% of which resulted in an
NXDOMAIN response.

3.6 Use of QNAME minimization
As queried domains might reveal private information, the technique
QNAME minimization (qmin) thwarts this by no longer sending
the full original query name (QNAME) to the authoritative name
servers. Instead, resolvers iteratively query longer QNAMEs by
prepending labels from the original QNAME. As qmin was stan-
dardized relatively recently in 2016 [8], we evaluate its deployment
on root and TLD name servers and compare our results to related
work [13].

First, we group the authoritatives into root, TLD, and others
using root zone data [38]. We evaluate the QNAMEs sent between
each resolver and authoritative pair, as shown in Table 3. To increase
confidence in our evaluation we only provide negative qmin results,
i.e., we classify name servers as non-qmin instead of positively
marking them as qmin. Root name servers are authoritative for the
root zone. They are therefore expected to receive queries with only
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QTYPE global data nodata nxd err qdots TLDs eSLDs FQDNs valid TTL servers delay hops size
1 A 64% 67% 0.6% 22% 11% 3.4 709 414,164 1,021,765 39% 60 105,422 20 7.5 121
2 AAAA 22% 57% 25% 5.9% 11% 3.5 623 213,694 528,504 80% 300 59,568 21 7.5 114
3 PTR 6.4% 45% 0.2% 29% 26% 6.8 25 363 144,283 54% 86400 22,414 44 8.2 129
4 NS 1.4% 9.4% 1.4% 86% 3.2% 2.4 149 5,169 6,470 5.3% 86400 3,859 22 8.0 835
5 TXT 1.4% 65% 4.1% 22% 8.1% 5.9 226 13,510 67,056 73% 5 7,548 40 10 118
6 MX 1.2% 60% 3.3% 2.9% 34% 2.6 255 33,390 39,686 86% 3600 13,630 29 7.7 113
7 SRV 1.1% 17% 3.4% 53% 27% 6.8 122 3,603 9,522 22% 300 8,540 25 7.6 137
8 CNAME 1.0% 28% 8.9% 54% 8.9% 4.4 192 8,188 28,002 35% 300 2,778 36 9.0 131
9 SOA 0.5% 40% 1.3% 39% 20% 4.9 101 9,843 10,564 46% 3600 5,149 24 7.2 128
10 DS 0.5% 43% 28% 28% 1.1% 2.6 247 20,617 23,688 69% 86400 1,037 9.4 7.1 763

Table 2: Top 10 QTYPEs: global) share in all observed DNS transactions; data, nodata, nxd, err) respectively, share of NoEr-
ror+data, NoData, NXDOMAIN, and other errors in given QTYPE; qdots) number of QNAME labels; TLDs, eSLDs FQDNs) unique
TLDs, effective SLDs, and FQDNs seen in NoError; valid) share of existing FQDNs; TTL) top TTL; servers) unique nameserver
IPs; delay, hops, size) response delay [ms], network hops, and the response size [B]. Average values of 1-minute measurement
windows (see section 2). Values highlighted in red are analyzed in subsection 3.4.
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Figure 3: Response delays and number of network hops between DNS resolvers and nameservers: a) distribution of delays
for Top-100K nameservers; b) patterns for Top-25K nameservers, each dot representing a group of 100; c) and d) median and
quartiles for the root and gTLD nameservers, respectively (IPv4 anycast addresses).

one QNAME label (e.g., com) from qmin resolvers. If we find any
QNAMEs in a resolver-root name server pair with more than one
QNAME label (e.g., example.com), we classify this pair as non-qmin.
TLD name servers are authoritative for the respective TLD zone.
They are therefore expected to receive queries with at most two
QNAME labels (e.g., example.com) from qmin resolvers. If we find
any QNAMEs in a resolver-TLD name server pair with more than
two QNAME labels (e.g., www.example.com), we classify this pair
as non-qmin. In this study we only evaluate QNAMEs sent to root
and TLD authoritatives, as other authoritatives (e.g., SLD name
servers) can not be reliably classified as qmin or non-qmin.

When evaluating resolver-root name server pairs we find three
resolvers which are possible qmin-enabled resolvers. All three re-
solvers are located in prefixes belonging to the same university and
send DNS requests containing FQDNs with at most one QNAME
label to different root servers. We check if these resolvers indicate
non-qmin behavior for other name servers, which we did not find.

For resolver-TLD name server pairs we find two potential in-
stances of qmin deployment. We again cross-check these resolvers

Sent QNAME Root NS TLD NS Other NS
com ? ? ?
example.com ✗ ? ?
www.example.com ✗ ✗ ?

Table 3: Detecting resolvers not adhering to QNAME mini-
mization (qmin) by inspecting their query behavior for root,
TLD, and other authoritatives. ’?’ means that we can not de-
termine the qmin status, ’✗’ means that the resolver does not
employ qmin.

with other authoritatives and do not find any indication that these
resolvers employ non-qmin behavior towards them, as they only
send QNAMEs with at most 2 labels to TLD servers. The resolvers
belong to an IT business and to the same university as for the root
server analysis.

93



IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Foremski, Gasser, and Moura

We also make the requirement of qdots more lenient to account
for TLD name servers which host zones with more than one la-
bels (e.g.,.uk also hosts .co.uk, .il also hosts .org.il, .me also hosts
.net.me). We whitelist these TLD name server configurations to
allow QNAMEs with three labels. This less strict definition of qmin,
however, does not find any additional qmin resolvers.

In total qmin-enabled resolvers send about 18 k queries to root
name servers and 4 k to TLD name servers per day. This makes
up a minuscule share of 0.005 % and 0.0001 % of all traffic to root
and TLD servers, respectively. This is in stark contrast to related
work which sees about 40 % qmin deployment at the .nl TLD name
server [13]. A more recent study by Huston [34] also finds low
deployment of qmin, finding that about 3 % of users take advantage
of the technique. One possible explanation for varying deployment
statistics is the different methodology used to identify qmin queries,
i.e., DeVries et al. label a resolver as qmin if 97 % of queries are
classified as minimized [13], whereas we apply a strict notion of
100 % qmim queries.

3.7 Data representativeness
We run several experiments to evaluate the representativeness of
our data. First, in Figure 4a), we show that the number of authorita-
tive nameservers seen in 1 hour converges to a limit of 500K-600K
when we increase the fraction of available vantage points from
0 to 100%. In each step, we take a random sample of all available
resolvers, and listen to DNS traffic continuously for 1 hour. We
report the average values obtained by repeating the experiment 20
times. The plot suggests we miss some visibility beyond the 100%
mark (which represents all resolvers used for this paper), but the
shape of the curve suggests a relatively small, bounded number of
the “missing” nameservers. Otherwise, if the number of resolvers
was too low to characterize the DNS nameservers, we would see a
curve not converging to a limit, or even a linear relation.

In order to preview anticipated improvements to our system,
the blue curves labelled “DNS Observatory” show the results ob-
tained for this paper (using only the main SIE passive DNS channel),
whereas the red curves labelled “Available data” show the results
obtained using more vantage points (using all available SIE passive
DNS channels), planned for future inclusion.

Recall that in Figure 2a) we demonstrate that the majority of the
observed DNS traffic is handled by a small number of the most pop-
ular nameservers. Thus, in this experiment, the new nameservers
becoming visible by increasing the sample size are likely unpopular,
carrying diminishing amounts of DNS traffic. In other words, the
big nameservers are already well visible through a small set of re-
solvers, smaller than what we used for this paper. We demonstrate
this in Figure 4b), where we plot the fraction of an hourly Top-10K
nameserver list visible using subsets of our resolver pool: even a
5% sample is enough to see 95% of the list.

In Figure 4c), we present a similar experiment where we plot
the number of Top-Level Domains seen in 1 hour as a function of
the fraction of recursive resolvers used for monitoring the DNS.
Although there are over 1,500 TLDs existing in the DNS [37], we
stress not all of them are actively used on the Internet, hence the
limit of 1,150 TLDs that our curves converge to. Adding the re-
solvers from the other SIE channels (red curve) does not bring us

much more coverage, which suggests DNS Observatory already
has decent visibility into various TLDs.

Next, in a similar manner as above, we validate that the other re-
sults presented in this paper—concerning the response delays, num-
ber of router hops, QTYPEs, TTLs and their estimated probabilities—
all converge to the reported values as we increase the fraction of
used vantage points (we skip the plots for brevity).

Finally, although we deliberately avoided tracking less popular
nameservers in the DNS, we want to better understand our data and
what we skipped in it. In Figure 5, we plot the number of all seen
nameserver IP addresses as a function of monitoring time. That is,
here we use all vantage points, and in each step we increase by 1h
for how long we continuously record the raw traffic. In total, over
3 days (instead of 1 hour used above), we observed 1.5M unique
IPs of authoritative nameservers in active use. The IPv4 addresses
were contained within 405 k /24 prefixes, yet 48 % of these observed
prefixes had only 1 address, 24 % had 2 addresses, and 7.7 % had 3
addresses. This means that the less popular nameservers that we
intentionally skipped in subsection 3.2 are actually well distributed
on the IP addressing space. For completeness, we visualize this with
a heatmap in Figure 6.

DNS Observatory is an ongoing project aimed at gaining a bird’s-
eye view on the DNS. In this work, we evaluate our novel system
using only the main SIE passive DNS channel, due to limited pro-
cessing bandwidth. More work is planned in the near future to
ingest all of the SIE passive DNS channels, which will improve data
coverage in terms of resolver count and their geographical locations.
Due to confidentiality agreements with the SIE data contributors
(our data comes from a strict security context) we must not disclose
their identities or locations. However, note that access to SIE is
available to other researchers via data sharing and through a re-
search grant program, which allows for independent verification
of our results [19, 21, 24].

4 UNDERSTANDING THE DNS TTL
DNS responses are accompanied by a TTL value, which is a 32 bit
field that sets an upper bound on how long a resource record can
be kept in the cache [47]. Previous studies have shown the role of
caching in DNS resilience against DDoS attacks [48, 52]. In addition,
there have been evaluations on the effectiveness of caching and its
performance implications [41] and efforts to build models for TTL
caches [40] (see section 6).

In the following, (1) we analyze the effect of TTL changes on
traffic between recursive and authoritative nameservers and (2)
we assess the feasibility of leveraging TTL information to detect
upcoming DNS infrastructure changes.

4.1 How TTLs affect traffic volumes?
The duration for how long a record can be cached—determined
by its TTL—influences the number of queries. Below, we put the
notion of a TTL decrease leading to a query increase to the test.

We evaluate SLD data from March and April 2019 to find large
TTL changes between these two months. In Figure 7, we depict
the case of the xmsecu.com SLD, which slashed its TTL from 10
minutes to 10 seconds on April 4, 2019. This domain provides a
web interface for infamous Xiongmai video surveillance devices,
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Figure 5: Number of all observed authoritative nameserver
IP addresses as a function of time, using all vantage points.

which were hacked by the Mirai botnet [66]. In addition to their
involuntary participation in DDoS botnets, they seem to voluntarily
put an additional load on the TLD nameservers. This SLD shows a
clear relation between TTL decrease and DNS query increase.

In Figure 8, we depict the top 100 SLDs by traffic change between
March and April 2019. Intuitively, the majority of TTL decreases
on the left side of the plot lead to an increase in traffic. With some
exceptions, we see an almost inverse linear correlation between
TTL and DNS traffic changes.

On the right side of Figure 8, the case is not as clear cut. Even
though we see quite a few cases of query rate decreases which
could be correlated to DNS TTL changes, there are twice as many
SLDs with increased (34 cases) than decreased traffic (17 cases)
even though their TTL goes up. We investigate these seemingly
inconsistent cases and find that 28 of the 34 cases only increase their
query rate, but not their response rate, i.e., resolvers are increasingly
querying for non-existent FQDNs or issuing otherwise unusual
queries.

Figure 6: Hilbert space-filling curve heatmap of all observed
IPv4 addresses of authoritative nameservers (produced us-
ing [68]). Each pixel corresponds to a /24 prefix. The blue
color means 1 address in given prefix used as a nameserver
during a 3-day time window.

To summarize, we find that for the most part TTLs directly influ-
ence query rates, as caching a name for a shorter duration leads to
more queries. We detect inconsistent behavior by many SLDs with
an increased TTL, which can be attributed to NXDOMAIN queries,
or simply the domain becoming more popular in the meantime.
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Figure 7: TTL decrease from 600 to 10 seconds on xmsecu.com
leading to a massive increase in queries.

Figure 8: Correlating TTL increases and decrease to changes
in number of queries. Note that the y-axis is symlog-scaled
for improved readability.

4.2 Can TTL changes indicate changes in DNS
infrastructure?

While there is no consensus on how to choose TTL values for
different types of resource records—e.g., CDNs are known for using
values in the range of minutes, while for the root zone it is of the
order of days—operators decrease TTL values of records before
carrying out changes in its associated infrastructure [43].

For example, consider the domain name example.org, which has
two nameservers [a,b].iana-servers.net with a TTL of 86400s
(1 day). Now lets assume its operator decides to change the DNS
provider, and use different NS records of ns[a,b].example.org.
Before carrying out this change, the operator of example.org may
reduce the TTL of its NS records from 1 day to, e.g., 30s, and only
then update the NS records—i.e., after waiting a time interval long
enough so that the previously cached records expire at all resolvers.
Any potential issues with the change can be resolved by quickly
reverting to the “old” NS records. Once the operation is successfully
performed, the operator may then increase the TTL values of the

new NS records. Below, we investigate if we can confirm these
reports.

4.2.1 Methodology. We use the aafqdn dataset described in sub-
section 3.1. We collect only the NoError responses that either have
a non-empty ANSWER section or contain NS records in the AU-
THORITY section (or both). Note that a DNS response may be
composed of up to three sections: answer , authority, and additional
sections [47]. Moreover, we consider only the responses that come
from authoritative nameservers—i.e., from child delegations—which
have the AA flag set. Each hour, we produce a data file with Top-10K
FQDNs, as described in subsection 2.4.

We analyze consecutive hourly files from April 19th until 25th,
2019. For each FQDN, we analyze the TTL distribution of its A
and NS records, and detect changes in these values. We classify a
change in TTL values if at least 10% of the DNS responses for the
particular hour show new values. Notice that the top list of each
hourly file may differ, given they are dictated by how popular the
FQDNs were on that specific hour, due to user interest and diurnal
patterns [55].

For the aforementioned period, we found 65 domains with signif-
icant TTL changes in their records. We classify them into categories
in Table 4. In order to better understand the changes detected using
DNS Observatory, we manually lookup the FQDNs in DNSDB [18],
which provides a more detailed, historical record of the DNS.

4.2.2 Analysis. Table 4 shows the results of our classification. The
most common category is non-conforming authoritative name
servers returning variable TTLs for the same domain in subsequent
queries. For example, the authoritative server dns.widhost.net is
authoritative for dns2.vicovoip.it, and when asked directly for its A
record, answers with decreasing TTL values (<1024). While these
TTL changes do not indicate changes in the infrastructure of the
domain name (thus misguiding our detection), it indicates that some
domains do not conform to the standard behavior of returning the
same TTL values unless there are zone file updates.

Another common category found associated with TTL changes
are renumbering events, i.e., changing either A or AAAA records
of domains. We can see that ns2.oh-isp.com was renumbered to
52.166.106.97. Checking whois, we see the new A record belongs
to Microsoft, suggesting that this DNS server is now hosted in a
cloud and—when the change was completed—the TTL increased
from 600s to 38400s.

We also saw four changes in TTL not associated with any change
in DNS infrastructure (TTL Decrease/Increase in Table 4). These
events show simple increase or decrease of TTLs for domains, and
not necessarily renumbering or changes in NS records.

Moreover, our method allows to spot domains that change NS
and A records at the same time (Change NS), which were accom-
panied by TTL reductions from 600 to 10s. We could not, however,
classify 21 changes given there was not enough data in DNSDB to
understand these results.

Overall, our method allows us to detect various types of changes
to the DNS infrastructure, or domains that have non-conforming
responses. Given that DNS Observatory covers the DNS beyond
SLDs, it can be used to track changes to domains at any level of the
DNS hierarchy. Thus, we confirm the changes of TTLs can be used
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Category # Type Example TTL before/after Change Date Change Comment

Non-conforming 17 A dns2.vicovoip.it variable TTL NA 2019-04-23 01:00 Dynamic TTL
Renumbering 13 A ns2.oh-isp.com 600/38400 31.222.208.197→ 52.166.106.97 2019-04-23 10:27 Change to MS cloud

A kaitest.stou2.com 300/60 104.31.11[4,5].142→ 104.31.13[8,9].10 2019-04-21 19:18 –
TTL Decrease 3 A/NS ns2.mtnbusiness.co.ke 86400/3600 None 2019-04-24 01:00 –
TTL Increase 1 A ns2.whiteniledns.net. 120/300 None 2019-04-25 04:00 –
Change NS 1 NS/A jia003.top. 600/10 f1g1ns[1,2].dnspod.net→ ns[3,4].dnsv2.com 2019-04-21 07:30 Change NS and A
Unknown 21 NS u1.hoster.by 3600/300 Unknown 2019-04-22 09:00 –

Table 4: TTL changes detected and classification

to predict changes to the DNS infrastructure—even if they do not
occur that often.

5 HAPPY EYEBALLS AND NEGATIVE
CACHING TTLS

Another interesting effect we can observe with the data from DNS
Observatory is the impact of the devices using the Happy Eyeballs
algorithm on the volume of empty DNS responses, due to low
negative caching TTLs.

5.1 Background
Happy Eyeballs is a standardized algorithm [61, 69] where a host
with IPv4 and IPv6 connectivity sends both A and AAAA queries
to learn IPv4 as well as IPv6 addresses of a domain name. The host
then tries to establish a connection to the returned IP addresses—
normally a slight advantage of a few ms is given to IPv6. For do-
mains that only map to an IPv4 address and no IPv6 address, the use
of Happy Eyeballs expectedly leads to empty AAAA responses (i.e.,
NoData). These empty AAAA responses should be cached by the
resolver, in order to avoid constant resending of the same AAAA
queries for domain names without associated IPv6 addresses. The
caching duration is determined by the domain’s SOA record: its
rightmost value specifies the negative caching TTL.

We acknowledge that the TTLs are not the only determining
factor influencing the frequency of queries for particular domain—
resolver configuration, query prefetching, and specific implementa-
tion details can play an important role. However, lower negative
caching TTLs generally lead to higher DNS traffic volumes. Note
that, according to [53], DNS is already the top producer of new
flows in many subscriber networks.

For IPv4-only domains, if the negative caching TTL is much
lower compared with the regular A record TTL, this leads to many
of all DNS responses being empty AAAA responses. This DNS
traffic of questionable usefulness increases the load on authoritative
nameservers and also causes more query sending and processing
by recursive resolvers. Moreover, note the “Resolution Delay” of
the Happy Eyeballs v2 algorithm [61], which by default makes the
device wait up to 50ms for the response to AAAA query, even if the
A response is received quicker. Thus, the additional time needed to
query the authoritative nameserver instead of using the resolver
cache will be directly reflected in the IPv4 connection delay.

5.2 Correlating low negative caching TTL with
empty AAAA responses

In the following, we analyze the top 200 FQDNs by DNS traffic in
April 2019.

Figure 9: Comparing negative caching TTLs to share of
AAAA NO DATA responses for top 200 FQDNs ranked by
traffic. On the left y-axis we show the share of empty AAAA
responses for each specific top-200 FQDN. The right y-axis
displays the quotient of the A resource TTL by the negative
caching TTL. The larger the quotient the more likely many
empty AAAA responses.

Figure 9 shows the impact of low negative caching TTLs in
combination with the Happy Eyeballs algorithm on the number of
empty AAAA responses. In the top 200 FQDNs, we find 5 FQDNs
with more than 70 % of all responses being empty AAAA responses.
These empty responses and the triggering queries lead to an in-
creased load at the resolvers and authoritative nameservers.

Most striking are the two FQDNs at ranks 81 and 116, which are
used for network time services of a popular operating system. Both
domains have a regular A record TTL between 10 and 15 minutes,
but a 50 times lower negative caching TTL of 15 seconds. This
discrepancy leads to 89 % and 94 % of all responses being AAAA
NoData, respectively.

The FQDN at rank 141, which belongs to a large ad network,
has a five times shorter negative caching TTL compared to the A
TTL, i.e., 300 vs. 60 seconds. This in turn leads to a share of 75 % of
empty AAAA respones.

Similarly, at rank 167 we find an FQDN used for operating system
updates hosted by a large CDN with an A record TTL of 1 hour,
but a negative caching TTL of just 10 minutes. This six times lower
negative caching TTL in combination with the Happy Eyeballs
algorithm leads to 88 % of all DNS responses being empty AAAA
responses.
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Interestingly, at rank 140 we see an example of an FQDN, used
for hosting blogs, with more than 74 % of empty AAAA responses,
but an actually six times higher negative caching TTL compared
with the A record TTL. We suspect that this artifact is due to some
resolvers not respecting its relatively high negative caching TTL of
1 hour.

We notified operators of the nameservers most affected by the
use of low negative caching TTLs. We received a response from a
large CDN stating that they use low negative caching TTLs purely
as a defensive measure, in case of an error in the way they generate
dynamic authoritative responses.

5.3 Effect of deploying IPv6
In the light of Happy Eyeballs leading to many AAAA queries and
subsequent empty responses for non-IPv6 FQDNs, we investigate
FQDNs that enabled IPv6 during our observation period in April
2019.

We find 10 FQDNs that added IPv6 support and started sending
AAAA responses containing actual data. By analyzing each FQDN
we see the number of empty AAAA responses going down after
IPv6 activation as expected. Additionally, we find no significant
change in query volume correlated to the activation of IPv6 for
each FQDN. This is not surprising, as all 10 FQDNs use equal or
larger negative caching TTLs compared with regular TTLs.

We conclude that activating IPv6 for FQDNs does not signifi-
cantly change query volumes, if the negative caching TTLs are
similar to regular TTLs. If the negative caching TTLs are much
shorter than regular TTLs, this changes as shown in subsection 5.2.

5.4 Discussion
With the continuously growing IPv6 deployment [28] and clients
using the Happy Eyeballs algorithm [61, 69] to learn IPv4 and IPv6
addresses for each domain name, authoritative servers need to cope
with an increasing query load. As shown in section 5 especially the
combination of IPv4-only domains and low negative caching TTLs
lead to many empty AAAA responses.

Three possible courses of action are (1) adding a new query type
for joint A and AAAA query, (2) separating the negative caching
between NXDOMAIN and NODATA, or (3) simply changing the
negative caching TTL to a value more in line with the TTL of A or
other query types.

The first option would enable clients to request IPv4 and IPv6
addresses for the same query name. Although this is similar to an
ANY query, the response would be limited to A and AAAA records.
In addition, a single TTL for both IPv4 and IPv6 addresses could
be used, making caching easier. If any server in the chain—i.e.,
recursive resolver or authoritative nameserver—does not support
this new query type, the requesting client could fall back to sending
separate A and AAAA queries.

The second option goes back to discussions with DNS opera-
tors. They suggested to split semantic of the negative caching TTL,
which is currently used for NXDOMAIN as well as NODATA. As
a result, zone administrators who are worried about NXDOMAIN
resulting from zone misconfigurations could then choose a shorter
NXDOMAIN TTL and a NODATA TTL resembling the regular A

record TTL. Consequently, the share of empty AAAA responses
could be greatly decreased.

The third option—setting the negative caching TTL to similar
value as the A record TTL—is the simplest in terms of configuration
effort, and requires no changes to the DNS itself. It has, however,
drawbacks, as some DNS operators confirmed us that they are
explicitly setting low negative caching TTLs as a defensive measure,
reducing the time needed to distribute remediated zones through
caches.

Generally, we want to emphasize that low negative caching TTLs
in combination with the Happy Eyeballs have a direct negative
impact on client latency, as they need to wait for the recursive
resolver to issue AAAA queries instead of serving them from the
cache.

6 RELATEDWORK AND DATASETS
Activemeasurements of the DNS: the OpenINTEL project by Rijswijk-
Deij et al. [65] is a large active DNS measurement study that makes
daily scans of all domains under legacy gTLDs, new gTLDs, and a
dozen ccTLDs, for a total of 218 million SLDs daily. Each domain
is measured using many features, with an exceptional support for
DNSSEC [51]. Comparing with our work, DNS Observatory pro-
vides a different view on the DNS, based on passive, aggregated
measurements of the most popular DNS objects, such as authorita-
tive nameserver IPs, SLDs, FQDNs, and more. Instead of actively
sending 1 set of queries per SLD every 24 hours from 1 location,
we extract our data from real-world DNS traffic collected globally.
Thus, we are not limited to a fixed set of QTYPEs or TLDs, and we
monitor the traffic volumes.

Project Sonar run by Rapid7 Labs provides the Forward DNS
dataset [57] that contain answers to A, AAAA, ANY, CNAME,
MX, and TXT lookups for many FQDNs collected by the project
(including web crawling, reverse DNS, SSL certificates, TLD zone
files [56]). Thus, it resembles the OpenINTEL project but collects
no features (except for the returned records), scans the DNS less
frequently, and in general has less SLD coverage.

The RIPE Atlas project [59], a global Internet measurement plat-
form, publishes the data collected by its users, which includes DNS
responses [58]. The system has over 10 k probes spread around the
world that allow to run various active measurements of recursive
and authoritative DNS servers. However, collected data depends on
lists of domains queried by RIPE Atlas users, and thus data coverage
compared with DNS Observatory or OpenINTEL is quite limited.

The above DNS studies and datasets are obtained using active
measurements, i.e., the tools actively send DNS queries for predeter-
mined lists of domains. In our paper, however, the data is obtained
in passive measurements: we analyze traffic from production re-
solvers spread over multiple locations to authoritative nameservers.
As such, our data is a direct function of user activity and cache
misses, has finer granularity (multiple vantage points and time
aggregations), and covers not only TLDs, but also SLDs, FQDNs,
QTYPEs, and many other DNS objects. On the other hand, note
that research on IPv6 addressing often relies on periodic large-scale
DNS lookups—targeting e.g., zone files, Certificate Transparency
domains, and domains learned from rDNS—in order to gather IPv6
addresses for scanning the Internet [26, 27].
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Passive measurements of the DNS: In a 2012 paper [24]—updated
in [25]—Gao et al. characterize the global DNS behavior using the
same raw data source as DNS Observatory, but using an early
version of the SIE and in a much shorter time frame: 2 weeks (26
billion transactions) vs. 4 months (1.6 trillion transactions). Their
analyses are largely complementary to the study we presented,
as this paper focus on authoritative nameservers instead of the
resolvers. Moreover, DNS Observatory is designed for long-term
and real-time operation, and provides insight into more areas of
the DNS, e.g., popularity of IP addresses in DNS answers.

DNS-OARC provides the Day in The Life of the Internet (DITL)
datasets [16] that record DNS traffic at many root and TLD name-
servers for a few days each year. ICANN runs live DNS Stats at [36]
that allows to visualize various statistics for many nameservers,
foremost the L-root nameservers. ENTRADA [70] is an open-source
platform for storing and processing DNS traffic recorded at author-
itative nameservers, e.g., to visualize the .nl ccTLD statistics [62].
Similarly, Deri et al. describe another system for monitoring the .it
ccTLD nameservers in [14]. Interestingly, Mark Allman publishes
anonymized summaries of below-recursive lookups made by de-
vices in the Case Connection Zone network [3] (∼100 homes in
Cleveland, Ohio).

DNS caching, TTLs, and resilience: several research works investi-
gated the relationship between TTLs and DNS caching. Given that
we monitor only the cache miss queries, TTLs play an important
role in our datasets. Jung et al. [41], using simulations based on
real traces, showed that longer TTLs improve caching, mostly for
domains with short TTLs (<1000s). In a subsequent study [40], Jung
et al. modeled DNS caches and were able to predict cache hit rates
from their previous study. Moura et al. [48] analyzed the relation-
ship between TTL and DNS resilience in face of DDoS attacks. In
2007 Pappas et al. proposed changes to caching strategies for NS
records to improve DNS resilience against DDoS attacks [52].

Query name minimization: RFC 7816 standardized query name
minimization (qmin) in 2016 [8]. A few years later, Vries et al. pre-
sented the first study focusing on qmin deployment [13]: with a
more local view on the DNS, they found about 40 % of all queries to
the .nl TLD and K-root nameservers being sent with qmin. However,
a more recent study by Huston [34] reported only 3 % deployment
of qmin, which is closer to our results in subsection 3.6.

7 CONCLUSION
We presented DNS Observatory, a novel stream analytics plat-
form that allows for unprecedented visibility into the DNS, and we
demonstrated some of its capabilities on real-world data.

DNS Observatory is based on passive measurements and collects
data from a large, diverse set of recursive resolvers spread around
the world, and run by many different operators. Using various
stream-oriented algorithms and probabilistic data structures, we
were able to ingest and process a total of 1.6 trillion DNS resolver-
nameserver transactions executed between January and April 2019.
We obtained a bird’s-eye view on the DNS, which allows for its
better understanding, and which suggests possible improvements.

The aggregated datasets collected in DNS Observatory are al-
ready available to academic researchers, by contacting the primary
author of this paper or through the Farsight Security Research Grant

program [19]. In a longer perspective, we also plan to make parts of
the collected data publicly available through a web interface, linked
under https://www.farsightsecurity.com/.
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