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Abstract

In many networks, such as mobile ad-hoc networks and friend-to-friend overlay net-

works, direct communication between nodes is limited to specific neighbors. Friend-

to-friend “darknet” networks have been shown to commonly have a small-world topol-

ogy; while short paths exist between any pair of nodes in small-world networks, it is

non-trivial to determine such paths with a distributed algorithm. Recently, Clarke

and Sandberg proposed the first decentralized routing algorithm that achieves efficient

routing in such small-world networks.

Herein this thesis we discuss the first independent security analysis of Clarke and

Sandberg’s routing algorithm. We show that a relatively weak participating adversary

can render the overlay ineffective without being detected, resulting in significant data

loss due to the resulting load imbalance. We have measured the impact of the attack

in a testbed of 800 and 400 total nodes using minor modifications to Clarke and

Sandberg’s implementation of their routing algorithm in Freenet. Our experiments

show that the attack is highly effective, allowing a small number of malicious nodes

to cause rapid loss of data on the entire network.

We also discuss various proposed countermeasures designed to detect, thwart or

limit the attack. We found that the “darknet” topology limits the ability of effec-

tive countermeasures. The problem of fixing the topology proved so intractable due

to inherent network characteristics that the idea of using a darknet for Freenet has
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been all but abandoned following the public release of this work. Our hope is that

the presented analysis acts as a step towards effective analysis and design of secure

distributed routing algorithms for restricted-route topologies.

It should be noted that this thesis is an extended version of the same work presented

at ACSAC 2007. The work appears in the conference proceedings as “Routing in the

Dark: Pitch Black” [19] largely unmodified from this thesis.
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Chapter 1

Introduction

Fully decentralized and efficient routing algorithms for restricted route networks

promise to solve crucial problems for a wide variety of networking applications. Ef-

ficient decentralized routing is important for sensor and general wireless networks,

peer-to-peer overlay networks and theoretically, next generation Internet (IP) rout-

ing. A number of distributed peer-to-peer routing protocols developed in recent

years achieve scalable and efficient routing by constructing a structured overlay topol-

ogy [11, 20, 34, 43, 56]. However, none of these designs are able to achieve these goals

in real-world networks with restricted routes. In a restricted route topology, nodes

can only directly communicate with a subset of other nodes in the network. Although

many P2P (peer-to-peer) networks [8, 11, 14, 17, 34, 56, 61] make the assumption

that any peer can communicate directly with any other peer, this is generally untrue

in actuality. Such restrictions can arise from a variety of sources, such as physical

limitations of the communications infrastructure (wireless signals, physical network

topology), network policies (firewalls) or limitations of underlying protocols; for ex-

ample NAT [4]. The most common of these is NAT (network address translation)

which is widely used by home Internet service and business networks alike and makes
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arbitrary direct communication virtually impossible. Specifically, a computer that is

behind a NAT can communicate with a non-NAT’ed computer as long as the NAT’ed

peer initiates the communication. However the reverse is not true unless the NAT box

has been configured to allow incoming communications (such as by port forwarding

or otherwise). Similarly two NAT’ed peers are typically unable to communicate with

each other without some intermediary set up to perform forwarding. Techniques for

dealing with NAT have been proposed and implemented [46, 47, 55], but they are

not perfect solutions, and not ubiquitous enough to solve the restricted routing prob-

lem that NAT creates. This prevalence of NAT makes applications unable to assume

universal connectivity, even though this was the main problem that the Internet’s

routing infrastructure was created to solve (that any two peers can communicate)

but unfortunately we must deal with the networks as they are and not as we would

like them to be.

Recently, a new routing algorithm for restricted route topologies was proposed [50]

and implemented in version 0.7 of Freenet, an anonymous peer-to-peer file-sharing

network [7]. The proposed algorithm achieves routing in expected O(log n) hops for

small-world networks with n nodes and O(log n) neighbors1 by having nodes swap

locations in the overlay under certain conditions. This significant achievement raises

the question of whether the algorithm is robust enough to become the foundation for

the large domain of routing in restricted route networks. Any peer-to-peer network

operating on the Internet (or really any network) must be able to cope with malicious

and byzantine nodes in the overlay that for whatever reason do not follow the correct

protocol. For our purposes we will consider Freenet 0.7 “robust” if the inclusion of

peers that outwardly appear to follow the protocol (but actually do not) are limited

in the harm that they can do to the network.

1Given only a constant number of neighbors, the routing cost increases to O(log2 n).
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The research presented in this paper shows that any participating node can severely

degrade the performance of the routing algorithm by changing the way it participates

in the location swapping aspect of the protocol. Most of the guards in the existing

routing implementation are ineffective or severely limited and in particular fail to re-

liably detect the malicious nodes. Experiments using a Freenet 0.7 testbed show that

a small fraction of malicious nodes can dramatically degenerate routing performance

and cause massive content loss in a short period of time. Our research also illuminates

how churn impacts the structure of the overlay negatively, a phenomenon that was

observed by Freenet 0.7 users in practice but had never been adequately explained

by the time that we finished our research.

The paper is structured as follows. Chapter 2 describes related work focusing on

distributed hash tables and small-world networks. Chapter 3 details Freenet 0.7’s

distributed friend-to-friend (or, as termed by the Freenet authors, “darknet”) routing

algorithm for small-world networks. The proposed attack is described in Chapter 4,

followed by experimental results showing the effects of the attack in Chapter 5. Pos-

sible defenses and their limitations are discussed in Chapter 6.
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Chapter 2

Related Work

In this section we first describe DHT’s (distributed hash tables) and some of the P2P

networks that were created based upon them. Freenet 0.7 is an implementation of a

DHT so it is therefore important to understand a bit about them before introducing

how Freenet 0.7 works. Background on other DHT systems is also useful for com-

parison with Freenet 0.7. Two things that are lacking from the basic DHT designs

are the ability to route in restricted route topologies and security. We touch on these

topics in this section as well, as Freenet’s goals include both.

2.1 Distributed hash tables

A distributed hash table is a data structure that enables efficient key-based lookup

of data in a peer-to-peer overlay network. Generally, the participating peers maintain

connections to a relatively small subset of the other participants in the overlay. Each

peer is responsible for storing a subset of the key-value pairs and for routing requests

to other peers. In other words, a key property of the use of DHTs in a peer-to-peer

setting is the need to route queries in a network over multiple hops based on limited

knowledge about which peers exist in the overlay network. Part of the DHT protocol

4



definition is thus concerned with maintaining the structure of the network as peers

join or leave the overlay.

All data in a DHT is identified by some semi-unique value (this uniqueness usually

comes from the use of a hash function, such as SHA or MD5, meaning that while

collisions are possible they are very unlikely) which is commonly referred to as a

key. This unique value comes from the large distribution of values that are possible

outcomes of the hashing function. For an idea of how large, SHA-0 and SHA-1 have

264 possible values. All peers or nodes in the network are also identified by a unique

value from the same distribution known as the node’s location or identifier. We

use the term location and identifier interchangably through this thesis. In this way

all nodes and data are separately and uniquely identifiable in the network. DHT’s

support two logical operations; a PUT operation (which inserts data identified by

some key into the DHT) and a GET operation (which given a key returns data from

the network).

There are some common properties that DHT’s designs can be categorized by.

One property which is a concern of all modern DHT designs is efficiency. Efficiency is

defined in terms of the number of nodes a message must be routed to or through before

the data that is being looked for is found. This measure is referred to as the number

of “hops” a query must travel before data is found. There are two kinds of reliability

that DHT designs take into account. The first is the reliability of the overall network;

that it is able to remain operational in the presence of adversaries. The second is a

matter of keeping data in the network reliably. This concerns distributing data across

the network so it cannot be lost unless all nodes go down, or that data remains in

the network as nodes go offline (which is a matter of replication). DHT’s are also

good at load balancing, or the distribution of responsibility. This spreads the costs

of storing and retrieving data in the network across all nodes that are participating,
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which could mean more total load could be handled or no single node has to bear

the whole burden. Finally, DHT designs should take into account scalability which

means that the network retains its properties of efficiency, reliability, etc. for different

total numbers of nodes.

Efficiency in a DHT is directly tied to the routing algorithm, or the steps that each

node carries out in order to perform GET or PUT requests. There are two main types

of routing algorithms that are employed; iterative routing and recursive routing. In

iterative routing the node that initiates the query controls where the next hop goes at

each step. In recursive routing the message is forwarded by intermediate nodes and

the initiator only receives (or does not receive) the final reply. For a simple example

of these two types of routing, assume three nodes, a, b and c. Assume that a knows

b, b knows c and a is searching for data stored at node c. In iterative routing, node

a contacts b requesting the data, b responds to a that it doesn’t have the data, but

knows another node, c and sends to a c’s contact information. Node a then contacts

c directly and finds the data. In recursive routing, node a contacts b with the same

request, but b forwards the request directly to c, with the same result. So in iterative

routing the path from node a to node c goes a→ b→ a→ c and in recursive routing

goes a→ b→ c.

2.1.1 Skip Lists

Skip lists are basically sorted linked lists in which items have additional pointers

which allow much more efficient lookup of items in the list [41]. When searching a

normal ordered linked list, unlike an ordered array where a binary search can be used,

every node must be iterated over in order to verify the presence of an item. However,

if additional pointers are stored at each entry in the linked list that point to nodes

further forward than the next immediate node the total search time can be greatly
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reduced. This means that if a node in the linked list is at position i it normally only

holds a pointer to i+ 1 (and i−1 if doubly linked). In a skip list the node at position

i holds additional pointers to nodes at positions i + n, i + k, ... Skip lists can give

lookup costs of O(log n) based on how many additional pointers are stored, which

allows DHT’s an easy way of achieving the same average performance when routing

is based on these augmented linked list structures.

The simplest DHT implementation based on skip lists is a circular linked list where

each element in the linked list is stored at a different physical node (and each node is

running on a different host computer). If each node only had a “pointer” to the next

node (where by pointer we mean the required information to connect over the network

to the DHT software) we would have a DHT that could be used as a circular linked

list. Of course, storing a single value per node and requiring O(n) steps to find the

value would probably be a waste of effort. So this simple idea is extended by having

multiple values stored at each node, and by giving each node extra connections to

other nodes in the linked list. By using these extra connections we can essentially use

a skip list over a network. In this way we can see how this example DHT and skip

lists are virtually the same thing, and DHT’s such as [11, 56] are simply extensions

of this idea.

2.1.2 Scalable Content Addressable Network

The first DHT described herein is the Scalable Content Addressable Network

(CAN)[43]. CAN imposes structure onto the unstructured underlying network by

assigning zones in some d-dimensional coordinate space where a zone is a rectangle,

rectangular prism and so forth depending on the number of dimensions. The diagram

in Figure 2.1 shows a 2-d coordinate space although any number of dimensions are

usable. In a 2-d space, the plane is divided into zones where each node n is respon-
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sible for at least one such zone. Being responsible for a zone means that a node will

store any data that hashes to a point in that zone. The neighbors of a node n are the

nodes which overlap in one axis and abut in another (in our 2-d space). The CAN

is constructed by nodes splitting their current zones in half to allow new nodes to

join. As described earlier for DHT’s in general, each node and data item in CAN is

identified by a random location, in the case of CAN it is some point in the coordinate

space.

The construction of CAN starts from a single node, which has a location and is

initially responsible for the entire coordinate space (a single zone encompassing the

entire space). When the second node joins, the first splits its zone in half, then notifies

the new node of the space for which it will be responsible. This happens whenever

a new node enters the CAN; it generates a random point in the coordinate space,

and some other node that is currently responsible for that point splits itself apart to

give the new node a zone. The new node’s routing table is filled from information

given by the split node, as it necessarily knows the adjacent nodes of the new space.

The split node simply removes those nodes that it no longer needs and adds the new

node to its routing table. Routing in CAN is done recursively, when a GET or PUT

request comes into a node (either from another node or a client application), the node

projects a line from its own location to the location of the request destination and

forwards the message on to the first neighbor that the projected line travels through.

In this way, the message eventually reaches the node responsible for the zone in which

the point lies and can respond to the query, or store the data. Figure 2.1 shows the

nodes and selected neighbor relationships for nodes in a 2-d space in order to illustrate

these ideas. The example also shows the path that routing through the CAN takes

based on each node choosing the neighbor that is first encountered by drawing a line

from the current node to the destination.
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Figure 2.1. This figure shows an example of how nodes could be laid out in a CAN
network. The full neighbor set for node 2 is {6, 21, 1, 7, 20, 13}. Remember that 20, 13
are neighbors because the space is structured as an n-d torus (with n = 2). Also
shown (in dashed lines) is the nodes along the routing path that results when node 2
searches for data which hashes to point (x, y). The solid line shows an example of
how node 2 chooses which node to initially route to.

Provided that there are no byzantine nodes in the CAN network the CAN address

space is partitioned evenly on average between all the nodes in the network. Nodes

that depart gracefully transfer their zone to either a node which can merge with the

old zone and make a valid zone, or the neighbor node with the smallest volume tem-

porarily takes over the old zone. A background maintenance protocol runs that checks

for node liveness, and if a node is discoverd to no longer be online (or reachable), the

smallest neighbor or a neighbor that can make a new valid zone from the old takes

over the zone left behind. The background protocol also runs at each node to try
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to find “misshapen” zones and repartition them into valid zones in the coordinate

space. CAN as described has an average routing cost of O(n−d) messages. Due to

the even partitioning of the address space based on zones and linking storage to the

zones gives CAN scalability, because as more nodes are added the zones get smaller

and spread the storage cost equally across all nodes. Allowing for multiple CANs to

coexist and for more than one node to “share” a zone can give CAN good reliability

and replication in the face of node departures. CAN does degrade to flooding the

network with expanding ring queries when too many nodes leave in a short period,

which means that CAN is not the best system for networks with lots of nodes joining

and leaving frequently.

2.1.3 Kademlia

Kademlia was mainly created to improve upon previous DHT designs that were

available at the time. The The biggest difference between Kademlia and these earlier

DHT designs [48, 56] is that it uses the XOR operation to determine distance between

elements in the key space. This means that given two nodes in the network the

distance between any two nodes a, b is given by the value of the two XOR’ed together

Da,b = L(a) ⊕ L(b) where L(x) is the location of node x. Pastry uses two different

metrics for deciding how close keys in the address space are to each other (as discussed

in 2.1.5). One of Kademlia’s goals is to unify multiple distance metrics into a single

metric that can be used for routing from start to finish. As in all early DHT designs,

a Kademlia node is assumed to be able to connect to any other live node in the

system at any time. Kademlia achieves its routing performance from the property

that all the keys in the address space can be ordered into a binary tree. Binary trees

are known to have O(log n) search times and this allows Kademlia to locate keys in

the address space in a short time, provided that the routing tables are sufficiently
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populated.

Kademlia’s routing table is structured as a certain number of so called k-buckets,

of which there are as many k-buckets as there are bits in the locations of nodes (i.e. a

160 bit location means 160 k-buckets per node). Each k-bucket can hold an arbitrary

(but set by a parameter) number of triples which contain the necessary information

to connect to another node, specifically the IP address, port, and location of the

node. For each k-bucket i, the node stores other nodes information whose locations

are between 2i and 2i+1 distance from the storing node’s location. These buckets get

populated whenever a node receives a query from any other node. When a query

is received the querying node’s pertinent information is stored in the k-bucket that

corresponds to its location on the side of the node receiving the query. The k-buckets

are maintained such that the least recently seen node will get bumped out first if the

bucket is full and another node that belongs in the same bucket is encountered (but

only if the least recently seen is unresponsive, otherwise the new node information

is discarded). Routing in Kademlia is iterative; there is no forwarding of queries

between nodes. To understand how Kademlia nodes find keys in the address space it

is important to know how the routing tables are constructed. When a node first joins

the network it creates its own random location. A node that is joining the network

must have knowledge of at least one other node’s IP address and port a priori. The

new node connects to whatever node or nodes it knows. This node may have any

location, and the distance to the new node can be any number in the address space.

Once the new node has connected to at least one peer it sends a request out to its

peer(s) to find out what other nodes in the network exist that have locations closest to

the new node’s location. The distance is determined by the metric mentioned above.

Assume that this new node, z, has only one pre-known peer to connect to, x. Once z

has generated its random location, it connects to x asking for any and all nodes (up
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to some limit parameter j set by each node) that x knows of that are closest to z’s

location. The first thing that x does is check its k-buckets and insert z if necessary.

Then x responds to z with the closest j nodes that x knows of (or less than j if x has

less than j total nodes in all its k-buckets). z then adds all the nodes it has learned

about from x to its k-buckets appropriately. Now z can repeat this process and query

any of the new peers it has discovered for their closest j nodes to its location until it

has either enough nodes total in its k-buckets or until it has as many within a certain

distance of its own location as specified as a system or user parameter. The same node

discovery process is employed when a node performs a GET request. The node takes

a key that is to be searched for (based on hashing or some arbitrary method) and then

queries j peers closest to the key’s value based on those that it knows about (those

that are stored in its k-buckets). Each peer that receives this query either responds

with its j closest peers to the key or with a “data found” response (if it happens to be

holding the data). Routing in Kademlia achieves good performance in part due to the

binary tree structure inherent in the graph. Proving the effectiveness of the routing

in Kademlia requires one major assumption, that if we divide the binary tree that

makes up the Kademlia graph into first two sub-trees divided at the root (into node

locations starting with a 0 or 1), then in the half that is different from a particular

node’s location, the node will have at least one contact in that sub-tree. Put simply,

a node whose first identifier bit is 0 is guaranteed to have a node in it’s routing table

whose first identifier bit is 1. Further, if we traverse one node down towards the

actual nodes location and split in half again, any node is again guaranteed to have a

contact in the sub-tree not containing its own location.

Figure 2.2 shows how this division looks in a concreate visual example of a binary

tree. Once these connections are assumed to exist it is easy to see that whatever key

a node is looking for, it will be able to find a node half as close as itself by prefix (at
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least) in a single query to a node in the correct sub-tree. Again, this node is assumed

to exist in the routing table. Figure 2.3 shows an example of the queries involved and

the routing in Kademlia.

Figure 2.2. This figure shows the binary tree representing nodes in a Kademlia topol-
ogy. The node in black is the node we are looking at, and the gray circles represent
sections of the graph in which this node is assumed to have a contact. (From [34])
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Figure 2.3. This figure shows the steps a node takes when searching for a key in the
Kademlia topology. The node in white (identified by 001) is searching for the node in
gray (101). The first query from 001 goes to node 110 (which shares the prefix 1 with
101), which then sends the node information for node 100 (which shares the prefix 10
with the target), which then sends back the node information for 101 back to the original
node and the connection can happen directly between 001 and 101. It is easy to see
that by increasing the matching prefix size by 1 bit the address space is cut in half at
each step. (From [34])

2.1.4 Chord

Chord is an early DHT system that was developed to be simpler in terms of routing

and routing table maintenance than previous systems yet achieve nearly the same

performance. Chord’s topology is most easily explained using points plotted on a

circle. Assuming that a node location can be mapped to some point on the circle,

the node maintains routing information for the next immediate node on the circle

in clockwise direction (its successor) and for the next immediate node in counter-
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clockwise direction (its predecessor). All nodes are responsible for any data whose

key lies on the circle between the node’s location and the location of its predecessor.

Therefore routing is a straightforward forwarding in a clockwise direction until the

node that is responsible for the data is found, i.e., the key identifying the request

lies between a node and its predecessor. Routing in Chord is done recursively, and

nodes are expected to forward requests on in clockwise order as they are received.

The topology is maintained as nodes join and leave the network by simply shifting

the predecessor and successor node information at each node, as would be done in a

doubly linked list. The routing table for each node keeps information for peers that

are further away than their successor to achieve better routing performance in skip

list fashion (Chord is literally an implementation of a distributed skip list). Similarly,

when a node leaves unexpectedly (without informing its neighbors) there are steps

that need to be taken, basically by periodically sending out keepalive messages to

make sure neighbors are live. If a neighbor is discovered to have gone offline, the

next peer along the circle must be found to replace it in the routing table. Figure 2.4

shows an example set of nodes in a Chord topology to help illustrate the predecessor

and successor relationships between nodes.

2.1.5 Pastry

Pastry is another early DHT peer-to-peer system. Pastry uses network locality as a

way to help refine its routing table entries. Pastry builds a similar topology to other

systems detailed here but arguably has the most complicated system for maintaining

its list of neighbor nodes or routing table(s). As with other DHT’s, each Pastry node

has a random location that it uses to identify itself. Similar to Kademlia 2.1.3, Pastry

uses prefix matching when searching for close locations in the network. Pastry uses

recursive routing, so nodes in Pastry are expected to greedily forward queries to the
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Figure 2.4. This figure shows three nodes in a Chord topology along with their simple
predecessor (pred(x) = node location that is the predecessor of node with location x)
and successor (succ(x) = node location that is the successor of node with location x)
relationships

neighbor whose location has a longer matching prefix than its own location. However,

Pastry uses the numerical difference between locations for forwarding when a query

reaches the point that a node has no neighbor with a longer matching prefix than

itself.

Pastry maintains a routing table that is made up of three parts, a routing table

(R1), a neighborhood set (R2) and a leaf set (R3). The R1 set of neighbors is the

largest part of the routing table, with log2b N rows where b is a system wide parameter

and N is the number of nodes. Finding a good estimate of the number of nodes in the

system at a given time is difficult in itself, but there are methods which attempt to do

so [23, 33]. Each row of R1 has 2b − 1 possible entries, where the ith row has entries

of peers that have a location with the first i+ 1 digits matching the node’s location.

This table is built when the node enters the network by (assuming a connection to
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one node a priori) issuing a special join query which, based on the greedy routing

algorithm, will reach the nearest current node in the system. All nodes along the

path send back their complete routing tables to the new node and based on matching

prefix length and some network proximity metric (IP routing hops as described for

the original version of Pastry) is used to build the R1 part of the routing table. The

R2 and R3 sets are created in a similar manner to the R1 set. However, the R2 set

contains m peers (where m is a system or configuration parameter) that are closest

in terms of the locality metric that is being used. The R3 set contains the closest m

nodes whose locations are greater than the node’s location, and the m closest nodes

whose locations are less than the node’s location. The R3 set is the first set used in

the greedy routing algorithm, followed by the R1 set if the key being searched for

does not fall within the range of values in the R3 set. The R2 set is used only for

maintaining locality measures and is used when deciding which nodes to keep in the

R1 set.

The R2 set is not used for updating either the R1 or the R3 sets directly; rather if

two nodes are in contention for a place in R1, and one of them is closer in proximity

(i.e. it is in the neighborhood set) the closer is chosen to hold that spot in the table.

Pastry assumes that a locality metric is available which can give a measure of how

close or far a node is according to some measure. In this way after building the R1,

R2, and R3 tables, both R1 and R2 are continuously checked based on this proximity

metric to ensure that the locality properties hold. This is necessary because network

locality metrics such as routing hops are not necessarily transitive. A node builds its

initial R2 and R1 sets from nearby nodes (and they should report only their closest

nodes), sometimes locality is different for the new node. In other words, if a node X is

close to Y , and Y is close to Z, it is likely but not always the case that X is also close

to Z. Or X could be closer to Z than Y . In either case, the node X verifies these
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locality measures to make sure that the routing tables stay up to date and correct.

Thus the Pastry overlay is constructed. Figure 2.5 depicts an example of the entire

routing table for a Pastry node in a network of 4-bit identifiers, and Figure 2.6 shows

only the R1 portion of a different node in a network with 16-bit identifiers, only in a

more intuitive manner which may make it easier to see how neighbors are ordered.

Figure 2.5. This figure shows the routing table for the node with the location 10233102.
R1 shows the closest nodes based on matching prefix, R2 shows the closest nodes
in terms of locality (IP hops) and R3 shows the closest nodes based on numerical
distance.

2.1.6 Secure DHT’s

Security in routing is another problem that needs to be dealt with in P2P networks.

In the networks described in this section security is generally not a consideration. But

ideally a network must be able to guarantee a route around and/or find data in the

presence of faulty nodes, possibly discern between good and bad information that is
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Figure 2.6. This figure shows only the R1 portion of a pastry routing table for a node
whose location begins with 65a1 as it shows more clearly how each level of the routing
table contains more “close” entries based on prefix.

present in the network, and have a reasonably random distribution of node identifiers

(locations). Also the network protocol should not allow peers to use a larger amount

of CPU or bandwidth than they provide to the network. There are examples of these

types of attacks (and possible solutions) for most of the DHT networks in use today.

A typical way to “secure” a DHT is to assume that a trusted third party exists that

can perform operations for the peers in the overlay. This trusted third party would

perform operations such as distributing node locations, possibly public key cryptog-

raphy information and determining malicious behavior and banning nodes from the

network. Unfortunately a trusted third party is rare come by in the world of P2P

networks, due to the high cost (either monetary or CPU/bandwidth) of using one.

P2P file sharing networks based on DHT’s are free, and users are unwilling to pay

for a third party. A Byzantine agreement protocol [30] could be used to create a

virtual trusted third party but agreement requires prohibitively large communication

overhead. Achieving routing robustness (routing around faulty/malicious nodes) and

guaranteed storage is typically accomplished by randomizing routes along multiple

paths and replicating data at multiple peers as well. Randomizing routes means that
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identical queries can be forwarded to different nodes; as long as a correct peer is

forwarding the query it will continue towards the correct destination [12]. Similarly,

replicating data at multiple nodes in the network thwarts attempts at deleting, mod-

ifying or blocking access to any piece of information. In many networks replication

is non-trivial because sybil [15] attacks must be considered. A sybil attack is a type

of attack where a node in a network can imitate or run a group of colluding nodes

and perform some of the attacks that replication is meant to prevent. For example, if

nodes can choose their own identifiers in the network and replication is not sufficiently

randomized, a group of nodes whose identifiers are clustered around a desired data

item can still control that piece of data. Sybil attacks can also partition networks

and control requests coming from specific peers in the same way.

One way to ensure data remains in a network is to use some form of BFT (Byzantine

Fault Tolerant) replicated data storage to maintain state in the system [36]. The

main problem with this type of system is that it can handle only up to 1
3

of faulty

nodes. Most P2P systems have very little protection against one malicious adversary

impersonating many nodes in the system. Without a trusted third party this remains

a problem for a BFT type of solution. Redundant or randomized routing is a rather

good solution to the problem of finding routes around malicious (or byzantine) nodes

in the network, but it comes at the cost of efficiency. Generally it takes more messages

and hops to route past bad nodes, although the tradeoff may be worth it considering

otherwise data may not be found. While several papers have looked at the problems

inherent in DHT security and proposed solutions [5, 12, 27, 49, 53] the issues are

truly only mitigated at best, and secure routing remains an open problem.

20



(1) Messages required for each key lookup
(2) Messages required for each store operation
(3) Messages needed to integrate a new peer
(4) Messages needed to manage a peer leaving
(5) Number of connections maintained per peer
(6) Topology can be adjusted to minimize per-hop latency (yes/no)
(7) Connections are symmetric or asymmetric

Table 2.1. Performance metrics for DHTs.

Chord [56] Pastry [48] Kademlia [34] CAN [43] RSG [20]

(1) O(log n) O(log n) O(log n) O(n−d) O(log n)
(2) O(log n) O(log n) O(log n) O(n−d) O(log n)

(3) O(log2 n) O(log n) O(log n) O(d+ n−d) O(log n)

(4) O(log2 n) O(1) O(1) O(d) O(log n)
(5) O(log n) O(log n) O(log n) O(d) O(1)
(6) no yes yes yes no
(7) asymmetric asymmetric symmetric symmetric asymmetric

Table 2.2. Comparison of DHT designs. The numbers refer to the list of performance
metrics given in Table 2.1. The value d is a system parameter for CAN.

2.1.7 Performance Comparison

DHT designs can be characterized using the performance metrics given in Table 2.1.

Routing in DHTs is generally done in a greedy fashion and resembles lookups in skip

lists [41]. Table 2.2 summarizes the key properties of various existing DHT designs.

The table does not capture properties which are hard to quantify, such as fault-

tolerance. Given a uniform distribution of keys, most existing DHT designs achieve

near perfect load balancing between peers. Hosts that can provide significantly more

resources than others are usually accommodated by associating multiple locations in

the overlay with a single host. In some sense, those hosts are counted as multiple

peers.
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A major limitation of the DHT designs listed in Table 2.2 is that they do not support

routing in restricted route topologies. These DHTs assume that it is generally possible

for any peer to connect to any other peer. However, firewalls and network address

translation (NAT) make this assumption unrealistic over the current Internet, where

large-scale studies have shown that over 70% of machines are NAT’ed [4].

In contrast to the DHT designs from Table 2.2, the Freenet 0.7 routing algorithm

achieves expected O(log n) routing in restricted route topologies under the assumption

that the restricted network topology has small-world properties. The Freenet 0.7

algorithm also attempts to take into account failed nodes and some types of malicious

attacks, although these measures are not the focus of our research.

2.2 Small-world networks

A small-world network is informally defined as a network where the average shortest

path between any two nodes is “small” compared to the size of the network, where

“small” is generally considered to mean at least logarithmic in relation to the size of

the network. Small world networks occur frequently in the real world [59], the most

prominent example being social networks [37].

Watts and Strogatz [59] characterized small-world networks as an intermediate

stage between completely structured networks and random networks. According to

their definition, small world networks with n nodes have on average k edges per

vertex where n > k > log n. They define a clustering coefficient which captures

the amount of structure (clustering) in a given network. Small-world networks are

then networks with a clustering coefficient significantly larger than the coefficients of

completely random networks and with average shortest path lengths close to those of

completely random networks. Watts and Strogatz’s work explains why short paths
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exist in real-world networks.

Kleinberg [28, 29] generalized Watts and Strogatz’ construction of small-world net-

works and gave sufficient and necessary conditions for the existence of efficient dis-

tributed routing algorithms for these constructions. Kleinberg’s model for distributed

routing algorithms does not include the possibility of nodes swapping locations, which

is a fundamental part of Freenet 0.7’s “darknet” routing algorithm.
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Chapter 3

Freenet’s “darknet” routing

algorithm

Freenet [7] is a peer-to-peer network where the operator of each node specifies which

other peers are allowed to connect to the node [6]. The main reason for this is

to obscure the participation of a node in the network – each node is only directly

visible to the friends of its’ operator. Peer-to-peer networks that limit connections to

friend-to-friend interactions are sometimes called darknets. Given that social networks

are small-world networks and that small-world networks arise easily given a certain

amount of “randomness” in the graph construction, it is realistic to assume that

Freenet 0.7’s darknet is a small-world network. The routing restrictions imposed

on the Freenet 0.7 overlay could technically model arbitrary network limitations;

consequently, an efficient distributed routing algorithm for such a topology should

easily generalize to any small-world network.

24



3.1 Network creation

The graph of the Freenet 0.7 network consists of vertices, which are peers, and

edges, which are created by friend relationships. An edge only exists between peers

if both operators have agreed to the connection a priori. Freenet 0.7 assumes that a

sufficient number of edges (or friend relationships) between peers will exist so that

the network will be connected.

Each Freenet 0.7 node is created with a unique, immutable identifier and a ran-

domly generated initial location. The identifier is used by operators to specify which

connections are allowed, while the location is used for routing. The location space

has a range of [0, 1) and is cyclic with 0 and 1 being the same point. For example,

the distance between nodes at locations 0.1 and 0.9 is 0.2.

Data stored in the Freenet 0.7 network is associated with a specific key from the

range of the location space. The routing algorithm transmits GET and PUT requests

from node A to the neighbors of A starting with the neighbor with the closest location

to the key of the request.

3.2 Operational overview

The basic strategy of the routing algorithm is to greedily forward a request to the

neighbor whose location is closest to the key. However, the simple greedy forwarding

is not guaranteed to find the closest peer – initially, the location of each peer is

completely random and connections between peers are restricted (since a peer can

only establish connections to other peers which the operator has explicitly allowed).

Consequently, the basic greedy algorithm is extended to a depth-first search of the

topology (with bounded depth) where the order of the traversal is determined by

the distance of the nodes to the key [51]. Figure 3.1 shows the routing algorithm
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for GET operations in pseudocode. A PUT operation is routed in the same fashion

and reaches exactly the same peers as an unsuccessful GET operation. In addition,

Freenet 0.7 replicates content transmitted as part of a GET response or as part of a

PUT operation at nodes that are encountered during the routing process where the

node’s location is closer to the key than the location of any of the peer’s neighbors.

Both GET and PUT requests include a hops-to-live value which is initially set to

the nodes pre-set maximum and used to limit traversal of the network. Each request

also includes the closest location (in relation to the key) of any node encountered so

far during the routing process.

Figure 3.1. Pseudocode for routing of a GET request.

1. Check that the new GET request is not identical to recently processed requests;
if the request is a duplicate, notify sender about duplication status, otherwise
continue.

2. Check local data store for the data; if the data is found, send response to sender,
otherwise continue.

3. If the current location is closer to the key than any previously visited location,
reset hops-to-live to the maximum value.

4. If hops-to-live of the request is zero, respond with data not found, otherwise
continue.

5. Find the closest neighbor (in terms of peer location) with respect to the key of
the GET request, excluding those routed to already. Forward the request to
the closest peer with a (probabilistically) decremented hops-to-live counter. If
valid content is found, forward the content to sender, otherwise, repeat step 5.

3.3 Location swapping

To make the routing algorithm find the data faster, Freenet 0.7 attempts to cluster

nodes with similar locations. Let L(n) denote the current location of node n. The
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network achieves this by having nodes periodically consider swapping their locations

using the following algorithm:

1. A node A randomly chooses a node B in its proximity and initiates a swap

request. Both nodes share the locations of their respective neighbors and calcu-

late D1(A,B). D1(A,B) is the product of the existing distances between A and

each of A’s neighbors |L(a) − L(n)| multiplied by the product of the existing

distances between B and each of B’s neighbors.

D1(A,B) =
∏

(A,n)∈E

|L(A)− L(n)| ·
∏

(B,n)∈E

|L(B)− L(n)| (3.1)

2. The nodes also compute D2(A,B), the product of the products of the differences

between their locations and their neighbors’ locations after a potential swap:

D2(A,B) =
∏

(A,n)∈E

|L(B)− L(n)| ·
∏

(B,n)∈E

|L(A)− L(n)| (3.2)

3. If the nodes find that D2(A,B) ≤ D1(A,B), they swap locations, otherwise

they swap locations with probability D1(A,B)
D2(A,B)

. The deterministic swap always

decreases the average distances of nodes with their neighbors. The probabilistic

swap is used to escape local minima.

The overlay becomes semi-structured as a result of swapping locations; the routing

algorithm’s depth first search can utilize this structure in order to find short paths

with high probability. Sandberg’s thesis [50] shows that the Freenet 0.7 routing

algorithm converges towards routing in O(log n) steps (with high probability) under

the assumption that the set of legal connections specified by the node operators forms

a small-world network. This is a significant result because it describes the first fully
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decentralized distributed hash table (DHT) design that achieves O(log n) routing with

(severely) restricted routes. Most other DHT designs make the unrealistic assumption

that every node is able to directly communicate with every other node [20, 34, 48, 56].

3.4 Content Storage

Each Freenet 0.7 node stores content in a datastore of bounded size. Freenet 0.7

uses a least-recently-used content replacement policy, removing the least-recently-

used content when necessary to keep the size of the datastore below the user-specified

limit.

Our simulation of routing in the Freenet 0.7 network places the content at the

node whose location is closest to the key and does not allow caching or replication

of content. The reason for this is that our study focuses on routing performance and

not on content replication and caching strategies.

3.5 Example

Figure 3.2 shows a small example network. Each node is labeled with its location

(Ln ∈ [0, 1)) in the network. The bi-directional edges indicate the direct connections

between nodes. In a friend-to-friend network, these are the connections that were

specifically allowed by the individual node operators, and each node is only aware of

its immediate neighbors. Similarly, in an ad-hoc wireless network, the edges would

indicate which nodes could physically communicate with each other. While our ex-

ample network lacks cycles, any connected graph is allowed; the small-world property

is only required to achieve O(log n) routing performance but the algorithm will work

(to some extent) for any connected graph.

The network illustrated in Figure 3.2 happens to have an assignment of locations

28



0.60

0.10

.50

0.90

Swap?

0.30

.40

0.45

0.85

0.40

.25

0.25

.35

Figure 3.2. This figure shows an example network with two nodes considering a swap.
The result of the swap equation is D1 = .40 * .35 * .25 * .50 = .0175 and D2 = .30 * .35 *
.05 * .80 = .0042. Since D1 > D2, they swap.
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0.10

0.20

0.60

0.30

0.30

0.45

0.85

0.40

0.05

0.25

0.35

Figure 3.3. This figure shows the resulting example network after the swap has oc-
curred.

that would cause the nodes with locations 0.60 and 0.90 to perform a swap in order

to minimize the distance product from Equation (3.1). Figure 3.3 shows the new

assignment of locations after the swap. Note that after a swap each node retains

exactly the same set of connections; the only change is in the location identifiers of

the nodes. This change in node locations impacts the order of the traversal during
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Found!
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Figure 3.4. Illustrates the path of a GET request initiated from the node with location of
0.90. The request is looking for data with a key value of .23, which is stored at the node
identified by the location 0.25. The path that the GET request travels is displayed as
the dotted lines which travel from 0.90→ 0.10→ 0.90→ 0.60→ 0.25 where the data is
found. The data reverses the successful path in order to make it back to the originator.

routing.

Figure 3.4 shows how a GET request would be routed after the swap (with a

maximum value of hops-to-live larger or equal to two). Starting at the node with

location 0.90 and targeting the key 0.23, the node picks its closest neighbor (with

respect to the key), which is 0.10. However, 0.10 does not have the content and also

lacks other neighbors to route to and thus responds with content not found. Then 0.90

attempts its’ second-closest neighbor, 0.60. Again, 0.60 does not have the content,

but it has other neighbors. The 0.25 neighbor is closest to 0.23. The content is found

at that node and returned via 0.60 (the restricted-route topology does not allow 0.25

to send the result directly back to 0.90).

Finally, Figure 3.5 illustrates how Freenet 0.7 routes a PUT request with a max-

imum value of 1 for hops-to-live (in practice, the maximum value would be bigger).

The algorithm again attempts to find the node with the closest location in a greedy

fashion. Once a node C is found where all neighbors are further away from the node,
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the neighbors fail to reset hops-to-live (since 0.90 is closer to the key than they are),

which ends the process.

0.90

0.10

0.60

0.30 0.45

0.85

0.40

0.25

0.90

0.10

0.60

0.85

0.30 0.45

0.40

0.25

Figure 3.5. The graph on top illustrates the path of a PUT request inserting data with
a key of .96. The request is initiated from node with location 0.25. The path that the
PUT request travels is displayed as the dotted lines which travel from 0.25→ 0.60→
0.90, where the data is stored. The bottom graph shows what happens after a PUT has
found a node whose neighbors are all further away from the key. The node 0.90 (as all
of the predecessors on the path) resets the hops-to-live value to its maximum (in this
case, one) and forwards the PUT request to all of its neighbors. Since these neighbors
are not closer to the key than their predecessor they do not reset hops-to-live. Since
the value reaches zero, routing ends.
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Chapter 4

Security Analysis

The routing algorithm works under the assumption that the distribution of the keys

and peer locations is random and evenly distributed over the address space. In that

case, the storage and routing load is evenly balanced. In particular, all nodes are

expected to store roughly the same amount of content and all nodes are expected to

receive roughly an equivalent numbers of requests. This key assumption is what gives

Freenet 0.7 both the load balancing qualities that are desired in any DHT or P2P file

sharing system, and is the main assumption that must be true for the algorithm to

achieve O(log n) steps for routing in practice.

The basic idea behind the attack is to de-randomize the distribution of the node

locations of the peers in the network. The attacker tries to cluster the locations

around a particular small set of values. Since the distribution of the keys is still

random and independent of the distribution of the node locations, the clustering of

node locations around particular values results in an uneven load distribution. Nodes

within the interior of the clusters are responsible for basically no content (because

many other nodes are also close to the same set of keys), whereas the load for nodes

on the outside edges of the clusters is disproportionately high.

32



We will now detail two scenarios which remove the vital randomness from the initial

random distribution of node locations which results in the clustering of locations

around particular values. The first scenario uses attack nodes which behave according

to our malicious behavior as described in Section 4.1 inside the network. This attack

quickly and effectively unbalances the load in the network, which causes significant

data loss. The reason for the data loss is that the imbalance causes some nodes to

greatly exceed their storage capacity, whereas other nodes store nothing. A node

exceeds its storage capacity when the protocol dictates that particular node should

store more data than it is configured for; a node faced with this scenario drops the least

recently inserted data. At this point the data is lost, as no node in the network will be

able to find the data even if the original inserter is still present. The second scenario

illustrates how location imbalance can occur naturally even without an adversary due

to churn (which also leads to overload and data loss).

4.1 Active Attack

As described in Section 3.3, a Freenet 0.7 node attempts to swap location identifiers

with random peers periodically. Suppose that an attacker wants to bias the location

distribution towards a particular location, m. In order to facilitate the attack, the

attacker assumes that particular location (i.e. it sets its location tom). This malicious

behavior cannot be detected by the node’s neighbors because the attacker can claim

to have obtained this location legitimately from swapping with some other node. A

neighbor cannot verify whether such a swap has occurred because the friend-to-friend

(F2F) topology restricts communication to immediate neighbors.

Suppose an attacker node A intends to force a swap with a victim N so that

L(N) = m after the swap occurs. Let N have k neighbors. Then A will initiate a

swap request with N claiming to have at least k+1 neighbors with locations favoring a
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swap according to Equation (3.1). Specifically, the locations of the neighbors should

be either close to L(N) or close to the maximum distance from L(A) = m. The

attacker then creates swap requests in accordance with the Freenet 0.7 protocol.

Again, the F2F topology prevents the neighbor involved in the swap from checking

the validity of this information. After the swap, the attacking node can again assume

the original location m1 and continue to try to swap with its other neighbors whose

locations are still random.

The neighbors that have swapped with an attacker then continue to swap in ac-

cordance with the swapping algorithm, possibly spreading the malicious locations.

Once the location has been spread, the adversary again subjects the neighbor to a

swap, removing yet another random location from the network. Figure 4.1 illustrates

the impact of a malicious node on the example network after a few swaps (with the

attacker using m ≈ 0.5). The likelihood of neighbors spreading the malicious location

by swapping can be improved by using multiple attack locations, and switching be-

tween them periodically. Thus, a tradeoff exists between the speed of penetration and

the impact of the attack in terms of causing load imbalances. For our experiments

we typically chose speed over load imbalance because we were interested in having

experiments that were relatively short lived (i.e. a few hours). Of course, in the real

world network attackers could sit on the network for days or longer and likely cause

even larger load imbalances than those we describe in 5.

4.2 Natural Churn

Network churn, the joining and leaving of nodes in the network, is a crucial issue

that any peer-to-peer routing protocol needs to address. We have ignored churn until

1In practice malicious nodes use locations within small distance of m instead of exactly m in part
to prevent the detection of this malicious activity
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Figure 4.1. This figure shows the example network after a malicious node has started to
spread locations close to 0.5 by swapping. In this figure the malicious node currently
has location = 0.504

now because the attack described in the previous section does not require it. Intuition

may suggest that natural churn may help the network against the attack by supplying

a constant influx of fresh, truly random locations. This section illustrates that the

opposite is the case: natural churn can strengthen the attack and even degenerate

the Freenet 0.7 network in the same manner without the presence of malicious nodes.

For the purpose of this discussion, we need to distinguish two types of churn. The

first kind, leave-join churn, describes fluctuations in peer availability due to a peer

leaving the network for a while and then joining again. In this case, the network has

to cope with a temporary loss of availability in terms of connectivity and access to

content stored at the node. Freenet 0.7’s use of content replication and its routing

algorithm are well-suited to handle this type of churn. Most importantly, a node

leaving does not immediately trigger significant changes at any other node. As a

result, an adversary cannot use leave-join churn to cause significant disruption of

network operations. Most importantly, honest Freenet 0.7 peers re-join with the
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same location that they last had when they left the network, leave-join churn does

not impact the overall distribution of locations in the network.

The second kind, join-leave churn, describes peers who join the network and then

leave for good. In this case, the network has to cope with the permanent loss of data

stored at this peer. In the absence of adversaries, join-leave churn may be less common

in peer-to-peer networks; however, it is always possible for users to discontinue using

a particular application. Also, often users may just test an application once and

decide that it does not meet their needs. Again, we believe that Freenet 0.7’s content

replication will likely avoid significant loss of content due to realistic amounts of

join-leave churn.

However, natural join-leave churn has another, rather unexpected impact on the

distribution of locations in the Freenet 0.7 overlay. This additional impact occurs

when the overlay has a stable core of peers that are highly available and strongly

interconnected, which is a common phenomenon in most peer-to-peer networks. In

contrast to this set of stable core-peers, peers that contribute to join-leave churn

are likely to participate only briefly and have relatively few connections. Suppose

the locations γi of the core-peers are initially biased towards (or clustered around) a

location α ∈ [0, 1). Furthermore, suppose that (over time) thousands of peers with

few connections (located at the fringe of the network) contribute to join-leave churn.

Each of these fringe-peers will initially assign itself a random location β ∈ [0, 1). In

some cases, this random choice β will be closer to α than some of the γi-locations of

the core nodes. In that case, the routing algorithm is likely to swap locations between

these fringe-peers and core-peers in order to reduce the overall distances to neighbors

(as calculated according to Equation (3.1)). Peers in the core have neighbors close to

α, so exchanging one of the γi’s for β will reduce their overall distances. The fringe

peers are likely to have few connections to the core group and thus the overall product
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after a swap is likely to decrease.

Consequently, even non-adversarial join-leave churn strengthens any existing bias

in the distribution of locations among the long-lived peers. The long-term results of

join-leave churn are equivalent to what the attack from Section 4.1 is able to pro-

duce quickly – most peers end up with locations clustering around a few values. Note

that this phenomenon has been observed by Freenet 0.7 users and was reported to the

Freenet developers – who at the time when this research was originally published, had

failed to explain the cause of this degeneration.2 Since both the attack and natural

churn have essentially the same implications for the routing algorithm, the perfor-

mance implications established by our experimental results described in Section 5

hold for both scenarios.

2https://bugs.freenetproject.org/view.php?id=647, April 2007. We suspect that the clus-
tering around 0.0 is caused by software bugs, resulting in an initial bias for this particular value,
which is then strengthened by churn.
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Chapter 5

Experimental Results

This chapter presents experimental results obtained from a Freenet 0.7 testbed with

up to 800 active nodes. The testbed, consisting of up to 19 GNU/Linux machines,

runs the actual Freenet 0.7 code. For the main results presented here, the nodes are

connected to form a small-world topology (using Kleinberg’s 2d-torus model [28]) with

on average O(log2 n) connections per node. As mentioned previously this is because

we believe (as did the Freenet 0.7 authors/developers) that a small world network

was likely to emerge from the “darknet” construction of the network. However, to be

thorough we also experimented with some other topologies which have been commonly

used in P2P networks. These topologies include: small-world networks without a

2d-torus, a 2d-torus only, a 2d-torus with “supernodes”, and a small-world graph

augmented with supernodes. Supernodes are common in some networks such as [17]

and are very highly connected nodes in the network. The reason for the relatively

small number of nodes (800 and 400) for our experiments is twofold. First, the

estimated size of the actual Freenet 0.7 network based on open experimentation before

we began our research was between 100 and 500 nodes. Therefore we feel that 800

and 400 nodes are good test sizes, as they are larger (or equal to) the size of the real
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network (at least when we began our research). The second reason is that we were

bounded in our experiments by memory. Since Freenet 0.7 is a Java application we

needed to use a Java virtual machine, and after some experimentation we chose the

Sun JavaEE 1.6 SDK. Although we can limit the total amount of memory that the

virtual machine could use, we found that each Freenet 0.7 node required about 64 MB

to run smoothly. Since our lab machines are tasked for other purposes as well as ours,

we found we could only run 50 Freenet 0.7 nodes per machine at any given time.

Using 800 nodes computationally bounded us as well for simulating the routing that

occurs in the Freenet 0.7 network, which meant that an 800 node test took greater

than 5 hours. We found that we could do a test with 400 nodes in about one hour,

and could try many more topologies and attacker configurations with the 400 node

tests.

Each experiment consists of a number of iterations, where each iteration corre-

sponds to 90 seconds of real time in the case of 800 node experiments, and 45 seconds

for the 400 node experiments. In each iteration, nodes are given this amount of time

in order to allow them to swap locations. Then the performance of the network is

evaluated. The main performance metrics are the average path length needed to

find the node that is responsible for a particular key not including dead end paths

or failed searches, the average number of actual hops needed to terminate the query

(including dead end paths), the average number of hops assuming that failed queries

would reach all nodes, the number of “poisoned” locations, and the percentage of the

content originally available in the network that can successfully be retrieved.

All nodes are configured with the same amount of storage space. Before each

experiment, the network is seeded with content with a random key distribution. The

amount of content is fixed at a quarter of the storage capacity of the entire network

(unless otherwise specified). The content is always (initially and after each iteration)
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placed at the node with the closest location to the key. Nodes discard content if

they do not have sufficient space. Discarded content is lost for the duration of the

experiment.

Depending on the goals of the experiment, certain nodes are switched into attack

mode starting at a particular iteration. The attacking nodes are randomly chosen,

and behave exactly as all of the other nodes, except for aggressively propagating

malicious node locations when swapping.

5.1 Distribution of Node Locations

Figures 5.1, 5.2, 5.3 and 5.4 illustrate the distribution of node locations on a circle

before, during and after an attack. The initial distribution in Figure 5.1 consists of

800 randomly chosen locations, which are evenly distributed over the entire interval

(with the exception of some noticeable clustering around 0.0, which we believe is due

to implementation problems).

The distributions shown in Figures 5.2, 5.3 and 5.4 illustrate the effect of two

nodes attacking the network in an attempt to create eight clusters around particular

locations. Note that the number of attackers and the number of cluster locations

can be chosen independently. We chose two attackers because it is believable that

an adversary could run enough nodes to compromise .125 percent of all nodes given

the small size of the actual network, and the choice of eight locations was because

we found that to be a sufficient number for the attack to spread quickly. Figure 5.2

shows the node locations at an early point in the attack, after the 15th attack iteration

(90th overall iterations. Even so, the clustering effect of our location swapping attack

begins to be seen. In 5.3 the attack has been carried out for 75 iterations and the

distribution of node locations can clearly be seen to be skewed towards the eight
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attacker chosen locations. Figure 5.4 shows the last picture of node locations at the

very end of the attack; almost all nodes in the network have been forced to have

an attacker chosen location. This example illustrates quite clearly how easy it is to

remove the randomness necessary in node distributions in the Freenet 0.7 network.

These results are also very typical, in all of the trials we performed with our attackers

on the Freenet 0.7 testbed we saw nearly identical results.

Figure 5.1. Plot of 800 initial node locations before the attack. Plot points increase in
diameter as the density of peers nearby to that location increases.

All the plots use thicker dots in order to highlight spots where many peers are in

close proximity. Particularly after the attack peers often have locations that are so

close to each other (at the order of 2−30) that a simple plot of the individual locations

would just show a single dot. Thicker dots illustrate the number of peers in close

proximity, the spread of their locations is actually much smaller than the thickness

may suggest. The precise method for determining point size is as follows; each point

as plotted on the circle has an x, y coordinate. The Cartesian distance from each
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Figure 5.2. Plot of 800 initial node locations 15 iterations into the attack. Convergence
to the attacker chosen locations begins to be apparent.

Figure 5.3. Plot of 800 initial node locations 90 iterations into the attack. Nearly all
locations have been swapped into those chosen by the attacker at this point.
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Figure 5.4. Plot of 800 node locations after the attack by 2 malicious nodes. The large
plot points indicate the success of the attack in clustering most nodes around the 8
chosen locations.

point i to every other point j ∈ S (where S is the set of all points), is calculated as

Di,j =
√

(x1 − x2)
2 + (y1 − y2)

2, and if that Di,j is less than some chosen amount,

the points size value is incremented. To keep the points from growing out of control

the log2 of each size value is taken as a multiplier applied to the base size of the

points as plotted. To give some scale as to how close together two points need to be

to increase the size of the displayed dot, the chosen threshold distance between points

is 1
100000000

.

The second set of plots show the effectiveness of the attack in the same manner

on the 400 node test network, this time using 16 malicious nodes and the attack

nodes spreading only four locations. These results are impressive given that in this

scenario the attack lasts only 1/4th as long as the 800 node attack. Figure 5.5 shows

the initial plot of node locations, again very evenly spread over the range of possible
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values. Figure 5.6 shows the picture after 25 iterations of the attacked network, and

again the effect of the attack is readily apparent, and Figure 5.7, showing the result

of 50 iterations of attack time tells the same story. Figure 5.8 shows the attack at the

final attack measurement, 75 iterations after the attack began. Another way to see

the effectiveness of the malicious swapping algorithm is shown in Figure 5.9, which

plots the number of poisoned nodes against the run tested. It is clear that shortly

after the attack begins, swaps are forced with all of the malicious nodes immediate

neighbors. This accounts for the large jump near the 25th iteration (when the attack

is initiated). After this spike malicious node locations can only be spread by the

normal swapping algorithm and therefore grows much more slowly, but the increase

remains steady though the returns are diminishing. This is because the attacker needs

to continue to iterate through all possible malicious locations until the neighbor of

the forcibly swapped peer chooses to swap. As the attack location propogates futher

from the malicious node it takes more time to iterate through all the attacker chosen

locations.

Figure 5.5. Plot of 400 initial node locations before the attack.
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Figure 5.6. Plot of 400 node locations 25 iterations into the attack.

Figure 5.7. Plot of 400 node locations 50 iterations into the attack.
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Figure 5.8. Plot of 400 node locations after the attack by 16 malicious nodes.
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Figure 5.9. Plot of the number of nodes that have been “poisoned” by run number.
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# Attackers # Locations Round 1 Round 50 Round 75 Round 100

1 2 0 29 29 39
1 4 0 31 56 67
1 8 0 32 60 69
1 16 0 23 48 80
2 2 0 44 51 59
2 4 0 57 66 75
2 8 0 77 113 137
2 16 0 73 120 145
4 2 0 67 75 86
4 4 0 79 99 114
4 8 1 110 139 155
4 16 0 139 197 224
8 2 0 101 112 121
8 4 0 157 169 178
8 8 0 194 211 225
8 16 0 192 244 256
16 2 0 113 174 183
16 4 0 205 215 231
16 8 0 239 253 266
16 16 0 272 289 299

Table 5.1. Data showing average number of poisoned nodes for varying configurations
of our 400 node testbed and different points in time.

Table 5.1 shows the number of nodes that have been poisoned by attacking the

network at different stages of the attack. The table displays the average number of

bad nodes for varying numbers of attackers and node locations used in our 400 node

testbed. The data is displayed for the first round, where there are no attackers, and

then subsequent rounds 50, 75 and 100 to cover the full duration of the attacks. The

obvious conclusion is that adding more attackers makes the attack work faster and

that using more locations for a particular number of attackers generally also increases

the number of nodes that take on poisonous locations. Round one is included because

it is not a given that there are not always no nodes categorized as poisoned at the
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beginning of the attack. It is possible for a node to be randomly given a location

which meets the criteria for being a “bad” location. However, this only happened in

one of our experiments out of around 300 trials. It should also be noted that these

averages are rounded up to the nearest whole number.

5.2 Routing Path Length

An important aspect of any routing algorithm is the number of hops that a message

must travel before terminating, either in failure or in success. However there are a

number of different ways to look at the hops that a message travels. In the Freenet

0.7 routing algorithm the maximum number of hops that a message can travel along

a single path is capped at a constant of 10. For most of our hop counts we use

this cap as well. One different metric for counting routing hops that we employ is a

count of how many hops are traversed when route lengths are capped at a very high

number (in our case this is unlimited). We used this measure because we thought

it might give different numbers than the bounded hop count. Figures 5.10 show an

example of this metric for our 400 node network where the attack begins at the 25th

iteration using 8 malicious nodes and 8 locations. The effect of the attack can clearly

be seen in this plot, the number of hops needed for queries initially drop sharply as

the network converges via the swapping algorithm. Once the attack is started the

number of hops jumps back up, although never deteriorating to the length of the

paths at the beginning of the experiment. We plot the mean of the averages over 5

runs in the graphs in this section, leaving out standard deviations for clarity.

Even using this max single path length still leaves some choices for measurements.

As described in Chapter 3, if routing along one path fails then the next closest node

is chosen until all nodes have been tried. Therefore there is the count of hops that are
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Figure 5.10. Graph showing average path length of completed requests when routing
is unbounded.

between the initiator and the destination node, and also a count of all the hops along

all the paths that were traversed prior to the desired node being found. We utilize

both of these measures because it is important to know how many actual nodes are

traversed in a GET or PUT request, though if the cost of initial message to discover

the destination is low, the best path length found could be desired. Figures 5.11 and

5.12 show the number of hops between source and destination and the cumulative hops

traversed including dead-end paths, respectively. As described previously, routing

down a particular path fails when the path length is 10. These graphs show the

large discrepancy between cumulative hops traversed before a query is successful

and counting only those along the successful path. Although the cumulative lengths

decrease for the duration of the experiment (with a noticeable spike when the attack

is started) the lowest number of hops is still high. This may be an important factor
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when considering the costs to the network routing these requests. Counting only the

successful path lengths reveals another aspect of the Freenet 0.7 network; while the

un-converged network has a low number of hops and convergence decreases the hops,

our attack nearly removes all the gains of this convergence.
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Figure 5.11. Graph showing average path length from source to destination of com-
pleted requests.

When searching for data in the network we know a priori whether or not a node

is actually storing data (as we insert it at the appropriate node for each run). For

efficiency we do not attempt to route these requests for missing data, but assume that

such a message would traverse all nodes in the network before terminating. This is

a reasonable assumption given that nodes have O(log n) neighbors and the network

diameter is assumed to be O(log n), which is less than the maximum path length.

This leads to our last measure, where we account for failed searches as taking n hops

where n is the network size. The final graph in this section demonstrates truly the
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Figure 5.12. Graph showing average cumulative path length including all nodes tra-
versed of completed requests.

efficacy of our attack on the Freenet 0.7 network in practice. Figure 5.13 shows very

clearly that path lengths are increased significantly due to our attack for the simple

reason that data is lost due to the high amount of clustering in the network. Note that

there are failed requests even before the attack begins because routing is bounded.
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Figure 5.13. Graph showing average path length of requests when failed searches are
assumed to traverse all nodes.
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5.3 Availability of Content

Figures 5.14, 5.15 and 5.16 show the data loss in a simulated Freenet 0.7 network

with 800 nodes and two, four and eight attackers respectively. The attackers attempt

to use swapping in order to cluster the locations of nodes in the network around eight

pre-determined values. The resulting clustering of many nodes around particular

locations causes the remaining nodes to be responsible for disproportionately large

areas in the key space. If this content assignment requires a particular node to store

more content than the node has space available for, content is lost.

The attack is initiated after 75 iterations of ordinary network operation. After just

200 iterations the network has lost on average between 15% and 60% of its content,

depending on the number of attackers. Note that in our model, an individual attacker

is granted precisely the same resources as any ordinary user and if the attacker is

deemed the node responsible for the data it will return it when queried. Obviously

if the attacker were truly malicious, it could just drop the data, or refuse to answer

queries that reach it, which would further reduce the storage capacity of the network.

Our results do not show an attacker that takes this further step to hinder data being

found. The figures show the average data loss (with standard deviations) over five

runs of our test bed. For each run, the positions of the attackers were chosen randomly

among the 800 nodes.

The second set of figures shows the data loss in our 400 node network simulations

again with the same number of attackers as the previous three Figures. Figure 5.17

shows the results when two attackers are present, Figure 5.18 shows the results for

four attackers, and Figure 5.19 shows the results for eight attackers. Again the data

is averaged, over three runs. The duration of the trial has an effect on how well our

swapping attack works; more time between tests gives our attackers more time to
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Figure 5.14. Graph showing average data loss over 5 runs with 800 total nodes and 2
attack nodes using 8 attacker chosen locations with the attack starting at iteration 75
(horizontal line depicts attack start time).

swap out malicious locations. Even so, we still see about 20% loss for two attackers,

30% for four attackers, and almost 60% for eight attackers. This is likely due to

the size of the network, as with only 400 nodes the proportion of malicious nodes to

normal nodes is higher.

Some criticisms may come of the fact that we seed the network with an evenly

distributed quarter of the total storage capacity of the network. It may be suggested

that this is too high of an initial amount of data for the distributed system to handle.

This is really a moot point because changing the initial amount of data in the net-

work only increases the time that it takes for an attacker to reduce the total storage

capacity. The locations that malicious nodes propagate are so close together that

once clusters of enough nodes are formed data is irrevocably lost. Given enough time
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Figure 5.15. Graph showing average data loss over 5 runs with 800 total nodes and 4
attack nodes using 8 attacker chosen locations with the attack starting at iteration 75
(horizontal line depicts attack start time).

malicious nodes would cause the just as much data to be lost, but for our experiments

to be short lived we chose what might be considered a high initial amount of data.

As discussed in Section 5.2 the length the paths needed in order to find data in the

network also plays an important part; because if the path to the data is too long the

query will still fail even if the data remains in the network.
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Figure 5.16. Graph showing average data loss over 5 runs with 800 total nodes and 8
attack nodes using 8 attacker chosen locations with the attack starting at iteration 75
(horizontal line depicts attack start time).
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Figure 5.17. Graph showing average data loss in a 400 node network with 2 attack
nodes using 8 attacker chosen locations with the attack starting at iteration 25.
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Figure 5.18. Graph showing average data loss in a 400 node network with 4 attack
nodes using 8 attacker chosen locations with the attack starting at iteration 25.
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Figure 5.19. Graph showing average data loss in a 400 node network with 8 attack
nodes using 8 attacker chosen locations with the attack starting at iteration 25.
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5.4 Other Topologies

Although the Freenet 0.7 routing algorithm theoretically works best in small world

networks with small world topologies, it is interesting to see how it performs in other

topologies as well. We will demonstrate the differences between these topologies by

comparing the metrics collected as described in Sections 5.2 for each of the topologies

presented. As mentioned earlier, in addition to our “normal” small-world topology

that we use for most of our experiments we introduce four modified topologies. Since

we build our small-world topology by augmenting a 2d-grid, we thought it would be

interesting to compare measurements with an un-augmented 2d-grid. In this case,

each node in the network has exactly four connections corresponding to the nodes

immediately above, below, right and left in the Cartestian system. We also wanted

to see what the results looked like in the absence of the 2d-grid; meaning that we

use the grid coordinates initially to find Cartesian distances between nodes (which

is necessary for small-world construction see Section 3.1 for details) but we do not

necessarily connect nodes into the 2d-grid. If two grid neighbor nodes are connected

based on the randomized connection process they are not removed, so we are not

forcing the absence of original grid connections, just not ensuring they are there.

Our other two topologies use the concept of “supernodes” [17], where certain nodes

exist in the network that are much more highly connected (or universally connected)

than “normal” nodes. We implemented supernodes very simply in our topology con-

struction; when enabled, we selected probalistically 1 percent of the total nodes to be

supernodes, which we augmented with an additional 20 percent of the total peers as

direct connections. The 20 percent of nodes that were added as additional connections

were also uniformly randomly selected from the set of all nodes, unlike the weighted

random selection used for the small-world construction. We used these supernodes in
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two scenarios, with our normal small-world and with the simple 2d-grid topology.
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Figure 5.20. Average number of hops between source and destination for multiple
topologies when there is no cap on path length.

The graphs in this section each have 5 lines, one for each topology and are labeled

as such. To attempt to achieve a consistent comparison between each topology, we

graph the results from tests with 400 nodes, 8 malicious nodes which are switched

into attack mode at iteration 25, and the malicious nodes rotate through 8 locations

over the course of the attack. The figures follow the same progression as those from

Section 5.2. Figure 5.20 shows the average path length attained for successful queries

when there is no bound on the path length in any one direction. This figure reveals

two things that are very intuitive, the topology with the longest average path lengths
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is the simple 2d-grid and the one with the shortest average path lengths is the small-

world network augmented with supernodes. This is exactly what one would expect

because the 2d-grid is a very sparse graph and short paths do not exist between

arbitrary nodes often. The small-world with supernode topology also should result

in short path lengths because when a supernode is reached with a query it has at

least a 1 in 5 chance of knowing the exact destination, and if not has a large pool

to choose from for a closer node. The other three topologies are grouped together at

about the same place on the graph, which is not unsurprising as they are very similar

topologies as far as the number of total connections go. As in Section 5.2 we generally

see average path lengths decreasing prior to the attack, and slightly increasing after

the attack, with the exception of the supernode and 2d-grid only topologies.

Figures 5.21 and 5.22 again are best interpreted in conjunction. Due to the max-

imum path length for routing being 10, Figure 5.21 seems to show very short path

lengths for all of the different topologies. Again we see that the best performing

topology is clearly the small-world augmented with super-nodes, but at first blush

they all show short paths. However, when the total cumulative hops are taken into

account as in Figure 5.22 we see two more things. First we can see that the cumu-

lative hops are considerably higher than the hops necessary once the data is found,

and we also see that this cumulative number decreases as the network evolves over

time. Again, only successful queries are counted in this figure, so the whole story is

still not revealed.

Figure 5.23 probably provides the best argument for the properties inherent in

small-world graphs based on a 2d-grid topology. In this graph the two small-world

graphs and the 2d-grid augmented with supernodes are shown to be the least effected

by our attack. The 2d-grid with supernodes is relatively the same across the board,

which means that convergence due to the swapping algorithm and our attack have
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Figure 5.21. Average number of hops between source and destination for multiple
topologies.

little effect on routing. The small-world with supernodes graph starts out lower than

the normal small-world, but is more wild once the attack begins. The normal small-

world topology performs the best in this instance, although the proportion of poisoned

nodes is still high.

The final figure in this section shows the somewhat results of the number of poisoned

nodes in the network as the attack progresses. This data, shown in Figure 5.24 is

somewhat what one would expect. The normal small-world topology and the small-

world with no grid show the biggest impact of our attack, with ¿50% of nodes poisoned

by the time the attack ends. The 2d-grid only also shows a high number of poisoned
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Figure 5.22. Average number of cumulative hops necessary for a query to succeed in
multiple topologies.

nodes, presumably because attack locations spread out faster from the malicious

nodes because each node has only 4 total connections, so the likelihood an attacker

chosen location is close to the node’s location goes up. The 2d-grid with supernodes

shows the least number of poisoned locations, though still close to 1
4

of all locations

have been changed. The most surprising result is that of the low number poisoned

for the small-world with supernode topology. However, the growth remains steady

which is the only real requirement for us to prove that our attack works.
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5.5 Simulation of Churn

Figures 5.25, 5.26, 5.27,, 5.28, 5.29 and 5.30 show the results of a simulation of

join-leave churn on the distribution of node locations in the Freenet 0.7 network. The

total network size used for this simulation was 600 nodes, out of which 500 are stable.

In each round, ten of the remaining hundred nodes drop out of the network and

join as fresh nodes with a new random location and randomly chosen connections.

During each round, the network performs the swap protocol corresponding to about

400ms of a real Freenet 0.7 network. The experiment was done with various different

topologies with similar results. The figures show the results for a topology where the

500 stable nodes are randomly chosen from a small world network, that is, they are

not better connected than any of nodes experiencing churn. In all of our simulations,

the locations rapidly converge towards a small set of all the possible locations.

Figure 5.25. Initial (random) node locations before simulation of join-leave churn.

These results are particularly interesting because they show that the kind of lo-

cation clustering which produced by our attack will also happen in an un-attacked

network with a stable core of peers and churn. This is actually a very likely situation
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Figure 5.26. Distribution of the node locations of the stable core of 500 nodes after 100
rounds of churn.

Figure 5.27. Distribution of the node locations of the stable core of 500 nodes after 2000
rounds of churn.

for any peer-to-peer network, as there are typically peers of developers/enthusiasts

which are likely to be long lived. However a larger number of peers will join and

leave as the network is tried out and then left due to a mismatch between what the

65



Figure 5.28. Distribution of the node locations of the stable core of 500 nodes after
10000 rounds of churn.

Figure 5.29. Distribution of the node locations of the stable core of 500 nodes after
50000 rounds of churn.

user wants and what the network provides. As we have shown in our Freenet 0.7

testbed, this kind of clustering is not good for the network, as it puts severe strain on

those peers at the edges of clusters and generally unevenly distributes the processing
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Figure 5.30. Distributions of the node locations of the stable core of 500 nodes after
100,000 rounds of churn.

and storage load of the entire network. In a distributed file system application like

Freenet 0.7, uneven distribution is the the opposite of what the network design was

created to achieve in the first place.

The negative impact of churn may be lessened by swapping locations only with

long lived peers. Recent measurement studies in peer-to-peer networks have shown a

power-law distribution of the uptime of peers; a large percentage of peers have a short

uptime [57]. By adjusting the probability of location swapping to be proportional to

the uptime of both peers, the network may be able to slow down the clustering of

the locations of long-lived peers due to join-leave churn. This is only a conjecture

however, we did not do experiments that show this to be a plausible way to reduce

the clustering caused by churn but it is an interesting idea.
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Chapter 6

Discussion

Various techniques have been proposed that may be able to limit the impact of the

attack described in this thesis, including changing the swapping policy, malicious

node detection, and secure multiparty computation. While some of these strategies

can reduce the impact of the attack, we do not believe that adopting any of the

suggested measures would address the attack in a satisfactory manner. We will now

discuss these measures and their limitations insofar as we have identified them.

One possibility for reducing the effect of the attack proposed in this paper is to

increase the amount of time between attempts to swap, or to have each node in the

network periodically reset its location to a random value. The idea is that the mali-

cious node locations would spread more slowly and eventually be discarded. However,

while this would limit the impact of the attack, this defense also slows and limits the

progress of the network converging to the most fortuitous topology. Specifically, the

amount of time used between swaps must be chosen very carefully. In order to ac-

curately decide on the swap frequency the number of nodes in the network (and the

number of “poisoned” nodes, see below) need to be estimated. Both numbers are

difficult to accurately attain. Also, as shown in Chapter 5, the malicious nodes are

68



able to spread the “bad” locations chosen very quickly; within a few rounds of swap-

ping a large proportion of the network has been poisoned. This implies that even

frequent resets and increased swap frequency will do little to stop malicious nodes

to any worthwhile degree. Another real problem with resetting nodes locations peri-

odically is that in Freenet 0.7, data is assumed to be stored (and is actually stored)

at the closest node to the data in the network. This means that when a node resets

its location, the data that it is responsible for will likely no longer be at the closest

node in the network. This would mean that either the data would be unable to be

found, or measures to resend the data out to the correct nearest node would have

to be implemented. Of course for data to stay in a network indefinitely it needs to

be refreshed periodically, but if all nodes reset their locations in a short interval the

network could be flooded with data being routed because its former nearest node is

no longer very near!

Another possible method attempts to detect a malicious node based on knowing

the size of the network. If a Freenet 0.7 node were able to accurately produce a close

estimation of the size of the network, it could detect if an attacker was swapping

locations that are significantly closer than what would be statistically likely based on

a random distribution of locations. The problem with this approach is that in an open

F2F network it is difficult to reliably estimate the network’s size. It is not easy for any

single node to estimate the size of the network because the only information it knows

is how many peers it has (and the peers of its neighbors). But this knowledge may

be completely unrepresentative of the rest of the network. In fact, since the network

is a “darknet” it would be very likely that nodes have largely varying numbers of

peers. Any estimate based on such information would likely be wrong, or at least

vary widely between peers in the network. One way to estimate the number of nodes

in the network would be to take the number of peers and fit them in a distribution
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based on closeness. This would imply that if a node has many neighbors with locations

close to its own, the assumption might be made that the network is very large. This

could be completely wrong, especially when the clustering effect shown previously in

a network with churn is at work! These reason make malicious node detection and

altering the swapping frequency rife with problems.

If there were a way for a node which purported to have a certain number of friends

to prove that all those friends existed, nodes could be more confident about swapping.

The Freenet developers suggested using a secure multiparty computation as a way for

a node to prove that it has n connections. The idea would be for the swapping peers

to exchange the the results of a computation that could only be performed by their

respective neighbors. But because nodes can only directly communicate with their

peers (F2F), any such computation could easily be faked given appropriate computa-

tional resources. Of course, if a node could directly communicate with another node’s

neighbors, then the topology could be discerned. However, in that case the protocol

no longer works for restricted-route networks. This method would also work provided

that there were some trusted third party which gives out public/private key pairs to

each node, but this is an unlikely step for an open peer-to-peer network to take for

two reasons. First, peers joining a network have no reason to trust any third party,

and second the third party would then know all of the members of the P2P network,

which would defeat the idea of Freenet 0.7 being a “darknet” where only a node’s

friends know if that nodes participation in the network.
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Chapter 7

Conclusion

The new Freenet 0.7 routing algorithm is unable to maintain scalability in networks

where even weak adversaries are able to participate. The performance of the routing

algorithm also degenerates over time (even without active adversaries) if the network

experiences sufficient churn. Churn is unfortunately a very real problem in modern

peer-to-peer networks and is therefore a serious limitation of the Freenet 0.7 darknet

network. The approach chosen (by Freenet developers [24]) to address both of these

problems is to periodically reset the locations of peers. Even this simple seeming so-

lution is fraught with problems; while it limits the deterioration of the routes through

adversaries and churn, such resets also sacrifice the potential convergence towards

highly efficient routes. In order for efficient routes to remain possible the reset period

would need to be chosen properly and to do so would require global knowledge of the

network, which is very much against the idea of a darknet. While Freenet 0.7 was a

good attempt at providing a solution to routing in restricted route networks, there

are some serious problems that remain difficult if not impossible to solve. Secure and

efficient routing in restricted route networks remains an open problem.

This thesis presents a substantial research topic that demonstrates a clear under-
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standing of routing problems in P2P networks as they exist today. We not only

discovered a possible attack vector, but we implemented a real world attack and

demonstrated its feasibility and effectiveness on the Freenet 0.7 network. We also ex-

plained a phenomenon which was observed in practice by Freenet users but remained

unresolved until the presentation of our topic to the Freenet developers. Through

experiments performed on a Freenet 0.7 testbed which are comparable in size and

operation to the actual network we have shown the effects of malicious nodes per-

forming a modified swapping algorithm, and the clustering of nodes, effect on routing

and significant data loss that are a direct result. By running simulations which emu-

lated churn in a network we explained how clusters can form naturally in the Freenet

0.7 network over time, causing similar results as shown in our experiments. This

research took a significant effort (spanning more than 15 months) to achieve our re-

sults, and has been recognized as such by the Freenet developers [24], ACSAC [19]

and Defcon [18].
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