
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

NET-2019-07-2Network Architectures and Services

Secure and Privacy-Preserving Services
based on Secure Multiparty Computation

Marcel von Maltitz

Dissertation

1

TECHNISCHE UNIVERSITÄT MÜNCHEN
Institut für Informatik

Lehrstuhl für Netzarchitekturen und Netzdienste

Secure and Privacy-Preserving Services
based on Secure Multiparty Computation

Marcel Léon von Maltitz

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Jens Großklags
Prüfer der Dissertation: 1. Prof. Dr.-Ing. Georg Carle

2. Assoc. Prof. Dr. Florian Kerschbaum

Die Dissertation wurde am 23.04.2019 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 17.07.2019 angenommen.

Cataloging-in-Publication Data
Marcel von Maltitz
Secure and Privacy-Preserving Services based on Secure Multiparty Computation
Dissertation, 2019
Network Architectures and Services, Department of Computer Science
Technische Universität München

ISBN 978-3-937201-67-2
ISSN 1868-2634(print)
ISSN 1868-2642(electronic)
DOI 10.2313/NET-2019-07-02
Network Architectures and Services NET
Series Editor: Georg Carle, Technische Universität München, Germany
© 2019, Technische Universität München, Germany

Abstract

The last decades show that ubiquitous application of information technology often entails a
loss of privacy for the individual. Users seemingly agree in giving away their data in order
to use a corresponding technology. However, the underlying reason is that the current
state of technology often does not allow to opt for privacy protection. In order to give
users a real choice, technologies have to be made available which particularly take the
preservation of privacy into account.

For realizing privacy-preserving services and systems, three challenges have to be consid-
ered: a clear meaning of privacy for a certain context has to be established. Technological
means have to be identified which are able to support this intention and it must be inves-
tigated how these means can be applied effectively.

First, we study several concepts of privacy. Among them, we select a contemporary under-
standing which also provides a useful foundation for building privacy-preserving techno-
logy. We then choose Secure Multiparty Computation (SMC) as a specific cryptographic
approach since it has become a promising method for privacy in data processing in the
last years. Ultimately aiming for a privacy-preserving service we first identify the potential
of SMC by understanding its performance and privacy characteristics, its infrastructural
requirements and premises for its application. We establish a baseline of performance,
scalability, and its resource consumption. We varied the network and host properties,
and analyzed their individual influence on several performance and resource aspects. We
complement these experiments with comparative measurements in emulated real world
scenarios, e.g., intranet, Internet and mobile Internet. From that we derive its suitability
for infrastructurally different settings of application. Our results confirm the current un-
derstanding that secure computation is communication-bound. Latency on the network
has the highest influence on the computation time while the influence of host parameters
is considerably lower. In our last step of the assessment of SMC, we choose a real-world
algorithm for statistical analysis from the domain of medical studies. We reimplemented
the algorithm as a secure computation and applied it in two settings: Firstly, we measured
it with synthetic data in a testbed. Secondly, we executed the secure computation over the
Internet between two hosts of different research institutions which are 500 km apart from
each other. From our assessments, we derive several insights regarding infrastructure and
privacy implications as well as its performance properties. In particular, we identify which
privacy goals SMC is able to fulfill and conclude from our infrastructural and performance
findings that SMC has a potential of practical application which is currently best leveraged
in the intranet setting.

Previous applications of SMC have often been deployed in an ad-hoc manner with large
manual overhead. To enable widespread adaptation of SMC, an architecture is needed
which allows administratively easy service-like application. For that, we create SMC as
a Service which is characterized by making securely computed data available to outside
clients by traditional queries while hiding the secure computations from them. For the lat-
ter, we develop a management architecture that is dedicated to make SMC self-managing,
robust and fit for dynamic contexts. Data access is made possible by a gateway compo-
nent which accepts queries and orchestrates corresponding secure computations. From our
identified notion of privacy we see that SMC alone only fulfills some privacy requirements.
We cover the remaining requirements by providing means for data access control which
make access transparent for the data owning components and allow them stay in control
of how their data is used. In the end, we achieve a fully privacy-preserving service with
SMC at the heart of its architecture.

Kurzfassung

Die letzten Jahrzehnte zeigen, dass der allgegenwärtige Einsatz von Informationstechnolo-
gie oft einen Verlust von Privatheit jedes Einzelnen mit sich gebracht hat. Nutzer scheinen
einverstanden, ihre Daten preiszugeben, um die entsprechenden Technologien verwenden
zu können. Dies ist jedoch der Tatsache geschuldet, dass heutige Informationstechnologien
es häufig nicht erlauben, sich gezielt für den Schutz der eigenen Daten zu entscheiden. Um
Nutzern eine echte Wahl zu geben, müssen Technologien bereitgestellt werden, welche die
Erhaltung von Privatheit gezielt berücksichtigen.

Um privatheitserhaltende Dienste und Systeme zu schaffen, müssen drei Herausforderun-
gen angegangen werden: Eine klares Verständnis von Privatheit für einen gewählten Kon-
text muss gewonnen werden. Technologische Ansätze müssen identifiziert werden, welche
diese Auffassung unterstützen und es muss untersucht werden, wie diese Ansätze effektiv
eingesetzt werden können.

Zunächst befassen wir uns mit verschiedenen Konzepten von Privatheit. Aus diesen wählen
wir eine zeitgemäße Auffassung, die ebenso eine nützliche Grundlage für privatheitsschüt-
zende Technologien darstellt. Wir ziehen dann Secure Multiparty Computation (SMC)
als konkreten kryptographischen Ansatz heran, da er sich in den letzten Jahren zu einer
vielversprechenden Methode für die Erzielung von Privatheit in der Datenverarbeitung ent-
wickelt hat. Wir untersuchen zunächst das Potential von SMC, indem wir ihre Leistungs-
und Privatheitscharakteristika identifizieren und ihre infrastrukturellen Anforderungen
und Prämissen für ihren Einsatz ermitteln. Wir erstellen eine Basislinie der Leistung
von SMC, ihrer Skalierbarkeit und des Ressourcenverbrauchs. Hierbei veränderten wir die
Netzwerk- und Hosteigenschaften und analysierten deren Einfluss. Wir ergänzen diese Ex-
perimente mit vergleichenden Messungen in emulierten Szenarien, das heißt, der Einsatz
im Intranet, Internet wie auch im mobilen Internet. Daraus ermitteln wir ihre Eignung für
den Einsatz in infrastrukturell verschiedenen Bereichen. Unsere Ergebnisse bestätigen das
aktuelle Verständnis, dass die Leistung von SMC durch den Kommunikationskanal bes-
timmt wird. Die Latenz als Parameter hat den größten Einfluss auf die Berechnungszeit
während der der Hostparameter deutlich geringer ist. Für unseren letzten Beitrag zur
Bewertung von SMC ziehen wir einen gängigen Algorithmus für statistische Analysen aus
der Domäne medizinischer Studien heran. Wir schrieben den Algorithmus in eine sichere
Berechnung um und wandten sie in zwei Umgebungen an: Zunächst maßen wir ihr Leis-
tungsverhalten mit synthetischen Daten in einem Testbett. Ferner führten wir sie über
das Internet zwischen zwei Hosts verschiedener Forschungseinrichtungen aus, welche circa
500 km weit voneinander entfernt liegen. Unsere Untersuchungen geben uns nicht nur ein
Verständnis für die Leistungsmerkmale von SMC, sondern erlauben auch die Ableitung von
vielfältigen Implikationen für ihre Infrastruktur- und Privatheitseigenschaften. Insbeson-
dere identifizieren wir diejenigen Schutzziele von Privatheit, welche SMC in der Lage ist, zu
erfüllen und schließen ferner, dass das festgestellte Potential zur praktischen Anwendung
von SMC zur Zeit am besten in Intranet-Umgebungen ausgenutzt werden kann.

Der bisher übliche Einsatz von SMC geschieht meist einzelfallbasiert mit großem manuellem
Mehraufwand. Um eine weite Verbreitung von SMC zu erzielen, ist jedoch eine Architektur
notwendig, welche eine administrativ einfache und service-artige Anwendung ermöglicht.
Dafür entwickeln wir SMC as a Service. Dessen Hauptmerkmal ist, dass sicher berechnete
Daten mithilfe von klassischen Anfragen für Dritte zugänglich gemacht werden, während
die eigentlichen Berechnungen vor diesen verschatten bleiben. Für letzteres entwickeln
wir eine Management-Architektur, welche SMC autonom, robust und bereit für den Ein-
satz in dynamischen Umgebungen macht. Der Datenzugriff wird durch eine Gateway-
Komponente ermöglicht, welche Anfragen annimmt und korrespondierende Berechnungen
orchestriert. Ausgehend von der zuvor gewählten Auffassung von Privatheit sehen wir, dass

6

SMC allein nur manche Privatheitsanforderungen erfüllt. Die verbleibenden Anforderun-
gen decken wir durch Methoden der Datenzugriffskontrolle ab: Diese machen Datenzu-
griff transparent für jene Komponenten, welche die ursprünglichen Daten besitzen und
ermöglichen ihnen, die konkrete Nutzung ihrer Daten zu kontrollieren. Dadurch erhalten
wir einen vollständig privatheitserhaltenden Dienst mit SMC im Herzen seiner Architektur.

Acknowledgments

This thesis would have not been possible without the support by many individuals. I will
not be able to name all of them but I want to highlight some.

I would like to thank Prof. Dr.-Ing. Georg Carle for giving me the opportunity to join the
Chair for Network Architectures and Services and for supervising the dissertation. I highly
appreciate your initial sparks of inspiration giving me a direction to head in. Likewise, you
gave me the freedom to follow my own interests and to shape the topic to my liking. Thank
you for your guidance and regular corrections of the course. I also would like to thank
Prof. Dr. Florian Kerschbaum for being my second assessor and Prof. Dr. Jens Großklags
for chairing the examination committee. Thank you for your interest, your time and your
support for finishing my PhD.

My feelings about working at the Chair are mainly influenced by my colleagues who shared
a considerable amount of time with me during my PhD. I would like to thank all of them
for accompanying me during my way. Above that, I want to express my special gratitude
to some of them: thank you, Holger, for being such a pleasant office mate. You facilitated
my start at the Chair tremendously and cooperating with you—be it in research projects
or conducting student theses—was always easy, inspiring and fun. Thank you, Florian
and Dominik, and the whole testbed team. You made my measurements possible. You
supported me during the process and helped me to fulfill the rather special requirements
I sometimes had for the test infrastructure.

I would like to thank all my students whose thesis I was allowed to supervise. While
you hopefully learned something about computer science, I learned a lot about education
and applied didactics. A special thanks goes to two of my master students, Stefan and
Dominik. Thank you for your cooperation in my research and in particular for building
the prototype of my privacy-preserving service architecture.

Thank you, Dr. rer. nat. Hendrik Ballhausen, for suggesting a research collaboration on
secure evaluation of medical studies and for making it possible. All credit belongs to you
that we could use real medical data, had the necessary infrastructure available and the
support of many more colleagues, without whom we would not have been able to conduct
our evaluations. It was great working with you.

I would also like to thank my proof readers, Lukas, Max, and Daniel. Thank you for your
feedback.

University and academia only covers a part of my life. I would like to thank my friends
for making the other parts enjoyable and worth living. Thank you for your support and
being with me. You know who you are. In particular, I want to thank Lukas for being at
my side. There are no words which can adequately express my gratitude.

Lastly, I am deeply thankful to my parents Gisela and Axel. Always trusting in my choice,
you gave me all necessary space for development and seemingly effortless guidance. You
had the biggest impact on who I am today.

Contents

1 Introduction . 1

1.1 Research Questions . 2

1.2 Structure of this Thesis . 3

1.3 Publications in the Context of this Thesis . 5

2 Notions of Privacy . 7

2.1 Lewis & Short: Latin Etymology . 7

2.2 Warren & Brandeis: The Right to Privacy . 8

2.3 Westin: Constitutive Privacy. .9

2.4 Nissenbaum: Contextual Integrity. .10

2.5 Cavoukian: Global Privacy Standard and Privacy by Design 11

2.6 International Standards: Privacy Framework . 12

2.7 Pfitzmann, Rost, et. al: Privacy and Data Protection Goals 12

2.8 Conclusion. .15

3 Background on Secure Multiparty Computation .17

3.1 Problem Domain . 17

3.2 Objective . 19

3.3 Adversary and Security Model . 19

3.3.1 Taxonomy of Models .20

3.3.2 Perfect Simulatability and Universal Composability 21

3.4 Realizations . 23

3.4.1 Taxonomy of Approaches . 23

3.4.2 State of the Art . 29

3.4.2.1 Feasibility Results . 29

3.4.2.2 Active Security . 31

3.4.2.3 Performance. .32

3.4.3 Frameworks . 32

3.5 Summary . 33

ii Contents

I Performance and Application of SMC

4 Performance Assessment of Secure Multiparty Computation 37

4.1 Selection of Framework . 37

4.2 Use Case . 38

4.3 Preliminary Execution Time Considerations .40

4.4 Hardware Setting . 42

4.5 Measurement Setup . 43

4.5.1 Host System . 43

4.5.2 Measured Software. .43

4.5.3 Measurement Software . 44

4.5.4 Orchestration Software. .45

4.6 Measurement Process . 45

4.7 Results . 48

4.7.1 Number of Points . 48

4.7.2 Number of Peers . 52

4.7.3 Cores and CPU Frequency . 56

4.7.4 Transmission Rate . 58

4.7.5 Packet Loss . 61

4.7.6 Network Latency . 64

4.7.7 Parallelized Protocol Invocations . 67

4.8 Findings . 71

4.9 Practical Implications. .73

4.10 Related Work. .74

4.11 Key Contributions of this Chapter . 75

4.12 Statement on Author’s Contributions . 76

5 Real-World Scenario Assessment of Secure Multiparty Computation 79

5.1 Settings . 79

5.1.1 Intranet . 79

5.1.2 Internet . 80

5.1.3 Mobile Internet . 81

5.2 Results . 81

5.2.1 Running Time . 82

5.2.2 CPU Utilization . 82

5.2.3 Transmitted Packets . 83

5.3 Key Contributions of this Chapter . 83

Contents iii

6 Secure Evaluation of Patient Data in Medical Studies 85

6.1 Survival Analysis . 85

6.1.1 Kaplan–Meier Estimator . 87

6.1.2 Log-Rank Test . 88

6.1.3 Basic Algorithm . 89

6.2 Cooperative Evaluation of Partitioned Data Sets . 90

6.3 Secure Implementation of the Kaplan–Meier Log-Rank Algorithm 91

6.4 Performance Evaluation. .94

6.4.1 Measurement Setup . 94

6.4.2 Method . 95

6.4.3 Results . 95

6.4.4 Real-World Experiments . 102

6.5 Findings . 103

6.5.1 Infrastructure . 103

6.5.2 Privacy . 104

6.5.3 Performance . 104

6.6 Key Contributions of this Chapter . 105

II SMC as a Service

7 From SMC to a Privacy-Preserving Service . 109

7.1 Discussion of Previous Findings . 109

7.2 Use Case . 111

7.3 Solution Sketch . 112

7.4 Analysis . 113

7.5 Related Work. .117

7.6 Requirements . 118

7.7 Statement on Author’s Contributions . 121

8 Self-Managing SMC .123

8.1 Architecture . 123

8.2 Gateway Discovery . 123

8.2.1 Gateway Announcement . 124

8.2.2 Peer Query . 127

8.3 Pairing Process . 127

8.4 Operation Mode . 129

8.4.1 Peer-Side . 129

8.4.2 Gateway-Side . 130

iv Contents

8.5 Session Orchestration . 130

8.5.1 Orchestration Protocol . 130

8.5.2 Task Description Scheme . 133

8.6 System Stability and Recovery . 135

8.6.1 Session Recovery . 135

8.6.2 System State Stabilization . 136

8.7 Generalization: Loose Coupling of SMC. .136

8.7.1 Premises . 136

8.7.2 Decomposition of the Peer Component . 137

8.7.3 Peer-Internal Interaction . 138

8.7.4 Session Multiplexing . 139

8.8 Key Contributions of this Chapter . 139

8.9 Statement on Author’s Contributions . 140

9 Private and Transparent Data Querying . 141

9.1 Architecture . 141

9.2 Access API . 141

9.3 Directory Service . 142

9.3.1 Purpose . 142

9.3.2 Content Generation. .143

9.3.3 Metadata Queries. .143

9.4 Client-faced Access Control . 145

9.4.1 Refined Security and Privacy Model . 145

9.4.2 Overview . 146

9.4.3 Permission Grant Request . 147

9.5 Computation Request . 150

9.5.1 Request Creation . 151

9.5.2 Access Verification. .152

9.5.3 Request Translation . 153

9.5.4 Result Receipt . 154

9.6 Evaluation. .155

9.6.1 Security and Privacy. .155

9.6.2 Performance . 156

9.6.2.1 Setup . 156

9.6.2.2 Results .157

9.7 Generalization: Application without SMC . 161

9.8 Discussion . 162

9.9 Key Contributions of this Chapter . 164

9.10 Statement on Author’s Contributions . 165

Contents v

10 Advantages and Disadvantages of applying SMC .167

10.1 Baseline . 167

10.1.1 Qualification for Comparison . 167

10.1.2 Real-World Architectures and Solutions. .167

10.1.3 Abstraction . 170

10.2 Categories of Comparison. .171

10.3 Comparison . 171

10.3.1 Architecture . 171

10.3.2 Data Protection . 172

10.3.2.1 Trust . 172

10.3.2.2 Security . 173

10.3.2.3 Privacy . 174

10.3.3 Resource Consumption and Performance. .175

III Conclusion

11 Conclusion .181

11.1 Central Findings and Contributions. .181

11.2 Further Research Directions . 185

IV Appendix

A Real-World Results of the Log-Rank Test Evaluation 191

List of Figures . 195

List of Tables . 199

List of Listings . 201

Bibliography. .203

1. Introduction

Digitization has fundamentally changed our lives. Through the ubiquity of mobile phones
and computers, we experience an interconnectedness unparalleled in the history of civi-
lization. Every day, we consume tremendous amounts of information and most of us are
also generating tons of information, especially by the use of social media and technically
mediated communication.

The end-devices connecting us to the digital world are only the top layer of the technology
stack making this possible. Underneath, additional innovations were crucial: the Internet
provides the infrastructure for connectivity which enables information exchange. Cloud
computing provides data availability through data storage and processing facilities.

However, the practice of remotely centralizing data leads to a loss of privacy for data
owners and users. Third parties are able to access the users’ data and attacks on these
infrastructures increase in terms of likeliness and impact. Similarly, users lose control
over uploaded data and become unable to track how and for which purposes their data is
actually used.

During the last years, the awareness of this problem has increased in some parts of the
world as society witnessed the revelation of global Internet surveillance. A public discourse
emerged, renegotiating the value of privacy and the necessity of its protection.

In order to achieve a handling of privacy which is compatible with a pluralistic society, it
is important that this discourse can develop freely. However, the current default of techno-
logical systems is undermining, or at least disregarding privacy. Merely using technology
then seemingly implies that we acquiesce in or even agree to our loss of privacy. If we fail
to have a real choice on the technical level, the discourse becomes biased.

Using technology on the one hand and protecting one’s data on the other hand is a false di-
chotomy. Privacy-enhancing technologies demonstrate that the two are not fundamentally
in conflict; instead, it is actually possible to achieve both at the same time.

In the 1990s, public key cryptography was seen as a holy grail for privacy in the dig-
ital world [Tim94]. The corresponding technical understanding of privacy was strongly
dominated by the idea that certain information should be confidential and therefore not
available to a third party at all. From this viewpoint, encryption provides privacy by
guaranteeing that some information is just random data for those who are not eligible for
accessing it.

2 1. Introduction

This is an all-or-nothing approach to data access. Being so coarse, it is not satisfyingly
applicable to domains where data should be available to third parties and allow some usage
of the data while prohibiting others.

The realization of privacy-preserving systems which achieve this property is not a trivial
task. Typically, specific protection strongly depends on the semantics, i.e., the meaning
and the structure of the data in question. In general, the more one can process, compute
with or transform the data, the more possibilities of privacy protection become available.
This is especially true for numerical data: in the overwhelming majority of use cases, it is
not the raw data points which are finally important, but metrics and aggregations derived
from it. The latter are of much higher relevance for decision making while they are actually
less privacy-critical than the original data points.

Processing critical data into uncritical aggregates becomes difficult in particular if private
data from several sources should be merged. This normally requires a trusted third party
which gets access to all this data and performs the processing. However, it is quite common
that authorizing such a third party is not possible or at least entails high administrative
overhead like contractual regulations.

Cryptographic approaches like Secure Multiparty Computation (SMC) solve this problem
on a technical level. SMC enables the processing and combining of data from several
stakeholders while ensuring that each stakeholder’s data is not made available to any other
party. Only the result becomes accessible for the participants. We can use this approach
to generate uncritical data from private data of several sources, allowing to exploit the
data’s utility without violating the privacy requirements of their owners.

In this thesis, we examine SMC as a foundation of privacy-preserving services for data
processing. Our contributions are twofold: SMC comes with certain assumptions and
premises about the environment of application and the initial state of the raw data. It also
has implications for computation performance and resource consumption. To understand
the premises and implications of applying SMC we first assess a state-of-the-art SMC
framework and investigate the computing performance one can achieve with it. We do
this in a testbed and in a real-world setting.

To enable widespread adoption of SMC, its application must be possible in an automated,
self-dependent and robust manner. We hence develop a service architecture for data
processing with SMC at its core. We provide measures of self-management and auto-
configuration as well as data querying and access control. We will see that SMC only
fulfills some privacy protection goals. Therefore, we extend our architecture to address ad-
ditional privacy requirements: While allowing clients to request securely computed data,
we enable data owners to stay informed about computation requests and to exert control
over their data during its full lifetime.

1.1 Research Questions

The foundations for SMC were laid in the 1980s. Since then, this field of research flourished
both in theory and in practice. In the 2000s, a milestone [BCD+09] was reached by
performing one of the first practical field applications of SMC. Until now, security and
performance of the technical foundations of SMC are still improving.

Most results were achieved in settings that have been setup a single time for conducting the
desired computations. Infrastructural problems have been excluded, rendering the setting
more controlled but also more artificial. We are missing an architecture that enables
application of SMC to data processing problems in an automated way. We advance the
state of the art by providing such a privacy-preserving architecture. It uses SMC as its
core technology, but also takes infrastructural constraints of the environment into account.

1.2. Structure of this Thesis 3

We conduct this task guided by the following research questions:

Q1: Which understanding of privacy can be used to create privacy-preserving tech-
nology?

In the literature, there are multiple concepts of privacy. They range from legal notions
over social norms to technical understandings. We examine which foundation can be
used to derive requirements for a privacy-preserving technology in general and for service
architectures in particular.

Q2: What are the performance characteristics of SMC and which environments for
application do they suggest?

Usage of SMC comes at a cost: the protection of data during processing is achieved by
mathematical transformations. They add a computational overhead to the processing.
Furthermore, processing has to be carried out as interactive protocol between several
cooperating nodes. That means, also communication overhead is added. It is vital to
understand the implications on performance since we have to take them into account
when designing a service architecture in the later chapters.

Q3: Which infrastructural requirements must be addressed when applying SMC in
domains with critical data and which privacy requirements are then fulfilled?

Our architecture has to make SMC possible in an automated and self-dependent manner.
For that, we have to identify which infrastructural problems our architecture actually has
to solve and which premises of SMC it has to fulfill. Moreover, we have to build a fully
privacy-preserving service based on the notion identified in Q1. Consequently, we have to
assess to which degree this is achieved by employing SMC and which privacy properties
have to be realized by other means.

Q4: How must SMC be managed to work reliably in dynamic environments?

From the insights of the previous questions we will see that our architecture needs two
parts: To realize SMC as a Service, the internals of the system must be hidden from
the clients. This also implies that setup, configuration, handling of computations and
occurring problems should not be observable to the outside. To achieve this, the system
must be able to cope with these challenges in a self-dependent and autonomous manner.

Q5: How can our architecture be extended in order to realize a fully privacy-
preserving service?

The other part addresses making the functionality of SMC available to outside clients
without involving them in the computations. This includes stating requests for computa-
tion and retrieving the computation result without contact to SMC itself. Furthermore,
Q3 will show that SMC can only fulfill some of the desired privacy protection goals. Our
architecture must hence be extended by further protection functionality to achieve a fully
privacy-preserving service.

1.2 Structure of this Thesis

Chapter 1 This Chapter 1 introduces the topic and presents the research questions to
be answered. We give an overview of the following chapters and list the publications which
have been created in the context of this thesis.

Chapter 2 In Chapter 2, we provide an overview of the development of the notion
of privacy and select a current understanding which enables design and assessment of
technological solutions with respect to privacy (Q1).

4 1. Introduction

Chapter 3 In Chapter 3, we elaborate on the background and state of the art of SMC.
We examine the theoretic background on SMC. We elaborate on the objective, possible
adversary models and build up a taxonomy of practical approaches. Lastly, we present the
state of the art of available implementations. This part provides the foundation for the
following chapters.

Chapters 4 & 5 We perform thorough baseline measurements (Q2) of a state-of-the-art
implementation of SMC in Chapters 4 and 5. We use a simple use case in order to identify
the best case performance. Several host and network parameters are varied in order to
understand their influence on the resource consumption and performance of the applied
SMC solution. Chapter 4 evaluates these environmental parameters separately, Chapter 5
examines common usage settings represented as a combination of parameters.

Chapter 6 In Chapter 6, we consider medical research as relevant real-world setting in
which SMC offers promising advantages. For this setting, we develop a secure implemen-
tation of an often used statistical evaluation (Q3). We also assess the solution in a testbed
and over the Internet (Q2). Again, several parameters are varied in order to understand
the environmental influences on the computation. These measurements complement the
baseline established in the previous chapters.

Chapter 7 In the next chapters, we address the challenge to realize SMC as a service and
develop the corresponding architecture of such a privacy-preserving system. To specifically
address Questions Q4 and Q5, we first refine them in Chapter 7. We discuss the findings
of the previous chapters and derive a use case to be addressed. We present the related
work for our architecture and therefore the following chapters. We develop a sketch of our
solution which we use to conduct further analyses of the solution space. From this, we
obtain a rich set of requirements that guides us in the subsequent chapters.

Chapter 8 Then, we focus on the creation of the first part of the anticipated architecture:
the development of an orchestration layer for SMC which enables setup and execution of
SMC sessions in dynamic environments (Q4) in Chapter 8. The central idea is providing
management nodes, called Gateways. These are capable of orchestrating a group of SMC
peers: The Gateways stay informed about the data the peers individually provide and
the computations they offer. They hold an active connection to the peers. This allows
to send control messages for initiating and conducting SMC computations. During the
computations, Gateways monitor ongoing sessions and perform recovery activities in case
a computation failed due to host or network errors. As a last point, we discuss how our
approach is generic instead of being tied to a specific SMC implementation.

Chapter 9 We extend our solution in Chapter 9. The data made available via SMC
becomes accessible to outside third parties. For that, these do not have to be enabled for
secure computations themselves. A traditional data query is sufficient. This method of
data retrieval is extended by two layers of access control. On the one hand, the Gateway
is able to check the legitimacy of incoming queries. On the other hand, the query is
forwarded to the actual SMC peers in an authenticated and integrity-protected fashion.
This enables the peers themselves to control how their data should be used and permits
them to refrain from cooperation if their privacy rules are violated. By doing so, we also
fulfill two additional privacy protection goals of our notion of privacy from Chapter 2,
ultimately obtaining a fully privacy-preserving service (Q5).

1.3. Publications in the Context of this Thesis 5

Chapter 10 Chapter 10 performs a roundup of the gained insights by comparing tradi-
tional architectures against SMC, and in particular our contributions. We examine several
productively deployed systems which fulfill a similar goal of distributed data collection
and data processing as our approach. We generalize them to find a common abstract
architecture and define several categories for assessment. Namely, we examine differences
and commonalities in terms of architectural and infrastructural characteristics, data pro-
tection properties, performance and resource consumption. This enables us to assess in
which cases SMC is a helpful approach and fit for application.

Chapter 11 In Chapter 11, we conclude the thesis. We provide answers to the research
questions and suggest further directions for research on SMC and its application.

1.3 Publications in the Context of this Thesis

The following papers have been published in the context of this thesis. We always indicate
at the beginning of a section if its content has been published in one of these papers.

Chapter 4 M. von Maltitz and G. Carle. A Performance and Resource Consumption
Assessment of Secret Sharing based Secure Multiparty Computation. In J. Garcia-
Alfaro, J. Herrera-Joancomarti, G. Livraga, and R. Rios, editors, Data Privacy Man-
agement, Cryptocurrencies and Blockchain Technology, pages 357–372. Springer In-
ternational Publishing, Barcelona, Spain, 2018

Chapter 7 M. von Maltitz and G. Carle. Leveraging Secure Multiparty Computation in
the Internet of Things. In Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services, pages 508–510, New York, New York,
USA, 2018. ACM Press

Chapter 8 M. von Maltitz, S. Smarzly, H. Kinkelin, and G. Carle. A Management Frame-
work for Secure Multiparty Computation in Dynamic Environments. In Proceedings
of 30th IEEE/IFIP Network Operations and Management Symposium, Taipei, Tai-
wan, 2018. IEEE

Chapter 9 M. von Maltitz, D. Bitzer, and G. Carle. Data Querying and Access Control for
Secure Multiparty Computation. In Proceedings of the 16th IFIP/IEEE International
Symposium on Integrated Network Management, Washington, DC, USA, 2019. IEEE

6 1. Introduction

2. Notions of Privacy

In this thesis, we want to contribute to technology which honors, preserves and protects
the privacy of data and their owners. In order to achieve this, it is vital to have a clear
understanding of the concept privacy, providing a goal to aim for. So, what does privacy
mean?

In order to identify a concise and coherent concept which finally allows to be concretely
addressed by technology, we have to narrow down the scope in which we want to understand
privacy. Hence, we ask: what does privacy mean in the context of technology handling
information of individuals?

In this chapter, we discuss a selection of proposals how to understand privacy. While they
provide different perspectives on the same topic, they should be especially understood as an
evolutionary process: the concept privacy was developed and diversified in recent decades
in order to keep up with societal changes and especially with technological innovation.

We start with a glance at the Latin etymology of the term privacy. Then, we consider
some social and legal approaches to understanding it during the 19th and 20th century.
Afterwards, we proceed to current attempts of grasping privacy in social and also in
technical contexts. This also considers the domain of data protection which is highly
related to privacy.

Our review of concepts finishes with a description of privacy using structured protection
goals. With this step, privacy reaches the level of conceptual maturity which security
possesses since it was dissected into confidentiality, integrity, and availability (CIA).

2.1 Etymology

Two words can be identified as the root of the term privacy : privus and privatus. Con-
sulting a Latin dictionary [LS79] their meaning is as follows:

privus is a) single b) each, every individual c) one’s own, private, peculiar, particular d)
deprived of, without.
Privatus is understood as a) apart from the state, peculiar to one’s self, of or belonging to
an individual, private (as opposite to public) b) for persons: not in public or official life,
private, deprived of office, a private individual, one who is not a magistrate, or in any
public office c) for objects: isolated, apart from the villages, a private life, withdrawn from
state affairs c) in private, in private use, from one’s private property d) a man in private

8 2. Notions of Privacy

life, citizen (as opposite to magistratus) e) in the time of the emperors: private, i.e. not
imperial, not belonging to the emperor or to the imperial family, not given by the emperor.

For our considerations it is interesting to see that the terms privus and privatus already
depict the idea of an individual—as opposed to society or a group of persons—and his or
her own personal affairs. These affairs are contrasted to the individual’s public life and
official function as well as the emperor and the state. This contrast contributes to the basic
concept that there is a public sphere and a private sphere. Every action and information
of individuals seem to fall either in the one or the other category. The next section shows
that this interpretation of privacy is still current even millennia later.

2.2 The Right to Privacy

A very early treatise which argues for recognizing a new kind of personal protection,
called The Right to Privacy [WB90], was published in 1890 by Samuel D. Warren and
Louis D. Brandeis. The starting point are economic progress and technological inventions:
“Instantaneous photographs” [WB90, p. 195] enabled taking pictures of people without
their consent.1 This led to undesired effects like the circulation of portraits of private
persons. Concomitantly, journalism and newspapers invading the private sphere of people
in order to publish details about their personal life (“idle gossip”) are part of a current
public debate.

Warren and Brandeis argue that these developments contradict moral and ethical stan-
dards: they cause notable emotional harm and mental pain to the victims of these infringe-
ments as well as moral decay of the recipients. However, the observed behavior is not yet
recognized as legal misdemeanor. They argue that it should be understood as such and
show that established legislation like slander and libel, the law of defamation, the copy-
right and implicit contracts are related but do not yet address the issues they identified:
personal information, like letters, is not necessarily protected by the copyright, as they
cannot be considered as valuable intellectual work [WB90, p. 201]. Similarly, the conse-
quence of privacy violations is in their terms “mental pain”, “distress”, “injury of feelings”,
which are neither covered by the law of defamation [WB90, p. 197] nor libel and slander.
These in turn only address “damage to reputation”, only regarding harmed relationships
to others. Concluding that the identified problems cannot be addressed with legal means
at that time, they demand a new understanding of personal rights including protection
from infringements of the stated form.

With a multitude of examples and distinctions from other laws they establish an under-
standing what should be protected and why. For them, privacy is the right to be let alone,
which is in turn only one expression of a more fundamental principle of an “inviolate per-
sonality” [WB90, p. 205], the “immunity of the person” and “the right to one’s personality”
[WB90, p. 207]. Every individual should be able to decide for oneself to whom and to
what extend one’s “thoughts, sentiments, and emotions shall be communicated to others”
[WB90, p. 198]. This further extends to expressions of the individual like private letters.
Concomitantly, no one else should be allowed to publish or make these kinds of recordings
available.

Aiming for a legal foundation for privacy they further develop the understanding of the
protection of the person. Their concept of privacy is that an individual should be able to
withdraw from the public world and control what and how much from this private sphere
is shared with others.

The treatise of Warren and Brandeis is a milestone towards privacy and constitutes an
important foundation for all later attempts to conceptualize privacy.

1Earlier, consent of photography was implicitly given, since persons had to sit motionless for several
minutes in order to create the photo.

2.3. Westin: Constitutive Privacy 9

2.3 Constitutive Privacy

Picking up the arguments and the viewpoint of Warren and Brandeis at the very beginning
of his seminal book Privacy and Freedom [Wes70], Alan Westin provides a clear definition
of privacy:

“Privacy is the claim of individuals, groups, or institutions to determine for themselves when,
how, and to what extent information about them is communicated to others. Viewed in
terms of the relation of the individual to social participation, privacy is the voluntary and
temporary withdrawal of a person from the general society through physical or psychological
means, either in a state of solitude or small-group intimacy or, when among larger groups, in
a condition of anonymity or reserve. [Wes70, p. 5]

On the background of this definition, Westin argues that perceiving privacy as a value
is not a new development, nor has it taken place as late as the 19th century despite the
privacy milestone of Warren and Brandeis. Instead, basic forms of desiring and achieving
privacy can already be found in the animal world. [Wes70, p. 7ff]

Regarding mankind, it is obvious that different societies do not share the same under-
standing of how privacy can be achieved or which interaction is actually perceived as
privacy-preserving or privacy-invading. However, given the previous definition, and tak-
ing the actual societal background and norms, the availability of secluded spaces, the
housing situation etc. into account, Westin argues that individuals in different societies
and cultures all have a fundamental desire for privacy and differently developed ways and
conventions how to achieve it.

Westin identifies four refined types of privacy: solitude, intimacy, anonymity, and reserve.
Solitude is understood as a fundamental kind of privacy: seclusion yields physical distance
and the most complete withdrawal from other persons and society. Intimacy means that
“the individual is acting as a part of a small unit that claims and is allowed to exercise cor-
porate seclusion so that it may achieve a close, relaxed, and frank relationship between two
or more individuals” [Wes70, p. 34]. Anonymity is the method of keeping the own identity
unknown to the persons an individual is interacting with, instead of restricting the amount
of information communicated to them. On the contrary, as Westin states, anonymity al-
lows an individual to be surprisingly open regarding private information, since the other
person will not be able to exploit the gained information due to the unknown identity
of the individual. Lastly, reserve means “the creation of a psychological barrier against
unwanted intrusion” [Wes70, p. 35] and results in limiting the amount of information that
is communicated by the individual to the persons in the surrounding, creating a mental
distance. This can happen while being in the midst of large crowd, by signalling the de-
sire to be let alone, e.g., stopping to speak [Wes70, p. 32], closing the eyes, hiding the
face [Wes70, p. 13], or facing the wall2 [Wes70, p. 15]. We would argue that reserve can
be understood as a means to privacy of last resort. If all other ways of gaining privacy
are impossible at a given situation, and privacy is desired, reserve will be the method of
choice. Since reserve is a first step to self-censorship regarding the expression of the self, it
is desirable to enable individuals to achieve privacy with other means which do not affect
the own character and behavior at such a fundamental level.

Westin not only discusses what privacy is and how it can be achieved. He also elaborates
why the need of privacy exists by showing the functions it fulfills for the individual. In
other words, there are more fundamental values or desires which cause the need for privacy.
We will only select those functions mentioned by Westin which are relevant for our question
and our context.

2In that spirit, looking at one’s own smartphone while being in the public space occurs also to be a way
of achieving privacy from one’s physical surrounding and one’s fellow human beings.

10 2. Notions of Privacy

A first function of privacy is to ensure autonomy, “the desire to avoid being manipulated
or dominated wholly by others” [Wes70, p. 36]. Staying in control of what information is
communicated to whom constitutes an essential part of it. A second relevant function is
social release. If individuals have the autonomy to shape how they are perceived by others,
they have the opportunity to embody different roles in different contexts. The “pressure
of playing social roles” however, requires some relaxation by “lay[ing] their masks aside for
rest” [Wes70, p. 38].

[The need for privacy]—that is, insulation of actions and thought from surveillance by others—
is the individual counterpart to the functional requirement of social structure that some
measure of exemption from full observability be provided for. Otherwise, the pressure to live
up to the details of all (and often conflicting) social norms would become literally unbearable;
in a complex society, schizophrenic behavior would become the rule rather than the formidable
exception it already is. (Robert Merton as cited by [Wes70, p. 63f.])

Similarly, privacy softens social norms and rules. The corpus of social norms contains a
multitude of minor rules which can be expected to be broken often without larger harm
done to the society. Here, privacy is a relief on the side of the individual as well as on
society. The individual can expect not to be prosecuted for trivial offenses and—which
is easy to miss— society is released from having to punish every single deviation [Wes70,
p. 38]. “The firm expectation of having privacy for permissible deviations is a distinguishing
characteristic of life in a free society” [Wes70, p. 39]. Two further functions, less relevant
for our goals, are self-evaluation [Wes70, p. 40] and limited and protected communication
[Wes70, p. 41].

In conclusion, Westin adapts the ideas of Warren and Brandeis, but argues that the need
for privacy is even more fundamental. While it is present in all societies, the understanding
of what is considered private and how privacy can be achieved highly differs. Additionally,
he argues that it is not only in the interest of individuals to enable privacy in a society, but
it is also vital for society itself. With regard to realizing privacy, he already recognizes that
privacy in the public is desirable, that it can be achieved and that there are established
methods for doing so. The last point is especially interesting, since thirty years later,
Helen Nissenbaum again has to defend this understanding against opposite positions.

2.4 Contextual Integrity

Helen Nissenbaum [Nis98, Nis04] observes that the idea of a private sphere to withdraw
from the world suggests the existence of an opposite. There seems to be a public world
where information about every individual is freely available as soon as it was shared. This
enables and allows the data to be processed and finally used “from whomever collects it”
[Nis98, p. 1]. With the advent of new technological developments, huge parts of commu-
nication, interaction and transactions are now mediated by electronic infrastructure. This
tremendously increases the ability to perform collection and processing of information.

She notices that the discussion about privacy still focuses too much on the private sphere
and the personal space likewise, but leaves out public spaces. Hence, she aims to address
what she calls privacy in public. Westin’s theory already understood this value. However,
Nissenbaum reinforces it again. From her point of view, society (including companies and
government) does still not live up to this value and technological advances jeopardize it
more than it was possible at Westin’s time.

Conceptually, her approach is to dissolve the dichotomy of a private and a public sphere.
Instead, she suggests to understand bits of information in the context they were initially
given. Examples for contexts are the appointment with the doctor, a meeting with the
bank consultant or an evening with friends. The intuitive understanding of privacy suggests

2.5. Cavoukian: Global Privacy Standard and Privacy by Design 11

that some information is highly adequate in one of these contexts but considered misplaced
in the others. Privacy is hence preserved if information and the context in which it is
communicated match in terms of social norms and the individual’s understanding. This
condition is termed appropriateness. A second condition—distribution—addresses the flow
of information. It focuses on how information is distributed, whether the flow is uni- or
bidirectional, whether forwarding of information to third parties is legitimate, and how
participants can choose which information to share. Her approach manages to transition
from a static label for information, being private or not, to a dynamic understanding which
also considers the current context, the individuals involved and the roles they play.

With contextual integrity, she lays a conceptual foundation for the protection goals unlink-
ability and purpose binding. The former demands that no two pieces of information given
separately (and most probably in different contexts) should be combined. The result of
combination could provide further, context-spanning insights which have not been intended
by the originating individual. Purpose binding, on the other side, directly states that in-
formation may not be moved outside of its context and be reused for another purpose.
Furthermore, since social and individual norms play an important role in this concept, the
necessity for intervenability is increased. It enables individuals to actually influence how
information is shared, based on their norms and opinions.

2.5 Global Privacy Standard and Privacy by Design

Another attempt to conceptualize privacy is the Global Privacy Standard (GPS) [Cav06].
Comparing “leading privacy practices and codes from around the world”, the 27th Inter-
national Data Protection Commissioners Conference aimed for “develop[ing] a harmonized
set of fair information practices”.

Starting with a high-level understanding of privacy which “relates to personal control
and freedom of choice” [Cav06, p. 2], they identified ten principles to be respected when
handling personal data of individuals. These principles regard the complete lifecycle of
data from collection to processing to final deletion but are more organizationally than
technically oriented. This standard encompasses the principles of consent of the data
source regarding the data collection, use or disclosure; accountability of privacy-related
actions; purposes have to be specified for processed personal data; collection limitation
of personal data; use, retention and disclosure limitation; accuracy correctness, and up-
to-dateness of the collected data; guaranteeing security of the collected personal data;
openness of policies and practices to enable accountability, access of the individuals to
their personal data, compliance of the executed processes with their stated policies.

In 2010, Cavoukian [Cav10] developed the information management principles Privacy by
Design (PbD). PbD identifies principles which help considering privacy protection from
the beginning of the design of a system in order to make it a default property of newly
developed systems. For existing systems, the principles give guidance for manual privacy
audits. Structurally, PbD is located on a higher level of abstraction than GPS. Some PbD
principles subsume multiple GPS statements; further principles are introduced by PbD
which were not yet covered by GPS.

Cavoukian’s contribution is not genuinely a stringent conceptualization of privacy. While
the GPS only creates a vague idea of what privacy means, it provides a collection of
principles to protect personal data and autonomy of individuals when facing organizations
and data processing technology. Here, the GPS directly addresses the (organizational)
contexts in which data is processed and aims for direct applicability. Also PbD, being
more high-level than GPS, still does not constitute a fundamental concept. PbD provides
aims for GPS and more general and process-oriented suggestions how GPS practices can
be realized.

12 2. Notions of Privacy

2.6 ISO/IEC 29100: Privacy Framework

The International Organization for Standardization and the International Electrotechnical
Commission created the ISO/IEC 29100 [ISO11]. It “provides a high-level framework for
the protection of personally identifiable information (PII) within information and commu-
nication technology (ICT) systems”. Within this framework, organizational, technical and
procedural aspects are addressed.

Their method encompasses several building blocks: initially they establish a common
terminology with respect to handling and processing PII. This allows to express consid-
erations and advice in this domain specifically and unambiguously. Furthermore, with
defining roles of entities interacting with PII, they are able to create abstract categories
for typical interaction patterns when handling PII. This allows to address these classes of
problems generically when stating requirements and advices. They show domains which
can influence the identification and relevance of privacy safeguarding and ultimately name
principles of privacy protection.

The latter“were derived from existing principles developed by a number of states, countries
and international organizations”. This catalogue contains the following principles: Consent
and choice, Purpose legitimacy and specification, Collection limitation, Data minimization,
Use, retention and disclosure limitation, Accuracy and quality, Openness, transparency and
notice, Individual participation and access, Accountability, Information security, Privacy
compliance.

Similar to [Cav06], they focus directly on data handling and give direct advice which
caveats to consider and which goals to fulfill. Due to that reason, our assessment of
ISO/IEC 29100 is similar to the one about Cavoukian’s work. It constitutes a pragmatic
and practical approach of addressing the problem of handling personal data. On the
ideological level, they do not provide an answer to the question of what privacy can mean.
Instead, they refer to legal frameworks requiring the protection of personal data and the
growing complexity of ICT systems, arguing that it makes a standardized approach to the
realization of data protection necessary.

2.7 Privacy and Data Protection Goals

Pfitzmann and Rost [RP09] refer to the established protection goals for security (confi-
dentiality, integrity and availability), and advocate for the continued usage of protection
goals for describing certain properties when creating laws, infrastructures and systems.
Following a very strict method they aim for building a structure in the space of present
protection goals: they notice that availability and confidentiality constitute a dual, i.e., a
pair of opposites. In their words, availability is guaranteed accessibility to some informa-
tion during a specified time frame while confidentiality is guaranteed non-accessibility to
some information during a specified time frame. Starting from this observation, they first
aim for finding a dual to integrity. Understanding integrity as guaranteed genuineness,
they define contingency to be the guarantee that there is no guarantee of genuineness for
some information. This constitutes a foundation for derived protection goals like plausible
deniability.

For data protection and privacy the authors introduce unlinkability. They define it as
the impossibility to link information and entities among different domains.3 A domain
is constituted by a common purpose and context. Here, the influence of Nissenbaum’s
contextual integrity becomes obvious.

3For a detailed formalization of unlinkability see [SK03].

2.7. Pfitzmann, Rost, et. al: Privacy and Data Protection Goals 13

In order to enable data owners or users to understand how personal and privacy-critical
information is processed, a further protection goal—transparency—is defined. By their
definition, transparency is given with respect to a system component if an entity is able to
gain insights into the component effectively making it observable and discernible. Among
others, an important application of transparency is linkage control [Han12]: for data owners
and users it should be recognizable under which circumstances which of their information
is linked or at least potentially linkable over different domains.

The authors do not yet point to intervenability as a protection goal, but it is already
recognizable when describing measures for realizing unlinkability.

In [BPPB11], the focus how to constitute privacy shifts to some degree. Borcea-Pfitzmann,
Pfitzmann and Berg advocate that personal privacy is constituted by data minimization,
user control and contextual integrity. Their main argument for the combination of these
three is founded on two considerations: historically, these three concepts of privacy preser-
vation emerged in chronological order as a reaction to the technical possibilities of that
time. Similar, in the cases of data minimization and user control, further technological
advances rendered the approaches insufficient by making their full realization impossible.
In their concept, the understanding of contextual integrity is further differentiated. Nis-
senbaum states that the context in which personal information is disclosed may not be
altered. Similarly, information may not be moved out of its original context into another
one. They further differentiate this concept and coin Nissenbaum’s concept disclosure
context. A disclosure context is a set of characteristical environmental properties. Con-
texts shall support individuals to decide which personal information are appropriate and
which to disclose in each context. Besides this type of context, the authors define integrity
contexts. These are environmental properties which are attached to an information when
it is disclosed in order to ensure its correct understanding and interpretation. In other
words, it enables contextualization by providing explanatory metadata. With the high
granularity of their concept, they aim for immediate application in technical systems.

Bock and Rost [BR11] directly refer to [RP09] and establish a double triad of protection
goals: CIA for security and unlinkability, transparency, and intervenability for privacy.
According to them, the goal of the latter triad is to operationalize two fundamental social
requirements: system provider must be able to control their systems and prove this ability.
Furthermore, it must be possible for all stakeholders to use a provided system in a fair
manner. They perceive data protection as a measure to address and level the asymmetry
of power which exists between organizations, i.e., service providers and individuals, i.e.,
service users [Ros17].

They also refer to Privacy by Design and the Global Privacy Standard (cf. Section 2.5). For
them, they are a combination of privacy enhancing technologies and processes for improv-
ing data protection. They honor them as a modern understanding of which components
constitute effective data protection. However, in their eyes, they lack a strict structure
following an established method (like the definition of protection goals) and consider them
too vague and organizationally to be technically realizable principles. For this reason, they
advocate for the new protection goals for privacy and data protection mentioned above.
The meaning of both, Privacy by Design and the Global Privacy Standard, is completely
included in the data protection goals. Furthermore, weaknesses of both approaches, as
identified by Simon Davies [Dav10], are addressed.

The strict concept of a double triad is reiterated in [HJR15]. The definitions of two of
the three privacy goals are rephrased here: Transparency is the “property that all privacy-
relevant data processing—including the legal, technical, and organizational setting—can
be understood and reconstructed at any time”. Intervenability is defined as “the prop-
erty that intervention is possible concerning all ongoing or planned privacy-relevant data

14 2. Notions of Privacy

Integrity

IntervenabilityUnlinkability

Transparency

Availability

Confidentiality

Figure 2.1: The six protection goals for privacy engineering [HJR15]

processing”. They elaborate that the privacy and security goals are purposefully put into
conflict by constructing the duals as explained above. Fundamentally, the duals consti-
tute a star-like structure as shown in Figure 2.1 while the authors recognize that “several
other interrelations among these six protection goals” exist. These interrelations and the
impossibility to fulfill all goals simultaneously requires deliberate design decisions when
aiming for privacy protection in a concrete system. These existing tradeoffs have to be
reconsidered and answered anew for every design.

Working with protection goals for privacy and data protection similar to security found
wide and important adaptation. The independent data protection authorities in Germany
provide the standard data protection model [SDM15]. This acts as a unified concept for
data protection consulting and auditing. Its aim is to narrow the gap between high-
level legal requirements on the one hand and concrete processes and technical systems
processing personal data on the other hand. Providing a common measure for assessment
fosters consensus about what and how to protect and enables commensurability of different
organizations or their technical realizations. They build their concept of privacy and
data protection fully on the above introduced data protection goals and enhance it by
the fundamental objective of data minimization. Besides that the data protection triad
constitutes the basis for their model of protection planning, assessment and improvement.

The definitions of the protection goals show that they are located on two different levels
which Hansen, Jensen and Rost [HJR15] call hard privacy and soft privacy. Hard privacy
encompasses data minimization and unlinkability. They are system-oriented and their
fulfillment depends mainly on how data is handled inside a system. It is independent of
interaction with the stakeholders. Soft privacy focuses on the relationship of stakeholders
(data owners, users, service providers, etc.) and the system. It considers the system’s
transparency for data owners and users as well as intervenability of stakeholders in the
system’s processes.

A second adaptation happened on the level of the European Union. The European Union
Agency for Network and Information Security (ENISA) published a report on Privacy and
Data Protection by Design – from policy to engineering [Eur14] in 2014. Among others,
ENISA aims for developing “advice and recommendations on good practice in informa-
tion security”, assisting the implementation of relevant EU legislation and enhancing the
existing expertise in EU member states in their domain of network and information se-
curity [Eur14, p. ii]. Similar to the aforementioned national data protection model, their
report also contributes to “bridging the gap between the legal framework and the available
technological implementation measures. In the domain of privacy principles, they refer
to aforementioned approaches like the Global Privacy Standard and Privacy by Design,
and to the structure of data protection goals alike. In other words, they understand data

2.8. Conclusion 15

protection goals as state-of-the-art and as a major contribution to the concept of privacy,
which they seek to unify over the domain of the European Union.

2.8 Conclusion

This overview already shows that the societal conception of privacy has been subject to
changes several times. It is interesting to see that these changes are often triggered when
technical developments undermined the intuitive feeling of privacy while the established
concepts of privacy were not able to name and grasp the breach. This led to a revision of
the meaning of privacy and adaptations to the new technical and societal circumstances.
The corresponding public discourse and theoretic reevaluation typically yielded a more
specific, explicit and detailed concept.

Especially in the last decade, the discussion about privacy once more gained momentum
and a lively discussion provided us with a protection goal based privacy concept which
is well-aligned to the established security concept: structurally it bears the same shape,
also consisting of a triad of protection goals. With respect to the content, it successfully
complements security building the aforementioned double triad. This clear and concise
concept of what privacy constitutes is supported by a multitude of approaches like the
ISO/IEC 29100, PbD and GPS. These contribute a large amount of details to the concept
and provide the means which can be used to fulfill these requirements on the level of
organizations, processes and concrete technical systems.

Based on the current rich and faceted understanding of privacy, we also use the privacy
protection goals established in [BR11] as foundation for our following considerations. In
other words, when referring to privacy, we directly mean the protection goals unlinkability,
transparency and intervenability if not stated otherwise. In this context, security (opera-
tionalized as CIA) is taken as premise. Especially, initial confidentiality often constitutes
a requirement which is necessary but not sufficient to realize privacy.

16 2. Notions of Privacy

3. Background on Secure Multiparty
Computation

Secure Multiparty Computation (SMC) is a cryptographic primitive which has been de-
vised in the 1980s and practically considered since the late 2000s. It will become clear
that SMC is an excellent foundation for fulfilling our previously chosen privacy protection
goals in technical systems.

In the next chapters we will assess practical applicability of SMC (Chapters 4–6) and we
will investigate how SMC can be incorporated in the context of dynamic environments
(Chapters 7–9). Now, we present a fundamental background on SMC to give context for
the following chapters. We sketch the problem domain, explain the overall objective of
SMC and present the corresponding security model. Focusing on realizations, we show
how approaches can be categorized and on which base technologies SMC can be realized.
Lastly, we present the state of the art by addressing the main directions of ongoing research:
feasibility results, security, and performance improvements.

3.1 Problem Domain

We explain the problem domain for SMC using a selection of examples that represent
a certain class of problems: in all cases, data should be processed among a group of
participants without the need that any of them share their private information with any
other party.

Example A dating platform provides a matching mechanism so that individuals can sig-
nal other participants whether or not they are interested. The goal is to identify matches,
i.e., pairs (A,B) of individuals, where A is interested in B∧B is interested in A. Realized
näıvely, individuals are informed about an assessment as soon as it is given. However,
when A is not interested in B, B’s vote is of no use and gives away private information
of B without any benefit. A better variant would be that A is only informed about B’s
vote if A also voted and is actually interested. In all other cases, A should not get any in-
formation. Commercial products like Tinder [Tin19] realize comparable mechanisms with
the help of the provider acting as a Trusted Third Party (TTP). Votes are kept “secret”
(i.e., only known to the TTP) except if an actual match happens. Then, both parties, A
and B are informed. Instead of handing all votes to a TTP, it is desirable to achieve this
functionality by mere communication between A and B (cf. [CDN15, p. 9f.]).

18 3. Background on Secure Multiparty Computation

Example Several clinics treat patients of similar diseases. While each institution alone
does not have enough data to obtain significant results from patient data, together they
would. However, sharing patients’ data with other parties, even clinics, is prohibited by law
and would require explicit consent by each patient. Doing so would have several negative
implications: Complying with legal requirements increases the effort for every clinic. All
affected patients would have to be asked for permission; they could reject participation
and render the amount of available data smaller or even systematically skewed. Also,
security requirements increase since more data is then stored at a single place. Therefore,
it is desirable to allow the clinics to perform their studies (given, the result itself is not
privacy-critical) without actually sharing patient of individuals.

Example Companies of a certain sector want to understand how they are ranked among
their competitors with respect to some key performance indicators. Their competitors are
also interested in the ranking. However, the ranking is based on confidential values about
the companies’ performance, hence, no single company agrees to share that information
with any competitor nor a neutral TTP. It is desirable to enable this ranking without
needing any company to give away confidential information or finding a TTP which is
actually trusted by all participants (cf. [BTW12]). This generalizes to all coopetition
scenarios, where competitors want to allow some cooperation in terms of common data
processing without undermining confidentiality of each party’s data.

Example Today, auctions are typically performed by a TTP. It executes the process,
collects the votes and announces when the highest bidder has changed. Since the only
result information which must be made available is the final highest bidder and the price
to be paid, all other bidding information is only necessary during the process for correct
evaluation of the intermediate steps. It is desirable to realize auctions without a TTP and
without making all bids available to anyone (cf. [BCD+09], [ZDT+16]).

These and similar cases are the scenarios where SMC can provide essential benefits by
making data combination and processing possible without undermining confidentiality
and privacy of the input data.

Notion of Trust

In the examples, we see that trust plays a special role. Generally, in these contexts, a
TTP is an undesirable necessity. We refine this observation here by providing a definition
of trust.

Definition 3.1 (Trust) Trust is to faithfully believe that a component is handling data,
which we deem to be private, only in the desired and expected manner, adhering only to
the prescribed purpose and using the data for no other purposes nor sharing it with any
other party.

Trust also always includes the assumption that a component is actually capable to realize
the protection necessary to achieve the aforementioned goals.

Trust is needed when there are no mechanisms in place which can actually enforce and
ensure adhering to the privacy protection goals. Consequently, it is desirable to reduce the
amount of trust which is necessary for a system to be privacy-preserving. With SMC we
have an approach at hand which provides exactly this.

3.2. Objective 19

3.2 Objective

Against the background of the use cases provided in the last section, we can now present
a formal description of SMC and its security respectively privacy properties. Our presen-
tation follows Cramer et al. [CDN15]. They give the following definition of SMC:

Definition 3.2 (Secure Multiparty Computation [CDN15]) [T]he parties, or play-
ers, that participate are called P1, . . . , Pn. Each player Pi holds a secret input xi, and
the players agree on some function f that takes n inputs. Their goal is to compute
y = f(x1, . . . , xn) while making sure that the following two conditions are satisfied:

• Correctness: the correct value of y is computed; and

• Privacy: y is the only new information that is released

Computing f such that privacy and correctness are achieved is referred to as computing f
securely.

Such a computation is termed multiparty if referring to the general case of having n > 1
participants. In some works the special case n = 2 is considered and termed two-party
computation. We will use the terms party, player, peer and participant interchangeably.

In general, two types of parties will be differentiated when considering adversary models:
honest parties correctly provide their input and their aim is to successfully carry out the
common protocol in order to obtain a correct result in the end. Corrupted parties are in
contact with an adversary who is able to read all information of the party or is even capable
to control the behavior of the party. An adversary can control more than a single party. In
this case, the adversary is able to combine the information of all corrupted parties and to
make decisions on this combined base of information. Protocols may have an upper bound
t < n of corrupted parties for which they still can be proven secure. Further information
about the adversary are given in Section 3.3.1.

Privacy in the definition above states that y is the only new information released. To be
more precise in what new information formally means, Cramer et al. define the viewj of a
player Pj to be all values the player is able to see during the execution. Regarding the set of
corrupted parties C ⊂ P1, . . . , Pn with |C| ≤ t, the values {viewj}Pj∈C can be termed the
leaked values. In particular, some values are inevitably known to the corrupted parties,
i.e., their input xj and their output yj ; these are called the allowed values. Then—in
simplified form—privacy can be defined as follows:

Definition 3.3 (Protocol Privacy) A protocol is private if it always holds that the
leaked values can be computed efficiently from the allowed values.

This nicely encapsulates that there is a tradeoff between the protection and the utility of
the information. In order to gain some value from information, it may not be completely
locked up. In contrast, making information fully available would undermine protection.
Hence, the desired property is controlled leakage, allowing the data owner to precisely
adjust the tradeoff for the use case at hand. [CDN15, p. 3]

3.3 Adversary and Security Model

Like other cryptographic primitives, SMC protocols are typically evaluated using a formal
security and adversary framework. It will become clear that the domain of SMC was able
to adapt some established notions from other areas of cryptography but also needed some
new formalisms which are specifically crafted for handling the security of computation
protocols.

20 3. Background on Secure Multiparty Computation

3.3.1 Taxonomy of Models

In this section, we give an overview of the relevant properties of adversaries which are
considered in the context of SMC. In our presentation, we follow Canetti [Can00], as he
comprehensively outlines the named notions. These notions are fundamental and hence,
widely accepted and well-established.

Passive vs. Active

A passive adversary—also called eavesdropping adversary or honest-but-curious adversary—
will collect all information it is able to gain control of but cannot modify the behavior of
the corrupted parties. The parties conform to the prescribed protocol. The adversary’s
intention is to derive private information from the data it is able to access.

On the contrary, an active, malicious or byzantine adversary has the property of a passive
adversary and is able to influence the corrupted parties. After corruption, these parties
only follow the commands of the adversary and do not necessarily follow the protocol
anymore. The two main goals of an active adversary are provoking leakage of private
information of one or more players and/or influencing the final result at its own discretion.

Remark : Passive adversaries are obviously a weaker adversary notion. However, being se-
cure in the passive security model was a first relevant goal for initial protocols to achieve.
It can hence be seen as a stepping stone towards protocols which are also secure against ac-
tive adversaries. Lastly, it is often argued that passive security can be sufficient in certain
cases when it is reasonable to assume that players have a personal incentive to cooperate
in conformance of the protocol in order to get a meaningful result [CDN15]. Further-
more, there are so called semi-honest-to-active compilers which can automatically convert
passively secure protocols into protocols with active security (e.g., [GMW87, DOS17]).

Remark : Regarding active adversaries, it is vital to differentiate which types of malicious
behavior are possible and which behavior can actually be addressed. Players are by design
free to choose from the set of valid inputs for a given protocol (choice of inputs [CDN15,
p. 11]). This is also true for the adversary, even if the choice is based on corrupt inten-
tions. Due to this essential design decision, attacks based on the freedom of choice can
also not be prevented and are said to be out of scope of SMC. The choice of inputs has
to be differentiated from deviation from the protocol. The passive adversary has to follow
the given SMC protocol and perform all steps correctly. The active adversary can behave
inconsistently, i.e., pretend to have different input values when communicating with differ-
ent parties, violate invariants, etc. This can actually be addressed on the level of protocol
design.

Information Theoretic Security vs. Computational Security

In classical topics of cryptography like secret key and public key cryptography, the distinc-
tion between information theoretic security and computational security is already made.
The former—also termed perfect security—is given if an adversary of even unbounded
computational power and time is not able to break a scheme “due to the fact that [the
adversary] simply does not have enough ‘information’ to succeed in its attack” [KL08,
p. 47]. For example, this is the case when using a one-time pad where the plaintext is
completely decoupled from the ciphertext, given the key is unknown. In opposition to this,
computational security is a weaker notion where two relaxations are made [KL08, p. 49]:

1. Security is only preserved against efficient1 adversaries that run in a feasible amount
of time, and

1typically probabilistic polynomial time

3.3. Adversary and Security Model 21

2. Adversaries can potentially succeed with some very small probability (that is small
enough so that we are not concerned that it will ever really happen).

Weakening the notion is actually beneficial: The tools for information-theoretic secure
encryption are very limited and have some very impractical implications [KL08, p. 36].
Computational security now states requirements which are practically achievable by cryp-
tographic methods.

Similarly, different notions of an adversary’s power are established for secure protocols: the
secure channel setting assumes absolutely secure point-to-point channels between each pair
of participants and gives the adversary unlimited computational power. The computational
setting, in analogy to the aforementioned notion, restricts the player to probabilistic poly-
nomial time computations. In turn, he is deemed to be capable to learn all the (possibly
encrypted) communication between the participants, i.e., no existence of secure channels.

Remark : Some of the later named base technologies like Linear Secret Sharing may be built
upon information-theoretically secure constructs. However, it is vital to consider whether
eavesdropping on all links between the participants would already allow reconstruction of
the input values. In these cases, securing the point-to-point channels has yet to be fulfilled
by cryptographic (and hence, most surely) computationally secure means.

Adaptive vs. Non-Adaptive

Typically, adversaries are not restricted to a single participant. Instead, it is assumed that
they can compromise a larger number of players. Then, the following distinction is made: a
non-adaptive or static adversary can choose an arbitrary but fixed set of players to corrupt.
This choice has to happen a single time and cannot be adapted during the interaction.
An adaptive or dynamic adversary, however, is able to first corrupt a set of players, and
then proceed in corrupting further players during the interaction. Most importantly, the
adversary is able to choose further victims based on the information gathered so far during
execution.

Honesty of the Majority

Another fundamental distinction concerns the overall number of corrupted parties. Information-
theoretically secure constructions must assume that the strict majority of the participants
is honest. Otherwise, security guarantees do not hold anymore. Especially, this is also
valid for the two-party case; here, realization of secure protocols for arbitrary ideal func-
tionality is not possible [CLOS02].2 Damg̊ard et al. [DPSZ12] summarize these results as
follows:

In the case of dishonest majority [. . .] unconditionally3 secure protocols cannot exist. Under
computational assumptions, it was shown in [CLOS02] how to construct UC-secure MPC
protocols that handle the case where all but one of the parties are actively corrupted.

3.3.2 Perfect Simulatability and Universal Composability

In order to prove desired properties of developed SMC protocols, an accepted formal
method is needed. The aim of such a framework is to formalize the previously intuitive
notion of whether certain desired properties (like correctness, privacy and security) are
actually achieved in the given context. Most importantly, the formalism must correspond

2A simple example: computing the XOR function of two players, each providing a single bit, always
leaks the input value of the other party.

3i.e., information-theoretically, author’s note

22 3. Background on Secure Multiparty Computation

to the real world to a sufficient degree, i.e., intuitively insecure protocols may not be
deemed formally secure and vice versa.

While there already existed other notions of security (for other domains like secret and
public key cryptography), it was not trivially possible to adapt them to secure protocols.
Micali and Rogaway [MR92] describe it as follows: “[P]rotocols are extremely complex
objects: after all, by defining security for encryption, signatures, and pseudorandom gen-
eration, one is defining properties of algorithms; but to properly define protocol security,
one needs instead to define properties of the interaction of several algorithms, some of
which may be deliberately designed to disrupt the joint computation in clever ways”. In
other words, proving protocol security made it necessary to reason about new crypto-
graphic fundamentals and interactions.

There were previous attempts to formalize secure computation protocols, but from Micali’s
and Rogaway’s point of view they “were either vague, or not sufficiently general, or consid-
ered ‘secure’ protocols that should have not been called such at a closer analysis” [MR92].
In their reasoning, the correctness and the (input) privacy of a given protocol should not be
considered two separate properties, but proved simultaneously as being intertwined prop-
erties4. They strive in merging these two properties by using simulator based proofs—a
notion for which they refer to [GMR85]: “[O]ur simulator plays the role of the uncorrupted
players. In fact, the adversary interacts with a simulator just as though she were interact-
ing with the network. The ‘good’ simulators (those which show that a protocol is secure)
manage to interact with any adversary in a way which makes it indistinguishable to her
whether it is the simulator or the network with whom she speaks.”

In the following, we describe a short sketch of the proof method: secure protocols in general
and SMC in particular aim for enabling interactions for which otherwise a TTP would be
necessary. Hence, an ideal world is modeled, where an actual TTP is assumed. This
entity cannot be corrupted and faithfully executes the desired functionality. For secure
computation, it collects the inputs of all parties (including corrupted parties), computes the
given function and announces the result to all participants. This setting is considered the
ideal world, as it directly fulfills the aforementioned goal: the correct function is evaluated
and none of the parties learns more than the own input and the public output. In the
real world no such TTP exists; instead a secure protocol (possibly featuring interactions
between all participants) is employed. Now, instead of proving single properties of the real
world setup, one shows that the whole information collection by the (passive) adversary
or all consequences by possible (malicious) interaction of the (active) adversary in the real
world setting would also be achievable by the adversary in the ideal world setting. If this
proof succeeds, it shows that the real world never performs worse, i.e., solely allows attacks
which are also possible when a TTP is present.

Highly simplified, one can state:

Definition 3.4 (Perfect Simulatability) A real world protocol π securely realizes an
ideal functionality F with respect to a given adversary if there exists a simulator which
achieves indistinguishability of π and an ideal protocol φ of F for this adversary.

4 Consider the following examples: per definition of secure protocols, we allow the result of the com-
putation to be public and the adversary may not learn more than that and its own inputs. If this is the
case, the protocol is considered private. However, the adversary may be able to legally manipulate the
own inputs so that some other player’s private input is directly published. The protocol would formally be
considered private, although is intuitively not protecting privacy. To catch this case, we require correctness
in order to ensure privacy.

Vice versa, if privacy is not given in the first place, the adversary may be able to choose his input based
on the knowledge of the other peers in order to achieve a desired result. The protocol will run correctly
and the output will be considered formally correct with regard to the inputs. However, intuitively the
adversary was actually able to manipulate the outcome of the protocol.

3.4. Realizations 23

The approach of simulator-based proofs for SMC protocols is now widely accepted and
applied up to the present day.

Universal Composability

Micali and Rogaway [MR92] also examine a property which they desire for realizations
of SMC protocols as well as the formal framework of secure protocols: they term it re-
ducibility if an SMC protocol can be built of smaller subprotocols which provide a specific
functionality. Additionally, the formal framework should enable the following: the correct-
ness and privacy of a full protocol should be provable while assuming that the subprotocols
are not (yet) real-world secure protocols, but ideal world protocols. The immediate benefit
is composability of protocols and modularity of proofs, as subprotocols can then be proven
to be correct separately.

Canetti [Can00] addresses this challenge as modular composition and later, in a more
general context including concurrency, as universal composability, proving its fulfillment
in [Can13].

While working with another definition of composability—based on reactive simulatability
[PW01, BPW07] instead of universal composability [Can13]—Bodganov et al. [BLLP14]
enhance the notion and also provide a relevant practical result: in order to achieve full
security guarantees in terms of universal composability, the input shares (created by secret
sharing the players’ input) must be made independent from the output shares which are
finally made available to all parties. Otherwise, information leakage is generally possi-
ble. Firstly, they present how this rerandomization—called resharing—can be practically
achieved and secondly, they formally show in which compositions resharing is actually
necessary. These insights allow greater flexibility in protocol design: since performing re-
sharing imposes a performance overhead, it is beneficial to know in which cases it is not
strictly necessary and hence can be omitted.

3.4 Realizations

The previous elaborations address SMC as a theoretical construct without stating how
SMC can be practically realized. We turn towards this question in the following.

3.4.1 Taxonomy of Approaches

There are fundamental properties in which SMC realizations can differ. We present these
alongside with their most important representatives.

Boolean Circuits vs. Arithmetic Circuits

Creation of complex SMC protocols is achieved by composition using a set of primitive
secure functions [CDN15, p. 36]. These compositions are called circuits. A circuit in
general is an acyclic directed graph where the nodes are called gates and the edges are
called wires. Each gate has at most two inputs and can have an arbitrary amount of
outputs. There is a set of special nodes, one for each player, which have itself no input
and an arbitrary amount of outputs. These represent the players’ inputs. Analogously,
the final outputs are defined: each player is assigned a node which has a single input and
no output wire.

Fundamentally, one differentiates between Boolean Circuits and Arithmetic Circuits. The
difference is the set of primitives which constitute the gates. In the first case, these
are logical operations—AND, OR, NOT—, in the second, arithmetic functions—addition and
multiplication (including scalar multiplication).

24 3. Background on Secure Multiparty Computation

It is vital to point out that both have equal expressiveness; neither of both is able to com-
pute more functions than the other. The reason is that logic operations can be expressed as
arithmetic operations and vice versa. However, depending on the base technology, either
of the two sets can be rather considered to be the primitives, while the others are then
composed operations. The decision which base to prefer has considerate implications on
the performance of certain derived operations.

Base Technology

We see that complex functions can be built from small set of primitive operations. Specific
technologies are then necessary which provide these primitives. We will present three
of them that are well-established: garbled circuits, homomorphic encryption and secret
sharing. Beforehand, we touch another direction which does not provide primitives but
evades their necessity.

Single-Purpose Protocols A comparatively low-hanging fruit is the design of special-
purpose protocols. Given a specific use case, a privacy-preserving protocol is developed
which exactly matches this purpose. Therefore, these approaches do not provide basic
primitives for modular composition.

From a formal and an academic point of view, these protocols are merely feasibility results,
but not necessarily promising work to build upon. The reasons are several disadvantages:
their specificity hinders reuse, universal composability is not trivially given, and for every
newly designed protocol (be it just a derivation of a previous one) a new privacy and
correctness proof has to be carried out. In other words, neither protocol modularity nor
proof modularity is given.

Examples are [CKV+02] and subsequent work [RM09, SKM10]. The former aims for
building an SMC toolkit, consisting of a set of single-purpose protocols, while stating that
composability (and hence privacy of intermediate values) is not given.

However, in this context it is interesting to note what Ben Kreuter stated at the Real World
Crypto Symposium 2017 [Kre17] regarding the employment of SMC at Google [BIK+17]:
they are interested in using SMC in general, but do not try to use generic foundations.
Instead, they also create single-purpose protocols for their use cases. The reason is mostly
that real-world problems are not well-solved in the generic proposition: according to him,
they do not cope well with constraints present in today’s Internet infrastructure (e.g.,
lack of direct connectivity, NAT), for the devices in use (e.g., energy consumption on
smartphones), are not robust against real-world errors (e.g., failing end-devices during the
protocol) and still require too much communication for high-scale deployment while “the
network is usually the costliest resource”.

Garbled Circuits Yao [Yao82, Yao86] laid the foundation for SMC in the 1980s by
proposing new questions to be asked. He presented the millionaire’s problem—two mil-
lionaires want to find out who is richer without letting each other know about the exact
amount of their own money—and demanding a unified framework for secure computation
problems so that formal reasoning about it becomes feasible. Roughly during the same
time and in context of the aforementioned publications, Yao also presented garbled circuits
as generic solution for a whole class of functions during talks he gave—however, there is
no publication of him proposing garbled circuits as solution.

We outline the approach of garbled circuits briefly, following [Sny12]. The idea of garbled
circuits is to replace the informed evaluation of a known boolean gate with two inputs

3.4. Realizations 25

and a single output (e.g., AND, OR, ...) with a generic computation where knowledge about
the type of the gate and the actual input or output values is not necessary anymore. In
order to do so, the input and output values are replaced by random strings (while the
property of equality is preserved). The gate itself can be expressed as a finite mapping,
using the four lines in a truth table depending on the gate type, permuting all possible
combinations of the both inputs being mapped to the corresponding output. In order to
hide which gate type is currently evaluated, the tuples of the four lines are substituted by
a generic computation which enables calculation of the obfuscated output value using the
two obfuscated input values without knowing the type of the gate.

More specifically, two players P0 and P1 holding their private input x0 and x1 respectively
want to compute a function f(x0, x1) = y. P0 creates a boolean circuit out of f and then
has to garble each gate of the circuit as follows: for i ∈ {0, 1} let wi be the input for Pi.
Let w2 be the output. Then for each v ∈ {0, 1}, i ∈ {0, 1, 2} a key kvi is created. These
keys are later used as inputs and outputs of the garbled gate. Additionally, garbled values
for each combination of values for w0, w1, w2 are created which allow deriving w2 from the
two corresponding input values: gvu,w,r : H(ku0 ||kw1 ||s) ⊕ kr2 where H is a hash function,
s is a salt, ⊕ is the XOR operation and r is the application of the ungarbled gate on the
values u and w.

P1 receives the garbled circuit from P0 and P0’s values. However, P1 does not know the
corresponding key for its own input. It obtains this input privately from P0 by using
1-out-of-2 Oblivious Transfer5 [GMW87]. Calculating H(ki0||kj1||s) and XORing it with
each gv yields four possible values for kr2. By using syntactical constraints or employing a
magic number in the result values, it can be ensured that P1 recognizes which of the four
values yielded a valid result. This is the final result of this gate’s evaluation and can be
used as input of the next connected gate in the circuit.

The basic version of garbled circuits is highly inefficient, having a considerable communi-
cation overhead in terms of messages and the overall amount of data transferred extends to
several gigabytes [Sny12]. However, since then, an ever growing amount of papers publishes
improvements regarding the security [GMW87, Gol09, MNPS04, LP07] and performance
[MNPS04, GMS08, HEKM11, KSS12, KS08, KMR14, PSSW09] of garbled circuits. These
improvements are not by default compatible to each other and it is a challenge on its own
to apply them in combination.

Homomorphic Encryption Homomorphic encryption exploits the homomorphic prop-
erty of certain encryption schemes in order to allow computation on encrypted data.

Definition 3.5 (Homomorphism (cf. [Gri07])) A homomorphism of a group (A,⊗)
into a group (B,�) is a mapping ϕ : A −→ B such that ∀x, y ∈ A : ϕ(x⊗y) = ϕ(x)�ϕ(y)

In other words, the result of a function ϕ on the combination of values x, y using the
operation ⊗ can be achieved by first applying the function ϕ individually on x and y and
then applying the operation � afterwards.

Rivest, Adleman and Dertouzos [RAD78] initially brought up the idea that the same
could be possible where ϕ is an encryption function. In consequence, one would be able
to compute with encrypted data.

Formally, Katz and Lindell [KL08, p. 416] define homomorphic public-key encryption
schemes as follows (notation adjusted):

51-out-of-2 Oblivious Transfer enables the receiver to obtain exactly one of two possible values while
the sender learns nothing about which value has been selected.

26 3. Background on Secure Multiparty Computation

Definition 3.6 (Homomorphic Public-Key Encryption Schemes) A public-key en-
cryption scheme (Gen, Enc, Dec) is homomorphic if for all n and all [pairs of keys] (pk,
sk) output by Gen(1n), it is possible to define groups M, C such that:

• The plaintext space is M, and all ciphertexts output by Encpk are elements of C.

• For any m1,m2 ∈ M and c1, c2 ∈ C with m1 = Decsk(c1) and m2 = Decsk(c2), it
holds that

Decsk(c1 · c2) = m1 ·m2,

where the group operations are carried out in C and M, respectively.

Several encryption schemes possess a homomorphic property, including but not limited to
RSA [RSA78], ElGamal [ElG85], the Goldwasser-Micali [GM82] and the Paillier [Pai99,
DJN10] system.

Typically, the homomorphic property of each of these systems only exists with respect
to a single inner operation (the operation performed before encryption, ⊗). E.g., using
ElGamal and RSA, an outer multiplication yields an inner multiplication, while in the
Paillier system, an outer multiplication yields an inner addition. Schemes that support
only a subset of all possible circuits (cf. Section 3.4.1) are termed Somewhat Homomorphic
Encryption (SHE) [ABC+15].

Armknecht et al. [ABC+15] consolidate the emerged terminology of homomorphic schemes
and suggest a corresponding hierarchy. The next step represents Levelled Homomorphic
Schemes. These are constrained regarding the circuits they are able to handle. They may
only extend to a parametrized depth d which has to be fixed and known in advance during
key generation. In turn, the ciphertext and the output of the evaluation function (which
performs the encrypted computation) is compact, i.e., they may not grow depending on
the depth of the evaluated circuit. Lastly, they define Fully Homomorphic Encryption
(FHE) schemes to be able to compute all possible circuits. Furthermore, their length does
not have to be known in advance.

In 2009—more than 30 years after the first thoughts about FHE by Rivest, Adleman
and Dertouzos—Gentry [Gen09] proposed the first fully homomorphic encryption scheme
and implemented it in 2011 [GH11]. According to [ABC+15] his scheme is noise-based,
“which means that the plaintext is hidden by noise which can be removed by decryption.
However, this noise increases with each homomorphic evaluation, and once it exceeds a
certain threshold, decryption will fail”. He solves this problem by making his scheme boot-
strappable which effectively means that it can evaluate its own decryption function. As a
consequence, increased noise can be repeatedly reduced by performing a homomorphically
secured decryption. This enables evaluations of arbitrary length.

FHE would be a very desirable building block for SMC. Computation on encrypted data
would generally allow any untrusted third party to perform the computation, while privacy
and secrecy are preserved. This would facilitate many SMC setups as mutual and synchro-
nized connections between all participants would not be required anymore. Instead, tradi-
tional client-server architectures—being essentially easier to realize—and asynchronously
sent messages would suffice.

However, FHE is far from being practically applicable. While measurement results are only
sparsely available (cf. [ABC+15]), they indicate that bootstrapping and/or evaluations
usually take minutes to hours even on high-performance hardware. Nevertheless, hope for
practical use should not be given up yet as SMC in general was considered impractical
thirty years ago. Additionally, SHE schemes do find practical applications. An SMC
protocol presented later [DPSZ12] utilizes SHE in a preprocessing phase, which enables
and speeds up the actual computation.

3.4. Realizations 27

Secret Sharing Secret Sharing addresses the problem to make a secret only accessible
if a predefined number k of shareholders cooperate while k−1 shareholders have no ability
to recover the secret. We present a corresponding definition following Shamir:

Definition 3.7 ((k, n) threshold scheme [Sha79]) A (k,n) threshold scheme divides
a secret D into n pieces D1, . . . , Dn in such a way that

1. knowledge of any k or more Di pieces makes D easily computable;

2. knowledge of any k− 1 or fewer Di pieces leaves D completely undetermined (in the
sense that all its possible values are equally likely)6

Shamir’s Secret Sharing The practical scheme presented by Shamir is based on poly-
nomials in the 2-dimensional plane. A random polynomial of the degree k − 1 is gener-
ated where the y-offset represents the secret to be shared. Then n (x, y) tuples of the
polynomial—the shares—are computed and distributed among the n shareholders. The
degree of k− 1 ensures that an arbitrary combination of k shares allows polynomial inter-
polation. The reconstruction of the polynomial by interpolation also recovers the y-offset
which is the desired secret value.

While secret sharing seems unrelated to the problem of SMC at first glance, it becomes
applicable due to a homomorphic property of some sharing schemes: operations which
should be carried out on the secret input values can instead be done simultaneously on the
shares. Recombining them afterwards yields the result of the computation, as if it were
executed on the secret values [BOGW88].

Given multiple secrets of different parties are transformed to shares using Shamir’s method.
Then, operations which should be carried out on the y-offset, i.e., the secret values, can—to
some degree—be carried out on the shares, i.e., the y-values of the (x, y) tuples. Specif-
ically, when n players aim to carry out a common function f(s1, . . . , sn), they proceed
as follows: each player pi for 0 < i ≤ n creates n shares si,j = (j, yj) for 0 < j ≤ n out
of its own secret si. Then all shares are distributed so that player pj receives all shares
si,j for 0 < i ≤ n. I.e., player one now has the first share of all players; the x-value of all
these shares is 1. All other players obtain the corresponding tuples analogously. Then, the
common function is carried out on the set of obtained shares yielding sresult,j . Afterwards,
these result shares are distributed to all players so that every player can reconstruct the
result polynomial whose y-value is then f(s1, . . . , sn). Obtaining the plaintext of a shared
value is called opening it.

Realizing the operations of addition and multiplication is sufficient to enable computation
of arbitrary functions (cf. Section 3.4.1).

For SMC, a (k,n) threshold scheme where k = n would be most desirable because this would
require the shares of every participating player for reconstruction. However, multiplication
on polynomials induces a notable constraint here: when two polynomials of degree k − 1
are multiplied, the degree of the result polynomial is 2k − 2. Then, reconstruction is only
possible if 2k − 1 shares are available for interpolation. This is not the case with the
aforementioned scheme, as only n = k shares are present. In order to allow reconstruction
after multiplication, the degree must be constrained by 2k − 1 ≤ n which yields k < n

2 .
However, using such a construction, n

2 dishonest and colluding parties would also be able
to illegally reconstruct the secrets. From these considerations, the necessity of the honest
majority premise (cf. Section 3.3.1) is derived. The problem is further elaborated in
[BOGW88] and the tightness of the boundary is shown there. In contrast to multiplication,
addition does not pose any constraints.

6The scheme is hence information-theoretically secure, author’s note.

28 3. Background on Secure Multiparty Computation

Figure 3.1: Different usage models for SMC by [ABPP16]

Additive Secret Sharing Shamir’s secret sharing and polynomials are not the only
method to achieve sharing based multiparty computation. Additive secret sharing is an-
other approach which is most notably used by [BLW08, Bog13, BLLP14, DPSZ12, KOS16,
DKL+13, KPR18]. Here, the secret si of player pi is not encoded in a polynomial, but the
input value is split into random shares si,j which additively constitute the secret value:

n∑
j=1

si,j ≡ si

Since the sharing is built in another way, primitive operations are also constructed differ-
ently [Bog13]. Nevertheless, they again constitute the basic building blocks for arithmetic
circuits which in turn allow computation of arbitrary functions. This approach also is
information-theoretically secure.

Roles of Participants

Abstractly, the interaction in SMC can be modeled by specifying different roles for the
participating entities [Bog13]: input parties are entities which provide data for the com-
putation. Their input has to be protected, hence they already have to send their inputs
as shares to the computing parties. The task of these parties is to perform the actual com-
putation, already without knowing the content of the data to be computed on. Finally,
output parties are the entities which obtain the output of the computation and are able to
read it in plaintext.

Regarding security, the benefit is that there is no single entity which has to be trusted to
handle the data faithfully and to be non-adversarial. The security of the system now de-
pends essentially on the (weaker) assumption that the computing parties are non-colluding :
since the shares of all (or even only k) computing parties combined yield the plaintext in-
puts, they are trusted not to cooperate in order to reconstruct the private inputs. Similarly,
the channels between the computing parties must be assumed to be secure: either by the
SMC realization itself or other cryptographic means. Otherwise, a global passive observer,
listening to all channels, would also be able to reconstruct the inputs.

In general, it is possible that a single entity plays multiple roles. It is often the case that
the computing parties are also the parties which finally open (i.e., derive the plaintext of)
the final result. The reason is that in many use cases the result is deemed non-critical and
non-private. Hence, it is appropriate to omit dedicated parties for deriving the plaintext
output. Similarly and if appropriate, the input parties can be used as computing parties.
If an approach is used which is secure even in case of n− 1 malicious parties, this directly
achieves security for each honest participant without further assumptions.

Varying the distribution of the roles to the available nodes makes different usage models
(cf. Figure 3.1) possible. The choice of the model depends on the specific use case. For
more information and several examples see Archer et al. [ABPP16].

3.4. Realizations 29

Computational Model

The computational model specifies which assumptions are necessary in order to prove the
security of a given system. Stronger adversaries with fewer constraints or assumptions
allow the derivation of stronger security guarantees.

Standard Model The standard model or plain model is the most general and constraint-
free model for computational security. The only assumption is that the adversary is
constrained regarding its computational resources and time. The resource constraint is
specified by only allowing efficient, i.e., polynomial-time algorithms to be performed by
the adversary.

Preprocessing Model Ishai introduces the term linear preprocessing model. It dissects
a protocol in two phases. Firstly, one assumes that “there is a trusted setup phase where
a dealer can provide clients and servers with linearly-correlated resources, e.g., Shamir-
shares of random secrets” [Ish05]. Based on this assumption a second, provably secure
phase of the protocol can be realized. Afterwards, the trusted dealer of the setup phase is
realized “by a secure protocol using public-key techniques” [Ish05].

By doing so, it is even possible to prove different levels of security for both phases. In the
examples of [DPSZ12, KOS16], which are discussed later, the second phase is information-
theoretically secure under the given assumption, while the first phase is based encryption
schemes and hence cryptographically/computationally secure in the standard model.

Due to this dissection, subsequent research can work on both aspects independently.
[DPSZ12] present a highly efficient second computation phase, whereas the first phase
is based on SHE. As this takes several hours of preprocessing, further research in [KOS16,
KPR18] strongly focuses on improving the preprocessing phase.

Other models exist but they are not relevant for our context.

3.4.2 State of the Art

Over the years, three main research directions emerged in the field of SMC. The first one is
the achievement of feasibility results. They fundamentally show for selected domains that
practical application of SMC is actually possible. Many of them emerged when SMC was
newly found to be practically usable at all, but there are still feasibility results published
today for newer applications like machine learning [BIK+17]. The second direction focuses
on strengthening the adversary model and the security of SMC. Many base technologies
assume non-deviation from the protocol and only honest-but-curious adversaries. While
there are real world applications for which this adversary model is sufficient, in many cases
no trust between participants can be assumed. In order to make use of SMC in these cases,
active security is aspired which protects the participants’ input data also in the presence
of malicious adversaries. The third direction are performance improvements. Execution
of SMC often implies a high degree of communication between all participants. Addition-
ally, some basic technologies rely on expensive cryptography. This leads to performance
bottlenecks either on the side of the computing hosts or of the network connection between
them. Improving performance is also a vital direction to widen the field of application for
SMC. For many real world scenarios, the performance penalty of SMC is still prohibitive.

3.4.2.1 Feasibility Results

The first practical and large-scale application of SMC happened in 2008 [BCD+09]. Its
purpose was to perform an auction with multiple sellers and multiple bidders for computing

30 3. Background on Secure Multiparty Computation

a market clearing price7. The data was collected from 1200 users without special technical
experience by using a Java applet in a web browser. It was separated in shares locally and
each share was encrypted for one of the three computing parties. Data was then sent to a
single central server collecting the shares. At the time of computation, three laptops were
used as computing parties being connected in a local network. Every owner obtained his
shares from the collection server, decrypted his shares locally by entering the password
and then started the computation manually. The whole computation, working with 1229
bids encompassing 9 million individual numbers took 30 minutes in a 100 Mbps intranet
setting. The authors do not give insights how the results were distributed to the initial
data input parties.

Martin Burkhart applied SEPIA—developed by him during his PhD [Bur11]—to event
correlation for network data [BSMD10] in 2010. The overall goal is generation of net-
work traffic statistics and anomaly detection. This was realized by computing histograms,
entropies and performing distinct counts of input values. The collected data originates
from 140 input parties while varying the number of computation parties between 3 and 9.
They used Shamir’s Secret Sharing and enhanced it by protocols realizing bit operations.
Working with 65000 inputs per input node in a 100 Mbps intranet setting, all statistical
computations took around 1 to 2 minutes.

Bogdanov et al. [BTW12] set up SMC in 2012 for computing statistical financial indicators
of information and communication technology companies. These give helpful insights
and the ability for self-assessment, but are based on confidential company information.
Sharemind [Bog13] was used for realizing an Oblivious Batcher’s odd-even merge sorting
network besides other functionality for performing ranking operations. Their protocols are
based on additive secret sharing, the number of computation parties is 3. The number of
input parties is not documented, but a questionnaire performed along their work implies
that there are around 15–30 data input parties. They provided a web-based solution which
created the shares locally in the browser via JavaScript before submitting them to three
computational nodes. These were located in three participating companies having the
necessary knowledge to maintain such an instance.

Djatmiko et al. [DSD+13] reused SEPIA in 2013 to perform collaborative outage detection.
They used the existing Flow-based Approach for Connectivity Tracking—which typically
works with a single input source without privacy considerations—and extended it to work
privately with multiple inputs. The core operation is a multiset union operation which
they realize by counting bloom filters (CBFs). Their CBF works on an integer array of
length 32.768, which has to be generated from equally-shaped, local arrays. The necessary
addition of all arrays is then performed via SMC. In other words, the main application
of SMC in their context is the summation of integers. Using 90 input parties and 9
computation parties, they show that this is possible in under one second.

In 2016, Zanin et al. [ZDT+16] applied SMC to an auction method implementing the
EU Emission Trading Scheme. They made it possible to transmit CO2 emission allowances
between airlines. Based on SEPIA, they implemented a comparison protocol by Nishide
and Ohta [NO07] to obtain the necessary auction scheme. While varying the input parties
and the computation parties from 3 to 10, the overall computation time stays between 20
and 90 seconds. The measurements indicate that while clear trends of the computation
time can be derived from both named parameters in the local environment, influences in
the cloud environment are notably more complex. This results in durations which do not
follow a clear trend.

7Given multiple prices where sellers are willing to sell a certain amount and where bidders are willing to
buy a certain amount of a commodity, then the market clearing price is the price where the total demand
equals the total supply.

3.4. Realizations 31

In 2017, Bonawitz et al. [BIK+17] from Google published a solution for SMC-based privacy-
preserving training of Neural Networks (NNs). The trained model of a NN consists of the
adjusted weights of the nodes of the network. This can be modeled as an integer vector
where the length is the number of nodes of the NN. Training such a model privately means
that a global vector is build from a multitude of local input vectors without making these
available to anyone. They explicitly stress that privacy is more important in their scenario
than completeness of input data or its actual correctness. The reason is that the input
data is highly critical regarding privacy and data protection, whereas the NN is robust
against slight errors during the training. Abstractly, they address Secure Aggregation,
facilitating their use case: they do not need several computing parties which are able to
carry out arbitrary computations. Instead, they only need a single server which finally
holds the global model while being oblivious to the input data. This also means that
only summation must be supported. Notwithstanding this functional simplification, they
address a multitude of real-world problems simultaneously, like interrupted connections,
vanishing participants, and NAT-shielded devices. They hence require that their protocol
works asynchronously, a single faulty participant cannot jeopardize the full computation
and that a centralized architecture is sufficient which only requires communication of each
input party with a single server. Their approach is similar to additive secret sharing,
where the input is recoverably masked by addition or subtraction of random numbers.
This masking is pair-wise, i.e., all random numbers add up to zero so that they single out
each other when the result is combined. For handling dropped out clients, they introduce a
mechanism to reconstruct the exact mask of the failed clients. In order to further protect
their privacy8, another layer of masking is added. These masks are entangled in the
protocol so that only two cases becomes possible: either a privacy-protected input vector
is correctly incorporated, or the input vector including its otherwise distorting mask can
be prevented from being incorporated in the model. Their performance measurements
indicate that the computation with hundreds of clients and hundred thousands of vector
elements only costs a low amount of seconds per client and one to several minutes for the
server. These results, however, do not incorporate communication latency.

3.4.2.2 Active Security

Information theoretic secure approaches like BGW [BOGW88] initially assume the honest-
but-curious-model (cf. Section 3.3.1). This is not considered to be realistic especially when
cooperation with unknown entities is necessary. Hence, a vital direction of further research
is strengthening SMC approaches to be secure against active adversaries.

Ben-Or et al. [BOGW88] already presented an initial method of addressing malicious
adversaries. However, their proposition was only robust against t < n/3 malicious parties.
Currently, malicious adversaries are addressed by adding an information-theoretic message
authentication code per share [BOZ11] or secret user input [DPSZ12, KOS16] using a
global secret-shared key. The MAC scheme must also be homomorphic. This allows
obtaining valid MACs for computed results when performing corresponding calculations
on the MACs of the computation inputs. The key for validating the MACs is also shared
secretly. This prevents malicious parties to forge valid MACs for manipulated data. Only
in the end stage of the computation, when data cannot be manipulated anymore, the
MAC key is recovered so that validation becomes possible. This approach enables security
against n − 1, i.e., the maximum number of malicious adversaries. However, the authors
of [DPSZ12] state that it is still an open problem to identify a cheating party without
worsening the asymptotic complexity of their protocol to become superlinear. Recently,
further improvements on the approach have been made by Keller et al. [KPR18]. In

8If a seemingly dropped out client comes back later and sends its data, the previous exact reconstruction
of its mask would allow deriving the private input data.

32 3. Background on Secure Multiparty Computation

[KOS16] the preprocessing in the offline phase has been carried out with the technique
oblivious transfer. Here, they replaced this against somewhat homomorphic encryption.
By that, they achieved a performance improvememt by roughly one order of magnitude.

3.4.2.3 Performance

From a performance view point, secure computation comes with two types of costs: com-
putational costs and communication overhead. The communication overhead typically
outweighs the computational cost. E.g., in [BOGW88], with n parties, the distribution of
input shares is inherently of complexity n2, as every party has to distribute its shares to
every other party. Similarly, multiplication includes a resharing step which exhibits the
same structure and hence the same complexity.

In 1991, Beaver [Bea92] proposed a method which allows to replace multiplication of two
shared input values with a more efficient linear combination if a so-called multiplication
triplet (a, b, c) is already known, where c = a ∗ b and a, b are both random. This allows
protocols whose communication complexity is linear in n. Similarly, the initial sharing of
secret inputs is also reduced to linear complexity if already shared random numbers exist
among the participants.

These benefits, notably improving the performance of the computation, require the intro-
duction of a preprocessing phase (cf. Section 3.4.1) which generates the random values
and the multiplication triplets and distributes them securely among the participants. Im-
proving the performance of the preprocessing phase is still an active field of research
[KOS16, KPR18].

3.4.3 Frameworks

In this subsection, we elaborate on some practical implementations of SMC. Here, we
focus on frameworks allowing an arbitrary number of input parties while not considering
the special case of two parties.

Virtual Ideal Functionality Framework

During his PhD [Gei10], Martin Geisler developed the Virtual Ideal Functionality Frame-
work (VIFF). It is strongly influenced by the software used for the market clearing price
auction described in [BCD+09] and in Section 3.4.2.1. VIFF is a reimplementation in
Python featuring the Paillier cryptosystem [Pai99] as primitive for two-party computa-
tions and BGW [BOGW88] for multiparty computations. A focus was laid on real-world
performance, which was addressed by allowing asynchronous and parallel circuit evalua-
tion. The project is considered to be an academic prototype. It has been discontinued;
the last changes have been made in 2014. The homepage [Gei] explicitly suggests SPDZ
[DPSZ12] and MASCOT [KOS16] to be used instead.

Sharemind

Sharemind [BLW08] was mainly developed by Dan Bodganov [Bog13] during his PhD. It
is implemented in C++ and uses an additive secret sharing scheme in the ring Z232 . Its
focus was also to provide a real-world suitable framework with appropriate performance.
They therefore opted to prevent only passive corruption—which is less computationally
expensive—and to only use three computation parties, which are typically different from
an arbitrary number of input parties. The argument is that further computation parties
increase the communication overhead. Sharemind is now part of the services of Cybernetica
[Cyb17] provides. It is under active development but partially closed-source.

3.5. Summary 33

Security through Private Information Aggregation

Sepia [BSMD10] was developed by Martin Burkhart [Bur11] during his PhD. It is im-
plemented in Java and uses the BGW protocol. Although he realized a general purpose
framework, his focus was on enabling collaborative network analysis. Therefore, he pro-
vided specialized protocols for entropy computation, distinct counting, event correlation
and top-k queries. His performance measurements with Sharemind show that Sepia is
comparable regarding operations per second. Being an academic prototype, Sepia has
been discontinued.

Framework for Efficient Secure Computation

Fresco [Fre18] is is written in Java and developed by the Alexandra Institute in Denmark,
a non-governmental organization for IT innovation and IT research. It aims for being a
non-prototypical, productively applicable generic SMC framework. Fresco provides an
abstraction from concrete SMC primitives so that protocol specification can be performed
independently. This allows to switch primitives afterwards while keeping the specified
protocol unchanged. This especially enables simple incorporation of newest research results
on SMC. Former versions of Fresco supported the BGW [BOGW88] protocol, while the
current version provides the computation (“online”) phase of SPDZ [DPSZ12]. A full
support of SPDZ is currently ongoing. Our contributions use Fresco as the reference for
SMC frameworks. Since the development of Fresco also took place while conducting this
thesis, our earlier measurements use the BGW implementation while later measurements
employ SPDZ.

FairplayMP

Malkhi et al. [MNPS04] developed FairPlay, a framework for secure two-party computation
based on garbled circuits. Ben-David et al. [BDNP08] extended this framework for the
multiparty case. They modified the underlying Beaver-Micali-Rogaway protocol [BMR90]
and employed BGW for the generation of the gate tables. The code has been made
available on GitHub in 2012 but has not been further developed since then.

SPDZ-2/MASCOT

SPDZ-2 [DPSZ12] [KOS16] is currently developed by the University of Bristol. The soft-
ware is mainly written in C++ while the protocols can be written in Python. It features
the SPDZ protocol. This protocol is based on additive secret sharing and computationally
secure against active adversaries corrupting up to n−1 of n players. It follows the prepro-
cessing model (cf. Section 3.4.1) being split into an online and an offline phase. The former
performs highly efficient execution of the actual computation by doing a computationally
expensive but input independent preprocessing step during the latter phase. In this offline
phase, multiplication triplets (cf. Section 3.4.2.3) are created which reduce the communi-
cation complexity of multiplications in the online phase. MASCOT [KOS16] exclusively
addresses the offline phase and changes its technological foundation from somewhat homo-
morphic encryption to oblivious transfer. This yields further performance improvements of
the preprocessing step. Later, further improvements were obtained [KPR18] by switching
back to SHE .

3.5 Summary

SMC became a vital cryptographic primitive which addresses a genuine security and pri-
vacy problem: multiple parties want to correctly compute a common function without
sharing their individual input values with any other party. The theory of SMC flourished

34 3. Background on Secure Multiparty Computation

beginning in the 1980s and provided a clear definition, precise descriptions of desirable
properties and a suitable method for proving validity of SMC solutions. Over time, mul-
tiple approaches emerged which allowed first theoretical, then practical consideration of
SMC. The most important ones are Garbled Circuits, (Fully) Homomorphic Encryption
and Secret Sharing Schemes. The fundamental difference is the encoding of the computa-
tion as boolean or arithmetic circuits which strongly influences how secure evaluation can
be carried out. Consequently, it also affects which type of computations can be performed
efficiently and which ones imply high performance penalties. It is not yet foreseeable
whether these approaches will coexist in the future or if one will replace the others com-
pletely.

Research in the field of SMC is still ongoing, proposing new fields of application for SMC
and especially focusing on improving the security and the performance properties of SMC
solutions. Under the assumption of computational security, some of today’s approaches
are secure against up to n− 1 corrupted parties controlled by an active adversary. This is
typically achieved in the preprocessing model, where an information-theoretically secure
computation phase is preceded by a computationally secure preprocessing phase. This
preprocessing phase provides precomputed auxiliary information which enable the actual
computation. Concomitantly, expensive computations are shifted into the first phase,
enabling a highly efficient computation phase.

Since its first practical implementation in the late 2000s, some general purpose frameworks
have been built which enable the application of SMC in arbitrary contexts. Many of them
have been research projects that have been abandoned afterwards. However, some remain
under active development: Sharemind has been migrated into a closed-source product of
the company Cybernetica and is now offered as a service. Fresco is further developed by
the non-profit organization Alexandra Institute in Denmark and freely available; SPDZ-2
remains a research prototype which is still further developed and extended frequently.

Part I

Performance and Application of
SMC

4. Performance Assessment of Secure
Multiparty Computation

In the previous chapter we gave an overview of the background of Secure Multiparty
Computation. In the first time, SMC was only of theoretical interests; practical execution
was infeasible. It was until the late 2000s that first practical attempts were performed.

Today, as hardware performance generally makes its execution possible, implementations
of SMC become a promising building block of secure and privacy-preserving systems.
Still, real-world applicability highly depends on the setting in which SMC is carried out.
Especially due to the high communication overhead of SMC sessions, their performance is
strongly influenced by the networking setting.

In the Chapters 7–9, we design an architecture for SMC to allow automated and self-
dependent application. Our design decisions will be influenced by the following investiga-
tios. They provide the insight in which settings SMC can be realistically applied today.
This knowledge allows us to focus on the promising settings, keep their properties in mind
and address their specific challenges.

Objective

This chapter addresses Research Question Q2: we investigate the performance properties
of a state-of-the-art SMC implementation. Hereby, we examine how duration and resource
consumption of SMC sessions depend on host and network parameters. Furthermore,
we identify the bottlenecks of SMC sessions and find out which networking parameters
influence SMC most.

4.1 Selection of Framework

Current SMC frameworks vary in the degree of completeness and maturity. Hence, as a
first step in the evaluation, it is necessary to choose a framework among the candidates
which is worth the more detailed examination. Our reasoning about the candidates is
inspired by [ZDT+16]:

Universality requires the framework to be of general purpose, i.e. no specialized solutions
for single use cases are desired. Due to our use case (see Section 4.2), we focus on frame-
works which are applicable in multiparty environments. Mere two-party solutions are not

38 4. Performance Assessment of Secure Multiparty Computation

Framework VIFF FairplayMP SPDZ-2/
MASCOT

Sharemind SEPIA Fresco

Universality 3 3 3 3 3 3

Multiparty 3 3 3 7 3 3

Open Source
License

3 3 3 7 3 3

Active
Development

7 7 3 3 7 3

Table 4.1: Assessment of SMC candidate frameworks for our performance evaluation

sufficient. Furthermore, regarding roles of parties one can differentiate between input par-
ties and computing parties. Some frameworks only allow arbitrary scaling of the first type,
but fix the second one to, e.g., three parties. Out of privacy considerations, we want that
the input parties also take part in the computations themselves instead of outsourcing the
computation. Hence, the framework must support computations with a theoretically ar-
bitrary number of participants. The framework must be open source so that we can work
with it as a whitebox and retain the ability to make changes to the code. Lastly, for making
a relevant contribution which is able to influence the development of the framework, it is
vital that the framework is still under active development. Some solutions from academia
were used as a proof of concept and for research, but have been abandoned afterwards.

We summarize our assessment in Table 4.1. Due to the last requirement, we decide against
Viff, FairplayMP, and Sepia. Sharemind does not fullfil our multiparty requirement
and its source code is not publicly available. The remaining candidates are Fresco and
SPDZ-2. From them we choose the former since it already reached a higher level of
maturity, leaving the latter for future research when it becomes more stable and ready-to-
use.

4.2 Use Case

In this section, we present the functionality which was implemented to perform our
performance measurements. From the MeasrDroid system [Cha16] (also cf. [vMDC16,
vMDC17]) we adapt a fundamental aggregation functionality. The average travelling dis-
tance of a set of moving client devices (e.g., smartphones) is computed by a central server.

Scenario

We assume a set of moving devices which know their own location using a GPS module.
One property of interest is the average travel distance over the set of measured devices. Via
a client application, these devices can connect to a central server, which has the purpose
to collect statistics about them. Each time a client connects to the server, it transmits the
distance it travelled since its last connection. At any time, the average distance travelled
can be requested from the statistics server.

Logic

The stream of distances can be computed by every client locally and individually by
inputting the current and the previous location to the algorithm [GPS] in Listing 4.1.

4.2. Use Case 39

1 const double PK = 180 / 3.14169;

2 const double RADIUS = 6366000;

3

4 double gps2m(lat1, long1, lat2, long2) {

5 double a1 = lat1 / PK;

6 double a2 = long1 / PK;

7 double b1 = lat2 / PK;

8 double b2 = long2 / PK;

9

10 double t1 = cos(a1) * cos(a2) * cos(b1) * cos(b2);

11 double t2 = cos(a1) * sin(a2) * cos(b1) * sin(b2);

12 double t3 = sin(a1) * sin(b1);

13 double tt = acos(t1 + t2 + t3);

14

15 return RADIUS * tt;

16 }

Listing 4.1: Calculating the distance between two GPS coordinates

The server collects these individual distances and calculates a current average from it.
Such a running average can be collected insecurely with the code shown in Listing 4.2.

1 class Server{

2 int sum = 0;

3 int count = 0;

4

5 void addValue(int value){

6 sum += value;

7 count += 1;

8 }

9 void getAverage(){

10 return sum/count;

11 }

12 }

Listing 4.2: Streaming Interface for Running Average

The advantage of this approach is that all input data does not have to be present at
the same time, but can be gathered as stream with delay between the individual inputs.
Additionally, the space and time complexity is O(1) as only a constant number of values
has to be stored and only a single division has to be performed for calculating the average.

In order to apply Fresco to this problem, the input has to be organized in synchronous
sessions. In every session, each device contributes its distance since the last session1,
whereas the statistics server inputs the current value of the running sum (starting with 0).
By doing so, the server fulfills the technical requirement of also contributing a value while
it does not semantically change the computed result.

The summation protocol for this step is shown in Listing 4.3.

1 private SCEConfiguration sceConf = ...;

2

3 public ProtocolProducer prepareApplication(ProtocolFactory factory) {

4 final int numPeers = sceConf.getParties().size();

5

6 BasicNumericFactory fac = (BasicNumericFactory) factory;

7 NumericIOBuilder ioBuilder = new NumericIOBuilder(fac);

8 NumericProtocolBuilder npb = new NumericProtocolBuilder(fac);

9

1The device can either measure its GPS position at the beginning of each session or poll its location at
an arbitrary frequency and sum up the determined distance. The latter approach is more exact than the
former.

40 4. Performance Assessment of Secure Multiparty Computation

10 SInt[] inputSharings = new SInt[numPeers];

11 ioBuilder.beginParScope(); // run in _par_allel

12 for (int p = 1; p <= numPeers; p++) {

13 inputSharings[p - 1] = ioBuilder.input(this.myInput, p);

14 }

15 ioBuilder.endCurScope();

16 ProtocolProducer closeInputProtocol = ioBuilder.getProtocol();

17 ioBuilder.reset();

18

19 SInt ssum = npb.sum(inputSharings);

20 ProtocolProducer sumProtocol = npb.getProtocol();

21 this.outputs = new OInt[] { ioBuilder.output(ssum) };

22 ProtocolProducer openProtocol = ioBuilder.getProtocol();

23 ProtocolProducer gp = new SequentialProtocolProducer(

24 closeInputProtocol, sumProtocol, openProtocol);

25 return gp;

26 }

Listing 4.3: Secure Summation Protocol in Fresco v0.2

The result of each round is in turn saved by the statistics server. It serves as input for
the next round and as intermediate result for calculating the average. With regard to the
privacy of the system, it is uncritical that only the total sum is calculated privately while
the division step to retrieve the average is performed without SMC. Under the premise that
the number of participants is known (which is necessary to perform the sharing correctly)
the total sum would always be derivable from the average value. Consequently, the total
sum does not leak any more information than the average does.

Input Data

The test data we use was retrieved from the original MeasrDroid system. The data col-
lected by the system stems from volunteering users who were willing to donate the sensor
information of their smartphones including location data. GPS information was collected
in intervals of 15 to 20 minutes (depending on the individual configuration per device).

In order to accomplish the aforementioned sessions, it is necessary to provide the same
length of input data for every participating node. Working with 6 test nodes (one being
the statistics server), we calculated the largest number of GPS information we can retrieve
from the 5 most active donators. This yielded 20000 GPS tuples for each test node.

4.3 Preliminary Execution Time Considerations

The content of this section has also been published as Section 4 of [vMC18a]. The text
was written completely by the author of this thesis.

A computational model for secret sharing based SMC protocol foundations like BGW “is a
complete synchronous network of n processors” [BOGW88]. The protocol itself is dissected
into rounds. “In one round of computation each of the players can do an arbitrary amount
of local computation, send a message to each of the players, and read all messages that
were sent to it at this round” [BOGW88]. A message typically contains a share of a private
local value—e.g., a polynomial in the BGW protocol—held by the sender.

From this point of view, the protocol becomes an alternating sequence of local computation
and network communication:

comp1, comm1, . . . , compm−1, commm−1, compm (4.1)

We consider recombining the shares to be the last step compm. Hence, there are only
m− 1 communication steps.

4.3. Preliminary Execution Time Considerations 41

The communication steps are also synchronization points for the players. I. e., no player
Pi can already perform a computation compk+2, while another player Pj still computes
compk. Being a single step ahead is however possible for a single player when it locally
possesses a polynomial while all other players still wait for a share of it in order to proceed.
We denote the time costs for a step compi as costcompi . The message sent from player Pk

sent to Pl during commi is referred to as msgi,k→l. Two phases are typical for all SMC pro-
tocols: during the input phase—a single round—the own private input is transformed into
shares and distributed among the players. In the output phase the shares of the computed
result are exchanged among all players. Their recombination yields the plaintext result. In
Fresco this also takes a round2. The round complexity of the basic arithmetic operations
in the BGW protocol varies. Addition does not need any communication. Multiplication
requires rerandomization of the polynomial and the reduction of its degree [BOGW88].
This requires a step of communication, and hence, a round.

The communication cost of the ith round costcommi depends on the number of messages
sent. As every player sends an individual share to every other player, the overall number
of shares sent is O(n2). Every player pi typically contributes its own input vi for the
computation. Hence, a single multiplication step normally means that the product of all
input values

∏n
i=1 vi should be computed. In such a case, n− 1 single multiplications are

necessary; so the costs for such an array multiplication are O(n3). However, analysis of
Fresco shows that sending and receiving for every player can happen in parallel3: sending
is a non-blocking action for the computation layer which hands over the messages to be
sent to the communication layer of Fresco. Receiving is blocking on the computation
layer, however, the communication layer is able to receive all messages simultaneously.

When a host has sent out every share and it has received all other players’ shares, the next
computation step can be performed. So, in spite of the theoretical complexity and due to
parallelization, the communication cost per round mainly depends on the slowest pair of
hosts:

costcommi = max
1≤k,l≤n

costmsgi,k→l
(4.2)

One dependency to the number of players remains: while every round is practically per-
formed in constant time, the number of rounds per array multiplication increases linearly.
A further approximative simplification of the communication costs can be made: com-
munication between two peers is always identically structured and of comparable length.
Hence, we can simplify to

∀i ∈ {1, . . . ,m− 1} : costcommi = costcomm. (4.3)

Note that Equation 4.3 does not hold for computation steps. The input phase and the
randomization/resharing step (e.g., during multiplication) encompasses the generation of
a new polynomial and the computation of single elements of it (which become the shares).
The output phase mainly includes the calculation of the Lagrange interpolation for recon-
structing final computation result from the obtained shares. Every single addition and
multiplication of shares includes a single addition and multiplication of large integers4.
Combining Equations 4.1 and 4.3, the overall costs of time can be estimated by

costoverall =
m∑
i=1

costcompi + (m− 1) ∗ costcomm. (4.4)

2Some solution perform a resharing in order to make the final shares independent from the shares
obtained in the computation. This is, e.g., necessary when the shares should be reused to perform further
calculation. Then, another round becomes necessary during this phase.

3One exception is the initial input sharing phase. Here, sending of shares is only performed by a single
host at a time.

4Represented as BigIntegers in Fresco.

42 4. Performance Assessment of Secure Multiparty Computation

SMC TTP

Phase Computation per host Communication
(overall)

Computation
on TTP

Communication
(overall)

Close Generation of polynomial,
calculation of n shares n2 − n — n

Addition n− 1 additions — n− 1 additions —

Multiplication n− 1 multiplications,
CompClose , CompOpen

n2 − n n− 1 multiplications —

Open Lagrange interpolation n2 − n — n

Table 4.2: Performance comparison SMC vs. TTP. Computations are counted in basic
(arithmetic) operations, communication in number of messages.

Applying the model of the alternating sequence, the influences on the duration are twofold:
the computation performance depends in the properties of the players, the communication
performance depends on the properties of the network links between them. Due to the
synchronizing behavior of rounds, the costs of both sides add up to the overall costs.

Performance Comparison

Conceptually, SMC replaces a Trusted Third Party (TTP) for collaboratively computing a
common function by providing a secure protocol. Canetti [Can00] used this understanding
to propose a now well-established method—the real/ideal paradigm—to prove secrecy and
correctness of SMC protocol designs. The method is to show an isomorphism between the
real world where SMC is applied and an ideal world where a TTP handles the computation.

We can apply this understanding not only to prove secrecy and correctness, but also to
assess the performance penalty that SMC introduces. Using a TTP for computation is an
alternative solution for the problem SMC solves, hence it can be used as a performance
baseline here. In fact, in today’s productively used systems, TTP solutions are the estab-
lished standard; hence the comparison with a TTP is also practically relevant. In order
to do so, we align the necessary actions when using a TTP with the phases of an SMC
computation. In a TTP setting, the input phase can be understood as providing the input
data to the TTP. The output phase comprises sending the result from the TTP to the
participants. Computation steps can be directly adapted. The whole comparison applied
to the BGW protocol is shown in Table 4.2.5

On the technical level, another distinction has to be made: choosing SMC as solution
does not only change the number of steps to be performed and the structure of interaction
but also the processed data: in our use case, we initially handle input values with the
type double. A single primitive value has the length of 8 Bytes. On the other hand,
the primitive value of the BGW protocol suite is a share. This consists of a (x, y) tuple
denoting a point on the local polynomial. In Fresco the x is stored as a byte and y
as BigInteger. By inspection, we could find out that y typically has a length of 8 to
12 Bytes.

4.4 Hardware Setting

We use six homogeneous non-virtualized bare metal hosts. These are each equipped with
a Intel Xeon E3-1265L V2 CPU, having eight cores at 2.50 GHz and a cache size of
8192 Kbytes. Each host possesses 15,780 MB of RAM and a 1 Gbit networking interface.

5Common computations are omitted: E.g., the running sum has to be turned into a current average by
a single division. As both solutions have to do the same step, it is not reflected in the table.

4.5. Measurement Setup 43

Controller

Host

Host

Host

Host

Host

Host

HostHost

Host

Host Host

Host

Host

Host

Host

Host

Host

Host

Figure 4.1: Topology of the test setup

All six hosts are connected in the shape of a star topology via a single switch. In confor-
mance to the use cases, one host will be assigned the role of the operator. The operator
participates in the collaborative computations, but does not provide own sensor values.
Instead, it provides a neutral element (e.g., 0 in an addition) or the value of the previous
computation, if a running sum or average is computed.

4.5 Measurement Setup

In this section, the software aspects of our test setup are described. This includes the
operating systems of the host, and the measured software and the measurement software.

4.5.1 Host System

The test hosts use a dedicated PXE server to boot from. This server provides an image of
Debian Jessie (8.5) using a 3.16 Linux kernel (cf. Listing 4.4).

1 Linux pc1 3.16.0-4-amd64 #1 SMP Debian 3.16.7-ckt25-2+deb8u3 (2016-07-02) x86_64 GNU/Linux

Listing 4.4: Host System

The hosts are completely non-persistent and fully reset upon reboot. This makes the
utilization of an orchestration solution like ansible necessary in order to ensure the same
test configuration every time the systems are rebooted (cf. Section 4.6).

4.5.2 Measured Software

The software under test is the Fresco framework (version 0.2) [Fre18] developed by the
non-profit organization Alexandra Institute. It is a Java framework for secure multiparty
computation. We evaluate the BGW protocol suite [BOGW88] provided by Fresco.
BGW works with n-out-of-t secret sharings [Sha79].

The protocol suites like BGW comprise basic arithmetic operations like additions and
multiplications. The Fresco framework enables users to create protocols for individual
computations by combining these protocol primitives into larger sequences.

44 4. Performance Assessment of Secure Multiparty Computation

In order to evaluate the framework we wrote a lightweight wrapper which loads input data
from a local storage, performs preprocessing necessary for the computations and starts the
computations using Fresco. The specification of the evaluated protocols is described in
the Use Case (Sec. 4.2).

The source code is compiled to a Java application which is in turn executed by the Java
Virtual Machine from the OpenJDK 1.8.0 111.

4.5.3 Measurement Software

Profiling is performed using perf from the linux-tools (version 3.16+63), BTrace [BTr16]
(version 1.3.8.3 (20160926)) and tshark (version 2.2.4).

perf

We use perf to count CPU cycles consumed and instructions performed by the executing
process under test. Perf is event-based and obtains the indicators from hardware counters
provided by the performance monitoring unit (PMU) [Per16]. In our context, only the
overall number of cycles and instructions is considered relevant. Perf is prepended to the
Java command executing the Fresco application. Perf in turn starts the process; the
results are output when this process terminates. An important difference to BTrace is
that, while the latter can specifically select methods to be profiled while excluding the
measurement setup code, perf can only measure the Java process as a whole.

BTrace

BTrace is used to evaluate the memory consumption and the execution time of the ap-
plication under test. It performs profiling by bytecode tracing, i.e., instrumenting the
bytecode. BTrace consists of two parts: a Java library enables the user to write classes
which specify the profiling logic and (via annotations) the methods of the code under test
to be profiled. The second part is an executable btrace which uses a given instrumentation
class to instrument a Java process accordingly. The process to be monitored is specified
by its PID upon invocation of btrace. BTrace itself is then partially executed by the JVM.

BTrace allows event-based and polling-based profiling. Both options are necessary in
our context. Similar to the CPU profiling above, wall-clock time measurements can be
performed in an event-based manner: the profiling starts with execution of the Java process
under test and stops with its termination; time counting is started when the specified
methods are entered and stopped when they are left. However, the memory consumption
of the Java process changes during execution time, hence it must be polled frequently in
order to gain insights into the behavior of the process.

In order to avoid a non-neglible overhead by the instrumentation, we performed a pre-
assessment. This is described in Section 4.6 and gives insights into the performance over-
head depending on the polling frequency.

tshark

Tshark is part of the wireshark application and presents a command line interface to the
core features of wireshark. We use tshark to capture the TCP packet stream constituting
the computation communication. In the background, tshark uses dumpcap for recording
the data stream. During evaluation, tshark is again used to convert the captured pcap-files
to CSV which is used for further processing. By collecting the whole data stream, it is
ensured that analysis is not constrained by a priori assumptions during data collection,
but the full potential of the measured information can be exploited.

4.6. Measurement Process 45

4.5.4 Orchestration Software

For evaluating multiparty protocols, execution of the corresponding processes on several
hosts has to happen in sync. For this purpose, another layer of software is added which
orchestrates the measurements. This layer uses the python library baltinet. Baltinet is
similar to mininet [LHM10], but manages real instead of virtual networks. With its help,
we built an orchestration script which conducts the actual measurements. The whole
process is described in the next section.

4.6 Measurement Process

In this section, we describe the process in which the measurements are performed. We
describe its steps on different levels of detail: the components and steps which are synthetic
measurement setup are only described regarding their function so that reproducability is
possible. During the steps performed by the Fresco framework, however, we also focus on
the behavior and establish a first understanding of how Fresco is working on the network
level. We use this basic information later to describe some effects which the measurements
uncover (cf. Section 4.7).

System Setup Phase

The setup phase is only executed at the beginning of the tests and each time a restart of the
hardware setup is necessary. Via PXE, the test hosts start using an image provided by the
controller. This image contains the base system as described in Section 4.5.1. Afterwards
Ansible [Ans18] is used to install the necessary software, including the aforementioned
measurement software and the Java Runtime Environment in order to execute Fresco.
Lastly, the repository holding the source code of the test application is copied to each test
host.

Orchestration Phase

The baltinet orchestration script is executed on the controller (see Figure 4.1) of the
hardware setup. In the beginning, it establishes SSH connections to all selected test hosts.
After this initialization phase, it computes all parameter combinations to be tested and
iterates over the set of parameter permutations. For each permutation, the following tasks
are performed: 1) Hardware parameters are set. This includes the configuration for the
network interfaces, especially setting the transmission rate and network latency, and for
the CPU, setting the number of cores to be used and their frequency. 2) Then the state
of the host is cleaned, killing all processes possibly dangling from a previous permutation.
This includes all Java, tshark (and dumpcap), btrace and perf instances. 3) Furthermore,
a cleanup of former test result files is performed. 4) Then, the software under test and the
profiling tools are started. In the beginning, tshark is started using a wrapper script. It
then listens for packets on the utilized port 9000. Perf stat is started wrapping the actual
Java test application. Btrace is wrapped by a script which first polls for the PID until the
Java application is started and its PID is found, then the PID is handed to btrace upon
its invocation.

The profiling tools generate and save result files. After the current round is finished, all
result files are uploaded to the controller and saved in a folder dedicated for the current
measurement. The instances of the measurement tools are then terminated.

Then, the next iteration begins.

46 4. Performance Assessment of Secure Multiparty Computation

Fresco Phases

In this and the following paragraph, we focus on the phases which occur at a deeper level,
inside the Fresco framework when the Java test application is started.

1 # perf stat java -XX:+PrintCompilation

2 -cp .:../fresco-0.2-SNAPSHOT-jar-with-dependencies.jar AverageApplication -i2

3 -p1:localhost:9001 -p2:localhost:9002 -p3:localhost:9003

4 -s bgw -Dbgw.threshold=1 -l OFF -ic 1000 -pl 1

Listing 4.5: Starting the Fresco Application

The execution of a Fresco application performed by the command in Listing 4.5 consists
of three phases which are currently of interest. The first phase contains the connection
establishment between the participating nodes. Its behavior is of vital importance for the
explanation of some of the following test results.

Setup Phase The invocation of sce.runApplication() internally calls this.setup()
which performs the connection setup. The aim is to establish a channel in both directions
between every pair of all participating hosts. Each host is informed about the set of
prospective participants during application startup via command line parameters.

First, the application itself listens for incoming connections. In parallel, it performs own
connection attempts driven by busy waiting: it issues an overall amount of around 2000
TCP SYN packets per second6. Due to our host orchestration, this phase exhibits a specific
pattern: the Java applications on the test hosts are started sequentially with a certain delay
between each host. Hence, the first application starts to poll for all other hosts which are
not yet listening for incoming connections. When a connection is attempted to a peer which
is not yet ready, this peers answers with a TCP Reset (RST) packet. Hence, a multitude
of connections attempts to the beginning of each measurement noticeably increase the
overall count of packets before the computation has even been started. When the second
application comes up, it immediately connects to the first host due to one of its connection
attempts. From this point in time, both hosts poll in order to connect to all other hosts.
Note that this results in the first host issuing a huge amount of SYN packets depending
on the duration until the application on the last host is started. Complementarily, the last
host is only able to issue a comparatively small amount of SYN attempts before all other
hosts connected to it.

In the following, we refer to this phase as polling phase.

As soon as the nodes build a clique, each being connected to every other, the actual
computation starts.

Computation Phase During the computation, the defined application specific protocol
is executed on each host. This causes a continuous flow of TCP packets between all hosts
over the established connections. That means no new SYN and SYN/ACK packets are
sent. The amount of packets mainly depends on the number of input elements and the
number of participating peers.

Tear Down Phase When the computation has finished, the connection is torn down.
This is initiated by each host sending a RST packet via the connections established from
other peers to their listening ports and a FIN packet over the connections they established
themselves to other peers’ listening ports.

4.6. Measurement Process 47

Figure 4.2: The impact of polled memory profiling on number of CPU cycles consumed
by the measured process

Figure 4.3: The impact of polled memory profiling on number of instructions performed
by the measured process

Assessment of the influence of profiling on performance

Polling memory data from a running process introduces a performance overhead as the
code under test is extended by the instrumentation code which is also executed. Hence, the
question becomes important how often memory stats may be polled without introducing
an overhead which considerably influences other measurement results.

In order to answer this question we perform a pre-measurement. As parameter, we vary
the delay between retrieving memory stats by btrace between 10 and 1000 milliseconds. As
variable of interest, we measure the number of CPU cycles consumed by the process under
test and the corresponding number of instructions performed by the CPU. The variables
are measured using perf. Each measurement is done 50 times, each time completing a full
iteration from 10 ms to 1000 ms before restarting at 10 ms.

6Assuming an unmodified configuration of the CPU and the network interface.

48 4. Performance Assessment of Secure Multiparty Computation

We compare the results to a baseline, where we measured the named variables without
instrumenting the process at all. This baseline is denoted as delay = 0 in the figures 4.2
and 4.3.

The results show that the measurements are only influenced considerably when memory
polling happens every 10 to 20 milliseconds. Greater intervals already show a distribution
of cycles and instructions similar to uninstrumented code.

In conclusion, a lower limit of the memory polling delay to avoid non-neglible performance
overhead is 30 ms. In other words, when memory polling is performed less frequently than
every 30 ms, CPU measurements and memory measurements can be performed simultane-
ously, drastically decreasing the amount of measurements and their overall duration. In
order to obtain a safety margin, we perform memory polling every 100 milliseconds.

4.7 Results

The evaluation analyzes the influence of the parameters number of input elements, number
of nodes, number of CPU cores, frequency of CPU, transmission rate, packet loss, network
latency, parallelization of computation, on the execution time, the memory consumption
(stack & heap), the used CPU cycles and instructions and the transferred packets of the
Fresco framework when used for secure computation of the above-mentioned use case.

The measurement points by btrace for the execution time and both memory types in the
code are set to only evaluate the method which actually calls Fresco’s #runApplication
method. In other words, the Java VM initialization and the setup code for the tests are
not included in the results, and hence do not introduce interferences. The term execution
time refers to the duration of the execution of this very method.

4.7.1 Number of Points

Parameters Values

Nodes 3
CPU Cores 8
CPU Frequency 2500 MHz
Parallelization 1
Transmission rate 1 Gbit
Added network latency 0 ms
Packet loss 0 %
Number of input elements 1–5000
Number of repetitions 50

As the first measurement, we took the number of input elements as parameter and inves-
tigated the scaling behavior of Fresco. This shows the order of magnitude in which a
SMC session is carried out and provides a baseline against which the following tests can
be compared.

Execution Time

Figure 4.4 shows a linear relation between the number of points and the execution time.
The reason is that all computations are performed independently from each other and
the execution time scales with a constant time factor per computation. Linear regression
yields the following approximation for fifteen nodes:

0.01292s ∗ |input elements|+ 15.717s = execution time

4.7. Results 49

●●●
●●
●● ●

● ● ● ● ● ●
●

●
●

● ●

●

●

●

●●●
●
●●
● ● ●

● ● ● ● ● ● ●
●

●

●

●
●

●●●
● ● ●

● ● ● ●
●

●
● ●

●
●

●

●
●

●
●●●

● ●
● ● ● ● ● ●

● ●

● ●

●

●●●
●●

● ● ● ●
● ● ● ● ●

●
●

● ●
●

●●
●●●●●

● ● ●
● ●

●
●

● ●
●

●
●

●
●● ●

● ● ● ● ● ●

● ● ●
● ●

●●
● ● ● ● ●

● ● ● ●

● ● ●

●
●

●
●●

● ●
● ● ● ● ●

●
●

● ●

●
●

● ● ● ● ●
●

●
● ●

● ●

●

● ● ● ●
●

●

● ●

● ●
●

● ● ●
●

●
●

●

●● ●
● ●

●
● ●

●
●

● ●
● ●

●
●●●

● ● ●
●

● ●

● ● ●

●
● ● ● ●

●

●

●

● ●

●

● ● ● ● ● ●
● ●

● ●

● ●

●

●●● ● ● ●
● ● ●

●

● ●

●

●● ● ●
● ● ●

●

● ● ● ●

●

●
● ● ●

●
● ●

●
●

●

●

●
● ● ●

● ● ●

●

● ●
●

● ● ● ● ● ●
●

● ●
●

●
● ●

●

● ●
●

● ●
● ●

●
●

●
●

●

●●
● ●

●

●
●

●

●
● ● ●

●
●

●
●

●
● ●

● ●

●

●

●●●●
●

●

● ●

● ●

●

● ●
● ● ●

●

●
●

●

●
●

● ● ●
●

●
●

●

● ●

● ●

●

● ●
● ●

●

●
●

●

● ●

●
●

● ●

●

● ●
●

● ●

●

●
●

●

● ●

● ● ●

●
●

●

●

●
● ●

●
●

●

●
●

●
● ●

● ●

●
●

●
●

● ●

●

●

● ●

●

●

●

●●

●
●

●

●

● ● ●
●

●

●
● ●

●
● ●

●●

●

●
●

●

●
●

●
●

●

●

● ●
●

● ●

●

●

●
●

●

●
● ●

● ●
●

●
●

●

●
●

●
● ●

●

●
●

● ●

● ●
● ●
●

●

●●

●

●

●

●

●● ●
●

●

●

●

●
●

●

●
● ●●
● ●

●

●●
●● ●●
●

●

●● ●

●

●●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●
●●

●
●

●
●

●
●

●
●

●

●

●●●
●

●
●

●
●

●
●

●
●

●●●●
●

●
●

●
●

●
●

●

●
●

●●●●
●

●

●

●
●

●

●

●●●●
●●

●
●

●
●

●
●

●

●
●●

●
●

●
●

●
●

●
●

●●●●

●
●

●
●

●
●

●
●

●●●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●

●●●●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●

●
●

●●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●●●
●

●
●

●
●

●
●

●

●
● ●

●
●

●
●

●
●

●

●●●●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●●
●

●

●
●

●

●

●●
●

●
●

●

●
● ●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
● ●

●●●● ●
● ●

● ● ●

●●●●●●
●

●
● ● ●

●

●●●
● ●

● ● ●

●

●●●●●
●

●

●
●

●●

●
● ●

●
●

●●●

●
● ●

●● ●
●

● ●

●

●

●

●●
●

●
●

● ●

● ●
● ●

●
●
●

●

●
●

●

●
●

● ●
●

●● ● ●
● ●

● ●

●

●●

●

● ●

●

●
●

●

●●●
●

● ●

●
●

●●
●

●
●

●
●

●

● ●
●

●

●●

●
●

●
●

●
●

●● ●

●
●

●

●
●

●

●
●

●

●

●
● ●

●

●●

●
●

●

●
●

●

●

●
● ●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●

● ●

● ●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●
●●

●
● ●

●

●
●

●

●

●
●

●

●

● ●
●

●

●
●

●

● ●

●●●●

● ●
●

● ●
● ● ●

●

●● ●
●

● ●
●

● ●

● ● ●
●

●

●●
●

●
●●

● ●●●
●●

●
●● ●

●●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

● ●

●
●

●
●

●

● ●
●

●
●

●

●
● ●

●

●

●

● ●

● ●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
● ●

●
●

● ●

●

● ●

●

●

●

●
● ●

● ●

●

●

●
●●

● ●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

20

40

60

80

0 1000 2000 3000 4000

Elements [#]

T
im

e
[s

] Number of peers
●

●

●

3
9
15

Figure 4.4: The impact of the number of input elements on the execution time

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●●
●

●●
●

●

●

●
●●
●●
●

●

●

●
●

●●● ●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●

●

●
●●

●
●

● ●
●●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●●

●

●

●●●

●

●
●

●

●

●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

● ●

●
●

●

●
●

●

●● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

● ●●

●●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

●● ●
●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●●

●
●

●

●

●
●

●

●●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●●●

●

●

●
●

●●
●

●

●

●

●

●

●●

●
●

●

●

●
● ●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

● ●

●●
●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●
●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●

●
●

●
●●●

●
●●●

●
●

● ●● ●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●
● ●

●
●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ● ●
●

●●●●

● ● ●

●

●

●

●

●●

●

●
●●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
●●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●●
●

●●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●●

●
●

●

●

●

●●

●

●

● ●

●
●●●●

●●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●●●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●●

●
●

●

●●

●

●●
● ●

●
●

●

●

● ●

●
●

●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●
●●●

●

●
●

●●

● ●

●

● ●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●●

●
●

●
● ● ●

●

●●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

● ●

●

●
●

●

●

● ●

●●

●
●

●

● ●

●

●
●●●

●

●

●
●

●

●●

● ●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●
● ●

●
● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●●
●●●

●

●●

● ●

●

●

●

●
●● ●

●
●

●●●
●

●●●
●●●●●●
●● ●

●●
●

●

●

●

●
●●

●
●

●
●

●
●

● ●

●

●

●●

●

●●
●

●●

●

●
●

●

●
●

●

●
●

●●●

●●● ●

●●●
●

●

●
●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●●●●●●
●●

●●

●

●

●

●● ●

●

●

● ●

●●

●●

●
●

●

●●
●●

●
●

●

●

●

●
●●●●●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●
● ●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●●●●●

●

●
●●

●

●
●

●

●●●

●

●●
●

●

●●

●●

●

●

●

●

●●●●

●
●

●
●●●

●

●

● ●●

●

●●
●

●
●●

●
●●●

●

●
●●

●
●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

●●
●

●●●

●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●

●

●●●
●

●

●

● ●●

●
●

●

●●●

●

●

●

●
●●

●
●●

●
● ●

●●

●

●●

●

●
●

●●●
●●

●

●

●●

●

●

●●

●
●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●
●

●
●

●●●

●

●
●●

●
●

●

●

●●●

●
●

●

●

●

●

●
●●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●●

●

●
●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

● ●

●

●

●

●

●●●

●

●

●

●

● ●

●
●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●●●
●

● ●

●

●

●●

●●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●●

●
●●

●

● ●●
●

●

●

●
●

●
●

●

●●
●

●

●●

●

●
●

●
●

●

●

●

●

● ●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●●

●● ● ●

●●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●●

●
●

●

●

●

● ●

●
●

●

●
●

● ●
●

●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●●

●

●●

●

●

●
● ●●

●●

●

●
●

●

●
●
● ●●

●

●●
●

●

●

●
● ●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●
●

●

●
●

●

● ● ●
●

●

●●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

● ●●
●

●●
●●

● ●
● ●

●

●

●
● ●●

●
●●

●

●
●●

●●
●●

●●
● ● ●●

●

●
●

●

●
●

● ●
●●

●
●

●

●

●
●●●●

●

● ●

●●
● ●

●

●
●

● ●

●

●●

●
●

●

●

● ●● ● ●

●

●

●●

●●

●
●

●
●

●

●

●

●
●

●●

●

●

●
● ●

●● ●
●●

●

●

●

●

●●

●

●●

●
● ●

●
●

●

●
●

●● ●●

●

●● ●

●

● ●
●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

● ●
●

●●
●

●
●

●
●

●

●●
●
●

●

●

●
●

●

●

●

●●

●

●

●

●
● ●

●●
●

●

●
● ●

● ●●
●

●

●

● ●
●
●

●

●●

●●

●
●

●●●
●

●

●
●

●
●

●

●
●

●
● ●●

●●
●

●●

●●●
●

● ●
●

●
●

●

●

●

●

●

●●●●

●
●

●

●
●

●
●●● ●

●●

●●
●

● ●
●

●

●

●

●

●
●● ●

●●
●

●
●

●

●
● ●

●
●

●
●

● ●

●

●

●

● ●●

●

●

●

●
●

●● ●
●

●
●●●

● ●

●
●

● ●

●

●
●

● ●
●

●
●
●

●
●

●●

●

●
●●

●

●

● ●
●

●●

●

●

●●

●

●
●

●

●

●
● ● ●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●

4.0e+10

8.0e+10

1.2e+11

1.6e+11

0 1000 2000 3000 4000 5000

Elements [#]

C
P

U
 c

yc
le

s
[#

]

Number of peers
●

●

●

3
9
15

Figure 4.5: The impact of the number of input elements on the number of consumed CPU
cycles

CPU Utilization

The overall development of the number of CPU cycles7 is mainly linear with respect to
an increasing number of points (Figure 4.5). At the beginning of each measurement series
the increase is higher than in later measurements. We assume that the JIT (just-in-time)
compiler of Java which compiles often-used byte code to machine code, starts to optimize
essential parts of the application between an input length of 100 and 300 elements. This
explains why the curve becomes less steep in this area. The fact that the steepness of the
curve with three nodes changes later also supports this theory. Here, generally less code
is executed and, in consequence, the JIT compiler reacts later.

The correlated change in the previous time diagram is, however, very small and hardly
visible.

7We also measured the CPU instructions. We will only elaborate on them if they provide additionl
insights. In most cases instructions and cycles exhibited the same behavior.

50 4. Performance Assessment of Secure Multiparty Computation

Note that the effect of the setup phase, is not removed from these diagrams. We elaborate
on this effect in Section 4.7.2 on page 53 and also make its intensity visible there.

Memory Allocation

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

● ●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●
●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

16

17

18

19

20

0 1000 2000 3000 4000 5000

Elements [#]

St
ac

k
m

em
or

y
[M

by
te

s] Number of peers
●

●

●

3
9
15

Figure 4.6: The impact of the number of input elements on the maximum allocated stack
memory

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●●●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●
●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●
●

●

●

●
●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●

●

●

●

●●●●●
●
●
●●
●
●●●

●

●●●●
●
●●
●
●
●

●
●
●
●
●●●

●

●

●

●
●●●
●
●●●
●●
●
●
●

●

●

●
●
●●
●●
●

●●●

●

●
●●●●●●●●
●
●●
●●●●●●●●
●
●●●●

●

●
●●●●
●

●

●●●
●
●●●●
●
●
●●●●●●
●
●●●●●●●●●●●
●●●
●
●
●

●
●●
●
●●●
●
●●
●
●●●●●●●
●●●●●●
●●
●
●
●
●●
●
●●
●●

●●
●
●●●
●
●

●

●
●

●

●●●
●
●●

●

●●
●●
●●●●●●●
●●●●
●
●●●
●
●●
●●●
●●
●
●
●●●
●●
●
●
●●●●●
●
●
●●●●

●

●●●●●●
●
●

●

●●●●

●

●●
●●●●●●●
●●
●
●●
●

●

●●
●
●
●
●●●●●●

●

●●●
●
●
●●
●●●
●
●●

●

●●●

●

●●●
●
●
●
●●●
●

●

●

●

●●●●●
●●●
●
●
●●●

●

●●●
●
●●

●●
●●●
●
●●●
●●
●

●

●
●

●

●
●
●●●●
●●

●

●
●●●●

●

●●
●●

●

●●●

●

●

●

●
●
●●

●

●●●●●●
●●
●●
●●●●●
●

●●●●
●●●●
●●

●
●●

●

●●
●
●●
●
●
●
●●

●●
●●●●●●●
●
●
●
●●●

●

●●●●
●

●●●●●●●●
●

●●●●●
●●
●
●●●
●
●

●

●

●●●●●
●●●●●

●

●●
●
●

●

●●●
●
●●●
●●●
●●
●●
●●●

●

●
●●●

●

●●
●

●●●
●
●

●●●
●
●●●●●●
●
●
●
●
●
●
●●●
●●●●●
●●●
●●
●
●●
●
●●●●●
●
●●
●
●●
●
●
●●

●
●

●●●

●

●●●●●●
●●●
●
●●●●●
●
●●●
●●●

●

●
●
●●●

●

●●
●●
●

●

●
●
●●

●

●●
●

●

●●●●●

●

●

●

●

●
●

●

●
●

●

●
●
●●
●
●
●
●
●
●
●●
●

●
●

●

●

●●●●
●

●

●
●●●

●●
●
●●●
●
●●

●

●
●
●●●●
●●●

●

●

●

●
●

●

●●●

●

●●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●
●
●
●●●
●●
●●●●●

●

●●●●●●●
●

●

●

●

●
●

●

●●
●
●●

●

●

●

●

●

●●
●
●●●●●
●●●●
●●
●

●

●
●●●

●

●
●●●
●
●●●●
●
●●●

●●●●●●●
●
●

●

●

●

●
●●

●

●

●

●
●●

●

●●
●●
●

●●●
●●

●●
●●

●
●●●●● ●

●●
●
●

●

●

●●
●

●●
●
●●

●

●●
●
● ●●

●

●
● ●

●
●

●●

●

●
●●● ●

●●●

●

●
●
●
●
●●
●●●
●

●

●
●●●●

●●
●●
●●
●

●

●
●●●
●

●

●
●

●

●●●
●
●

●

●

●●

●

●

●

●

●

●●●
●
●●
●

●
●
●●●●●
●
●●●●
●●
●●
●●●
●
●●●
●
●●●●
●●●●

●

●
● ●●●●

●

●

●●●●●●
●

●●
●●●
●●
●
●●

●

●
●
●
●●●●
●●

●

●

●

●
●

●

●
●

●

●

●
●
●● ●

●
●
●
●
●
●

●●

●●
●
●
●
●●●●●

●

●●

●

●●●
●●
●●
●●
●
●●

●

●

●●

●

●●

●

●●
●●●

●
●

●

●●

●

●
●

●

●

●●●●●
●

●

●

●●●●●
●●●

●

●●

●

●
●●

●

●

●

●

●

●
●●
●

●
●
●

●
●
●

●

●

●
●●●
●

●

●●●

●

●
●●
●
●
●●
●●

●

●●
●●

●

●●
●
●

●

●
●●●
●●
●

●

● ●●
●
●●●

●

●●
●

●●●●

●

●
●●
●
●●

●

●
●●●●

●

●
●●●

●

●

●

●

●

●

●

●●
●
●

●

● ●●
●
●●●
●
●●
●●

●●●

●

●●●

●

●●●●●
●●

●

●●●●●●●●●●
●●●

●

●●
●●●●●

●

●●

●

●
●

●

●
●
●●
●
●
●

●●●
●

●

●

●●
●
●

●

●●●●●

●

●
●●

●

●
●●●●●

●

●●●●
●

●

3 peers 9 peers 15 peers

0
10

00
20

00
30

00
40

00
50

00 0
10

00
20

00
30

00
40

00
50

00 0
10

00
20

00
30

00
40

00
50

00
400

600

800

1000

1200

500

510

520

530

60

65

70

Elements [#]

H
ea

p
m

em
or

y
[M

by
te

s]

Figure 4.7: The impact of the number of input elements on the maximum allocated heap
memory

In Figure 4.6 we see that stack memory allocation starts around 16 Megabytes. It increases
slightly upon increasing the number of points. We expect that memory allocation stops
increasing at a certain point beyond 5000 input elements. The reason is that, as long as
no significant amount of memory is requested by the application in a short time frame,
the garbage collector keeps an implicit, static limit of the allocated memory. Every time
the application requests another memory allocation which would surpass this given limit,
the garbage collector runs and resets the allocated memory back to the currently possible
minimum.

4.7. Results 51

During our measurements, we noticed that the stack memory was never strongly influenced
by any examined parameter. We will hence omit the stack memory from now on.

Figure 4.7 shows the heap space allocation during the measurement.8 With fewer points,
the allocated memory exhibits a greater variability which is gradually reduced during input
element increase. However, in the measured interval, we see that the allocated memory
has a common maximum over the whole span. Its actual value depends on the number
of participating nodes. This behavior regarding the heap memory shows that there is
no continued creation of long term objects per computation which is retained over the
duration of each single computation itself. In other words, the amount of needed heap
space converges irrespective of the amount of performed computations. The test cases
with 15 nodes show discrete levels of allocated heap memory (around 836 Mbytes, 662
Mbytes, 520 Mbytes). This is caused by the behavior of Java’s garbage collection and
described in greater detail in Section 4.7.2 and Figure 4.13.

As for the stack memory, we will only elaborate on the heap memory from now on if it
deviates from the established baseline of around 70 Mbytes.

Transmitted Packets

Similar to the amount of elapsed execution time, the number of packets to be transmitted
scales linearly with the number of input elements (see Figure 4.8). The reason is the same
as stated above.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●● ● ●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0e+00

2e+05

4e+05

6e+05

8e+05

0 1000 2000 3000 4000 5000

Elements [#]

T
ra

ns
m

it
te

d
pa

ck
et

s
[#

]

Number of peers
●

●

●

3
9
15

Figure 4.8: The impact of the number of input elements on the amount of transmitted
packets

We investigated the impact of the setup phase on the packet transmissions in detail. Figure
4.9 shows the transmitted packets during a characteristic session. Packets carrying the
SYN or RST flag are specially colored in order to make the differences between the setup
phase and the computation phase visible. The setup phase is split into two sections. Both
sections starts with a gradually increasing amount of SYN packets until about 2000 SYN
packets per second are issued. This level is kept for about a second, then the transmission
stops abruptly.

The behavior can be explained as follows: upon invocation, the Java application receives
the list of the computation peers (cf. Listing 4.5). The first peer tries to only establish

8In order to retain details in the case of three nodes, the diagram has been split and the y-axes have
been individually adjusted.

52 4. Performance Assessment of Secure Multiparty Computation

a connection to the next in the given list. This yields the first increase of SYN packets.
Given, the peer is found—otherwise the application would fail at this point—a connection
is established. The diagram reflects this by the abrupt drop of syn packets per second
and the very small amount of non-SYN, non-RST packets transmitted which constitute
the TCP handshake. Afterwards, both the first and the second peer try to establish a
connection to the third nodes. This causes the second, similarly shaped section.

The rest of the transmission is the actual communication necessary for the computation.

The influence of the setup phase upon the number of transmitted packets is quite strong.
The reason is inefficient busy waiting, which can, in a productive environment, be replaced
by a more efficient solution. As the SYN and RST flagged packets only occur during the
setup phase and additionally a single RST packet per node pair during the tear down
phase, we can focus on the packets constituting the actual computation by excluding these
packets in any of the following considerations and diagrams. So, in the following, the SYN
and RST packets are filtered out beforehand.

Figure 4.9: Amount of packets transferred over the time of a SMC session with 1000 input
points. Vantage point is the second peer in a set of three.

4.7.2 Number of Peers

In this section, we consider one of the most important parameters: the number of partici-
pating nodes reflects the question how the overall system is able to scale in a productive
environment. In our setup, we where able to examine the interval of 3 to 15 nodes. This
yielded results that already show a definitive trend and allow extrapolation for greater
numbers of collaborating peers. The modeled setting is that of an intranet.

The utilization of more nodes made it necessary to provide more input data to be used
for the computation. The data itself does in no way influence the performance of the
system. Hence, without loss of application and closeness to reality, we took our data from
the original 5 donators and duplicated the inputs until every used node had an own list of
GPS input tuples.

4.7. Results 53

Parameters Values

Nodes 3–15
CPU Cores 8
CPU Frequency 2500 MHz
Parallelization 1
Transmission rate 1 Gbit
Added network latency 0 ms
Packet loss 0 %
Number of input elements 1000
Number of repetitions 50

Execution Time

Figure 4.10: The impact of the number of peers on the execution time

Figure 4.10 shows that there is a linear relation between the number of nodes and the ex-
ecution time. At first glance, this might surprise, as the utilized BGW protocol exchanges
O(n2) messages upon invocation with n nodes.

In our case, the concrete protocol consists of an input, computation and finally an output
phase. All of these phases require communication between every pair of hosts. However,
the communication of each phase can be performed simultaneously and in parallel as there
exists no dependency between the communications in the same phase.

Concretely, each node has to perform a constant number k of steps for each of the remaining
|n− 1| nodes. Hence, |n| ∗ k ∗ |n− 1| overall steps have to be performed. Nevertheless, the
k ∗ |n− 1| steps of each separate node can be executed in parallel, reducing the necessary
time by the factor n, and consequently yielding linear time.

The only existing sequential dependency is between the phases itself which requires that
the previous phase has been fully completed before the next can start.

CPU Utilization

In correlation with the linear increase of logical steps, the number of CPU cycles also scales
linearly with the number of peers (Figure 4.11). This supports our interpretation from the
previous section.

54 4. Performance Assessment of Secure Multiparty Computation

Figure 4.11: The impact of the number of peers on the number of consumed CPU cycles

However, there is a confounding variable which has to be investigated: as described earlier
(Section 4.6), before the actual computation, each host performs polling of all other hosts
in order to establish mutual connections between all participants. Each host here performs
busy waiting, issuing a vast amount of connection attempts per second. This does not only
affect the amount of transmitted packets, but also the consumed CPU cycles.

We differentiated between the CPU consumed during the polling phase and the actual
computation phase by employing the following method: the test orchestration software
starts the Fresco framework sequentially on all participating hosts. This means the first
host has to poll the longest time before the actual computation starts while the last hosts
has to perform very little to no polling. We exploited this fact by comparing the CPU
usage of the first real participant (besides the role of the organising gateway being peer 1)
and the last participant in the computation.

The evident difference is shown in the previously mentioned diagrams. The upper linear
development depicts the CPU usage including the polling phase at the beginning. In the
lower development only the CPU used for the computation alone is shown.

The measurement results show that the polling phase at the beginning contributes essen-
tially to the amount of consumed CPU. In contrast, the increased CPU usage caused by
the computation itself is relatively low.

Memory Allocation

Figure 4.12 shows the memory allocation behavior when increasing the number of partici-
pating peers.

Plateaus become visible which discretely heighten when the number of peers is increased.
We investigated this behavior in greater detail and found out that it is also attributable to
the garbage collector of the Java VM. Figure 4.13 shows the memory allocation over time
during three exemplary rounds. There exist two individual processes which influence the
depicted curve: memory allocation is performed by the provided SMC code which exhibits
the same pattern in all three cases: in the first 15 seconds, allocation happens relatively
fast, indicated by the steep jags in the beginning. After that time, further allocation
is performed comparatively slower. The second process is the garbage collector which
repeatedly removes unreferenced objects to regain allocatable memory. Here, differences
between the three cases occur: from run 26 to 28, the garbage collector runs zero, one

4.7. Results 55

or more times during the phase of slower memory allocation. This highly influences the
maximum peak of the used amount of memory. In other words, the memory allocation
does not behave differently depending on the number of peers, but the JVM handles the
execution in different ways.

Figure 4.12: The impact of the number of peers on the maximum allocated heap memory

Figure 4.13: The behavior of the garbage collector regarding heap memory during a com-
putation (detailed view of run 26, 27, and 28 with 15 nodes)

Transmitted Packets

The overall amount of packets to be sent increases quadratically with the number of
participating peers. From the perspective of a single peers, this means that the number of
messages sent and received individually scales linearly as depicted in Section 4.7.2.

56 4. Performance Assessment of Secure Multiparty Computation

Figure 4.14: The impact of the number of peers on the amount of transmitted packets

4.7.3 Cores and CPU Frequency

Parameters Values

Nodes 3
CPU Cores 1, 2, 4, 8
CPU Frequency 1600, 1800, 2000, 2200, 2500 MHz
Parallelization 1
Transmission rate 1 Gbit
Added network latency 0 ms
Packet loss 0 %
Number of input elements 1000
Number of repetitions 50

In order to determine the necessary resources single nodes have to provide for realizing a
satisfying overall performance, we measured how the number of cores and their frequency
of every node influences the performance of an SMC session.

Both parameters where manipulated via the /sys interface (cf. Listing 4.6).

1 cores=...

2 freq=...

3 for i in $(seq 1 7); do

4 echo 1 > /sys/devices/system/cpu/cpu$i/online

5 done

6 for i in $(seq $cores 7); do

7 echo 0 > /sys/devices/system/cpu/cpu$i/online

8 done

9

10 # set the frequency of the online cores

11 for i in $(seq 0 $((cores-1))); do

12 echo ${freq}000 > /sys/devices/system/cpu/cpu$i/cpufreq/scaling_min_freq

13 echo ${freq}000 > /sys/devices/system/cpu/cpu$i/cpufreq/scaling_max_freq

14 done

Listing 4.6: Setting up artificial CPU core and frequency restrictions using the /sys
interface

4.7. Results 57

Figure 4.15: The impact of the number of CPU cores and their frequency on the execution
time

Execution Time

Figure 4.15 shows that additional cores reduce the execution time. This effect is notable
when comparing a single against two cores, as well as two against four cores. However,
the improvement of eight cores against four cores is minimal.

This can be explained as the amount of parallelizable computations is limited in the given
setting. Basic parallelization of computations is possible in lines 12 to 14 of Listing 4.3,
but the computations for each input are performed in a completely sequential manner.
Hence, further parallelization is impossible. Due to this reason, no improvements from
four to eight cores can be achieved. In Section 4.7.7, we investigate how the potential of
further parallelization can be leveraged.

CPU Utilization

We consider Figure 4.5 as reference point. We see that for 1000 input elements and 3 nodes
having 8 cores with 2500 MHz, around 2.5 ∗ 1010 cycles are consumed. This corresponds
to the last column of boxes in Figure 4.16. From there, decreasing the CPU frequency or
the number of cores effectively reduces the amount of CPU cycles (Figure 4.16). Here, the
influence of the frequency is considerably smaller than the influence of the cores.

In order to explain the effect we depict not only the measurement data of our typical
measurement host, but of all peers involved in the computation. The diagrams show that
the selection of the host influences the number of consumed cycles to a greater extent
than the CPU frequency and the number of cores. The only logical difference between
the nodes is the order in which they are orchestrated and, in consequence, the length
of the individual setup phase. Later nodes (higher ID) perform a significantly shorter
polling phase and correspondingly less connection attempts. This results in a notably
lower amount of consumed CPU cycles. We consider the whole influence of the number
of cores and the CPU frequency on the CPU cycles to be an artifact of the setup phase.
With the current measurement setup, it is unfortunately not possible to exclude the setup
phase from the CPU measurements in order to eliminate this effect completely.

Memory Allocation

There is no notable influence of the number of cores and the CPU frequency on memory
consumption.

58 4. Performance Assessment of Secure Multiparty Computation

Figure 4.16: The impact of the number of CPU cores and their frequency on the number
of consumed CPU cycles

Transmitted Packets

Similarly, no influence on the number of transmitted packets could be identified.

4.7.4 Transmission Rate

Parameters Values

Nodes 3
CPU Cores 8
CPU Frequency 2500 MHz
Parallelization 1
Transmission rate 1 Mbit, 10 Mbit, 100 Mbit, 1 Gbit
Added network latency 0 ms
Packet loss 0 %
Number of input elements 1000
Number of repetitions 50

In order to assess the performance of networks with different speed, we analyzed the impact
of the transmission rate on the SMC computations. Initially, the network has 1 Gbit links
between all test nodes. We varied the transmission rate of these links between 1 Mbit to
the original 1 Gbit using the steps of typical network speeds of 1 Mbit, 10 Mbit, 100 Mbit
and 1 Gbit.

1 # rate=...

2 # lat=...

3 # loss=...

4 # interface=...

5 # tc qdisc del dev $interface root;

6 # tc qdisc add dev $interface root handle 1: htb default 1;

7 # tc class add dev $interface parent 1: classid 0:1 htb rate ${rate}kbit;

8 # tc qdisc add dev $interface parent 1:1 handle 10: netem delay ${lat}ms loss ${loss}%;

Listing 4.7: Setting up artificial bandwidth and network latency restrictions using tc

4.7. Results 59

Execution Time

Figure 4.17 shows that an increase of the transmission rate from 1 Mbit to 10 Mbit con-
siderably reduces the execution time. A further increase yields only slight improvements.

We see that a transmission rate of 1 Mbit makes the connection speed the bottleneck
which is already nearly released by a connection of 10 Mbit. As the change from 100 Mbit
to 1 Gbit does not yield any further improvement, we assume that the restraining factor
shifts somewhere between 10 Mbit and 100 Mbit.

Figure 4.17: The impact of transmission rate on the execution time

CPU Utilization

The CPU consumption (Figure 4.18) with a transmission rate of 1 Mbit is notably lower
than the three other cases with 10 Mbit, 100 Mbit and 1 Gbit.

Although this corresponds to the execution time measurements, we doubt that there is a
relation between these two results. We assume that network parameters like transmission
rate and network latency, which do by no means alter the semantic of the protocol itself
and the packets transmitted and have no unavoidable implications for the application layer,
do not influence the amount of consumed cycles more than slightly. We could confirm this
since the number of CPU instructions behaved likewise.

However, we again see a connection between the setup phase and the behavior of the CPU.
A highly restricted transmission rate constrains the amount of packets being sent during
the connection establishment. The rate of connection attempts is then bounded by the
transmission and not by the CPU itself, issuing the connection attempts. In consequence,
less CPU cycles are consumed during the setup phase.

Memory Allocation

There is no notable influence of the transmission rate on memory consumption.

Transmitted Packets

With a transmission rate of 1 Mbit per second, the amount of transmitted packets is
significantly lower than in the other three cases (cf. Figure 4.19). These, however, do not
considerably differ from each other.

60 4. Performance Assessment of Secure Multiparty Computation

Figure 4.18: The impact of transmission rate on the number of consumed CPU cycles

We can exclude that this difference is an effect of the setup phase as we have excluded
SYN and RST packets from the evaluation. In fact, including these packets would even
increase the noticed gap.

During the analysis of this effect, we found a correlating phenomenon: in the case of 1 Mbit
there is a notably higher amount of larger packets (see Figure 4.20). These constitute
about 1.6 Mbytes of the communication which altogether consists of 5.1 Mbytes; all other
communications with higher transmission rate transfer around 5.4 Mbytes.

When sending is inhibited, packets ready to be sent stall in the network layer of Fresco.
During the waiting time it is possible that another transmission to the same destination
becomes necessary. In this case, both messages to be sent are combined into a single bigger
packet. Each saved packet then reduces the overall amount of sent data by its headers
which it would have contributed as overhead.

Figure 4.19: The impact of transmission rate on the amount of transmitted packets

4.7. Results 61

Figure 4.20: The impact of transmission rate on the length distribution of the transmitted
packets.

4.7.5 Packet Loss

Parameters Values

Nodes 3
CPU Cores 8
CPU Frequency 2500 MHz
Parallelization 1
Transmission rate 1 Gbit
Added network latency 0 ms
Packet loss 0–10 %
Number of input elements 1000
Number of repetitions 50

As the next network parameter, we examine how packet loss negatively influences SMC.
This analysis is important for the deployment of SMC solutions in wireless networks and its
usage via the mobile Internet. The communications is based on TCP, hence, lost packets
are recovered by retransmissions. This, however, will result in an increasing amount of
transmitted packets and most likely in longer sessions due to a loss of speed.

Starting at a packet loss rate of 6.0 %, we reduce the amount of repetitions due to the
increased length of the measurements.

Execution Time

The execution time (Figure 4.21) constitutes a geometric series when packet loss occurs:
having a fixed percentage pploss of packet loss, pploss ∗ |packets|pploss==0 have to be re-
peated. From this part, a percentage pploss has to be repeated again, as it got lost during
retransmission. This continues until all packets have been sent.

Effectively, this constitutes the geometric series, which has as analytical equivalent (as
pploss < 1):

∞∑
k=0

pkploss =
1

1− pploss

62 4. Performance Assessment of Secure Multiparty Computation

This function increases hyperbolically in the interval [0, 1[. Consequently, one would also
expect that the execution time exhibits the same characteristics. However, the steep
increase only happens very late when pploss is near 1. The analyzed interval from 0 % to
10 % is rather close to zero where only a linear increase becomes visible.

We could not increase the packet loss further in order to show the hyperbolical increase
as the sessions started failing at a packet loss rate of 10 %.

●
●

●
●

● ●

●
●

●
●

●

●
●

●
●

● ●

●
●

●
●

●

●
●

● ●
●

●
●

●
●

● ●

●
●

●

●
●

●
●

●
● ●

●

●
●

●
●

●
● ●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

● ●

●
●

●
●

● ●

●

●

●
● ●

●
●

● ●

● ●
●

●
●

●

●●
●

●

● ●

●

●

●
●

●

●
●

●
●

●

●
● ●

●
●

●
● ●

● ●

●
●●

●

●
●

●
●

●
●

●

●
● ●

●

●
●

●

●
●

●

● ●
●

●
●

●
●

●
●

●● ●

●
● ●

●

●
●

●

●
●

●
●

● ●
●

●

●
●

● ●
●

●

●
● ●

●
●

●
●

●
●

●
●

●
●

●

● ●

●
●

●
●

●

●
●

●
●

● ●

●
●

●
●

●
●

● ●
● ●

●

●
●

●
●

●

●
●

● ●

●
●

●
●

●
●

●

●
● ●

● ●
●

●
●

●
●

● ●
●

●
●

● ●

●
●

●
●

● ●
●

●
●

●

●

●
●

●

●
●

●
●

● ●

● ●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

● ●

●

●
●●

● ●
●

●

●
●

●
●

●
● ●

●
●

●
●

● ● ●

●

●
●

●
●

●

● ●

●
●

● ●

●
●

●
●

●
●●

●

●

●
●

●
●

●

●●

●
● ●

●

●
●

●
●

●
●

●

●
●

● ●
●

●

●
●

●
●

●

●
●

●
●●

●

●
●

●
●

● ●

● ●

● ●

●

●
●

●

● ●

●
● ●

●
●

●

●
●

●
●

●
●

● ●
● ●

●

●
●

●

● ●

● ●
●

● ●

●

●
●

●
●

●
●

●

●
●

● ●

●
●

●
●

● ●

●
● ●

●
●

●
●

●
●

● ●

● ●

● ● ●

●
●

● ●
●

●
● ●

●

●
●

●
●

●
●

● ● ●

● ●

●
●

●
●

●
●

●
●

●
● ●

●

●

●
●

●
●

●
● ● ●

● ●

●

●
●

●
●

●
●

●
●

● ●
●

●

●
●

● ●
●

●
● ●

● ●

●
●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

200

400

0.0 2.5 5.0 7.5

Packet loss [%]

T
im

e
[s

]

Figure 4.21: The impact of packet loss on the execution time

CPU Utilization

An increasing packet loss rate results in the reduction of CPU cycles (Figure 4.22). The
reduction happens hyperbolically with decreasing variance. However, all measurements
seem to have a (soft) common lower limit around 1.10 ∗ 1010.

Our interpretation is in line with our findings regarding transmission rate manipulation.
The setup phase is gradually slowed down with increasing packet loss. This results in
a smaller amount of connection attempts to be made and hence less CPU usage. Most
interestingly, here, the decrease happens gradually in the analyzed interval. In the case
of different transmission rates, the decrease occurs between 1 Mbit and 10 Mbit, which
becomes only visible as a single jump in our measurements.

Memory Allocation

There is no notable influence of the packet loss on memory consumption.

Transmitted Packets

Figure 4.23 shows that the number of transmitted packets first increases to a packet loss
rate of about 5 %. Then, the amount decreases again. This does not meet the first
expectations that packet loss should increase the amount of packets necessary to finish the
same computation task.

Here two effects come into play which overlay in this measurement. For clarification, we
depict the amount of transmitted Bytes in Figure 4.24. In line with the expectations, the
amount of Bytes steadily rises with increasing packet loss rate9. This is uniquely caused
by increased packet loss.

9We consider the steep reduction between 1 % and 2 % to be an artifact of the measurement setup.
The measurements were not conducted directly afterwards but had to be stopped at this very place and
continued at later time.

4.7. Results 63

Figure 4.22: The impact of packet loss on the number of consumed CPU cycles

However, we attribute the decrease of transmitted packets to the adaptiveness of Fresco’s
communication layer as described in Section 4.7.4 on page 59. Encountering hindrances
in the exchange of data between the peers, subsequent packets are merged, yielding larger
but fewer packets.

Figure 4.23: The impact of packet loss on the amount of transmitted packets

64 4. Performance Assessment of Secure Multiparty Computation

Figure 4.24: The impact of packet loss on the amount of transmitted Kbytes

4.7.6 Network Latency

Parameters Values

Nodes 3
CPU Cores 1, 8
CPU Frequency 2500 MHz
Parallelization 1
Transmission rate 1 Gbit
Added network latency 0, 16, 50, 200, 500 ms
Packet loss 0 %
Number of input elements 1000
Number of repetitions 50

We performed experiments where we investigated different levels of network latency. The
connections between the test nodes have a default round-trip time of ∼0.18 ms. With this
default configuration we reflect the use case of communication between nodes inside an
intranet. We then added an artificial delay of 16 ms, 50 ms, 200 ms and 500 ms to the
communication roundtrip, equally distributing the delay to the sending and the receiving
network interface using the command in Listing 4.7.

These cases reflect communication between nodes via the Internet or mobile communica-
tion.

Execution Time

Figure 4.25 shows a regression line based on the means of the corresponding test results.
It becomes visible that the execution time scales linearly with increasing network latency.
Execution inside an intranet approximately takes around 4 seconds for the sequential
computation of 1000 elements. Using nodes which communicate via the Internet (50 ms
to 300 ms), the computation already costs 5 to 25 minutes. In a setting of 8 cores with
2500 MHz, the execution time can be approximated using linear regression, yielding the
formula

4.63s ∗ network latency
1ms

+ 56.61s = execution time

4.7. Results 65

Figure 4.25: The impact of network latency on the execution time

This behavior is expected, as the number of sent messages stays constant during the
experiment. Every message is delayed by an additional amount of time d. As a result, the
whole communication without any parallelization is delayed |messages| ∗ d.

Due to the intentionally constrained network, different amounts of cores do not cause a
significant effect.

CPU Utilization

For a single core, the amount of consumed CPU cycles (Figure 4.26) and instructions
(Figure 4.27) varies only slightly with increasing network latency.10 Regarding the cycles,
it increases a small amount when the network latency is 500 ms. For eight cores, the
behavior is the same, with one exception: in the case when the network latency is zero,
the amount of instructions and number of cycles notably surpass the corresponding single-
core case and even all other cases with increased network latencies. In other words, added
network latency decreases both measured variables compared to the case with no additional
network latency.

As a result, two effects have to be explained: firstly, the small increase of CPU cycles
with increasing network latency, and secondly the initial decrease in the 8 core case when
increasing network latency from 0 to 16 ms.

Regarding the first effect, we point out that the number of instructions does not increase.
Hence, only the metric of instructions per cycles degrades. This is reasonable, as with
increased latency the CPU has to wait more often for data until the computations upon
it can be carried out. Hence, the actual computation process itself is not changed, but its
execution is delayed.

The second effect is caused by the setup phase: with no latency, 8 cores allow a very
high rate of initial polling, which in turn raises the amount of CPU instructions and the
consumed cycles. Adding latency reduces the possibility to poll at this rate, consequently
reducing the value of these two variables.

10Note: These results have been generated while btrace was deactivated. Despite our considerations in
Section 4.6, these measurements would be skewed by the CPU activity of btrace, which is itself also executed
by the JVM. The reason is that this measurement is very long-running and without any high computation
related CPU activity. In consequence, the btrace activity would outweigh the actual calculation.

66 4. Performance Assessment of Secure Multiparty Computation

Figure 4.26: The impact of network latency on the number of consumed CPU cycles

Figure 4.27: The impact of network latency on the number of CPU instructions

Memory Allocation

There is no notable influence of the network latency on memory consumption.

Transmitted Packets

The amount of transmitted packet exhibits notable variations (Figure 4.28): the cases
of no additional network latency and an added latency of 50 ms have a similar amount of
transmitted packets, the cases of 500 ms, 16 ms and 200 ms each have a lower and individual
level. There is no trend which becomes visible in these measurements.

We could verify that this behavior is not limited to the number of packets, but also extends
to the overall number of Bytes transferred. Hence, we attribute this to the merging behavior
of the networking layer as described in Section 4.7.4.

4.7. Results 67

Figure 4.28: The impact of network latency on the amount of transmitted packets

4.7.7 Parallelized Protocol Invocations

Parameters Values

Nodes 3
CPU Cores 8
CPU Frequency 2500 MHz
Parallelization 1, 5, 10, 20, 50, 100, 200, 500, 1000
Transmission rate 1 Gbit
Added network latency 0, 16, 50, 200, 500 ms
Packet loss 0 %
Number of input elements 1000
Number of repetitions 50

In order to investigate the influence of computation parallelization, we change the code as
follows: we define a parallelization factor pf, which denotes the number of computations
to be evaluated in parallel. The protocol gp produced in Listing 4.3 (p. 39) is not returned
directly but combined with pf − 1 further computation protocols into a single Paral-

lelProtocolProducer. This combined protocol is then returned instead of the original
protocol gp.

Previous tests showed that the execution time is heavily influenced by the network latency.
In situations when network latency is between 50 ms and 300 ms—which are usual delays
for connections via the Internet—our tests already needed 5 to 25 minutes for execution.

In order make SMC applicable in such a context, it is of vital interest whether paralleliza-
tion is able to compensate the higher network latency in terms of execution time.

Parallelization was parametrized with the values {1, 5, 10, 20, 50, 100, 200, 500, 1000}. Higher
levels of parallelization are not possible in our setup as the overall input per node was also
constrained to 1000 data points.

Execution Time

Figure 4.29 shows that parallelization has a positive impact on the elapsed execution time.
In this overview, it becomes clear that except for pf = 5, increasing parallelization reduces

68 4. Performance Assessment of Secure Multiparty Computation

Figure 4.29: The impact of network latency on the execution time depending on paral-
lelization by utilization of 8 cores per node.

Figure 4.30: The impact of network latency on the execution time depending on paral-
lelization compared by the number of cores.

the execution time while preserving its linear relation to network latency. For pf = 5 the
overhead of executing protocols in parallel seems to outweigh the benefits of parallelization
itself.

Figures 4.30 and 4.31 show the impact of parallelization in greater detail. We regard the
case that each node has 8 cores available. Typically, the execution time first increases when
parallelization is activated. I.e., parallelization itself induces a computational overhead,
which also has to be compensated. Compensation typically happens with pf ≥ 10, already
providing noticeable improvements of the execution time. The execution time is further
reduced with increasing pf . Only at the end, when computing the whole input in parallel,
the execution time slightly increases in all cases except when the additional network latency
is 16 ms where this increase already happens at pf = 500.11 We consider this an anomaly.

11This effect is not visible in the diagrams.

4.7. Results 69

Figure 4.31: The impact of network latency on the execution time depending on paral-
lelization compared by the number of cores.

In a real world setting, there is a delay dl between incoming data points. Hence, a higher
parallelization factor induces longer waiting times between computations. From this van-
tage point, a low parallelization factor is more favorable. The current results show that,
beginning with pf = 20, execution times only improve minimally. In our setting, a higher
parallelization factor than 20 does not yield any advantage.

With increasing network latency, these characteristics stay the same, but scale with the
overall execution time. Regarding the median of our results, it becomes visible that for an
additional network latency of 0 ms, the execution time of a computation with pf = 500 is
about 64% of the execution with pf = 1. With a network latency of additional 200 ms, this
factor improves to ∼16%, and when increasing it to 500 ms, the factor slightly degrades
to ∼19%. This observation can be explained as increased network latency provides “more
space” for optimization: parallelization is able to improve the execution time to a much
greater extent when the initial duration is considerably longer.

Regarding the case of a single core per node, it becomes clear that parallelization can only
have a positive impact if cores are available which actually enable parallel computation of
the provided protocols. If this premise is not given, the only effect of parallelization is the
introduction of an uncompensated computational overhead which becomes visible in the
top diagrams in Figures 4.30 and 4.31. The execution time slightly increases with a higher
value for pf . Also in this case, this effect is stronger with higher network latency.

In general and for a fixed network latency, the processing time without parallelization of
dl + texec1 changes to an average delay of pf

2 ∗ dl + texecpf . The first term reflects the
necessity to wait for pf data points before the computation can start, the second is the
(empirically measured) duration for computing a batch of pf data points in parallel. That
means, parallelization reduces the overall duration if

pf

2
∗ dl + texecpf < dl + texec1,

i.e.,

dl <
texec1 − texecpf

pf−2
2

.

70 4. Performance Assessment of Secure Multiparty Computation

For our series of measurements, the concrete resulting numbers (for 8 cores) are shown in
Table 4.3. The numbered columns denote the value of the parallelization factor pf . The
corresponding entries denote the above mentioned term, i.e., the maximum data latency
in ms which is allowed per individual data point so that parallelization of the given factor
is still more time efficient than carrying out no parallelization at all.12

We see, for putting parallelization effectively into use, the window of data latencies is
very small. Hence, for many real-time applications where the data delay surpasses the
mentioned limits, parallelization is inapplicable. However, for all use cases where data is
already stored (e.g., in a data base) and can be retrieved in a batch manner, parallelization
has practical use.

netlat 1 5 10 20 50 100 200 500 1000

0 0 -0.371 0.085 0.068 0.028 0.017 0.011 0.006 0.003
16 0 -0.229 10.681 7.835 2.956 1.455 0.723 0.286 0.144
50 0 -15.598 39.691 26.746 10.065 4.960 2.460 0.979 0.488
200 0 -90.606 147.530 104.101 39.252 19.285 9.574 3.809 1.896
500 0 -429.000 305.337 205.994 77.691 38.242 18.995 7.546 3.769

Table 4.3: Maximum data latency where parallelization yields a benefit

CPU Utilization

There is no notable influence of the parallelization on CPU cycles and instructions. Only
the case with no additional network latency and 8 cores has significantly higher CPU activ-
ity. The explanation is found in the polling phase as described before, while parallelization
has no strong influence on this fact.

Memory Allocation

There is no notable influence of the parallelization on memory consumption.

Transmitted Packets

Figure 4.32 shows the amount of transmitted packets depending on the number of CPU
cores, the network latency and the parallelization factor. The changes in the amount of
transmitted packets depending the aforementioned parameters are quite diverse. For the
case with a single core, the following becomes apparent: with no additional network latency
the amount does only fluctuate minimally while increasing the parallelization factor. In
contrast, the case of 16 ms starts with a lower number of packets and then converges
against the value of the 0 ms case. The packet count of the 25 ms case, however, starts
a bit higher and converges from the top to the previously mentioned value. The cases
of 200 ms and 500 ms exhibit a way more special behavior: they start comparatively low,
then increase steeply for a 5 ≤ pf ≤ 20 and then also converge.

For the other case, having 8 cores, the behavior is different to some degree: the case of 0 ms
starts on the same level as the corresponding 1 core case and then increases slightly, staying
roughly the same after pf = 20. The 16 ms case behaves similarly to its 1 core pendant,
but while it increases only gradually over the increase of the parallelization factor, here,
the whole increase happens between 10 ≤ pf ≤ 20. The cases 50 ms, 200 ms and 500 ms
exhibit a similar behavior, while starting at different heights. It is common to all but the
case of 0 ms that the amount of packets decreases again slightly beginning at pf = 20.

12The negative numbers are semantically correct: no non-negative data latency would justify application
of pf = 5. As the previous diagrams show, the reason is that pf = 5 takes more time than utilization of
no parallelization in these cases.

4.8. Findings 71

In Section 4.7.4 on page 59 we already elaborated our interpretation that the communi-
cation layer of Fresco merges packets if possible. As the amount of transmitted Kbytes
shows the same behavior as the number of packets, we assume that this factor also creates
the observed behavior in this case.

Figure 4.32: The impact of protocol parallelization on the amount of transmitted packets

4.8 Findings

In the following, we derive and aggregate overall findings from the measurement results of
the previous section.

Execution Time

The measurements show that in our use case each single computation has a low duration;
the overall duration increases linearly with the number of points or the number of peers.
When varying the number of points, we could see that the slope of the time increase
depends on the number of participating peers. More peers yield a steeper slope, i.e., a
faster increase.

While these influences are comparatively small, the network parameters have the highest
influence on the execution time. Considering practically relevant intervals for these para-
meters, we saw that the transmission rate can influence the execution time by a factor of
6, packet loss has an influence up to a factor of 110 and network latency can slow down
the computation even by a factor of 450. These impediments already occur at network
configurations which are realistic on the Internet or on the mobile Internet at least.

Due to this reason, we investigated whether the parallel execution of independent, sub-
sequent computations can compensate the identified hindrances. We could show that
parallelization is able to reduce the computation duration approximately by a factor of
6. Therefor, computation of 20 items in parallel is sufficient and already exploits the full
parallelization potential, as long as more than a single core is available. Further increase of
the parallelization factor did not yield notable improvements. However, the ability to par-
allelize always depends on the actual algorithm. Hence, the parallelization factor should
be determined anew every time a new protocol is used.

Parallelization seems best applicable when performing batch processing of a series of input
values. It guarantees that the system does not have to wait until sufficient data points for
effective parallelization are available.

72 4. Performance Assessment of Secure Multiparty Computation

In contrast, when regarding real-time use cases, buffering multiple input values and wait-
ing to perform parallel execution can easily outweigh the benefits of parallelization (cf.
Table 4.3 on page 70). Hence, in these cases serial execution might be preferable.

CPU Utilization

Regarding the influence on CPU instructions and cycles, we expected that the parameters
fall into two distinct categories: the number of points, the number of peers, and possibly
the parallelization factor are convincing to directly influence the aforementioned variables.
On contrary, the number of CPU cores and their frequency, the transmission rate, the
packet loss and the network latency do not influence the executed code itself and are
not assumed to influence the number of instructions and at most minimally influence the
number of cycles performed by the measured Java process.

During the evaluation of our measurements we observed that these assumptions did not
trivially hold without further analysis. It is correct that the number of points and peers
influences the described variables. In both cases their value increases linearly. We could
see that, if parameterizing the number of input elements, the slope of the instruction and
cycle increase is not influenced by the number of peers.

Aditionally, the support of the just-in-time (JIT) compiler became clear when manipu-
lating the number of input elements. Already before reaching 1000 points, the increase
of instructions and cycles become flatter, implying a reduced amount of CPU instruc-
tions which is necessary to execute the code. We assume that this effect also exists when
varying other parameters like the number of peers. However, this is not visible in our
measurements.

When manipulating the seemingly unaffecting parameters, we could nevertheless identify
changes in the value of both variables. We identified a common reason for this behavior:
the setup phase as described in Section 4.6 contains an interval of intensive polling in
order to establish connections to other peers. This runs as fast as the environment allows,
severely increasing the number of executed instructions and used cycles. Only when the
CPU itself is constrained by its number of cores or frequency, or some external factor, like
the network latency or the packet loss, the artificially created amount of instructions and
cycles is considerably reduced.

It was not possible during the measurements to circumvent this effect completely. However,
in some experiments, we could distinctly show how much the setup phase contributed.
Subtracting this identified amount, the number of instructions stayed nearly constant and
the number of cycles was only minimally influenced. The latter is a consequence of the
computation process having to wait longer for incoming data.

Finally, while parallelization yields a notable improvement on execution time, it does not
cause any changes regarding the CPU variables. These are advantageous circumstances as
it implies that no particularly strong CPUs are necessary in order to perform paralleliza-
tion. Multi-core hosts, on contrary, are still necessary in order to leverage parallelization
advantages at all.

Memory Allocation

In all our experiments, the maximum allocated stack memory was around 20 Mbytes.
This value only varied slightly, depending on the speed of execution. Whenever impeding
factors, like lower transmission rate or less CPU cores slow down the execution, the amount
of stack memory is reduced to approximately 17 Mbytes. However, this is not an effect of
the executed code, but of the garbage collector which starts to act differently, and in these
cases frees unused memory at a lower limit.

4.9. Practical Implications 73

The maximum allocated heap memory is the first variable which seemingly exhibits critical
behavior. While it converges to a certain value when increasing the number of elements,
it increases step-wise when scaling the amount of participants. The behavior matches the
expectations: while the values of the previous computation can simply be forgotten and do
not have to be saved during the whole computation process, each additional peer increases
the amount of data which has to be continuously kept in memory.

This may be true, but it does not happen in the dimensions that we see in the first glance.
We investigated memory consumption in detail (cf. Figure 4.13), and found out that the
overall maximum allocation is not the decisive feature. Every time the garbage collector is
invoked, the maximum memory allocation is reset back to 20–40 MBytes. In other words,
while it seems to consume considerable amount of memory, this is another artifact of the
garbage collector.

Transmitted Packets

Like the CPU variables, the amount of transmitted packets is mostly influenced by the
setup phase and its high frequency polling. However, as we have saved the whole commu-
nication dump during the measurements, we are able to simply remove all packets which
were exchanged during the setup phase. The packets of the setup phase consist of nearly
exclusively SYN and RST packets. Additionally, they occur also nearly exclusively in the
setup phase. Only in the tear down phase, a very small amount of RST packets is issued.

Our measurements show that the current implementation of the setup phase is burdensome
for all participants as well as the network (depending on the performance of the commu-
nicating hosts). Hence, we highly suggest to exchange this mechanism against some less
resource-intensive method of building the inital peer connections in order to keep the solu-
tion efficient. A possible solution without need to change the Fresco framework itself is
to orchestrate the startup of the software by another management layer. After this layer
has identified connectability of all peers in an efficient manner, Fresco is started. This
should result in essentially shorter polling time.

Due to the possibility to filter out setup phase traffic, we have been able to analyze other
effects without the influence of the polling. Increasing the number of points or the number
of peers leads to a linear increase of the amount of transmitted packets. Both they provide
a multiplicative factor to the slope.

Additionally, when manipulating the network parameters, we could see that the commu-
nication layer of Fresco performs aggregation of packets: when using a low transmission
rate, high network latency or having packet loss, the histogram of packet sizes (e.g., Figure
4.20) shows a higher amount of bigger packets. The reason is as follows: the computation
layer creates a message for a specified peer and hands it over to the networking layer of
Fresco. There are cases where the networking layer is not able to send the corresponding
packet before a new message from the same sender to the same recipient is created. When
this second message is handed to the networking layer, the messages are combined into a
single packet.

This reduction also decreases the number of headers which is to be sent as overhead.
Hence, a smaller overall amount of data has to be transmitted.

4.9 Practical Implications

Our results show that Fresco as an implementation of SMC possesses a performance
and resource utilization behavior which allows practical application: in the setting of an
intranet, computations are efficiently performed. The execution time is around 2 to 3 ms

74 4. Performance Assessment of Secure Multiparty Computation

per session and peer. This allows batch processing of data and interactive use cases.
Performance might, however, not be sufficient for the realization of real-time applications
depending on the computation to be carried out. Regarding the hosts systems, multiple
cores are necessary when parallelization can be utilized. In other cases, secure computation
should also be feasible with weaker devices. Memory seemed to be a problem at first glance,
but could be attributed to the garbage collector. Having a setting of memory constrained
devices, a more economical programming language than Java would be more appropriate.

In wide area networks as the Internet and possibly mobile Internet, network latency is the
most influential constraining factor. Execution time worsens substantially with increasing
latency. In these contexts, we currently only see batch processing as a use case: if it is ac-
ceptable to wait several minutes for a computation result, SMC can be utilized. However,
in this context it is more likely that parallelization can be applied, which decreases the
latency penalties to some degree. Further improvement of the situation would require to
reduce the amount of transmitted packets. This could be possible by stricter orchestration
of computations running in parallel, where packets between different peers would be used
for multiple sessions simultaneously. Given that each participant has k input values avail-
able and all protocols are executed completely simultaneously and synchronized. Then, k
shares from the same source to the same destination could be combined to a single mes-
sage, effectively reducing the communication duration by factor k. On the contrary, our
current solution applies parallelization which does not enforce message combination, but
only enabled waiting times per host to be used for further computations.

4.10 Related Work

The newly gained interest in SMC during the last year resulted in a multitude of publica-
tions which propose successive improvements of established approaches (cf. Section 3.4.1).
Most of the time, these papers include a small evaluation which demonstrates the (im-
proved) efficiency of the presented solution. Related work is mostly constituted out of this
type of publication. We compare our work especially regarding the evaluation method and
the variables analyzed.

Pinkas et al. [PSSW09] address garbled circuits and present several optimizations. They
perform an evaluation regarding computation time and amount of transferred data.

Bogdanov et al. [BLW08] provide Sharemind, an SMC framework based on secret sharing.
A relevant characteristic is that multiparty computations have to be reduced to three-party
computations in order to fit to Shareminds system architecture. Under the assumption of
non-collusion between the three parties, privacy is still preserved for an arbitrary number
of input parties, which provide the data to work on. In their performance evaluation, they
assess the influence of the number of input values (in terms of vector size) on the running
time.

In [BNTW12], Bogdanov et al. furthermore present functional extensions to Sharemind.
They improve the efficiency of existing protocol primitives and add new secure operations.
Their performance analysis primarily discusses theoretic complexity of their solutions.
Additionally, they perform a practical benchmark of their software in a high performance
computing cluster inspecting the influence of parallelized operations on the running time.

Kerschbaum et al. [KBD09] propose single purpose comparison protocols based on homo-
morphic encryption and secret sharing schemes. They perform a theoretical analysis of
round complexity and compare both developed solutions in a virtual setting with respect
to running time.

Kerschbaum et al. [KDSB09] propose a benchmarking protocol for the evaluation of key
performance indicators based on oblivious transfer and homomorphic encryption. They

4.11. Key Contributions of this Chapter 75

furthermore specify a communication pattern—central coordination—for which they claim
that it makes the communication overhead in SMC solutions practically independent from
network latency. However, a weakness of their study which they state themselves is that
“computation time far exceeds the delay on the network” already in the first place. With
their communication pattern, they also introduce parallelized round execution on all par-
ticipating clients. This bears some similarity to how Fresco is implemented. Their
performance evaluation focuses on theoretic complexity and running time.

Ben-David et al. [BDNP08] present FairplayMP, “a generic system for secure multi-party
computation”. It is based on garbled circuits and in particular on the Beaver-Micali-
Rogaway [BMR90] protocol. They evaluate dependency of the running time on circuit
size, number of participants, circuit depth and a security parameter. Furthermore, they
evaluate real world settings for voting and computing auctions regarding running time.

Henecka et al. [HKS+10] propose the SMC compiler TASTY which generates and optimizes
SMC protocols based on homomorphic encryption and/or garbled circuits from high-level
specifications. They assess their solution in terms of circuit size, amount of communicated
data between the peers, and running time.

In [KOS16] Keller et al. describe a “practical protocol for secure multi-party computation
of arithmetic circuits based on oblivious transfer”. They assess their approach regarding
throughput and duration while varying the number of participating parties, the transmis-
sion rate and the number of inputs (for an auction algorithm).

Sepia is written by Burkhart [Bur11] and has been proposed and evaluated in [BSMD10].
They assessed their solution by determining its CPU and bandwidth requirements while
varying the number of inputting and computing peers as well as the running time for
different types of protocols. Furthermore, Internet-wide tests and comparisons with VIFF
and FairplayMP were performed.

While these publications present short evaluations of their own work, the body of research
is lacking the proposition of a general performance model for SMC and thorough exam-
ination of an SMC solution with respect to more than the number of peers and points
on the side of the parameters and often solely the overall running time on the side of the
variables.

In order to assess feasibility of SMC in real world contexts, we additionally addressed the
resource consumption on the deployed hosts and the dependency on network parameters.

4.11 Key Contributions of this Chapter

In this chapter, we examined the performance characteristics of an SMC implementation in
detail. Among a selection of available frameworks, we selected the candidate Fresco which
seems especially promising for practical application, feasible analysis and later extension
by our work preformed in the following chapters. In detail, our contributions are:

Base-line assessment of SMC We conducted a performance analysis, focusing on the over-
head SMC causes when performing computations of a basic but realistic use case.
Herefor, we chose the production-ready SMC framework Fresco. We will use the
same framework in other chapters to prove feasibility of SMC in dynamic contexts
(cf. Chapters 7–9).

Comprehensive study of performance characteristics In comparison to related work, we es-
sentially extended the parameter and variable space of performance measurements.
Whereas mainly time measurements are performed, and parameters often focus on

76 4. Performance Assessment of Secure Multiparty Computation

the number of cooperating peers, we assess the following dimensions: number of
points, number of nodes, number of cores, frequency of CPU, transmission rate, packet
loss, network latency, and parallelization of computation.

Execution time Each computation takes only a small duration, in our use case it costs
around 2–3 ms per session and peer. The biggest influence on the execution time is
caused by the networking parameters. Here, the network latency can render com-
putations infeasible under realistic Internet conditions. We also examined whether
parallelization of independent computations can level this effect. It achieves a time
reduction, but the effects are two orders of magnitude lower than the negative impact
of network latency.

CPU Cycles and Instructions The CPU variables are mainly influenced by the setup phase
of Fresco where all peers establish mutual connections. This is only a Fresco
specific characteristic and not typical for SMC in general. As this this effect is caused
by busy waiting and polling for connection establishment, CPU consumption can be
reduced when adding constraints like a higher network latency or lower transmission
rate.

Besides this effect, we could identify that the Just-in-Time compiler of the JVM
improves efficiency of the computation and reduces the amount of cycles consumed.

Furthermore, parallelization does not yield any CPU penalties while reducing the
computation time as described above.

Memory consumption Stack memory is not notably influenced and always ranges around
the acceptable value of 20 MB. In contrast, it seemed that heap memory can become
a critical resource, as every added peer implies higher memory consumption on all
participants. For 11 to 15 peers, already 840 MB are allocated. We could, however,
show that this is an artifact of the garbage collection and the actually used amount
of memory is considerably lower. This effect is therefore Java specific and assume
other implementations which do not build on the JVM to be more memory efficient.

Transferred Packets Initially, the amount of transferred packets also was mainly influenced
by the aforementioned setup phase. However, we could remove this influence during
evaluation. The remaining effects were in line with theoretical expectations. We
could especially observe a linear increase of packets per peer when scaling the num-
ber of participants. In the network, this yields the expected quadratic increase of
messages among all communication channels.

Furthermore, we detected an effect of the networking layer of Fresco: when sending
of a message to a specified recipient is delayed by the environment (e.g., network
latency), the next message to the same recipient is merged into the previous packet,
if it is available before the first could be sent. This improves transmission efficiency
in these cases as the header of the potential second packet can be omitted. In
consequence, less data has to be transferred.

4.12 Statement on Author’s Contributions

The findings of this chapter have been published in the following paper:
M. von Maltitz and G. Carle. A Performance and Resource Consumption Assessment of Secret Sharing based

Secure Multiparty Computation. In J. Garcia-Alfaro, J. Herrera-Joancomarti, G. Livraga, and R. Rios, editors,
Data Privacy Management, Cryptocurrencies and Blockchain Technology, pages 357–372. Springer International

Publishing, Barcelona, Spain, 2018 (reference [vMC18a]). It is based on the measurements performed by the author

and presented in this chapter.

The publication [vMC18a] features a reduced version of Section 4.1 where we argue for the selection of Fresco.

Shortened, the use case of Section 4.2 is presented as measurement scenario. Identified related work (cf. Section 4.10)

4.12. Statement on Author’s Contributions 77

is only presented in a highly condensed manner. As chapter of this thesis, the results are presented in a more
systematic and comprehensive manner; especially each varied parameter is discussed in a dedicated subsection.

Furthermore, performance assessment of computation parallelization has been omitted completely in the publication

for brevity. Vice versa, the preliminary execution time considerations and the theoretical comparison of SMC with
a TTP were initially written for the paper, and incorporated into this thesis as Section 4.3 with only minor textual

changes.

78 4. Performance Assessment of Secure Multiparty Computation

5. Real-World Scenario Assessment of
Secure Multiparty Computation

In the previous chapter, we examined the influence of relevant parameters on the perfor-
mance of Fresco in a structured manner. We examined the parameters in isolation, as
executing the complete set of permutations requires an amount of time which is too big to
be practically feasible. However, this lead to the omission of realistic settings.

Objective

Due to this reason, this chapter examines a selection of settings where Fresco could be
of interest. Each setting constitutes an individual combination of all examined parameters
so that a realistic and specific environment is represented. This yields better assessment
in which settings SMC can be successfully applied.

5.1 Settings

For our real world assessment, we examine a set of different settings. These consist of two
intranet settings, tethered and unethered, as well as Internet-wide communication and
communication via mobile Internet.

5.1.1 Intranet

The first two settings examine the environment of tethered and untethered intranet. These
reflect home networks and corporate intranets inside a single building.

Tethered

This setting occurs in an environment like the following: when a company wants to employ
Fresco for some of their business data, they will deliberately select hardware which yields
the best performance of their setup. Hence, we do not consider the utilized host hardware
to be a bottleneck. The network is that of an intranet, being considerably high-speed with
a low latency and practically no packet loss.

Regarding the desired quality of the service, we cannot predict the actual requirements,
but two cases seem sensible: in this setting, interactive services are conceivable, i.e., where
the answer to a request should not take longer than a second as well as batch services
which allow a delay of several minutes or more. We will also test whether and how much
parallelization should be applied in order to support these requirements.

We model this setting as follows:

80 5. Real-World Scenario Assessment of Secure Multiparty Computation

Parameters Values

Nodes 3
CPU Cores 8
CPU Frequency 2500 MHz
Parallelization 0, 10, 20
Transmission rate 1 Gbit
Added network latency 0 ms
Packet loss 0 %
Number of input elements 100
Number of repetitions 20

Wireless

With wireless home and business networks and also the Internet of things and smart homes
in mind, we consider embedded low-end devices mostly connected via wireless LAN inside
a single regional domain like a building or an appartment. In terms of host hardware,
we take the Raspberry Pi [Ras17] as reference. The current model is the Raspberry Pi
3 B and possesses a 1.2 GHz 64-bit quadcore ARMv8 CPU and a 802.11n wireless LAN
module. The smaller version Zero W has a 1 GHz single-core CPU and a 802.11 b/g/n
wireless LAN module.

Regarding the network, we assume a standard 802.11n wireless LAN with 54 Mbit/s. The
latency is about 10 ms and packet loss around 2 %.

Again, we mainly expect interactive services where the delay until a response is received
should not exceed some seconds.

We aim to model this environment using the following parameter values, while respecting
the constraints of our measurement hardware:

Parameters Values

Nodes 3
CPU Cores 4
CPU Frequency 1600 MHz
Parallelization 1, 10, 20
Transmission rate 54 Mbit
Added network latency 10 ms
Packet loss 2 %
Number of input elements 100
Number of repetitions 20

5.1.2 Internet

In this section we focus on another setting where the fundamental difference is that the
hosts are not in the same intranet, but connected via the Internet. Several publications
(e.g., [BCD+09], [ZDT+16], [BSMD10], [BTW12]) depict cases which are or at least could
be performed via the Internet.

We assume, like in the first case, dedicated hardware. The network, however, is strongly
constrained in this setting. We assume an Internet connection of 100 Mbit/s downstream
and 5 Mbit/s upstream and a latency of 10 ms. Furthermore, we assume enough capacity
in the network so that there is no notable packet loss.

Due to the differences between intranet and Internet we change our performance expecta-
tions from an interactive service to a service which is able to deliver a batch of results in a
time frame of several minutes at maximum. We also assess parallelization in this context.

5.2. Results 81

The parameters of this model are:

Parameters Values

Nodes 3
CPU Cores 8
CPU Frequency 2500 MHz
Parallelization 1, 10, 20
Transmission rate 100 Mbit/5 Mbit
Added network latency 50–150 ms
Packet loss 0 %
Number of input elements 100
Number of repetitions 20

5.1.3 Mobile Internet

Smartphones are ubiquitous today and typically store a huge amount of privacy-sensitive
data. Hence, this platform is a promising domain where SMC can find application.

Current state-of-the-art smartphones typically have two to four CPU cores at a speed of
1.5 to 2.5 GHz.

Regarding networking, we have two options here. The first is again a wireless LAN con-
nection with other peers being in proximity. The parameters of this case have certain
similarity to the second intranet case. Hence, we omit this case here.

The other one is a connection via the mobile Internet. We assume the usage of the standard
Long Time Evolution (LTE) here. That means, the transmission rate is theoretically up
to 300 Mbit/s, but practically ∼50 Mbit/s today. Latency is assumed to be around 200 ms.
For realistic conditions, we vary the packet loss between 0 and 5 %.

In the real world, mobile Internet connections bear additional problems which we do not
address here: firstly, establishment of peer to peer connections between participants is
normally not possible due to provider restrictions. Secondly, interrupts during a session
require a restart. Hence, with non-negligible probability of connection failures, it will not
practically be possible to carry out longer sessions.

Parameters Values

Nodes 3
CPU Cores 4
CPU Frequency 1600 MHz
Parallelization 1, 10, 20
Transmission rate 50 Mbit
Added network latency 100 ms
Packet loss 0, 1 %
Number of input elements 100
Number of repetitions 20

5.2 Results

In the following, we interpret the results of the setting-specific measurements. While the
detailed effects have been explained in the previous chapter, here, we make an overall
assessment regarding the applicability of the given SMC solution in the contexts.

82 5. Real-World Scenario Assessment of Secure Multiparty Computation

5.2.1 Running Time

As we are measuring the real world settings, we broadened our time measurements: while
we assessed the time of the SMC execution alone in the previous chapter, we now regard
the complete running time of the process i.e., the time from the start of the computation
process until the final result is received.

We observe that the network parameters have the biggest influence (Figure 5.1). While
the tethered intranet case is executed around 3 seconds, untethered intranet already needs
25 seconds for execution, shortly followed by the Internet measurement with less packet
loss but higher latency. All other measurements have an overall duration of a minute or
more.

For real-time settings, we have to consider that these measurements computed 100 ele-
ments. Consequently, the average time per element is below a second in all cases. However,
a necessary premise for this result is that there is no essential startup overhead for every
computation.

For settings which need to perform computation in batches, parallelization is a helpful
strategy to mitigate prohibitive running times. The diagram shows that it reduces the
running time approximately by a factor of four, reducing all measurements to run under
25 seconds. We consider this to be acceptable in all cases with hosts of fixed locations. In
the mobile settings, this duration could already be infeasible.

Please note that the amortized view and the parallelization cannot be trivially combined.
This results from the simple fact that at least pf elements have to be computed in order
to perform a parallelization of a factor of pf . Furthermore, if the input elements occur
sequentially after another (and not in bulk), the delay of the calculation of the first element
is still the full running time of the parallelized computation and the delay of the following
pf − 1 data points.

Figure 5.1: Execution time in the use cases

5.2.2 CPU Utilization

The measurement of the CPU behavior in the real world settings shows well-known effects
explained in the previous chapter: only the case of tethered intranet, with no further
constraints and high-end host systems has a drastically increased number of cycles. This
has already been explained as an effect caused by the setup phase in Section 4.7.2 on page
53.

5.3. Key Contributions of this Chapter 83

Figure 5.2: CPU cycles in the use cases

5.2.3 Transmitted Packets

The amount of transmitted packets (Figure 5.3) exhibts different behavior depending on
the degree of parallelization. With no parallelization, only in the tethered intranet case con-
siderably more packets are sent than all other settings. With parallelization, the amount
is reduced by more than half in some of the cases. The tethered intranet case, however,
is even increased; so are both Internet cases. In the previous chapter we identified and
discussed that the network layer aggregates packet at certain occasions (cf. page 73). We
assume that these measurement results are another example for this behavior.

Figure 5.3: Transmitted packets in the use cases

5.3 Key Contributions of this Chapter

In the previous chapter, we performed a systematical analysis of the performance influences
of several parameters on the resource consumption of Fresco. In this chapter, we created
parameter combinations to form realistic scenarios in which we analyzed Fresco.

84 5. Real-World Scenario Assessment of Secure Multiparty Computation

In general, only the time and the heap memory resource differentiate strongly enough
to enable or prevent different ways of application as seen in the last chapter. All other
variables are uncritical regarding application. However, we argued that the memory needed
is actually lower than the memory allocated. The identified peaks are rather artifacts of
the garbage collector. Hence, we focus on execution time here. Our insights are as follows:

Intranet setting The tethered intranet setting yields durations of a small amount of mil-
liseconds per computation. This enables applications from soft real-time applications
over interactive scenarios to batch processing. Moving to untethered connections, the
duration is increased so that it becomes unpractical for real-time applications.

Since the durations are comparatively small, parallelization yields only moderate
benefits.

Internet setting In the Internet setting, the speed of the computation mainly depends on
the network latency. High latency renders real-time and—depending on the spe-
cific use case—interactive scenarios infeasible. Nevertheless, batch and background
processing of data is still a valid application.

Mobile Internet setting On certain occasions, mobile Internet cases perform better than
Internet cases. This mainly depends on the slightly improved network latency which
has a higher influence compared to packet loss. However, it remains prohibitively
slow for real-time and interactive app and realistic considerations show that the set
of possible applications is further constrained: while batch and background use cases
are theoretically feasible, we assume them to be incompatible with the mobile setting
where the nodes are moving devices with occasional connection losses.

Parallelization Generally, parallelization yields vivid improvements for all use cases effec-
tively reducing the overall time for 100 computations to under 20 seconds. While this
means that every computation takes around 20 ms, the actual delay from inputting a
raw value to receiving the result is still 20 seconds. In consequence, this performance
improvement does not support real-time or interactive use cases.

6. Secure Evaluation of Patient Data in
Medical Studies

In the last chapters, we introduced a performance baseline for SMC. We used a simple use
case in order to identify the boundary of optimal SMC performance. Here, we complement
these measurements with a realistic case of SMC application.

We address a domain in which application of SMC is highly promising and with a great
prospect of beneficial utilization: in the medical sector, patient data and health records are
highly critical, and even specially protected by data protection legislation, like the General
Data Protection Regulation (GDPR) in the EU or the Health Insurance Portability and
Accountability Act (HIPAA) in the United States. At the same time, it constitutes the
foundation for gaining insights about the human body, diseases and effective medication.
In other words, being able to use this data for research can yield essential benefits for
society.

Data protection and data utilization are in a strong conflict. Here, SMC can be a technolog-
ical solution to this problem: data protection and data utilization are decoupled, fulfilling
legal requirements and making data evaluation possible without requiring bureaucratic
overhead, e.g., data usage agreements and contracts.

For exemplifying, how SMC can be used to solve this conflict, we select the topic of survival
analysis; a common approach to assess the effectiveness of treatments and medication.

Objective

In this chapter, we address Research Question Q3. We develop a secure algorithm which
allows the execution of certain kinds of multi-centric studies without requiring the parties
to share their data. Afterwards, we assess the performance and scalability of the solution
in two settings, providing further answers to Research Question Q2. Firstly, it is evaluated
thoroughly in a testbed using synthetic data. Secondly, we use a real-world setup between
the University Hospital of Ludwig-Maximilians-Universität München and Charité Berlin
for computing on real data from a medical study [NAK+18].

6.1 Survival Analysis

In life sciences, the survival of a population is a vital performance indicator. It allows to
estimate the influence of diseases, illnesses, therapies or medications on patients over time.

86 6. Secure Evaluation of Patient Data in Medical Studies

It investigates how and when certain preconditions lead to the event of death and how
high the probability of this event is at a given time.

Survival analysis is not restricted to actual deaths of individuals; it generalizes for several
other contexts. In consequence, death is substituted with the happening of a predefined
kind of event or failure which can have various meanings depending on the context. Exam-
ples for events are the infection with an illness, regression of a tumor after treatments or
even the first drug abuse by teenage individuals [KM03]. However, the standard question
is still the actual survival after diagnosis of an illness or a selected therapy.

From collected survival information further insights can be derived. Examples are the
median of survival, which tells about the typical life time of an individual of the population
or comparison of different treatments (or lifestyles) with respect to life expectancy.

Modelling

Survival in a population is defined as

S(t) ≡ N(t)

N(0)
. (6.1)

where t ≡ 0 is the initial starting point of observation and N(0) is the initial population.
S(t) then is a function of time, denoting the percentage of survived individuals.

The median of survival, tmedian is then implicitly defined as:

S(tmedian) =
1

2
. (6.2)

Correspondingly, the life expectancy can be defined as∫ 1

0
t dS (6.3)

Real-World Problem: Censoring

The modeling of S(t) and its derived characteristics is simple, however, it exhibits a fun-
damental problem which is rooted in the real world: the population is typically neither
directly not fully observable. This problem is addressed by substituting the population
against a sample, the study population and binning the time dimension into discrete in-
tervals t ∈ T . With this step, survival becomes observable by discrete events of the
members of the study: if we have a population of N(t) and failurest at time t, then
N(t+ 1) = N(t)− failurest.

Even is this setting information loss occurs. This is called censoring. Firstly, participants
may stop being observable starting at some time t′ > 0 (“lost to follow up”). These
participants cannot be counted for the remaining time. Alternatively, the study itself can
be the reason. If it ends at time t′′ and N(t′′) > 0, there are participants whose event
time remains unknown. The only information is that their time-to-event is greater than
the overall duration of the study itself.

Despite these hindrances, the participants in question should not be removed from the
data set since they exhibit valuable insights until their state becomes unknown. Besides
the events failurest we hence define the number censoringst at time t. The abovementioned
formula then becomes N(t+ 1) = N(t)− failurest − censoringst.

6.1. Survival Analysis 87

time Risk set Failures

t treatment control treatment control

1 21 21 0 2
2 21 19 0 2
3 21 17 0 1
4 21 16 0 2
5 21 14 0 2
6 21 12 3 0
7 17 12 1 0
8 16 12 0 4
10 15 8 1 0
11 13 8 0 2
12 12 6 0 2
13 12 4 1 0
15 11 4 0 1
16 11 3 1 0
17 10 3 0 1
22 7 2 1 1
23 6 1 1 1

Table 6.1: Example data. For each t, the size of both risk sets and the number of events
(failures) are reported. Two cases appear: in transition from t = 1 to t = 2, two failures
in the control group lead to a decrease of the risk set from size 21 to size 19. In transition
from t = 8 to t = 10, no failures are reported in the treatment group. Nevertheless, the
size decreases from 16 to 15. Here, censoring of a participant occurred.

6.1.1 Kaplan–Meier Estimator

We then need an estimator Ŝ(t) which sufficiently approximates S(t). This function should
achieve maximum utilization of the available data and should be bias-free. This means
that the limit of the estimator is the actual function in question, i.e., the censored data
does not distort the result.

A common method in life sciences is the Kaplan–Meier estimator [KM58], also named
product limit estimator. The estimator is designed as follows: the study begins at t ≡ 0.
The number of initial participants N(0) of the study is denoted as the riskset0. For each

time t the number of events is denoted failurest.
failurest
risksett

then is the probability for an
event at time t. We can then define

Ŝ(t) ≡
∏
t′≤t

(1− failurest′

riskset t′
). (6.4)

It is helpful to see that if no events happen for a certain time t′, then the correspond-
ing factor is 1. Consequently, all time intervals with no events can be neglected in the
computation.

Example An example of data which is necessary for the calculation of the Kaplan–
Meier estimator is given in Table 6.1. Here, we consider two different groups, treatment
and control.

88 6. Secure Evaluation of Patient Data in Medical Studies

0 5 10 15 20
timeline

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0 control
treatment

Figure 6.1: Visualization of the example data from Table 6.1. Each decrease in the line
indicates the occurrence of a corresponding amount of events. Each marker on a horizontal
line is the censoring of a participant. In the visualization a clear distinction between the
survival of the participants of the treatment and the control group becomes clear.

Visualization as Kaplan–Meier Survival Plot

The results of the Kaplan–Meier estimator can be plotted. An example visualization of the
data from Table 6.1 is shown in Figure 6.1. The obtained diagram is already a measure
of communication in life sciences, especially in publications examining the difference in
survival of different populations. If events occur at a given point in time, a decrease in
the plot illustrates this fact. Censorings are represented as crosses on the line. A common
additional feature would be confidence intervals which span around the actual curve.

Differences in survival often become tangible in the plots, giving first insights about the
consequences of a disease or the performance of the examined treatment. Nevertheless,
instead of relying to visual comparison, further metrics are considered which allow numer-
ical assessment how different two or more Kaplan–Meier estimators of compared groups
are.

6.1.2 Log-Rank Test

One of these measures for the significance of the difference between populations is the so-
called P value. It can be derived by the log-rank test developed by Mantel [Man66] [PP72].
We consider two groups, which we call treatment (ttmt) and control (ctrl). risksetctrl ,t is
then the size of the control group at time t, and failuresctrl ,t is the number of events at
time t. riskset ttmt ,t and failures ttmt ,t have the analogue meaning.

Let riskset t be the cardinality of the living populations of both groups, defined by Equa-
tion 6.5. Similarly, the number of the events at time t is failurest defined by Equation 6.6.

riskset t ≡ risksetctrl ,t + riskset ttmt ,t (6.5)

failurest ≡ failures ttmt ,t + failuresctrl ,t (6.6)

6.1. Survival Analysis 89

We then define:

Definition 6.1 (Null hypothesis of the log-rank test) There is no difference between
two treatments with respect to event characteristics.

The task is then to compute the probability for the obtained experiment results under this
assumption. Given equal event characteristics, the number of events to be expected in the
treatment group is expected ttmt ,t, defined as:

expectedttmt,t ≡ failurest ∗ (
riskset ttmt,t

riskset t
). (6.7)

Let

Ogrp ≡
∑
t∈T

failuregrp,t (6.8)

denote the total number of observed events in group grp and let

Egrp ≡
∑
t∈T

expectedgrp,t (6.9)

denote the total number of expected events in group grp.

It then follows that

Ottmt − Ettmt ≡
∑
t∈T

(failurettmt,t − expectedttmt,t) (6.10)

V ar(O − E) ≡
∑
t∈T

failurest ∗ (riskset t − failurest) ∗

riskset ttmt ,t

riskset t
∗ risksetctrl ,t

riskset t
∗ 1

riskset t − 1
(6.11)

If the hypothesis in Definition 6.1 is correct, then

Z ≡ (Ottmt − Ettmt)
2

V ar(O − E)
(6.12)

will be χ2-distributed with one degree of freedom [Man66, PP72].

We can therefore use Z as the log-rank statistics and obtain a P value by a lookup in a
χ2-table.

6.1.3 Basic Algorithm

In order to realize the aforementioned computations in software, a simple algorithm can
be defined in a straightforward manner. We present it in Listing 6.1.

We assume that the whole data set from the executed study is available on a single host.
The data possesses the structure as shown in Table 6.1 and is made available as a list of
records called entries. For each entry of this table, expected ttmt ,t is computed and the
sums of Equations 6.8, 6.9 and 6.11 are built iteration-wise. In the last step, Equation 6.12
is calculated. The algorithm returns the log-rank value which allows the lookup in a
χ2-table.

90 6. Secure Evaluation of Patient Data in Medical Studies

1 expected_failure = 0

2 variance = 0

3 failures_treatment = 0

4 for entry in entries:

5 failures = entry.failure_treatment + entry.failure_control

6 risk_set = entry.riskset_treatment + entry.riskset_control

7

8 e = entry.riskset_treatment * failures / risk_set

9 v = failures * (risk_set - failures) * entry.riskset_treatment * entry.riskset_control

/ (risk_set * risk_set * (risk_set - 1))

10

11 expected_failure += e

12 variance += v

13 failures_treatment += entry.failure_treatment

14

15 diff = failures_treatment - expected_failure

16 log_rank = diff*diff/variance

17 return log_rank

Listing 6.1: Kaplan–Meier Estimation with Log-Rank Test

6.2 Cooperative Evaluation of Partitioned Data Sets

In the previous section we showed how the Kaplan–Meier estimator in combination with
the log-rank test can be applied if only having a single party, i.e., a single source of data.
Data protection and privacy considerations come up when multiple parties perform a study
in a separated manner, and the gained data is partitioned among them. This is the case
in so-called multi-centric studies. These studies are seen to be especially reliable and
significant due to the markedly higher sample size.

Being able to evaluate multi-centric studies without having to share the data among the
conducting institutions is desirable due to several reasons: input data consists of patient
information which is considered to be personally relatable and highly critical. In the
data protection legislation, personal data of the health care sector is considered to have
specially high need for protection. Collaborative processing then requires a solid legal
foundation which is normally addressed by organizational means. Contracts between all
parties are created which enable data sharing and the written informed consent of the study
participants is acquired that their data may be shared with other research institutions.
This imposes a high organization overhead to the research institutions since the written
informed consent has to be collected individually from each participant—in many cases as
a hardcopy agreement which is signed by hand.

In another common scenario, obtaining agreements is even harder: after studies have been
carried out, institutions retain the original study data for several years. During that time,
data could be used for further analysis as long as data protections policies are taken into
account. A typical case is the execution of a meta-study or meta-analysis which aims to
perform statistical analysis based on previously performed studies. While it is possible to
base the meta-study on the aggregated results of previous studies, it is of higher quality and
precision to perform them directly based on the Individual Participant Data (IPD). Theses
studies naturally focus on the combination of data from formerly independent studies.

However, since the study was already finished arbitrary time earlier, contact to the par-
ticipants might be lost or their involvement or interest in the study already declined so
that another request for sharing consent would be rejected or not answered. If legislation
recognizes that secure computation techniques do not share data in a classic sense and
that it preserves the data protection requirements on the technical level without need for
another consent, SMC is able to make these scenarios practically possible without the
mentioned organizational overhead and the corresponding risks.

6.3. Secure Implementation of the Kaplan–Meier Log-Rank Algorithm 91

We model our concrete use case as follows: there is a set of institutions, called par-
ties p ∈ P with n = |P|. They have a common study object or research question.
Each party carries out survival analysis individually. The obtained data is assumed
to be structurally and semantically compatible with respect to the computation of the
Kaplan–Meier estimator and the log-rank test. Concretely, every party collects input
data which exhibits the structure of Table 6.1. For simplicity, we assume that the cate-
gories of study groups (ttmt , ctrl) are identical among all parties. Formally, each party
p ∈ P holds data as a map entriesp, where ∀t ∈ Tp : entry t,p ∈ entriesp ≡ t →
(riskset ttmt ,t,p, risksetctrl ,t,p, failures ttmt ,t,p, failuresctrl ,t,p) Here, → denotes the key-value
mapping, the key set of a map is defined to be keys(entries), the values as values(entries)
and the value of key t value(entries, t) accordingly. The set Tp denotes all times of the
study where institution p recorded some events in one or more of their groups. For each
Tp, we only assume the requirements for the Kaplan–Meier estimator, i.e., uniqueness. For
each pair of parties p and p′, however, their time values Tp and Tp′ may be completely
identical, have a non-empty intersection or be disjoint.

The goal is to compute a Kaplan–Meier estimator and assess it with the log-rank test
among the merged available data.

6.3 Secure Implementation of the Kaplan–Meier Log-Rank
Algorithm

We showed the plain, centralized and non-privacy-preserving algorithm in Listing 6.1.
The algorithm uses exclusively basic arithmetic operations, i.e., addition, subtraction,
multiplication and division. While it uses loops for iteration, there are no conditionals nor
any comparison operations. This facilitates the creation of a secure implementation.

However, the algorithm assumes the existence of a single data structure entries, which
does not yet exist in our distributed setting. It is, hence, a first necessary step to securely
combine the initially distributed data into a single data set without leaking any information
to the parties.

Merging initially distributed data

Simply generating entries : ∪p∈P entriesp is not expedient, since it does not handle du-
plicate keys in the entries. Firstly, these have to be eliminated to fulfill the uniqueness
requirement and their values have to be merged in an adequate manner. In order to create
a single, combined, virtual study out of the distributed studies, it is actually sufficient to
realize the merge by summing up corresponding values of matching keys.

Let

keys(entries) ≡ ∪p∈P keys(entriesp) (6.13)

Furthermore, we define an auxiliary function value or default(entries, t) as

value or default(entries, t) ≡
{
value(entries, t) if t ∈ keys(entries)

(risksetttmt,tprev , risksetctrl,tprev , 0, 0) otherwise

(6.14)

where tprev ≡ max({t′ ∈ keys(entries) : t′ < t}).
We use this to obtain the individual values per party and row:

(risksetttmt,t,p, risksetctrl,t,p,

failuresttmt,t,p, failuresctrl,t,p) = value or default(entriesp, t) (6.15)

92 6. Secure Evaluation of Patient Data in Medical Studies

time Risk set Failures

treatment control treatment control

t
∑

p∈P risksetttmt,t,p

∑
p∈P risksetctrl,t,p

∑
p∈P failuresttmt,t,p

∑
p∈P failuresctrl,t,p

Table 6.2: Merged data table. If multiple parties provide partial study results, they are
merged in to a single data table like the one shown in Figure 6.1.

The variables contain the corresponding values of a single row in the data of a single party.
If the corresponding key is not present in the data set, a fallback value is used. It consists
of the risksets of the last present time tprev without decrease, and zero occurred failures.
These values can then be used to perform the actual merging step by summation. By
doing so, we obtain a merged data table as depicted in Table 6.2.

Performing this merge step should not leak any unnecessary information. This means that
no values of each party should be shared with any other party. Additionally, the mapping
p → keys(entriesp) for any p ∈ P should remain private in the general1 case. The only
intermediate information which is made available for all parties is the set keys(entries).
The gained knowledge of party p by this intermediate result about the presence of a key t
is then reduced to

if t ∈ keys(entriesp) then ⊥ else ∃p′ ∈ P \ {p} : t ∈ keys(entriesp′) (6.16)

The merged table entries itself will only be available in a secret-shared manner, not
accessible in plain, and directly fed into the computation of the log-rank test.

We first address secure realization of Equation 6.13. This is effectively a basic secure
union set operation for which we apply the algorithm provided by [BA12]. The complete
algorithm works on shares, no opening is necessary. That means that all entry keys are
exclusively processed in a secret-shared manner, the only plaintext values are the indexes
when iterating over the keys array.

1 keys = sort([entry in keys(entriesp1)...keys(entriespn)])
2 size = length(keys)

3 c = []

4 for i = 1 to size - 1 do in parallel:

5 x_i = equals(keys[i], keys[i+1])

6 c[i] = mult(keys[i], sub(1, x_i))

7 c[size] = keys[size]

8 return sort(c)

Listing 6.2: Secure Union Set Protocol by [BA12]

The algorithm in Listing 6.2 works as follows: in line 1 the entries of all peers are obtained
and stored in a single list, then the list is sorted. It is a technical necessity to sort the
list: afterwards, duplicate entries are located directly succeeding each other which enables
the following approach. For all elements beginning at the first and ending at the second
last one (!), in line 5 equality of the current element and its successor is checked. If they
are equal, x_i is a secret-shared 1, otherwise 0. Then, in line 6, the current element
key[i] is multiplied by the binary inverse of x i. If equality was true, mult(keys[i],
sub(1, x_i)) == 0, otherwise it is keys[i]2. In other words, the element stays the
same if the successor is different, otherwise it is nullified. This can be done in parallel,
since the computation does not happen in situ but fills the new list c. The last element

1Special cases like n = 2 will allow derivation of further information.
2This is the realization of a conditional in arithmetic circuits.

6.3. Secure Implementation of the Kaplan–Meier Log-Rank Algorithm 93

is guaranteed to be unique, hence it is unconditionally copied (line 7). The second sort
(line 8) is not a technical necessity, strictly speaking. Instead, it is required to prevent
information leakage: the location of the nullified entries is still unchanged, and it carries
enough information to allow derivation of its former value. This in turn would leak the
information how many parties have provided the value in question. Sorting eliminates this
leakage by moving all nullified entries to the front of the list. Afterwards, only the overall
number of zeros is known. This information constitutes no leakage since this number could
also be derived by |keys| − |c\{0}|. These two values are necessarily known to each party
during the computation. The obtained sorted list c is then opened for each party.

Since keys(entries) is available in plain, Equation 6.14 and 6.15 are easily realized for each
party p by a map filled with entriesp and the necessary fallback values generated on the
fly. Table 6.2 is then obtained by iterating over the sorted keys(entries), while each party
provides its inputs for the four columns. Together they perform a secure addition of their
values row by row. Since the rows are independent, this can be done in parallel. The result
is the merged data table in a secret-shared manner. I.e., their open values do not become
accessible by the parties but the application of the log-rank test on this data becomes
possible.

Computation of the Log-Rank Test

The computation of the log-rank test exclusively consists of arithmetic operations. It is
therefore straightforward to realize, since it does not make any bigger changes necessary to
represent it as an arithmetic circuit. Since we already presented the centralized algorithm
in Listing 6.1, we only point out the differences of the secure implementation shown in
Listing 6.3. In this algorithm, all values from the entry record are represented as shares
and not accessible in plain.

The structure of the algorithm shows that there are two cases of computation: if the
current computation depends on previous secret-shared intermediary results, or if it does
not. In the first case, sequential execution is necessary in order to ensure that intermediary
results are available before usage. In the second case, parallel execution is possible. The
algorithm begins in a sequential mode (line 16) to ensure correct execution of the method
log_rank. Computations on entries are independent of each other and, per entry, also
the execution of computeExpected and computeVariance are independent. Hence, they
are performed for all entries in parallel (line 20). Within these methods, computations
fully depend on the corresponding previous steps, hence, these are performed sequentially
(lines 2 and 9). Also the summation methods for lists (line 26–28) are optimized for parallel
execution. In line 12, we alternate multiplications and divisions. Otherwise, arithmetic
overflows are likely to occur.

1 computeExpected(entry):

2 compute in sequence:

3 failures = add(entry.failure_treatment, entry.failure_control)

4 risk_set = add(entry.riskset_treatment, entry.riskset_control)

5 e = div(mult(entry.riskset_treatment, failures), risk_set)

6 return e

7

8 computeVariance(entry):

9 compute in sequence:

10 failures = add(entry.failure_treatment, entry.failure_control)

11 risk_set = add(entry.riskset_treatment, entry.riskset_control)

12 v = div(mult(div(mult(div(mult(failures, sub(risk_set, failures)), risk_set), entry.

riskset_treatment), risk_set), entry.riskset_control), sub(risk_set, 1))

13 return v

14

15 log_rank(entries):

94 6. Secure Evaluation of Patient Data in Medical Studies

16 compute in sequence:

17 expected = []

18 variances = []

19 ftEntries = []

20 for entry in entries do in parallel:

21 expected << computeExpected(entry)

22 variances << computeVariance(entry)

23 ftEntries << entry.failure_treatment

24

25 compute in parallel:

26 expected_failure = sum(expected)

27 failures_treatment = sum(ftEntries)

28 variance = sum(variances)

29

30 diff = sub(expected_failure, failures_treatment)

31 logRank = div(mult(diff, diff), variance)

32 return open(logRank)

Listing 6.3: Secure Kaplan–Meier Estimation with Log-Rank Test

6.4 Performance Evaluation

We carry out a performance evaluation of our secure implementation and assess the scal-
ability of such a solution. In particular, we aim to answer the following questions:

1. How does the solution depend of the input data and setting, i.e., number of entries
per peer and number of peers?

2. What are the costs for the user in terms of time and resources?

3. What is the typical bottleneck?

4. Can the time costs be positively influenced by hardware improvements?

6.4.1 Measurement Setup

We describe our measurement setup in the following. Since an overview of the setup has
already been given in Chapter 4, we only outline the differences to the previous setup.

Testbed

For our test measurements we use the same testbed hardware and topology as described in
Section 4.4. The software is similar to the one described in Section 4.5 with the following
changes: the operating system has been updated to Debian Stretch 9.5 using a kernel as
shown in Listing 6.4.

1 Linux pc1 4.9.0-8-amd64 #1 SMP Debian 4.9.110-3+deb9u6 (2018-10-08) x86_64 GNU/Linux)

Listing 6.4: Host System Testbed

Java is used in version 11.0.1 2018-10-16 LTS. The version of Fresco is 1.1.2 with minor
local fixes. Most importantly, this version is not using the BGW [BOGW88] protocol suite
anymore, but SPDZ as presented in [DPSZ12, DKL+13]. At the time of our measurements,
only a stable realization of the online phase was available in Fresco. The offline phase
is simulated by a dummy preprocessing. The performance of the offline phase is hence
not considered by our tests. The performance characteristics of the online phase are
notwithstanding realistic as if real preprocessing had been performed. The authors of
Fresco confirmed that upon our request [GHD18]. Tshark is of version 2.6.5 and perf of
version 4.9.130.

6.4. Performance Evaluation 95

Real-World Setup

In our real-world setup, we cooperated with the University Hospital of Ludwig-Maximilians-
Universität München (LMU) and Charité Berlin (CB).

Within the data umbrella of DKTK3 of which Technical University of Munich, LMU
and CB are members, the radiation oncology departments of LMU and CB were able to
provide glioblastoma survival data (cf. [NAK+18]). Both, the patient data of LMU and
CB contained 96 input entries each.

Additionally, LMU and CB each provided a server for executing our secure protocols. The
server of LMU is equipped with an Intel Xeon Silver 4112 CPU, having eight cores at
2.60 GHz and a cache size of 8,448 KB. It possesses 128,476 MB of RAM and a 1 Gbit
networking interface. It provides Debian 9.6 as operating system using a 4.9 Linux kernel
(cf. Listing 6.5).

1 Linux lmu 4.9.0-8-amd64 #1 SMP Debian 4.9.130-2 (2018-10-27) x86_64 GNU/Linux

Listing 6.5: Host System LMU

We used Java 11.0.2 2018-10-16, perf 4.9.130 and tshark 2.6.5.

The server of CB uses has a Intel Xeon CPU E5-2695 v3 CPU, with two cores at 2.30GHz
and a cache size of 35,840 KB. It possesses 3,945 MB of RAM and a 10 Gbit networking
interface. The host is a VM based on VMWare. It provides Ubuntu 18.04.2 LTS as
operating system using a 4.15 Linux kernel (cf. Listing 6.6)

1 Linux charite 4.15.0-46-generic #49-Ubuntu SMP Wed Feb 6 09:33:07 UTC 2019 x86_64 x86_64

x86_64 GNU/Linux

Listing 6.6: Host System CB

We used Java 11.0.2 2018-10-16, perf 4.15.18 and tshark 2.6.6.

6.4.2 Method

In order to assess the following results, we provide two measures of comparison: firstly, we
also implemented the log-rank algorithm insecurely to be carried out on a central server,
acting as a trusted third party; for the measurements we used the LMU server. Here, a
standard Java implementation of the computation has been used. In this case, we only
consider the computation itself without network interaction for providing the input data
to the server nor for sending the result to any recipient.

Secondly, Fresco also provides a dummy protocol suite which performs the computation
in plain text without execution of secure protocols. The algorithm in question is translated
into a circuit representation, but computation is then carried out locally without protocol
interaction and corresponding communication. This allows to discern the influence of the
circuit representation from the actual execution of interactive, synchronized multiparty
protocols.

We refer to these baselines where appropriate, but do not interpret their performance
behavior in greater detail.

6.4.3 Results

Fresco provides the internal measure of protocol invocations which represents a number
of primitive operations to be performed during algorithm execution. This number provides
an estimate of the complexity of the algorithm currently carried out.

3Deutsches Konsortium für Translationale Krebsforschung, German Cancer Consortium

96 6. Secure Evaluation of Patient Data in Medical Studies

0

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

1,
40
0

0

1

2

3

4

5
·108

Overall input lines

P
ro
to
co
l
in
vo

ca
ti
o
n
s

Dummy Union, 3 peers
Dummy Union, 7 peers
Dummy Union, 11 peers
Dummy Union, 15 peers

0

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

1,
40
0

0

0.5

1

1.5

2

2.5

·108

Overall input lines

SMC Union, 3 peers
SMC Union, 7 peers
SMC Union, 11 peers
SMC Union, 15 peers

0 20 40 60 80 10
0

0

0.5

1

1.5

·107

Input lines per peer

P
ro
to
co
l
in
vo

ca
ti
o
n
s

Dummy LR, 3 peers
Dummy LR, 7 peers
Dummy LR, 11 peers
Dummy LR, 15 peers

0 20 40 60 80 10
0

0

1

2

3

4

5

·106

Input lines per peer

SMC LR, 3 peers
SMC LR, 7 peers
SMC LR, 11 peers
SMC LR, 15 peers

Figure 6.2: Protocol invocations depending on the lines and peers. The union algorithm
is plotted depending on the overall number of input lines n ∗m. The log-rank algorithm,
in contrast, is linear in m and its complexity is independent of the number of peers.

The algorithm is represented as a dependency graph of operations in Fresco. Operations
can only be carried out if all previous operations have already been executed successfully.
Building the dependency graph and taking care of meeting all dependencies during execu-
tion is performed manually and a task of the implementer. Exploiting independencies of
operations enables Fresco to perform some computations in parallel. This improves CPU
and network utilization, and in consequence leads to shorter execution times. Fresco re-
alizes parallelization by creating batches of primitive operations. Each batch is executed in
parallel. After all computations of a batch are carried out, the next batch is undertaken.

Closing the input values (i.e., creating shares) are the initial operations to be carried out.
Being the first actions to be performed, they have no dependencies on other operations.
Furthermore, they have no dependencies on each other. Due to this reason, these can
always be parallelized. There are further situations in our context where we can take
advantage of parallelization. We showed them in the algorithm in Listing 6.2 and 6.3,
denoted by the keyword in parallel.

Complexity of Computation

We use the protocol invocations and batches as a first, internal indicator. Figure 6.2
compares the dummy algorithm with the secure implementation. It depicts the union
algorithm and the actual log-rank computation separately. As parameters, we consider
the number n of participating parties, and the number m of input values per party.

We see that the union and the log-rank algorithm seemingly differ in the order of magnitude
regarding protocol invocations. However, we have to consider that only the initial merge
step of the log-rank algorithm depends on m ∗ n. The remaining steps only depend on n.
The reason in our tests is that all participants used the same keys for their inputs, the
merge then combines n ∗ m entries to m entries, eliminating the factor n. I.e., we can
directly compare the number of protocol invocations of the union algorithm depending on

6.4. Performance Evaluation 97

0

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

1,
40
0

0

0.5

1

1.5

2

2.5

·105

Overall input lines

P
ro
to
co
l
b
a
tc
h
es

Dummy Union, 3 peers
Dummy Union, 7 peers
Dummy Union, 11 peers
Dummy Union, 15 peers

0

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

1,
40
0

0

0.5

1

1.5

·105

Overall input lines

SMC Union, 3 peers
SMC Union, 7 peers
SMC Union, 11 peers
SMC Union, 15 peers

0 20 40 60 80 10
0

0

2

4

6

8
·104

Input lines per peer

P
ro
to
co
l
b
a
tc
h
es

Dummy LR, 3 peers
Dummy LR, 7 peers
Dummy LR, 11 peers
Dummy LR, 15 peers

0 20 40 60 80 10
0

0

1

2

3
·104

Input lines per peer

SMC LR, 3 peers
SMC LR, 7 peers
SMC LR, 11 peers
SMC LR, 15 peers

Figure 6.3: Batches depending on the lines and peers. When increasing the overall number
of input lines, the sorting network becomes bigger, leading to more sequential computation
batches. On contrast, the log-rank algorithm is optimally implemented so that the number
of sequential steps becomes independent from the number of input lines.

n ∗m with the protocol invocations of the log-rank algorithm depending on m. Both then
range in the interval between 106 and 107 invocations.

In other words, the scaling of the union algorithm depends on the number of values it has
to sort, while the log-rank algorithm scales with the number of unique keys it has after
the merge step. Sorting was performed by the batcher’s merge exchange sorting algorithm
provided with Fresco. The sorting phases dominate the increase of invocations while the
elimination is practically constant in our cases due to parallelization.

Due to this reason we plot the graphs for the union algorithm and the log-rank algorithm
differently. The former is always shown with the overall number of entries n ∗m on the
x-axis while we will solely use the number m of input lines per peer for the latter if the
data implies that this is the dominating dependency.

We see that protocol invocations are a helpful heuristic to approximate algorithm com-
plexity. All composed functions like boolean operations and division likewise are already
decomposed into native operations (open, close, add, multiply, . . .). However, protocol
invocations do not take into account different levels of (communication) complexity of the
provided native operations.

Fresco builds batches from computations which are independent and, hence, can be
executed in parallel. We see that this is effective (cf. Figure 6.3): the increase of the union
algorithm becomes roughly linear and dependency of m is now completely removed for
the log-rank computation. The absolute number from protocol invocations to batches is
reduced by factor 100–1000.

Variation of Input Parameters

Comparing all three realizations of the algorithms with respect to execution time, we see
that their orders of magnitude differ notably: the TTP variant costs milliseconds, the

98 6. Secure Evaluation of Patient Data in Medical Studies

protocol invocations batches duration
algorithm original replaced original replaced original replaced

peers input lines

3 10 541802 9681 14026 362 7.452 0.131
25 1334650 23856 14039 365 40.902 0.271
50 2655997 47481 14043 369 41.251 0.283
75 3977628 71106 14082 374 57.002 0.580

100 5298722 94731 14068 375 117.215 0.611
7 10 542080 10001 14026 366 19.297 0.488

25 1335500 24656 14038 369 45.040 0.513
50 2657644 49081 14063 373 76.974 0.639
75 3979801 73506 14074 378 120.186 0.854

100 5302291 97931 14063 379 191.506 1.285

Table 6.3: Comparison of the original log-rank algorithm with a variant where all division
operations have been replaced by multiplication operations. The impact on the number of
protocol invocations, batches, and consequently the execution time is very strong.

dummy protocol suite is in the order of seconds and the secure variant in the order of
minutes (Figure 6.4). In comparison to Figure 6.5, we see the CPU time only constitutes
between 30 and 50 % of the overall execution duration. In absolute numbers, the union
algorithm and the log-rank computation perform equally fast if we take the considerations
of the previous paragraph into account.

Inspection of the log-rank algorithm provided further insights: it showed that the division
operation has a tremendously higher impact than any other basic arithmetic operation.
The source code of Fresco states that the Goldschmidt division [Gol64] is used; an
approach which iteratively applies multiplications (!) until convergence of the result is
reached.4 In order to provide a quantitative statement on the impact, we performed
punctual measurements for comparison. For that, we replaced all divisions in the log-
rank algorithm with multiplications. Being aware that the computational results become
useless, this method is nevertheless a representative substitute to assess the difference in
performance. The reason is that the computations are data oblivious, i.e., the intermediate
results do not influence the behavior nor the performance characteristics of the algorithm.
The multiplication operation was chosen since addition and subtraction are “free”, they
do not cost a round of communication. The results are shown in Table 6.3. The number
of protocol invocations is reduced by factor ∼55, batches by factor ∼40, and duration by
factor ∼50–200. We expect that the gap gets even larger with increasing number of peers.

It is furthermore interesting to see whether the sole number of peers also has an impact on
execution duration. For that, we analyzed the dependency of the algorithms on the overall
number of input lines. A linear regression on the data yielded the following insights: for
the union algorithm, the formula

0.52s+ 0.28s ∗ |peers| = execution duration

|input entry| (6.17)

holds. For the log-rank algorithm we identified a slope of ≈ 0. This is in line with
our observations in Figure 6.4: The spread between the different configurations in the
latency diagram for the SMC implementation of the log-rank algorithm can be exclusively
explained by the fact that additional peers also add further input entries.

4For further considerations of the division operation in SMC and Fresco in particular cf. [DDN+17].
For further explanation on the application of the Goldschmidt division for SMC cf. [BNTW12].

6.4. Performance Evaluation 99

0

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

1,
40
0

0

1

2

3

·10−4

Overall input lines

L
at
en
cy

[s
]

TTP Union, 3 peers
TTP Union, 7 peers
TTP Union, 11 peers
TTP Union, 15 peers

0

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

1,
40
0

0

50

100

150

200

Overall input lines

Dummy Union, 3 peers
Dummy Union, 7 peers
Dummy Union, 11 peers
Dummy Union, 15 peers

0

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

1,
40
0

0

2,000

4,000

6,000

8,000

Overall input lines

SMC Union, 3 peers
SMC Union, 7 peers
SMC Union, 11 peers
SMC Union, 15 peers

0 20 40 60 80 10
0

0

1

2

3

4

5

·10−5

Input lines per peer

L
at
en
cy

[s
]

TTP LR, 3 peers
TTP LR, 7 peers
TTP LR, 11 peers
TTP LR, 15 peers

0 20 40 60 80 10
0

0

2

4

6

8

Input lines per peer

Dummy LR, 3 peers
Dummy LR, 7 peers
Dummy LR, 11 peers
Dummy LR, 15 peers

0 20 40 60 80 10
0

0

50

100

150

200

Input lines per peer

SMC LR, 3 peers
SMC LR, 7 peers
SMC LR, 11 peers
SMC LR, 15 peers

Figure 6.4: Time depending on the lines and peers. The computation time between a TTP,
a dummy implementation and real SMC varies by orders of magnitudes. The reason is the
increasing amount of network exchange which becomes necessary with secure computation.
It becomes visible that the SMC algorithms mainly depend on the overall number of input
lines. The number of peers itself has only a subordinate influence. This matches our
expectations since communication to all peers can be parallelized.

In other words, time of the union algorithm is mainly influenced by the overall number
of input lines n ∗ m, notwithstanding whether many peers input few lines or few peers
input many lines. Merely, small differences between the peer configurations are observable
which have not been present when only examining the number of protocol invocations
(cf. Figure 6.2). I.e., the small communication overhead of Equation 6.17 becomes visible.

In Figure 6.5, we can also see that the CPU time proportionally corresponds to the overall
execution time. The explanation for different peer configurations is as said before. The
merge step is performed in O(log n), hence, the lines in Figure 6.5 initially spread stronger
and converge against the same slope.

In Figure 6.6, we depict the transmitted data between a single pair of hosts. Compared
with the dummy protocol, the SMC implementation again differs by orders of magnitude.
The reason is that computation in plain (as given in the dummy implementation) is able to
do some computations (especially the basic multiplication) without any communication,
while for SMC exchange is necessary every time such an operation takes place. We stress
that the data shown in the graphs is the communication of a single pair. There are n2 such
pairs during each computation, the overall amount of transmitted data over the network
increases accordingly. We could verify by inspection that the amount of transmitted data
is equally sized for every pair. Furthermore, the majority of packets has a size of around
200 Bytes, independent from the number of peers or input lines.

We already elaborated that the log-rank algorithm is made independent of the number of
peers by the initial data merging step. This is also confirmed by these measurements which
show that the amount of transmitted data does not depend on the number of participating
peers.

100 6. Secure Evaluation of Patient Data in Medical Studies

0

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

1,
40
0

0

50

100

150

200

Overall input lines

C
P
U

T
im

e
[s
]

Dummy Union, 3 peers
Dummy Union, 7 peers
Dummy Union, 11 peers
Dummy Union, 15 peers

0

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

1,
40
0

0

1,000

2,000

3,000

4,000

Overall input lines

SMC Union, 3 peers
SMC Union, 7 peers
SMC Union, 11 peers
SMC Union, 15 peers

0 20 40 60 80 10
0

0

2

4

6

Input lines per peer

C
P
U

T
im

e
[s
]

Dummy LR, 3 peers
Dummy LR, 7 peers
Dummy LR, 11 peers
Dummy LR, 15 peers

0 20 40 60 80 10
0

0

20

40

60

80

Input lines per peer

SMC LR, 3 peers
SMC LR, 7 peers
SMC LR, 11 peers
SMC LR, 15 peers

Figure 6.5: CPU time depending on the lines and peers. We can also see that the CPU is
moderately more utilized when having more participating peers. The reason are the steps
necessary to manage and perform communication with other peers (notwithstanding the
communication delay itself).

0 20 40 60 80 10
0

0

2

4

6

·10−2

Input lines per peer

T
ra
n
sm

it
te
d
D
a
ta

[M
B
y
te
s]

Dummy Union, 3 peers
Dummy Union, 7 peers
Dummy Union, 11 peers
Dummy Union, 15 peers

0

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

1,
40
0

0

200

400

600

Overall input lines

SMC Union, 3 peers
SMC Union, 7 peers
SMC Union, 11 peers
SMC Union, 15 peers

0 20 40 60 80 10
0

0

2

4

6

·10−2

Input lines per peer

T
ra
n
sm

it
te
d
D
at
a
[M

B
y
te
s]

Dummy LR, 3 peers
Dummy LR, 7 peers
Dummy LR, 11 peers
Dummy LR, 15 peers

0 20 40 60 80 10
0

0

10

20

30

Input lines per peer

SMC LR, 3 peers
SMC LR, 7 peers
SMC LR, 11 peers
SMC LR, 15 peers

Figure 6.6: Transmitted data depending on the lines and peers. The graph depicts the
amount of MBytes transferred between a single pair of hosts in the network. In the SMC
case, they nearly perfectly correlate to the amount of protocol invocations.

6.4. Performance Evaluation 101

0 10 20 30 40 50
0

1,000

2,000

3,000

Network Latency [ms]

L
at
en
cy

[s
]

SMC Union, 3 peers
SMC Union, 7 peers
SMC Union, 11 peers
SMC Union, 15 peers

0 10 20 30 40 50
0

50

100

150

200

Network Latency [ms]

C
P
U

T
im

e
[s
]

0 10 20 30 40 50
0

10

20

30

Network Latency [ms]

T
ra
n
sm

it
te
d
D
at
a
[M

B
y
te
s]

0 10 20 30 40 50
0

200

400

600

800

Network Latency [ms]

L
at
en
cy

[s
]

SMC LR, 3 peers
SMC LR, 7 peers
SMC LR, 11 peers
SMC LR, 15 peers

0 10 20 30 40 50
0

5

10

15

20

Network Latency [ms]
C
P
U

T
im

e
[s
]

0 10 20 30 40 50
0

1

2

3

4

5

Network Latency [ms]

T
ra
n
sm

it
te
d
D
at
a
[M

B
y
te
s]

Figure 6.7: Influences of network latency manipulation. The upper row shows the union
algorithm, the lower row the log-rank algorithm. It becomes clear, how network latency
influences the overall execution time while neither changing CPU time nor the amount of
packets transmitted.

Variation of Resource Parameters

After we analyzed the basic behavior when scaling environment parameters like the number
of input lines and the number of peers, we now address the technical parameters of the
setup. This encompasses the network latency, the transmission rate and the cores and
frequency of the CPUs used. We still vary the number of peers and set the number of
input lines per peer to 10.

Network Latency Figure 6.7 demonstrates the influence of increased packet delay on
the computation. We already showed in Figure 6.6 that more data is transmitted during
the union algorithm than the log-rank algorithm. Furthermore, we could find that for a
majority the packet size stays roughly the same notwithstanding the variations of parame-
ters. Hence, with a rather constant number of packets, it is expectable that packet delay
influences the union algorithm correspondingly stronger than the log-rank computation.
The slight variations in the amount of transmitted data over the different network laten-
cies can be explained by variation in the average packet size. With a latency of 10 ms the
packet size is roughly 80 to 100 Bytes smaller. To transport the same amount of payload,
more packets are needed. This yields an increase of transferred headers which in turn
causes an increase of the overall data transmitted.

The CPU time is not influenced by the packet delay; it stays completely constant for the
union algorithm and only varies slightly for the log-rank computation.

Transmission Rate The influence of the transmission rate on the execution duration
is similar to the findings of Chapter 4: transmission rate only inhibits the computation
if it is under 10 Mbit/s. More specific inspection of the network traces shows that our
use case continuously uses around 2 Mbit/s with short but high peaks during the log-
rank computation. The union algorithm is characterized by a rather consistent stream of
packets of the named rate.

102 6. Secure Evaluation of Patient Data in Medical Studies

CPU frequency and number of cores We varied the number of cores between 1 and
8, the frequency could be changed from 100 %, i.e., 2.5 GHz down to 50 %, i.e., 1.25 GHz.
A lower value was not possible with out test machines. Notwithstanding a varying number
of peers, the changes did not yield any significant influence on the execution duration of
the algorithms. We conclude that the CPU does not constitute the bottleneck in our test
setting.

6.4.4 Real-World Experiments

In the real-world experiments, we executed our protocol between two servers from different
research institutions (cf. Section 6.4.1). The distance between both servers is around
500 km and the protocol was conducted via the open Internet.

The round-trip time starting at LMU is around 9 ms, from CB it is 21 ms. The transmis-
sion speed (approximated with netcat) is around 800 Mbps from LMU to CB and 100 Mbps
from CB to LMU.

Due to the predetermined setup, we did not vary most of the parameters as we did in the
testbed. We only changed the number of input entries per peer from 10 to 96. For the
union algorithm, this caused computations duration between 80 and 577 seconds, and for
the log-rank algorithm 182 to 652 seconds.

These numbers are highly influenced by the network latency between both hosts. This
outweighs the small number of participants. This interpretation is also supported by the
small percentage of CPU time. For the union algorithm, we range between 3 % to 9 %; for
the log-rank algorithm it is even fewer, around 2 % to 5 %. The overall execution time for
both algorithms lies approximately in the same range. This is in line with out previous
observations, however, the effect becomes more clear in this setting. The reason is found in
the different set of data used: In our synthetic data, each of the n peers had m input lines.
The set of keys was identical for each peer. Therefore, the merge step (which is at the
beginning of our log-rank implementation) reduced the overall number of lines by factor n
and the remaining steps of the log-rank algorithm always had to compute with m lines
only. On contrast, the real data used here has only a negligible amount of identical keys.
This means that the log-rank algorithm always has to process roughly m ∗ n lines. This
increases the time taken by the log-rank algorithm. On the other side, only having two
peers reduces the interval in which we tested the union algorithm. By these two reasons,
the execution times of both algorithms move into the same range.

The question arises whether the measurement results are in line with our testbed results
in terms of absolute numbers: For that, we do not use the dimension of wall-clock time
since we already know that it will not match due to the differences in the network latency
of the used connections. Instead, the number of protocol invocations and the amount of
transferred Mbytes are expedient characteristics for comparison due to their independence
from time.

In order to obtain a valid comparison, we had to rescale the results: For the union algo-
rithm, we always consider the overall number of input lines by multiplying the input per
peer with the number of peers. For the log-rank algorithm, we made a case differentiation:
From the testbed measurements, we chose the results by the number m of inputs per peer
(since the merge step reduces all n ∗m inputs to effectively m lines). From the real-world
measurements, we directly considered the product n ∗ m since the merge step does not
reduce the input here. Tables 6.4 and 6.5 list the chosen results from the testbed and the
real-world setting. They represent the median values of the corresponding measurements.
We can see that the real-world results fall between the results from the testbed within
an expectable range of precision. This is true for the union algorithm and the log-rank
algorithm likewise.

6.5. Findings 103

Setting input lines Protocol invocations MBytes

Testbed 75 4954207 12.279469
Real-World 100 7382400 16.681843

Testbed 150 13121941 30.64034
Real-World 150 13121996 29.262298

Testbed 175 16236258 37.808268
Real-World 200 18163340 39.410625

Testbed 225 22505986 50.786938

Table 6.4: Comparison of the testbed and the real-world measurement results for the union
algorithm (median values). The input lines refer to the overall number from the whole set
of participants. The real-world results plausibly fall between the results of the testbed.

Setting input lines Protocol invocations MBytes

Testbed 50 2659443 16.929702
Real-World 50 2497182 14.860479

Testbed 100 5302094 31.7901285
Real-World 100 5033945 28.212929

Table 6.5: Comparison of the testbed and the real-world measurement results for the log-
rank algorithm (median values). The input lines refer to the number of lines the log-rank
algorithm has to process after the merge step. The real-world results plausibly fall between
the results of the testbed.

An overview of the most important results from the real-world measurements is given in
Table A.1 in Appendix A.

6.5 Findings

From the creation of a secure implementation as described in the previous sections, we can
gain certain insights about infrastructural premises, privacy implications and the perfor-
mance of such a solution. This helps us to sketch fundamental requirements for an SMC
service architecture as we will develop in the next chapters.

6.5.1 Infrastructure

Algorithms as SMC are carried out by protocols between several participants over the net-
work. This yields several implications: each participant must provide an endpoint which
allows other peers to connect to. When available, these endpoints must be known to the
other parties and the software must be configured to correctly access them. The intermedi-
ary network must allow connections between each pair of peers. Furthermore, participants
do not only have to be accessible but also identifiable. Cryptographic identities must be
available for each participant and known to the other peers. An adequate mechanism of
trust establishment must be in place.

Further implications exist for the input data: it must be initially distributed and present on
all participants. The moment, data of different stakeholders is physically or logically pooled
at a single place, privacy is already weakened. It must be compatible for combination. This
is valid for the semantics of the data and the syntactical representation likewise. It is best
achieved if individual data collection per peer is performed using the same method. Some

104 6. Secure Evaluation of Patient Data in Medical Studies

mechanism for data merging must exist. It must be able to transform the data coming
from multiple sources in a way that it virtually could also come from a single source.

In this setting, our computation has been carried out manually. This implies several
simplifications which we cannot expect for a service architecture: only a single computation
session has been carried out, the protocol always stayed the same and the data did not
change either. An implementation of the protocol to be executed must be available to
all parties in advance. We also agreed on the exact protocol before execution. Having
an SMC service, this should be flexibly chosen at runtime. Similarly, it must be clear
for all participants which data to use and whether to preprocess it beforehand or not.
The computation itself has to be started synchronously on all participants. Failure of the
computation is possible due to the communication over the network. If an error occurs,
the protocol has to be restarted. In the best case, a monitoring of the computation as
an indicator of progress is available. The outcome of the computation has to be persisted
and made available to the initiators of the computation. More complex computations take
a considerable amount of time. Waiting for the result should be handled in a sensible
fashion, e.g., by an event or a trigger which notifies of the end of the computation.

6.5.2 Privacy

We can see that the application of SMC mainly yields data minimization, input confi-
dentiality and unlinkability. Input data is not shared with any other party but remains
completely confidential during the whole computation. This also supports data minimiza-
tion. Similarly, only a single type of intermediary data is created; this is the list of all entry
keys. After that, the next open information already is the final result of the computation.
The result of the computation is a highly condensed statement derived from comparatively
large amount of input data points. Being unable to reverse the computation to obtain the
input data or at least being able to estimate the contributions of the individual parties
constitutes unlinkability.

On the other hand, transparency in this manual context is completely artificial. Due to
the dedicated manual setup for a single computation, transparency is implicitly given.
However, this does not generalize for our anticipated service architecture. There, we have
a setting where multiple participants provide different types of data and rather support
sets of protocols instead of a single one. Data is not requested by a single stakeholder but
by a multitude of different clients and for different purposes. In these cases, transparency
yet emerges to be an important requirement. The same is true for intervenability. Only
when serving a variety of data and computations to different clients for several purposes,
intervenability becomes vital allowing data owners to support computations or veto against
them at runtime. This is not yet achieved by SMC and requires special considerations to
be realized in the anticipated architecture.

6.5.3 Performance

Compared to Chapter 4, here we investigated a use case of higher complexity. This allowed
us to gain further insights on performance and scaling behavior.

We divided the developed protocol into two parts: the union algorithm performs a set
union operation. It eliminates duplicates in the input data and resets its order. The
log-rank algorithm performs a statistical evaluation of the initially distributed data.

This division also separates the part where mainly comparison operators are used from the
part which exclusively utilizes arithmetic operations. In our case, however, both performed
roughly in the same time range.

With respect to arithmetic operations, we identified that the division operation is orders
of magnitude more costly than the other basic arithmetic operations. The reason is the

6.6. Key Contributions of this Chapter 105

application of an iterative algorithm which converges to the result by performing vari-
ous multiplication and some comparison operations each round. This is the single most
influential performance factor in the log-rank algorithm. Replacing all divisions with mul-
tiplication for performance assessment, the execution time of the log-rank computation
immediately falls below a single second and has a considerably smaller slope.

Regarding influencing factors, we found that network latency is the strongest impact. The
reason is that the network communication consist of a large amount of small sized packets.
This is in alignment with our findings of Chapter 4. Similarly, the transmission rate does
not constitute a bottleneck if at least 10 Mbit/s are guaranteed. Manipulation of the CPU
did not yield any changes. We assume that the CPU would have to be constraint to a
small fraction of its normal power to achieve any effects. This has not been possible in our
setups.

Concluding, we answer the initially posed questions as follows:
1) How does the solution depend of the input data and setting, i.e., number of entries per
peer and number of peers? Algorithms realized in as SMC protocols typically depend on
their number of inputs as an insecure implementation of the algorithm would. Here, two
restrictions apply: while the asymptotic behavior can be identical, the absolute time can
be orders of magnitude higher, depending on other factors like the network. Furthermore,
“basic” operations can have different performance properties than intuitively expected. We
discussed this with respect to the division operation. The number of peers constitutes a
management overhead, since connections between the parties must be held and during
computation data exchanges must be performed between all parties.

2) What are the costs for the user in terms of time and resources? The time heavily
depends on the complexity of the algorithm and the selection of operations used. If the set
of operations is well supported the execution time can be in the realm of milliseconds. If
real numbers, division or comparison operations are used, execution time quickly exceeds
seconds to minutes. Also depending on the complexity of the computation, each pair
of peers exchanges at least some MBytes of traffic. This also can quickly increment to
hundreds of MBytes, e.g., when sorting.

3) What is the typical bottleneck? The bottleneck can be clearly identified. Since the
transmitted data is split into small packets, typically of ≈ 200 Bytes, the amount of ex-
changed packets is correspondingly high. Consequently, the network latency is the factor
with the highest influence.

4) Can the time costs be positively influenced by hardware improvements? As a conse-
quence of the high influence of the network, it is difficult to improve performance charac-
teristics by hardware changes. The most obvious approach of improving the participating
hosts does not address the bottleneck. However, we found that CPU time at least consti-
tuted around 30 to 50 % of the computation. Here, moderate improvements by an increased
CPU frequency can be expected. On contrary, every reduction of network latency would
be worthwhile.

6.6 Key Contributions of this Chapter

In this chapter, investigated a real-world use case for SMC and assessed the feasibility and
performance of this technology.

Real-World Use Case We identified a real-world use case of high practical relevance. Med-
ical studies provide an essential benefit for society. Having a large basis of test
subjects improves the validity and robustness of the obtained results. In so-called
multi-centric studies, this is exploited by letting several institutions carry out the

106 6. Secure Evaluation of Patient Data in Medical Studies

same study with different participants. The gathered data is then merged. However,
data protection regulations make the combination of data from different sources more
difficult in certain cases and require a notable organizational overhead to fulfill the
protection requirements.

In this situation, SMC is a promising remedy which allows aggregation of the study
data without actually sharing it. Practically, it fulfills the data protection require-
ments by technical measures.

Development of Secure Algorithm Considering this use case, we developed a full algorithm
which addresses the mentioned problem. We selected the widely used Kaplan–Meier
estimator from the realm of survival analysis, combined with the log-rank test. The
latter assesses the significance of difference between a (medicated) treatment and a
control group.

We implemented the secure protocol mostly ourselves but built upon previous work
about secure set operation protocols [BA12]. The implementation of the algorithm
is held in a modular form, which easily allows development of other test measures
for Kaplan–Meier estimators.

Performance Measurements Having obtained a secure implementation, we conducted thor-
ough performance measurements of this solution. Following four performance ques-
tions, we investigated the impact of peers and input data on the duration, CPU time
and data transmission. Furthermore, we evaluated the impact of selected network
and host parameters on the computation time and resources.

Field Study We conducted the aforementioned measurements in a synthetic testbed with
homogeneous hosts which were connected via an intranet. To complement our in-
sights and get further knowledge about SMC performance in real settings, we also
performed measurements in a real-world setting with heterogeneous hardware over
the Internet. For that, two medical institutions provided locally distributed servers
where our solution was carried out. With them, we have been able to confirm our
results from the testbed.

Part II

SMC as a Service

7. From SMC to a Privacy-Preserving
Service

In Part I we analyzed the performance of SMC and exemplified its application in an
important real world setting. It became clear that SMC is a promising technology for
supporting specific privacy protection goals. Furthermore, we could show how practical
feasibility of SMC depends on the different settings.

In following three chapters, we aim for a generic architecture which fulfills the current
standard of privacy protection goals using SMC as its core technology. For this purpose,
we perform a requirements analysis examining the environment of deployment as well as
SMC technology and their respective implications for our goal.

Objective

Focusing on Research Questions Q4 and Q5, the goal of this chapter is as follows: we
discuss the findings about SMC up to this point and assess which privacy protection goals
are already fulfilled by it. On this foundation we propose a category of use cases in smart
environments, for which SMC is a promising secure base technology. We sketch a solution
how SMC could be employed to address the identified use cases. Comparing that solution
to the current state of related work, we analyze and state the requirements of such a
solution. The actual realization is presented in the two subsequent chapters.

7.1 Discussion of Previous Findings

Initially, focusing on Secure Multiparty Computation itself, we examine how well it already
fulfills the desired set of goals. For that purpose, we consider our insights on SMC from
Chapter 3 and the general current understanding of privacy in Chapter 2. Then, we refer
to the results of the Chapters 4 and 5 in order to select an environment in which application
of SMC is most promising. Afterwards, we investigate how well SMC already fulfills the
architectural needs that the selected environment requires. Lastly, we discuss the current
state of the art in the identified setting.

Satisfaction of Protection Goals

In Chapter 2, we established the double triad of protection goals suggested by [RP09,
BR11, Han12, HJR15] as the state of the art with respect to a current privacy concept.

110 7. From SMC to a Privacy-Preserving Service

The classical security protection goals confidentiality, integrity and availability are com-
plemented by the privacy protection goals unlinkability, transparency and intervenability.
Additionally, data minimization is understood to be a fundamental goal of privacy pro-
tection.

Examining the specific functionality of SMC, we see that at least two goals are well sup-
ported by it: data minimization refers to the amount of data present in a system. Normally,
raw data which has been collected in a distributed fashion is gathered in a central storage.
The desired result data is then created by post-processing. If applying SMC, processing
is done in collaboration of all data providers. No raw data is stored centrally but only
the final result of the computation. This improves fulfillment of data minimization in two
dimensions: firstly, the central storage does not become another component which holds
the raw data. Secondly, SMC avoids the generation of plain intermediate computation re-
sults as they often occur during data processing. Instead, during computation only secure
shares exist which do not give any additional insights.

Furthermore, since data is not sent one-by-one by every individual data provider to the
central storage, the link between the stored data and the data providers is weakened. In
other words, unlinkability is achieved since the exact contribution of every data provider
cannot be derived from a result. This is more fundamental than e.g., using mix networks
[Cha81] which remove the link between the source and the input value, but leave the value
itself unaltered: in certain settings, this is not sufficient since the input value itself can
already suggest the original source. Since SMC never makes the input value accessible to
any party, this attack vector is directly mitigated. In fact, unlinkability could be made
even stronger by suppressing the knowledge which exact data providers contributed to a
result at all.

We identify the potential of SMC to provide transparency of data usage and processing
purposes for data providers: every computation has to happen in cooperation with the
original data providers. This can be used as foundation for transparency mechanisms.
From this, in turn, accountability can be derived.

Similarly, as data providers do not give away their data, they can exert control over
it. Rudimentarily, they can reject a computation if they see any reason to do so. The
aspired computation is then ultimately prevented. This basic functionality of control can
be extended and developed into more elaborated and advanced mechanisms of data usage
control.

Adequacy of Settings for SMC

In Chapters 4, 5 and 6 we investigated the performance of SMC. A main insight was
that network latency strongly influences the overall execution time. The reason is that a
multitude of small packets is sent between the participants during a computation session.
It is hence way more important to have small latency than to have a high throughput.
The packet size is only in the range of hundreds of Bytes.

Regarding host computers, we identified that CPU power has only moderate influence. It
is advised to use multi-core systems with a frequency of at least 1 GHz. However, hosts
do not have to be high-end devices.

Based on these insights we conclude that an intranet environment with (possibly mobile)
low-end hosts like Raspberry Pi computers is a promising setting. This encompasses a
large set of use cases, including smart homes, smart (office) buildings and smart cities to
some degree. Similarly, ubiquitous computing scenarios are also reflected.

7.2. Use Case 111

7.2 Use Case

In this section, we derive a use case from the environment and setting explained above.

We consider a smart environment. Concretely, this can be a working space, e.g., a smart
office department. It consists of rooms with different sizes and different purposes: many
are offices for a single or a small group of individuals. A comparatively smaller amount
constitutes rooms like restrooms, kitchens, elevators and storage rooms.

We assume a basic intranet infrastructure: a local area network connects available com-
puters of all rooms. Wi-fi is deployed so that mobile devices can also be connected to the
LAN. Depending on the location and the size, smart appliances can either be connected to
the network in tethered or untethered fashion. There are central services available in the
network. These are either deployed in local data centers or in the cloud. Local computers
can connect to them via the intranet.

We now focus on smart building appliances. These can be generally split into the following
three component types:

Sensors Sensors are distributed measurement nodes. They sense a single or multiple as-
pects of the environment in which they are installed. We assume that one or multiple
of them are installed in the rooms of the smart environment. Hereinafter, we refer
to the data directly collected by them as raw data. The types of collected infor-
mation encompass environmental (e.g., temperature, air quality, brightness), usage
(e.g., occupancy, number of people, power consumption) and the state information
of actuators (e.g., HVAC control, light state, window blind state).

Data Processing Units Typically, raw data is not fit for direct usage. It has to be post-
processed in order to generate insights. These can be derived by statistical means
or a combination of aggregation and filtering steps. Any kind of alert generation or
machine learning tasks are also a specialization of this post-processing.

Actuators Actuators are components which act upon the measured and processed data.
This especially encompasses the adjustment of the appliances and the building state
(e.g., regulating the HVAC). For our purposes we also include informatory devices
for human interaction like public displays in this category.

There are cases where computation adheres to the locality principles. Examples are the
thermostats of standard heaters, motion sensors for illumination and sliding doors. Data
can be post-processed in the logical and spatial proximity of the sensor (the data source)
or the actuator (the data sink). In these cases, privacy is naturally supported, since local
storage supports unlinkability and automatically minimizes the locations where this data is
handled. Similarly, these locally bounded devices can be easier understood (transparency)
and controlled (intervenability).

However, there is a class of applications where the locality principle is not trivially ap-
plicable. It may be necessary to provide inputs from multiple sensors. This raw data is
then aggregated (by computations like the average, standard deviation or more complex
functions) and post-processed in order to obtain an evaluation over a group of selected
sub-environments like rooms of a certain type. Typical examples are the average and
standard deviation of the temperature in a whole floor, the power consumption of a de-
partment or the overall number of people inside a building. These computations should
be available as a typical service in the smart environment and usable by clients in need
of this information. In consequence, the computation should be performed automatically,
without manual intervention and on a regular basis.

112 7. From SMC to a Privacy-Preserving Service

Figure 7.1: Interactions between the clients, the SMC Gateway and the SMC peers.

7.3 Solution Sketch

In this section we will shortly sketch our approach in order to facilitate later analysis
(Section 7.4) and derivation of requirements (Section 7.6). The content of this section is
based on the publication [vMC18b].

Current SMC frameworks mainly focus on the construction of protocols. Their goals is to
show improvements of the fundamental computation primitives, the feasibility of certain
computations, and to perform measurements of their performance.

In our context, we aspire a solution which carries out SMC sessions in an automated and
repeatable manner and which possesses service character: data requesting clients should
not have to know about SMC and how data is processed before they retrieve it. For
them, it should only be necessary to post standard data requests as they are prevalent
in a classical server/client architecture. The execution of SMC is completely hidden from
them (cf. Figure 7.1).

We encapsulate this combination of data distribution and management centralization in
the term Virtual Centralization, which we define as follows:

Definition 7.1 Virtual Centralization Virtual centralization is given when there is an
intermediary entity which provides centralized access to a set of data (streams) which are
collected and stored at a distributed set of entities. The fact of distribution is shadowed by
the intermediary.

As depicted in the use case, data is collected by smart appliances featuring sensors. Since
they will be the cooperating entities in the SMC sessions, we denote them as peers or
sensor platforms. These are deployed in the environment in a distributed manner. They
sense the state of the current environment and hold a history of previously created values.
They are depicted on the left side of Figure 7.1. Instead of deploying a central data
processing unit to which all gathered raw data is sent, we deploy a Gateway being capable
of SMC. This Gateway is the intermediary between the peers performing SMC and the
clients aiming to obtain the final result. In each direction—facing the peers and facing
the clients, respectively—it has to provide specific features:

7.4. Analysis 113

Client-Facing Interaction

Facing clients, the Gateway acts as a traditional service following the client-server paradigm.
Depending on the environment and the current setting of deployment, a Gateway offers dif-
ferent types of available data. Clients can send requests for certain types of (aggregated)
data. After some seemingly internal computation, the Gateway provides the requested
information to the client. The clients are neither able to intervene in the computation
process for the result nor able to discern how the information is obtained. The execution
of SMC is completely hidden from and abstracted for the clients. Since the computation
can take some time, requests can also be answered asynchronously.

The system should provide data for different goals and different clients. Therefore, access
control has to be carried out in order to ensure only authorized data access.

Peer-Facing Interaction

Gateways do neither store raw data of peers nor do they compute results alone. Instead,
they orchestrate a group of peers in order to make them execute SMC sessions.

Gateways hence translate incoming requests into SMC sessions which can be carried out
with the corresponding peers. After the computation, the Gateway obtains the result and
forwards it to the client. While delegating the actual computation, it provides availability,
reliability and robustness guarantees so that these non-functional aspects are also similar
to classical server systems. Likewise, exceptional cases as the loss of a collaborating data
provider or networking problems are handled without the client’s knowledge, if possible.

New peers should have the ability to choose from Gateways available in the same network.
When a new peer connects to a Gateway providing new types of sensor data, the Gateway
should reflect this information for the clients.

7.4 Analysis

After this rough sketch of a solution, we further detail and anticipate how the high-level
goals can be achieved.

Client-Facing Interaction

On the side facing to clients, the main goal is to provide a service abstraction.

Service API Initially, this means that the distribution of data and data sources is
hidden. Clients only have a single point of contact, the Gateway. This Gateway provides
a service interface which allows posting classical data requests. Using a referencing scheme,
the client specifies what data to obtain. As an answer, the Gateway provides this data
while unambiguously referring to the corresponding request.

Since computations might take longer, answers should also be available in an asynchronous
fashion. This implies that clients are immediately informed about the retrieval of their
requests and get the means to query for the result at a later point of time. Therefore,
reference to previously issued requests should be made possible for clients.

Metadata Directory In order to be informed about available data, the client must be
able to query further information. Via the same API, the Gateway should provide the
metadata which kind of information is currently available. The availability of information
depends on the peers that are currently connected.

114 7. From SMC to a Privacy-Preserving Service

Request Translation The metadata must provide knowledge about the computations
which can be obtained from the Gateway. This must happen in a non-SMC specific
manner for the clients. Similarly, clients must be able to specify data requests in a manner
which does not imply the usage of SMC; in other words the data structures must also
abstract from SMC. Translation to a valid SMC session has to happen in the Gateway.
This means that it must be possible to map the parameters from the request of the clients
unambiguously to an SMC computation. This includes information such as the group of
peers to compute with, the type of data to derive the result from and the protocol, i.e.,
the algorithm to be executed.

The reply from the Gateway contains the desired information. If any SMC-specific errors
occur, the Gateway should also hide them from the clients and try to recover failed sessions.
If failure is persistent, the Gateway should translate the error for the client abstracting
away from SMC.

Peer-Facing Interaction

For a clean service abstraction, further challenges on the side facing the peers have to be
addressed.

Discovery For self-management, automatic discovery is vital. It should not be neces-
sary to statically provide address information of a Gateway to newly instantiated nodes.
Instead, they should be able to discover candidates themselves. Decisions about which
identified Gateway to select can then be carried out manually or rule-based. This func-
tionality is also vital when a connection is lost or a peer changed its location. Rediscovery
of Gateways should also happen in these cases.

Pairing After choosing a Gateway, an initialization process is necessary. It provides the
Gateway with meta information about the peer. This must encompass the information
which sensors are attached to the new peer and which data can be provided. Similarly,
information about the available computation protocols must be shared. Lastly, in order
to establish a peer identity and to enable secure channels, a cryptographic trust exchange
must take place.

Operation The Gateway should become a controller for the peer. I.e., the Gateway
must be able to initiate SMC computations on the connected peers and perform these
sessions in the synchronized fashion necessary for SMC. This comprises multiple subtasks:
for each computation, only a subset of the connected peers participates (e.g., selecting the
temperature information only from a specific floor or room type). Hence, the Gateway
must be able to specifically select peers for participation. This information must also be
communicated to each of these peers since establishment of connection between them is
also necessary. Similarly, these peers must also be informed about the actual computation
to be carried out. This request specification initially originates from the client and it must
be communicated to the peers in an appropriate form.

In order to easily obtain the result of the computation and to be aware of errors during
computation, the Gateway can participate in it. However, the Gateway typically does
not have sensors itself, i.e., it does not have any real input to a computation session.
This is especially likely when a single Gateway covers a multitude of computations on
different data types. In consequence, it must be possible to not provide any input to a
computation to avoid distortion of the computed result. This can be achieved on the level
of the protocols: either, it is viable not to require an input from the Gateway at all or to
allow the Gateway to provide a neutral element to the computation.

7.4. Analysis 115

Robustness and Recovery According to Virtual Centralization, the Gateway shall
shadow the distributed fashion of the computation. Hence, it also has to make sure that
the SMC session is executed with similar reliability guarantees as if the Gateway could
compute the result itself. This is not trivially given: SMC sessions consist of a high amount
of network communication via mutual connections between the participants, making them
prone to connection interruptions. It is, hence, important to ensure correct execution of
the shadowed SMC sessions and to provide means of recovery in cases of failure. Here, we
can differentiate between the times when a session is ongoing or not. If no computation is
currently carried out, the Gateway only has to preserve the ability to communicate with
the peers. If a peer is lost during that state, only a cleanup on the side of the Gateway
is necessary: e.g., if a peer finally left the area of the Gateway, no actions of connection
reestablishment can be carried out. Otherwise, the Gateway must be ready to re-pair with
the formerly lost peer when it rediscovers the Gateway.

Upon errors during a computation session, more steps have to be taken: initially, the
Gateway must know if a session failed. A root cause analysis should provide the insights
how the error should be handled. In simple cases, if the necessary peers are still available,
a session restart can be performed, trying to carry out the computation again. If peers
have been lost, the Gateway must assess whether or not the computation can be performed
without the lost peer while still yielding a valid result1. Depending on the decision, the
Gateway can either readjust the participant set and restart the session or translate the
failure to a temporary or permanent failure for the requesting client.

Furthermore, every participant can delay a running computation. As this cannot be con-
trolled by the Gateway, the request/response interaction with clients should be performed
asynchronously in order to prevent open connections and timeout on the side of the client.

Availability of Computation Result Typically, either a single or all participants of
a SMC session obtain the final result. In our context, the querying entity is different
from the set of participants which collaboratively perform the computation. Hence it is
necessary that—in a final step—the result from the computing parties is forwarded to the
actual requester.

Security and Privacy Protection

As identified in Section 7.1, SMC itself already provides the fulfillment of certain protection
goals. We elaborate this briefly:

Data minimization Data minimization is improved in the following manner: each peer
only holds information about itself. There is no place where a third party instead of the
data owner holds raw data of peers.

Unlinkability Similarly, it supports unlinkability in three ways: 1) Since there is no
place where data of several different peers is stored, illegitimate linkage (i.e., without
knowledge of the peers) of this data is not possible. In turn, this also improves data
minimization since no new knowledge can be derived this way. 2) When SMC is applied
properly, the result obtained from a computation does not allow recovery of the initial input
values2. 3) Similarly, the result does also not allow to recover which peers contributed to

1E.g., if an average value of a dynamic set of peers should be computed, it can be of secondary interest,
how many peers participated at all.

2This excludes special cases where only the input of a single peer is provided. Then, the input of the peer
is indeed recoverable. Furthermore, the smaller the set of peers providing input, the better approximations
regarding their initial input values become possible.

116 7. From SMC to a Privacy-Preserving Service

the result. However, this information is sometimes necessary in order to make sense of the
obtained result. Hence, it should be configurable whether this information is available to
the clients or not.

For other protection goals, only a rough foundation is provided by SMC. A system em-
ploying it has to appropriately make use of them in order to completely fulfill these goals
in a beneficial manner.

Transparency Regarding transparency, data providers contributing to a computation
definitely know about the type of computation, the data to be provided and the other
cooperating peers since this information is necessary for execution. Instead of using this
information only for performing the computation, this information should also be persisted
to allow insights which computations have been performed in the past. This supports
accountability and in turn transparency. To further enhance this measure, more metadata
about the context of the request should become available to the peers. They should also
be informed which client requested the computation and for which purpose; the exact time
and the concrete content of the initial request. This makes data usage fully accountable
for system and data providers likewise.

Intervenability The same insights can also be used to assess upcoming computations.
Having a context of the requested computation, peers are in a better position to decide
whether to contribute or to refrain from it. In other words, based on an informed de-
cision, they can better exert their right to veto against computations which are deemed
illegitimate. This realizes intervenability. In order to provide a stable system and ensure
understandable and accountable system behavior, peers should not cancel computations
in a manner as if an unexpected error happened. Instead, a clear veto process should
exist where the peers’ vetoes are communicated to the requesting client. The latter should
especially obtain a proof of the veto performed including an understandable veto reason.
Since vetoes are made transparent by these measures, accountability can then be easily
added by persisting the corresponding messages in an adequate manner.

Vetoes prevent an upcoming computation from succeeding. The Gateway should assess
whether an equivalent computation can be performed without the vetoing peer(s), and
automatically execute these.

Access Control Access to data should be accompanied with access control. This is
especially necessary since the system shall provide different kinds of data for different
clients. Our method of query specification already provides fine-grained statements about
the data to be accessed. Combined with environmental state (e.g., the current time),
attribute-based access control can be carried out. Reusing the attributes from the queries
also for authorization allows easy mapping of authorizations to actual requests and facili-
tates the logic necessary for permission granting and authorization verification.

Since this authorization information is now already present and long-term accountability is
desirable, this information should also be logged in a trustworthy manner. In consequence,
requested and granted access can then be reconstructed after the fact.

The environment in which the solution should be deployed is dynamic and churn of Gate-
ways can occur. If two Gateways exist for the same trust domain (e.g., Public Key Infras-
tructure), they should mutually accept the authorizations issued by the other Gateway.
Since they might only be available sequentially, communication between both Gateways
should not be necessary to accomplish this.

7.5. Related Work 117

7.5 Related Work

The feasibility results presented in the background chapter (cf. Section 3.4.2 on page 29)
also represent the related work for our approach of improving practical applicability of
SMC. We do not repeat the details here. We refer to Section 3.4.2 for an overview. Here,
we focus on the aspect whether and how SMC was deployed as a service. Related work
which has not yet been presented as feasibility result is described here in full detail.

In [BCD+09] Bogetoft et al. work with real-world data, but the setting of evaluation is
partly artificial: the data was collected from real users, but the computation was carried
out in an ad-hoc manner. Three laptops were used which were connected via an intranet.
The computation itself was started manually. No attempts were made to enable continuous
or repeated computations. The result was not distributed to the input parties during the
sessions but presumably via an organizational announcement.

The main contributions of [BSMD10] are use-case-specific computation protocols for data
analysis. Their evaluation was executed in a strongly controlled setting: while performing
measurements in intranet and internet settings (using PlanetLab), the measurements were
completely done by the researchers. There was no real interaction via SMC with the ISPs
which provided the data. The authors recognize that robustness of computations in the
presence of host failures is a vital challenge for future work. We also address this in our
approach.

Bogdanov et al. successfully deployed an SMC solution as an application for continuous use;
several computations were carried out. Although computations are only performed twice
a year, they yield a real SMC service with a comparatively high amount of automation.
In their publication, they stress the need for robust and practically applicable service-like
SMC deployments: they “consider it an important challenge to reduce the administrative
attention required for managing” a computing node to make “the technology easier to
deploy in practice” [BTW12]. In their summary, the conclude that more focus should
be laid on the practical problems of applying SMC: administrative real-world challenges
should gain more attention and more challenging settings like cloud environments should
be considered. We address exactly the former of these problems in our work.

The use case of [DSD+13] is that multiple Internet service providers (ISPs) cooperate
in order to detect whether a network outage is globally or locally induced. To achieve
that, they have to combine individual and confidentially kept outage data of their own
networks. This approach of Djatmiko et al. was evaluated using real data from an ISP,
but all computations were carried out without interaction of real stakeholders.

In [ZDT+16] Zanin et al. present an auction approach for trading emission allowances.
Most notably, they realized a real system as a web service interacting with actual stake-
holders. Representatives of airlines can enter their bid and an external referee, acting
as auction manager, operates their auction system. While the interaction is neither fully
automated nor the SMC computations are performed automatically, they provide an in-
frastructure which addresses a concrete use case and allows real interactions.

Bonawitz et al. [BIK+17], aspiring private training of neural networks using SMC, explic-
itly focus on real-world problems of their use case. They aim for a solution which is robust
against host failure, enables asynchronous collection of data and considers the real Internet
infrastructure (e.g., featuring NAT-shielded devices). The corresponding talk [Kre17] im-
plies that the system will be productively used for privately creating auto-correction and
auto-suggestion models for smartphone input trained by the typing history of thousands of
smartphones. Their only constraint is that their approach does not yield a general purpose
SMC solution but one tailored to their use case of securely aggregating private vectors.

118 7. From SMC to a Privacy-Preserving Service

Thoma et al. [TCF12] present a secure smart metering solution. They aim for protecting
the individual, temporally fine-grained consumption data of households, providing correct
and verifiable billing of each individual household and detailed (non-individual) consump-
tion feedback for load management. They achieve this via a dual approach. Temporally
fine-grained feedback data is collected by aggregating individual consumption data before
sending it to the energy provider. This is performed via SMC and individual consump-
tion data is protected. Monthly aggregates for billing are created in plain and locally for
each household. These values become verifiable as every household sends individual, fine-
grained but homomorphically encrypted consumption data to an untrusted utility server.
The server can sum up the inputs and use it for secure verification of the user-side result
provided at the end of the month. Like the previously described work, they also ad-
dress a secure aggregation in a real-world setting and provide a framework which enables
practical application. However, their solution is rather on the level of a concept. They
do not elaborate how infrastructural problems like discovery of available households and
interconnection between them are handled.

In conclusion, most solutions presented in related work were executed manually in highly
controlled environments. Only few propose architecture for continuous real-world deploy-
ment and automated SMC computations. Among them, some do not consider realistic
constraints of their environment.

We chose secure computations in dynamic environments as our scenario. Our solution
directly addresses infrastructural challenges present in smart environments and provides a
framework to enable automated and self-managing application of SMC.

7.6 Requirements

In the following, we state the requirements for providing an automated service for data
retrieval based on SMC. The actual solution is presented in Chapters 8 and 9.

Service Abstraction

The first subgoal is to make SMC applicable in real-world contexts. In order to achieve
compatibility with existing environments and infrastructures, from a client (data user)
perspective, the service behaves like other state-of-the-art services.

RA.1: Single Point of Contact

Although SMC initially being a peer-to-peer solution, data obtaining clients
only have to contact a single point in order to get answers for their requests.
This single point of contact conceals the dynamic nature of the underlying
peer-to-peer interaction. Depending on how dynamic the environment is, it is
possible to statically assign the role of the Gateway to a selected node, or to
allow all nodes to decide on a common Gateway for a predefined amount of
time.

RA.2: Service API

Continuing the previous requirement, the single point of contact exposes a
standard interface for interaction. This conforms to established standards like
REST. Correspondingly, it is not necessary for the client to perform more than
posting a standard request.

RA.3: Directory Service

Clients are able to get information about which data and which sources are
available via the interface.

7.6. Requirements 119

RA.4: Request-based Invocation

The Gateway is able to translate an incoming request into an SMC session
which yields the desired result.

RA.5: Async Response

SMC does not guarantee a limited execution time. Hence, requests are not
necessarily blocking until a response is given.

Self-Management

Concealing the complexity of an SMC-based solution as described by RA.1 especially
requires the system to be self-managing. Thereby, complexity of management and config-
uration can be removed from the client side.

RA.6: Discovery

During setup time, nodes automatically become aware of available Gateways.
Each node can choose from the list of available Gateways according to a lo-
cal matching logic and have all information available which are necessary to
establish an initial connection to its choice.

RA.7: Auto-Configuration

Adding and removing nodes reconfigures the environment automatically. In
response, groups of nodes are dynamically formed and the directory service is
adjusted. Connections between nodes enabling SMC sessions are automatically
established and kept alive.

RA.8: Automatic Session Management

A group of nodes must be able to start a session upon request of their con-
nected Gateway. This includes communicating the request which triggers the
session to each node, which, in turn, selects the right data and the computa-
tion protocol. As SMC works in a synchronous fashion between participating
nodes, synchronization is realized by the session management. Furthermore,
nodes are informed whether a computation was successful. On failure, an
automatic restart is possible.

System Stability

Due to the nature of SMC, our solution is a distributed network system. This is typically
prone to network failures which have hence to be addressed.

RA.9: Fault Tolerance and Robustness

The SMC session being a highly network dependent process, connection fail-
ures or interruptions are a relevant cause of errors. Hence, we require that our
system is robust against this type of failure: in unstable situations, the system
eventually stabilizes itself. Similarly, the full system does not fail upon failure
of single participating entities.

RA.10: Recovery

Network failures can also interrupt ongoing computations. Hence, the solution
provides a resuming mechanism for computations or be able to transparently
restart an interrupted computation.

120 7. From SMC to a Privacy-Preserving Service

Security and Privacy

Regarding security and privacy, we start with preserving the privacy features SMC itself
exhibits. We then aspire to fulfill further privacy goals as discussed in Chapter 2.

RA.11: Raw Input Confidentiality

Being the main motivation for our work and the main feature of SMC, we
demand that our solution is able to collaboratively compute functions upon
inputs of the participants. The inputs of every participant, however, remains
confidential, i.e., it must not be necessary to provide any knowledge about them
but the actual final result to any other entity. As a consequence, unlinkability
of computation results and inputting participants is yielded. In other words,
the result of a computation does not give any insights on the individual input
data.

RA.12: Confidential and Authenticated Channels for SMC

Some SMC implementations require the availability of confidential and au-
thenticated channels. Hence, authentication has to be handled outside of the
actual SMC framework and corresponding material as certificates has to be
made available to it.

RA.13: Transparency

When a Gateway allows the processing of a received request, all participating
nodes are also able to access the initial request and to derive the purpose of
the invoked computation session.

RA.14: Intervenability

Besides the raw data remaining confidential, peers stay in control of their
data. It is their decision if and how their data is used. Consequently, we
require the fundamental ability for every peer to decide in which computation
it opts to participate or not. When receiving the initial request, nodes become
empowered to understand the context of the session invocation by RA.13 and
shall furthermore be able to veto against participating the given session if it
conflicts with their own access rules.

RA.15: Client-faced Access Control and Permission Transparency

As outlined in the previous point, peers are ultimately in control of their data
and the success of the computation. This is a rough kind of access control
which, deployed alone, has undesirable properties: For clients it is impossible
to anticipate the outcome in advance, and the intentions of the uncooperative
peer are not communicated explicitly. This would introduce an uncertainty
on the side of the client and make it harder to understand error cases where
computations did not succeed. In order to facilitate access control decisions
and improve client interaction, we add another earlier layer of access control.
Its aim is to anticipate the peers’ decisions and to make client permissions
explicit.

The Gateway is able to constrain combinations of data and computational
protocols provided by the API. These combinations mirror the later peers’
decisions. For explicitness, the permissions are manifested as access docu-
ments held by each client. This allows the Gateway to forward the permission
statements to peers.

7.7. Statement on Author’s Contributions 121

RA.16: Accountability

RA.13 provides insights in performed computations, their requesting client
and their reason. These information should not only be used to decide about
participation agreement or veto, but should also be used to create a persistent
access log. This enables data owners to understand the usage of their data
and potentially derive new access rules.

7.7 Statement on Author’s Contributions

The findings of this chapter have been published in the following paper:

M. von Maltitz and G. Carle. Leveraging Secure Multiparty Computation in the Internet of Things. In Proceedings of

the 16th Annual International Conference on Mobile Systems, Applications, and Services, pages 508–510, New York,
New York, USA, 2018. ACM Press (reference [vMC18b]). The publication presents the solution sketch (Section 7.3) of

this chapter as a vision for privacy-preserving architectures in the Internet of Things. It establishes the segmentation

of a solution into the subproblems of realizing robust and automated execution of SMC (cf. Chapter 8) and
performing data requests and enforcing access control on private data (cf. Chapter 9).

The publication [vMC18b] refers to the concept of Virtual Centralization that has been developed in cooperation

with Stefan Smarzly in the context of his Master’s Thesis advised by the author of this thesis and by Holger Kinkelin
and supervised by Georg Carle.

122 7. From SMC to a Privacy-Preserving Service

8. Self-Managing SMC

In the last chapter, we entered the domain of smart environments. We identified that
they are a promising use case where privacy-preserving data processing is needed. We
already sketched a solution architecture for this, carried out further analyses and derived
a catalogue of requirements to be fulfilled by a privacy-preserving service on the foundation
of SMC. Here, we will develop the first part of a corresponding solution.

Objective

In this chapter, we address Research Question Q4. We provide a Gateway which performs
orchestration and management of SMC. In particular, the following features are realized:
detection of Gateways by peers is made possible. Afterwards, they establish a common
state so that the Gateway knows about the capabilities of the new peer. The Gateway
is then able to orchestrate and manage SMC sessions. It provides the necessary runtime
configuration and handles possible error cases. With the contributions of this chapter,
SMC can be executed programatically in an automated, flexible and robust manner in
dynamic environments.

8.1 Architecture

From a bird’s eye view, both the peer component and the Gateway component can be
implemented as a finite state automaton. They are depicted in Figure 8.1 and Figure 8.2.
In the following sections we present and discuss the design of the most important states
and interactions of both.

8.2 Gateway Discovery

The first step to a self-managing SMC infrastructure is a discovery mechanism which
enables peers to detect available Gateways. We realize this by utilization of Zero Config-
uration Networking as specified by RFC 6762 [CK13b] and 6763 [CK13a].

The content of this and the following sections including 8.6 has also been published as
[vMSKC18] in a highly condensed manner. The text was written completely by the author
of this thesis.

124 8. Self-Managing SMC

Connection Establishment Start Operation

Init

Discovery

Pairing

Operation

Obtain Channel

Wait for SMC Session

Perform SMC Session

success incoming session

communication finished /
error

failure

HeartbeatInit success

loop

failure

unknown GW failure

permanent failure

known GW

success

success

doneconnection failure

Figure 8.1: The state diagram of the peer

8.2.1 Gateway Announcement

The Gateway is equipped with a component realizing multicast DNS and DNS-based
Service Discovery. It regularly sends announcements which inform the network about its
presence. These consist of mDNS messages containing A, AAAA, SRV and TXT records
(Listing 8.2).

The messages announce the service of a named Gateway, e.g., gw-12345abcdef. The A and
AAAA records resolve the address of the domain name gw-12345abcdef. Its services are
simultaneously announced via the SRV record shown in Listing 8.1.

1 gw-12345abcdef._seccomp._tcp.local <TTL> IN SRV <priority> <weight> <port> <target>.

Listing 8.1: SRV Record of Gateway Announcement

The SRV record informs peers about the presence of a Gateway gw-12345abcdef which
provides a service seccomp, available via the port <port> at the host <target>.

1 gw-12345abcdef._seccomp._tcp.local <TTL> IN TXT "<KEY1>=<VALUE1>" "<KEY2>=<VALUE2>"

Listing 8.2: TXT record of Gateway announcement

Via the TXT record, it is possible to announce initial information about the Gateway
as key/value pairs, which help peers to choose the most suitable Gateway, if several are
available. Relevant attributes are shown in Table 8.1.

8.2. Gateway Discovery 125

Init

Operation

Listen for Peers Pairing

Connection Establishment

connect

success

failed

Wait for request Perform SMC Sessionreceived

finished

Check for Heartbeat

Remove peer

loop

check failed

Figure 8.2: The state diagram of the Gateway

Attribute Example

Version Number 1.0.0
Description Gateway of the 3nd floor in Building A
Supported Sensor Types Temperature, Humidity, CO2

Location Room 123

Table 8.1: TXT attributes of the Gateway announcement

The version number is provided to check compatibility of the software on the Gateway
with the software of the peer. RFC 6763 [CK13a] recommends the attribute protovers for
this purpose. The human-readable description allows manually choosing peers to identify
the Gateway. Supported sensor types is the first attribute which helps peers to select
adequate Gateways by matching their capabilities with their own. Two cases exist: in more
static environments or when Gateways have pre-defined purposes (to support only a small
specified number of types), peers should only connect to Gateways which already support
their own sensor types. In more dynamic environments, this attribute rather indicates
which types are currently supported by the Gateway, but this information can change
over time. Peers providing different sensor types can nevertheless connect to the Gateway.
When enough peers of a certain, not yet available sensor type have connected, the Gateway
can start announcing that this sensor type is now available. Gateway selection can also
depend on other attributes, for example by its location. If proximity is a semantically
relevant feature for building computation groups and sessions, this attribute can be used
to select the most suitable Gateway. More generally, when the place of deployment is not
logically structured like a building, a GPS tuple can be more appropriate. Furthermore
and generically, other attributes can be imagined which improve the choice of the Gateway.

126 8. Self-Managing SMC

Spoofing and Tampering Mitigation

By default, mDNS messages have no further security compared to plain DNS [CK13b].
Hence, they are prone to spoofing (addresses in the A/AAAA record) and tampering
(e.g., contents of the TXT record).

Regarding our setting, we perform the following case differentiation:
In static environments, peers can be preconfigured to prefer certain available Gateways. In
this case, it can be assumed that Gateways hold individual certificates and a correspond-
ing private key. The certificates of these Gateways can then be provided to the peers.
Being equipped with this information, peers are directly able to authenticate data coming
from the Gateways. In other words, a foundation upon which mDNS messages can be
authenticated is available.
In dynamic environments, we assume that formerly unknown Gateways exist. Peers can
automatically connect to them upon their detection. As a consequence thereof, we cannot
assume that any previous knowledge about the Gateways (including certificates) exists.
Lacking this foundation, it is not possible for a peer to assess the legitimacy of a Gateway.
Consequently, protecting the mDNS messages against spoofing and tampering does not
yield any benefit. However, employing a trust-on-first-use (TOFU) security model, the
availability of cryptographic material after a first connection would allow peers to recog-
nize known Gateways afterwards and to authenticate their messages when a second pairing
becomes necessary. Furthermore, they would be able to retrospectively verify the mDNS
messages which lead to the connection with the Gateway.

In summary, there are situations in both cases where authentication of mDNS messages
is possible. This can be realized by providing a signature which protects the announced
domain name, its <target> address, the port and all additional information provided as
TXT record using the private key of the corresponding Gateway. This signature can then
be stored as a further key/value entry in the TXT record.

However, technical considerations make it inadvisable to do so:

TXT record length RFC 6763 states several constraints regarding the length of the TXT
record: each key/value pair must not exceed 255 Byte. Furthermore the whole TXT
record is intended to consist of 200 Bytes or less. If this is not sufficient, the record
should be kept under 400 Bytes so that it fits into a single DNS message having 512
Bytes as maximum [Moc87] or under 1300 Bytes so that it fits at least into a single
1500 Byte Ethernet packet [CK13a].

Optionality of TXT records RFC 6763 states that TXT records should be considered as
optional and that connecting instances should be able to work completely without
them. I.e., all information provided by them should be also available during the
in-band communication with the discovered service. The TXT record is merely
considered as performance optimization allowing the connecting instance to make
selection decisions when facing a greater set of potential service providers.

We evaluated that a signature computed using SHA-256 [EH11] as hash function and a
private key based on the elliptic curve prime256v1 (X9.62/SECG curve over a 256 bit prime
field) takes about 70 Bytes. As binary values are allowed in the TXT record, it would be
technically possible to store the signature as entry. However, the second argument states
that in-band renegotiation of the TXT content is advised, hence, verification can also be
moved to the initial pairing step. Doing so does not change the aforementioned security
model as it is based on the same assumptions. The only difference regarding security
is that peers cannot receive the Gateway’s attributes passively and verify them silently

8.3. Pairing Process 127

anymore. Instead, the peer has to establish an initial connection to the Gateway and
authenticate it via established means like TLS. Hence, rogue Gateways would at least get
an open connection to peers and become aware of their existence.

Another solution for mDNS message authentication is the combination of mDNS/DNS-SD
and DNSSEC, however, this has not yet been evaluated [CS06].

8.2.2 Peer Query

In alignment with mDNS, peers have the ability to send DNS queries polling for corre-
sponding service type _seccomp._tcp.local. This triggers all reachable Gateways to send
their announcement messages.

8.3 Pairing Process

Once a peer has selected one of the discovered Gateways, the next step is to perform a
pairing with it. The goals are

• establishing a trust relationship between the peer and the Gateway

• providing the means for encrypted communication

• establishing a connection which allows the Gateway to initialize computations and

• providing all peer information to the Gateway which are necessary to correctly group
the newly added peer with existing ones.

The pairing protocol is shown in Figure 8.3 and described as follows:

1. The first three steps reflect the discovery process. Here, the peer optionally sends a
multicast query for Service Instance Enumeration [CK13a] which triggers all reach-
able Gateways to send out DNS-SD service announcements.

2. Due to the previous triggering or due to initial announcement, the Gateways send
mDNS messages in order to inform about their presence and the provided service.

3. The peer receives these announcements (possibly from several Gateways in its prox-
imity). Based on the service meta information contained in the TXT record the
peer can decide which Gateway to connect to. With this step, the discovery phase
is finished.

4. Once the peer has decided which Gateway to contact, a connection is established and
wrapped via TLS. During the TLS handshake, both parties present their certificates
to each other. Regarding the next step, we have to differentiate our use cases.

5. In a more static environment, we can assume that peers have been preconfigured to
correctly identify and to authenticate Gateways. These Gateways possess certificates
which the peer is able to validate. Based on this validation, it recognizes the Gateway
as legal. This step only ensures that no rogue Gateway is contacted. It does not
provide whether the contacted Gateway is the preferable one for the contacting peer.

6. Alternatively, regarding a more dynamic environment, it is not sensible to assume
available validation via a public key infrastructure and signed certificates. In this
case, the trust on first use security model can be employed. The peer accepts the
currently unknown certificate and stores it for later usage. The peer is then able to

128 8. Self-Managing SMC

Gateway Peer

Discovery

Optional

1 Query for gateways (multicast)

2 mDNS message: SRV/TXT record

3 Choose gateway

Pairing

4 Establish TLS connection

alt [Static environment]

5 Automatically check certificate

[Dynamic environment]

6 Trust on first use

7 Send gateway properties

8 Match gateway properties

alt [Peer accept]

9 store gateway properties

10 Send peer properties

11 Store peer properties

Connection Establishment

12 Establish persistent connection

13 Store connection information

14 Store connection information

Start Operation

Figure 8.3: Discovery and pairing process between Gateway and peer

recognize the same Gateway at a later time. Depending on the exact use case, this
concept can be improved by out-of-band checks: in dynamic environments where the
peers are end-devices of users (like smartphones), this can be realized by comparison
of fingerprints or similar interactions.

8.4. Operation Mode 129

7. Following the best practices and suggestions in [CK13a], metadata in TXT records
should not be mandatory for establishing a connection between service provider and
a client1. In our case, the announced information is essential to select the right
Gateway. Hence, this step reiterates an in-band exchange of this very metadata.

8. The peer reevaluates the obtained information and decides whether to continue the
pairing process or not. For full automation this step can be rule-based. In dynamic
cases where manual intervention is possible or desired, a user can make this choice.

Besides RFC-conformity, another benefit of this renegotiation is that the provided
pieces of information are bound to the identity of the Gateway via its certificate
this time and hence protected against spoofing and tampering (opposed to their
availability via the TXT record; cf. Section 8.2.1).

9. Given, the peer accepts the Gateway based on the provided information, the pairing
process can proceed. The peer then stores this information so that the Gateway can
be remembered as being formerly selected.

10. Vice versa, the Gateway obtains the same types of metadata about the peer, so
that the former can include the latter into matching groups of other peers which are
already known to the Gateway.

11. Subsequently, this information is stored by the Gateway.

12. As the next phase, a persistent control channel is established. This channel allows
the Gateway to send orchestration messages to the peer which in turn enable the
execution of SMC sessions.

13. All necessary information to hold the channel must be persisted. This happens on
the side of the peer.

14. Likewise, the Gateway persists the channel information for later usage.

Afterwards, the interaction changes into operation mode. Here, the established channel is
monitored by heartbeat messages.

8.4 Operation Mode

Productive interaction happens when the Gateway and the peers are in operation mode.
For the sake of completeness, Figure 8.1 and Figure 8.2 show the full automaton of both
component types, also including the previously described steps.

8.4.1 Peer-Side

On the peer side, two concurrent processes are started in the Start Operation state: the
process for managing the control channel to the Gateway and the heartbeat process:

Control Channel Process This process itself performs an infinite loop: a channel to the
Gateway is obtained. This channel serves for the communication of control messages
for the initiation and orchestration of later SMC sessions. When the channel is
obtained, the peer blocks this process, waiting for incoming messages. Upon receipt,
it handles the messages accordingly. When a session finished or any error occurred,
the process returns to its initial state. Here, if possible, it reuses the current channel
or tries to obtain a new channel, if the previous terminated with failure.

1Client is the terminology of the RFC, meaning peer in our context.

130 8. Self-Managing SMC

If obtaining a connection to the Gateway fails, the process terminates with error. Not
being able to obtain a control channel is an indicator for connection failures. Conse-
quently, the peer terminates the heartbeat process and changes back to Connection

Establishment.

Heartbeat Process As the control channel process can identify connection failures itself,
the meaning of this process is different. Even when no SMC sessions are performed
for a longer time, the heartbeat indicates to the Gateway that this very peer is still
available and connected. Hence, while the previously described process is for peer-
side failure identification, the heartbeat process is for Gateway-side identification.

8.4.2 Gateway-Side

After initialization, the Gateway performs three types of processes concurrently:

Listening Process Here, the Gateway continuously listens for connection attempts of new
peers. It performs the pairing with newly connecting peers and—upon success—adds
them to the pools of paired and active peers.

Control Channel Process This process is the counterpart of the first process of the peers. It
holds the connection to a single peer and transmits control messages when available.
For every connected peer, a process of this type is spawned.

Heartbeat Check Process Analogously, this process is the counterpart to the heartbeat pro-
cess of the peer. It listens for heartbeat messages of the latter and terminates the
connection to the peer if no heartbeat was received for a predefined time interval.

8.5 Session Orchestration

This section addresses the interaction performed via the established control channel when
a computation has to be carried out. The aim of the orchestration is the planned and
controlled execution of SMC sessions.

8.5.1 Orchestration Protocol

The overall sequence of interaction is depicted in Figure 8.4. The steps are as follows:

Preliminaries

We assume that a request is sent from a client to the Gateway. It contains a description
which type of information should be computed and which set of data input peers should
be used. For details on the client-side querying cf. Chapter 9

Preprocessing

During the preprocessing, the Gateway parses an incoming request and derives all necessary
information to interact with the addressed participants.

1. When the Gateway receives a request from a client, it first transforms the request
into a Task Description. This is a semantic change from the high-level request to a
detailed executable specification of an SMC session. The Task Description Scheme
and the translation are described in Section 8.5.2.

2. From this session specification, the Gateway can subsequently select the set of par-
ticipants which is addressed by this session.

3. Finally, the task is marked as ready and scheduled for execution.

8.5. Session Orchestration 131

Gateway Peer

Preprocessing

1 Transform request into task description

2 Select participants

3 Schedule task

Prepare Phase

loop until convergence

4 Send request and task description

5 Check request

alt [Check positive]

6 Accept request

7 Get raw data

8 Preprocesses data

9 Init SMC Provider

[Check negative]

10 Reject request

11 Adjust task description and participant set

12 Acknowledge Session

13 Init SMC Provider

14 Link SMC instances

Session Phase

15 Execute protocol

alt [success]

16 Send result

[error]

17 Report failure

18 Reschedule task

Figure 8.4: Orchestration process

132 8. Self-Managing SMC

Prepare Phase

During the prepare phase, participants are informed about the upcoming session and in-
structed to prepare the session on their side. Here, participants can have the specific ability
to veto against incoming requests. If this is the case, the Gateway has to act accordingly:
if possible, the same computation should be performed without the rejecting peer. Other-
wise, it should forward the error to the requester and recover so that other client requests
become possible again.

4. The Gateway sends the request and the generated Task Description to the peers.
This enables the peers to act on the request and prepare all necessary steps for the
planned computation in the following steps.

5. Firstly, each peer may check whether or not the posed request is in accordance to
the peer’s privacy and data protection rules (for examples cf. page 153).

The steps 6–9 assume that the participant has checked and accepted the request.

6. The peer sends an acceptance notification to the Gateway. This informs the Gateway
as early as possible about participating and rejecting peers.

7. The Task Description includes a label that describes which type of input information
should be used. The participant is able to recognize the label because it has sent the
same label—indicating the availability of some information type—during its pairing.
In this step, it has to gather the according information.

8. Similarly, the Task Description contains how raw data has to be preprocessed.
E.g., that the last ten values should be fetched per peer and their average should be
the input for the computation session.

9. Finally, on the side of the peer, the SMC framework is initialized with the prepro-
cessed values and ready to establish connections to the other participants.

Given, the participant does not agree with the prospective computation, it acts otherwise
as described in steps 10–11.

10. The peer informs the Gateway about the rejection. This rejection also includes
a reason string. This enables logging and later revision. Furthermore, this error
description can also be forwarded to the client if the session finally fails.

11. The Gateway acts on the rejection by regenerating the Task Description and its par-
ticipant set. It is then necessary that the Gateway resends the updated information
to all remaining peers. These can then reevaluate whether they agree to the new
configuration.

The loop the Gateway performs is guaranteed to terminate as the choice for each partici-
pant in the finite set is either to stay or to leave. Each leaving participant is not considered
again this session, hence, the participant set can only get smaller with each step. In the
worst case it gradually shrinks to zero; in this case the session is finally aborted. In the
other case, if no participants rejects, the set does not shrink but the break condition of a
converged set is fulfilled.

Then, the sequence continues as follows:

8.5. Session Orchestration 133

12. The Gateway sends an acknowledgement to all remaining peers. This is necessary
as it tells the peers that they do not have to expect another update of the Task
Description but that the computation can now begin.

13. Lastly, the Gateway also initializes its SMC framework with the most current Task
Description. Typically, it does not contribute an own value to the computation
but provides a neutral element which allows participation in the session without
influencing the computation itself.

14. This is the first step where the commands issued by the Gateway are forwarded by
the peer to its local SMC instance. This allows the Gateway to control the execution
of the SMC framework.

Session Phase

After the linking, the actual SMC computation can start. This is performed in the session
phase.

15. The session is executed via the utilized SMC framework. We do not get into detail
here, but refer to Section 8.7.

The next step assumes that the computation has been carried out successfully.

16. After the computation, typically, one or every participant is in possession of the
result. Given, a single participant possesses the result, it forwards the result to the
Gateway. In the other case, all participants are encouraged to sent their result as a
means of error or cheating detection. In the case that the results deviate, they are
discarded or a majority vote is performed.

Otherwise, when an error happened, the following is done:

17. The peers inform the Gateway about the occurred error.

18. Then, the running task is scheduled to be repeated.

This phase can also be looped if the Task Description indicated that multiple computations
should be performed. This improves efficiency as a new negotiation of the computation
context and the establishments of links can be skipped.

8.5.2 Task Description Scheme

We now present the Task Description Scheme (cf. Listing 8.3). It is the target format to
which the Gateway has to translate incoming requests so that they become executable for
the Gateway in cooperation with the SMC participants.

The session identifier can be generated automatically by the Gateway. Its purpose is
to uniquely identify individual ongoing sessions. This enables the parallel processing of
sessions with the same participants without risking interferences between ongoing sessions.

The participant map has to be generated from the set label which is provided by the client.
If the client specifies that the group of nodes behind the label 3nd floor in Building A

should compute a given result, the Gateway must be able to resolve this label to a set of
real node entities in the network using its directory information (cf. Section 9.3). This set
of entities then has to be addressed in the previously explained orchestration interaction

134 8. Self-Managing SMC

and also be named in the Task Description. The information about the entities is enhanced
with a connectable endpoint (e.g., alpha.local:8000) and an identifier during this session.
This can also be the cryptographic identifier of this very node, e.g., the fingerprint of its
certificate. This enables reidentification—also for collaborating peers—even when the
endpoint information has changed.

The sensor type defines which type of sensor information should be used for the corre-
sponding computation. It maps to the sensor type labels which the peers also use when
transmitting their peer properties containing metadata about them (cf. Figure 8.3). The
value can either be directly adapted from the client when the same labels have been reused
for the client communication, or easily mapped back to the original values the nodes have
communicated to the Gateway.

By default, the latest value of the queried nodes is used. This is not always desirable.
Instead, it should also be possible to use multiple (preprocessed) data points as peer-side
input. An example is smoothing the collected data over a sliding time window. Then,
instead of the most recent value, an average of the recent n values should be used. We
achieve this by using the preselector and the preprocessing attributes. The first one allows
the specification of a set of input values. These values are preprocessed using the given
function. The result of the preprocessing is then considered the input value of the actual
SMC computation. This highly improves flexibility of the software to adapt to a higher
number of use cases.

The protocol attribute specifies which type of SMC computation should be carried out
using the specified data. It must correspond to real protocol implementations on the
side of each participant addressed in this session. However, presuming that all possible
participants have the same software deployed, this requirement is easily fulfilled.

Finally, the original request is included in the Task Description. This enables full trans-
parency on the side of the peer, making more insights available about why processing
is actually performed and which client is the requester. While the latter information is
simply included in the original request, the former can be derived from e.g., the semantic
labels initially used to describe which group of peers shall be queried, or deliberately added
metadata in the request.

1 {

2 sessionid: 3d8b3e197c7c903b7734e28224528554,

3 sensor: temperature,

4 preselector: last hour,

5 preaggregator: avg,

6 protocol: average

7 participants: {

8 37c178c9b4d0dd16b5f131e6ce8a8631:{

9 endpoint: alpha.local:8000

10 },

11 0ce847e87d13729dc01f05ca4ed299d6:{

12 endpoint: gamma.local:8000

13 },

14 fa812a395802f499ae22a2562c4bfd7a:{

15 endpoint: epsilon.local:8000

16 }

17 }

18 original_request: {

19 grantid: 8b92f26d24c89c9a86225f02dffa9131e8beff81

20 ...

21 sig: ...

22 }

23 }

Listing 8.3: Task Description Scheme

8.6. System Stability and Recovery 135

For the translation from client requests as they are suggested in Chapter 9, see Sec-
tion 9.5.3.

8.6 System Stability and Recovery

In the previous section, we described the ideal case where connections are successfully
established, channels are stable and communication is carried out without interruption.
During operation, however, there are numerous reasons why communication could fail.
Firstly, there are causes on the side of the peers: software failures, lack of resources or
power management can lead interruptions of the connection to the Gateway. This is
especially the case in a dynamic context with embedded or mobile devices acting as peers.
Additionally, these devices can also change the location and vanish from the network.
Failures can also happen in the network itself. Especially wireless connections are prone
to temporary failures and interruptions.

It is hence vital to mitigate consequences of failed sessions or connections. The aim is to
provide a service which is robust and stable in a dynamic context.

8.6.1 Session Recovery

We first address the case that errors occur during the orchestration process. This contains
errors during the session preparation as well as during the session phase itself.

The robustness of the orchestration is founded on the fact that the whole task information
is encapsulated in a single stateful object. This Task Description, as described in Sec-
tion 8.5.2, contains all information necessary to perform the orchestration of the desired
computation. Furthermore, in a stateful manner, it also holds information about which
phases have already been performed and which should be executed next.

Based on the task object, error handling can be generalized to:

Reset Resetting the state of the current failed phase on the side of the Gateway and the
peers. This especially includes termination of specifically running child processes
(mainly the current SMC computation via the corresponding framework), including
their dedicated network connections.

Readjustment Correcting the task information so that they reflect the new circumstances.

Rescheduling Restarting the execution of the updated task in a cleaned up environment.

Errors during Prepare Phase

During the prepare phase, networking errors are inherently considered: Peers failing before
step 10 are—by a timeout—considered like peers which reject the Gateway request in step
10 in Figure 8.4. Hence, this case is handled as short-cut opposed to the abovementioned
general handling routine.

Peers failing after that step are handled as if the peer failed during the computation session
itself.

Errors during Session Phase

During the session phase, the SMC framework itself indicates a failing computation with
the help of internal exceptions. These are forwarded as failure report via the peer software
to the Gateway as shown in step 17. In this case the computation is aborted by the
Gateway if necessary (typically, the SMC computation automatically fails for all other
participants when a single peer fails). Afterwards, the failed state is written into the
Task Description, allowing the Gateway to retry the same task a predefined number of
times. During these retries, the participant set is adjusted, similar to the case where peers
deliberately reject to participate.

136 8. Self-Managing SMC

8.6.2 System State Stabilization

Here, we address the other case, when no orchestration process is currently ongoing. This
situation is comparatively easier to handle as no ongoing interactions have to be gracefully
shut down.

The goals of this type of error handling are as follows:

Stable System State The Gateway is bothered with the least amount of faulty peers. Es-
pecially the detection of faulty peers should be successful before any orchestration
process is carried out.

Consistency The state information about peers held by the Gateway is consistent with
reality. I.e., the Gateway does not depend on peers which are already gone. Further-
more, the Gateway does not include peers in announcements which are not reachable
at the point of the announcement.

Enabling Reconnection In case of temporary failures, the peer will try to reconnect. Hence,
the Gateway is able to allow reconnection of formerly connected and failed peers as
soon as possible.

Errors in Heart Beat Detection

During the Start Operation state (cf. Figure 8.1), the Heartbeat Process is started. Even
when no computation is going on, the peer is instructed to send a simple heartbeat message
to the Gateway in regular intervals via the established connection to the peer. On the side
of the Gateway, a timer is initialized which regularly checks whether heatbeat messages
have been sent. When one of the checks yields an empty result, the peer is considered
to be gone or that its connection has failed. The peer is then removed from the set of
available peers and unlisted from the directory.

On the side of the peer, unsuccessful attempts to send the heartbeat indicate that the
connection is lost. Corresponding to Figure 8.1 the peer will then attempt to reconnect.

Permanent Failure

Furthermore, if the peer detects that further reconnection attempts in the Connection
Establishment phase to the former Gateway yield permanent failures, the peer degrades
back into Discovery mode and tries to find new appropriate Gateways.

8.7 Generalization: Loose Coupling of SMC

The remaining challenge is to achieve a universally applicable framework that does not
depend on a specific implementation of SMC. Our approach towards this goal is to add a
thin adapter layer between the presented framework and the SMC library of choice.

8.7.1 Premises

In order to make this approach feasible, the SMC library must fulfill some premises, which
have already been presented in Section 4.1. There are three aspects also relevant for this:

Universality We aspire a framework which easily allows extensions in terms of use cases
and protocols. This can only be achieved sensibly when using an SMC framework
which allows composing arbitrary functions by combining protocol primitives instead
of only presenting a limited and fixed set of predefined single purpose protocols. Only
then, protocol extension becomes an easy task: A new computation sequence is built
in a given framework and a label is incorporated which allows referring to this very
protocol. Otherwise, each extension of our framework would require to implement a
completely new protocol from scratch.

8.7. Generalization: Loose Coupling of SMC 137

Multiparty Our solution is built for the cooperation of an arbitrarily sized set of peers. In
consequence, also the SMC framework should support this case; otherwise it would
be the limiting factor regarding applicability.

Open Source The SMC framework should allow modification of its sources or at least
provide an extensive API. This is necessary as building an adapter layer must be
able to seamlessly interact with the provided code.

8.7.2 Decomposition of the Peer Component

Due to several reasons, decomposition of the peer component is sensible. Firstly, splitting
the peer component makes it easier to enable the generic utilization of the aforementioned
features without interferences of a specific SMC implementation, secondly functional ab-
straction of the applied SMC Library becomes feasible. Lastly, it is more than likely that
the SMC Library is written in another programming language than our solution.

In consequence, there are two types of gaps which have to be bridged upon adaptation of
another SMC Library: a conceptual gap between the generic computation commands the
Gateway issues and the methods available by the Library; and a technical gap between
the programming language of our framework and the programming language of the actual
SMC Library.

We decided to solve both problems simultaneously by defining a RPC API which is used
by our framework and has to be served by an implementing adapter on the side of the
SMC Library. It is then the task of the adapter to interpret the obtained messages and to
trigger the according actions upon the SMC Library.

This allows flexible handling of the SMC Library code in an arbitrary programming lan-
guage and ensures protocol-conformity without the necessity of adjusting more than the
adapter code itself.

Concretely, we specify the following modules for our prototypical solution which supports
the library Fresco.

Peer Management This module performs the above described actions and interactions of
discovery (Sec. 8.2), pairing (Sec. 8.3), orchestration (Sec. 8.5) and entering peer-
side operation (Sec. 8.4). These steps are generic for all kinds of SMC frameworks.
Hence, they are always carried out in the same manner.

SMC Advisor In operation mode, instead of the Peer Management module, the SMC Ad-
visor receives the messages from the Gateway and forwards them generically to the
SMC Adapter.

SMC Adapter This module mediates the interaction of the Advisor or the Gateway on
the one side and the SMC Library on the other side. It is written in the program-
ming language of the SMC Library itself. This component has to be specifically
crafted when a new SMC Library is employed and aligned to its API. Additionally,
in this component, structurally different protocol invocations can be implemented
and referenced via specific protocol labels as shown in Listing 8.3.

SMC Library This module is the third-party code which performs the actual computations.

Local Message Forwarding

In operation mode, the Peer Management module delegates message reception to the SMC
Advisor. This is simply achieved by handing over the stream object, which enables message

138 8. Self-Managing SMC

reception. The SMC Advisor holds a local socket connection to the SMC Adapter. The
obtained message is then passed along this connection and forwarded without modification.
Finally, the SMC Adapter interprets the message and triggers the appropriate actions on
the SMC Library.

8.7.3 Peer-Internal Interaction

The whole interaction between the aforementioned modules is shown in Figure 8.5. In
alignment with Figure 8.4, we reiterate and detail some interactions which have already
been described without focusing on peer-internal interaction.

Peer

SMC Library

Gateway SMC Advisor SMC Provider

Init SMC Framework

1 instantiate SMC Library

2 Establish local socket

Upon computation request

Prepare Phase

3 Send request and task description

Preliminary steps

4 Get raw data

5 Preprocess data

6 Init SMC Provider

configure library

7 Provide participant information

8 Select protocol

9 Provide input data

When setup successful

10 Link SMC instances

Session Phase

11 SMC start

12 SMC start

13 Invoke library

alt [success]

14 Return result

15 Forward result

16 Forward result

[error]

17 Return error

18 Forward error

19 Forward error

20 Reschedule task

Figure 8.5: Peer-Internal Interaction

When the whole peer component is started, the SMC provider is also started in a local
process. This in turn sets up the SMC Library as far as necessary (Step 1). A local socket is
established which later allows message exchange (Step 2). Upon an incoming request from
the Gateway during prepare phase (Step 3), the SMC Advisor decodes the Task Description,
fetches the corresponding data locally (Step 4), preprocesses it (Step 5) and initializes the

8.8. Key Contributions of this Chapter 139

SMC Provider (Step 6). Herefor, the participant set information is transmitted (Step 7), the
according protocol is selected (Step 8) and the formerly fetched input data is handed over
to the SMC Library (Step 9). After the session has been acknowledged by the Gateway,
a communication link is set up via the SMC Library (Step 10). The participants are now
ready to perform the computation. It is invoked by the Gateway (Step 11), forwarded by
the SMC Advisor (Step 12) and the SMC Provider (Step 13). Then, the actual computation
takes place. After it finished successfully, the response is returned by the SMC Library to
the SMC Provider (Step 14), forwarded by the SMC Advisor (Step 15) and finally received
by the Gateway (Step 16). Then, consistency checks can be performed by the Gateway and
the whole session is finished. In case of failure, instead, an error is returned (Step 17), also
forwarded (Step 18) and then received by the Gateway (Step 19). This typically invokes the
rescheduling of the task (Step 20) as already shown in Figure 8.4.

8.7.4 Session Multiplexing

The previously described approach of decoupling yields another, easy to achieve benefit:
Settings are imaginable where requests come in high frequency or structured in bursts.
It would then be desirable that our solution is able to handle multiple computations in
parallel.

Assuming that the library itself is able to handle computations in parallel2, the following
directions must be followed in order to achieve session multiplexing:

Instead of using a single instance of the SMC Library in the SMC Provider, a map
instances : SessionID → SMC Library Instance is created. All commands to be exe-
cuted on the SMC Library are then prepended with a step which fetches the instance
corresponding to the current session ID; the commands are then executed using this very
instance.

There are no structural changes necessary in the other components. However, the Task
Descriptions (cf. Listing 8.3) must be created so that the peer endpoints described within
it (cf. Listing 9.7) are mutually exclusive for all parallely handled sessions.

8.8 Key Contributions of this Chapter

This chapter addressed research question Q4. We presented a management framework
which addresses the idiosyncrasies of dynamic environments and enables flexible, dynamic
and robust application of SMC in such contexts.

The main challenges which have been covered are as follows:

Peer Privacy The main goals of privacy-preserving computation (RA.11) are mainly ach-
ieved by the utilization of SMC itself. It is not necessary to share individual and
confidential input data with any other party. Correspondingly, the security proper-
ties of our solution mainly depend on the chosen SMC realization. Concomitantly,
the computation result does not give any insights on the participants input data.
Hence, unlinkability is achieved3.

Further regarded privacy goals were accountability (RA.16), intervenability (RA.14),
and request transparency (RA.13) for peers. These are supported by requiring client
requests to be performed in a serialized and authenticated form which can be for-
warded to the computing peers. This gives them full insights into data requests.

2It is possible with Fresco as long as different ports are used for different computations.
3Note: This depends on the exact protocols to be used. When applying non-aggregating protocols like

the identification of maximum value among the inputs, raw inputs are leaked. In some cases, background
knowledge then enables an attacker to link this result to the corresponding input party.

140 8. Self-Managing SMC

Combined with the exclusive possession of their own data (instead of central stor-
age) they have full control over it when deciding whether to accept an incoming
Computation Request (request veto).

Self-Management Discovery of Gateways (RA.6) is realized by Zero Configuration Net-
working. When a new peer is added to the network, it is able to detect the available
Gateways and choose one of them depending on their service announcements. After-
wards they perform a pairing where metadata—enabling group creation (RA.7)—and
cryptographic material—establishing trust and enabling secure channels (RA.12)—is
exchanged.

Computation Orchestration When the pairing was successful, the peer is added to the list
of available and computation-ready peers of the connected Gateway. The Gateway
establishes a control channel for the peer which allows the former to announce in-
coming Computation Requests and to invoke the corresponding computation on all
addressed peers (RA.8). After computation, the channel can be used to validate the
result by obtaining the results of all participating peers and checking for equality.

Robustness and Recovery As SMC is not trivially resilient against host or connection fail-
ures, robustness and recovery is necessary. We achieve initial robustness of the
system (RA.9) by using the control channel and a heartbeat mechanism to detect
failing peers. The Gateway removes them from the list of active peers in order to
prevent incoming computations which address unavailable nodes.

When failures happen during computation, it does not to finish successfully. In
that case, the Gateway tries to detect the failed peer via the previously mentioned
mechanisms and restarts the computation (RA.10) without that peer, if desired by
the client.

Directory Service The requirement of a directory service (RA.3) is not yet completely
fulfilled, but is supported by this framework, as it provides the means to update
directory information during the pairing step. The actual realization of the directory
service is described in Chapter 9.

The remaining requirements from Chapter 7 (RA.1, RA.2, RA.4, RA.5) address the service
abstraction of our solution, including access control against clients (RA.15). They are
addressed in Chapter 9.

8.9 Statement on Author’s Contributions

The findings of this chapter have been published in the following paper:

M. von Maltitz, S. Smarzly, H. Kinkelin, and G. Carle. A Management Framework for Secure Multiparty Com-
putation in Dynamic Environments. In Proceedings of 30th IEEE/IFIP Network Operations and Management
Symposium, Taipei, Taiwan, 2018. IEEE (reference [vMSKC18]). The publication builds on results by the Master’s

Thesis advised by the author of this thesis and by Holger Kinkelin and supervised by Georg Carle. Sections 8.2, 8.3,

8.4, 8.5 and 8.6 provide more details compared to the publication’s architecture section. The peer state machine in
the thesis (Figure 8.1) has more details than the reduced variant in the publication.

The author contributed to the results in the publication and this chapter in the following ways: the requirements were

proposed by the author and refined by Stefan Smarzly. The overall idea, the concept and the initial architecture were
designed by the author of this thesis. The author also contributed to detailed design and implementation decisions

during Stefan Smarzly’s Master’s Thesis. The overall service architecture provided by the author has then been
detailed and implemented by Stefan Smarzly. Conceptual decisions have been made in cooperation. As an exception,
the phase concept was developed solely by Stefan Smarzly while the Task Description Scheme was provided by the
author. Stefan Smarzly furthermore developed the state machine for the Gateway and peer components according

to the interaction requirements defined by the author of this thesis. The same is true for the approach of decoupling
the framework from a specific SMC implementation (cf. SMC Advisor and SMC Provider).

9. Private and Transparent Data
Querying

In the last chapter, we created a Gateway which acts as a primus inter pares among
the computing nodes. It is able to start and orchestrate computation sessions. Corre-
spondingly, it defines which computation is actually carried out in a given session. In
this chapter, we further extend the abilities of this Gateway. We provide measures which
enable it to offer SMC computations as a service to third parties, which we will call clients.

Objective

We address Research Question Q5. Our aim is to extend the developed Gateway to become
a fully privacy-preserving service. In order to do so, the following features are provided:
like peers beforehand, clients can automatically detect present Gateways in their network.
Clients can request metadata that tells them which types of information are available via
this Gateway. They can request access to that information from the Gateway and the
Gateway handles the permissions of each client. Finally and if granted access, clients can
access specified data periodically and request the execution of corresponding computations.

9.1 Architecture

We realize the querying functionality as three submodules for the Gateway: the Directory
Service (DS) is filled with information provided by peers during their pairing phase. That
is the metadata which can later inform clients about possible computations. Client-faced
access control allows clients to request access to selected data and the Gateway handles
the granting or rejection of these access requests. Clients having permission are allowed
to periodically obtain certain data. This is performed by sending Computation Requests
to the Access API of the Gateway. The Gateway then translates the request—with help
of its stored metadata—into all information necessary to establish a computation session.
This session is carried out by the means provided in the last chapter. When the result is
calculated, the Gateway sends the result back as response to the client.

9.2 Access API

The client is given access to different functionality of the Gateway. This encompasses
access to the Directory Service (DS) (Section 9.3), requesting permission to perform certain
computations (Section 9.4), and actually requesting computations (Section 9.5).

Access is given via a standard REST-interface. The endpoints and the corresponding
interaction are directly described in the mentioned sections.

142 9. Private and Transparent Data Querying

9.3 Directory Service

Before clients can perform computations and access the information available by the peers,
they need to be informed about their possibilities. For that, the DS provides metadata
about input data available from the peers and their offered computation protocols. This
directory is dynamically filled and updated by the peers and can be queried by the clients.

9.3.1 Purpose

Data sources are heterogeneous regarding different aspects: each node is equipped with
an individual combination of sensors. This combination of sensors specifies to which com-
putations the node can potentially contribute.

Further characteristics are the location, ownership of the node, social interconnectedness of
the node owners or the logical structure of the building (e.g., departments of a company).

All these dimensions are helpful indicators which groups of nodes might be of interest for
performing collaborative computations at runtime. The reason is that the values of these
dimensions allow the creation of semantically relevant groups: it may be of interest how
much power is consumed by each department or whether there are still people present on
a given floor.

Hence, it is advantageous to enable making this meta information explicit in each partici-
pant. The anticipated benefits are as follows:

Participant-side

On the side of the participants, this meta information allows the automatic creation of
relevant groups for collaboration or inclusion of new nodes into existing groups. This
supports auto-configuration. New nodes should automatically become available in the
according groups.

Example On a floor, a multitude of electric sockets is already equipped with sensor nodes
to collect power consumption information. When a new node is added to a formerly not
equipped power socket, the Gateway is informed that consumption calculations concerning
the whole floor now have to include this newly added node.

Client-side

On the side of the clients, this meta information can be used to abstract and decouple from
infrastructural details and to improve data selection. Instead of specifying which exact
group of participants a client wants to poll, it uses higher level labels for whole groups
of nodes. This facilitates configuration and simultaneously makes it more robust against
changes.

On the one hand, this allows clients to stay on the abstraction level of the desired result
information instead of coping with the underlying collection infrastructure. On the other
hand, it specifies which information clients are allowed to obtain and prevents them to
craft arbitrary computations.

Example In the previous example, a new node has been automatically added to an
existing group. However, the client which requests the summative consumption data does
not need any changes to adapt to the newly added node.

Developing this approach further, presets from participant groups and possible computa-
tions can be built.

9.3. Directory Service 143

9.3.2 Content Generation

In Step 10 and 11 of the peer pairing process (Figure 8.3 on page 128), we describe that the
peer and the Gateway exchange and store metadata. This metadata provided by the peer
can be differentiated into three types: the first type is technically necessary for performing
SMC computations. It encompasses the peer’s certificate, an ID derived from that certifi-
cate and endpoint information which enable connection establishment. The second type is
metadata which is semantically necessary for computation: the Gateway must know which
sensor types are available at a given peer and which sets of preselectors and preprocessing
functions it provides. This enables selection of peers which are compatible for cooperation.
The third type becomes necessary for this part of our architecture. In order to enable third
parties, i.e., clients, to request computations, they must be able to query the information
of interest in an appropriate manner. Therefor, peers can send further custom key/value
pairs of metadata which are then stored alongside the other information. In our concrete
case, we use this generic method in particular to store group labels and structured location
information in order to enable derivation of semantically sensible peer sets for querying.
The Gateway can create basic groups by simply combining all peers which feature the
same value of a given label. Furthermore, more sophisticated logic or manual mappings
can be used to create further groups from these initial labels.

Example A peer has a hierarchical location 04.03.021 given by an organizational room
numbering scheme. Here, 04 is the building, 03 is the building part, and 021 is the room
in the given part. Additionally, the peer possesses labels for its own type, e.g., heater,
and the type of the room, e.g., kitchen. Similarly, further labels can be defined, like
the owner of a room in the case that different rooms in a building are used by different
stakeholders. The peer would then transport metadata as depicted in Listing 9.1.

1 {

2 id:37c178c9b4d0dd16b5f131e6ce8a8631,

3 location:04.03.021,

4 endpoint: alpha.local:8000,

5 preselectors: [last value, last hour, last 6 hours, ...]

6 preprocessors: [avg, mean, max, min, ...]

7 protocols: [avg, rank, intersection, ...]

8 type: heater,

9 inputs: [temperature, humidity]

10 roomtype: kitchen,

11 owner: ABC corp.

12 }

Listing 9.1: Peer Metadata

This metadata can be preprocessed by the Gateway before storage. Exemplarily, the
location can be split into three more attributes, featuring the building, the part and the
room label separately. Based on this information, semantically sensible sets provided by
the Gateway to the clients are then merely logical predicates over these key/value pairs.
E.g., the group of heaters in all kitchens is type = heater ∧ roomtype = kitchen and all
temperature data of a building part can be selected as building = 04 ∧ buildingpart =
03 ∧ temperature ∈ inputs. These can be built automatically by rules or manually by
the administrator of the Gateway.

9.3.3 Metadata Queries

In the most general case, a client intends to get a full overview of the data available. When
invoking GET /directory, it informs about all possible requests via this Gateway. The
result is the post-processed metadata of the peers, now featuring sets of peers combined by

144 9. Private and Transparent Data Querying

predicates and matching input/preselector/preprocessor/protocol combinations (cf. List-
ing 9.2). For better legibility and parsability, attributes known to be always present are
also directly reflected as attribute keys in the data structure, while custom attributes are
combined into the predicate. While this is a logical expression featuring labels provided
by the peers, the Gateway can also come up with arbitrary labels. I.e., instead of specifying
type = hvac_sensor_station∧roomtype = kitchen∧building = 04∧buildingpart =
03 the Gateway could define the label Environment information in the kitchens of

04.03.*. We also applied this method in Section 8.5.2 when first considering computation
requests.

1 {

2 data: [

3 {

4 predicate: type = heater ∧ roomtype ∈ [kitchen, meetingroom]

5 preselector: [last value, last hour, last 6 hours, ...]

6 preprocessor: avg

7 protocol: average

8 input: [temperature, humidity]

9 },

10 {...},

11 ...

12]

13 }

Listing 9.2: GET /directory

We abstract from a concrete JSON-like serialization of the predicate. This could be trivially
achieved by structures as shown in Listing 9.3.

1 {

2 ...

3 predicate: and:{

4 type: heater,

5 roomtype:{

6 in: [kitchen, meetingroom]

7 }

8 }

9 ...

10 }

Listing 9.3: Realization of Predicates

The metadata request can be arbitrarily specified by POSTing a subset of the data struc-
ture in Listing 9.2. E.g., when defining input: temperature, only results are returned
which fulfill that requirement.

In the extreme case, the Gateway could provide every possible combination of values of
the above mentioned attributes. However, this is not desirable due to two reasons: firstly,
many combinations do not make sense. It is questionable whether it is useful to compute
the average of all minimums from a heterogeneous set of different room types. Similarly,
for the preselector last value, no other preprocessor than the identity function is useful.
Secondly, some combinations might be considered to be too privacy invasive: returning
the average of the last value of a considerably specific set (possibly featuring only a single
peer) would simply reveal the data providers private value. Performed repeatedly, this
would allow tracking of certain sensor values.

These considerations show that the set of available computations must be determined with
thought and consideration in order to achieve a sensible mechanism of access control as
described in the next section.

9.4. Client-faced Access Control 145

9.4 Client-faced Access Control

In the following, we consider RA.15. We begin with a refinement of the security consider-
ations, then we provide an overview of our approach followed by the technical details.

9.4.1 Refined Security and Privacy Model

The content of this section has also been published as Section 2-C of [vMBC19]. The text
was written completely by the author of this thesis.

Assets

The main asset to be protected is the individual raw data of sensor platforms. We assume
them to be owned each by the respective data subject, i.e., the person(s) about which the
platform gathers information. This is given in use cases where a single smart building
is inhabited by different parties. Examples for this are smart hotels, smart houses with
individual rental apartments, and can also be the case in smart office buildings if employees
have dedicated offices. The necessity for data protection is based on the possibility that
sensor data gives insights about the presence and behavior of individuals [RZL13].

Protection Goals

Considering the mentioned assets, we understand security to be confidentiality of this very
raw data. However, confidentiality may not hinder all processing of the data. Instead, a
privacy-preserving access must be designed, meaning data access which is controllable by
and accountable for the data owners. Following our privacy background in Chapter 2, we
use the established privacy protection goals and given them the following meaning in our
context:

Data minimization Information is only derived from raw data if it is actually needed by
any client service. The purpose is known before information is created.

Unlinkability Information made available to clients does not allow recovering contribu-
tions of individual single peers. Correlations between individual peers should not be
possible by client accessible data.

Transparency Peers should know what information is derived from their data and for which
purpose this information is used.

Intervenability Based on this preliminary knowledge, they should remain in control of their
data by deciding which computations may be carried out.

Attacks

In classical architectures, raw sensor data is pushed from sensor platforms to a centralized
middleware. There, data analysis and processing is performed. The results are then made
available to clients.

Consequently, previously mentioned protection goals are not or only partially fulfilled.
Confidentiality is not given, since raw data is forwarded to and stored on a third-party
middleware. The middleware becomes a single point of attack and a high value target.
Data minimization is not enforced since arbitrary derivations of information can be per-
formed after its collection. Concomitantly, the purpose of data is not controllable after
collection, i.e., using the same data for other purposes is possible at any time in the fu-
ture. In particular, new information can be generated by correlating raw data of different

146 9. Private and Transparent Data Querying

sources. All this is possible without the individuals knowing and being able to intervene
in the processes.

In our architecture, these attacks are mitigated, since raw data stays on the peers, clients
only obtain the post-processed information they have been granted access beforehand.
That information is generated by SMC in a privacy-preserving manner and the Gate-
way only orchestrates data processing while not having access to raw data as a classical
middleware would.

The main goal of our approach is that only permitted requests of clients are answered
and only the requesting clients obtain the corresponding result. This implies the following
set of premises, from which we derive each attacker by the attempt to circumvent one
of them. Access requires permission (A.1). Given permissions are legitimate (A.2). If
a permission is valid, it was given by an accepted authority (A.3). Only the authorized
client can use a given permission (A.4). Validity of permissions is correctly checked (A.5).
Data contribution by peers only happens if the validity check was positive (A.6). Results
of valid requests do not leak to third parties while being transmitted to the authorized
clients (A.7). The results have not been modified on the way to the clients (A.8).

Further attacks are possible but out of scope of this work: malicious peers can try to obtain
information from other peers or provide wrong results. We exclude the former since it has
to be addressed on the level of the SMC protocols and the latter since the correctness of
input values provided by peers is out of scope of realizing secure computation (cf. [CDN15,
p. 11]). Lastly, clients can try to correlate information they were able to obtain. This is
excluded since it depends on the exact choice of available computation queries.

Trust

An ultimate design goal is to reduce the amount of components which have to be trusted
to handle private raw data faithfully. Our architecture has been designed to avoid single
points of attack and high value targets holding private raw data from several parties. The
remaining trust is diversified: we associate each sensor platform with individual users.
These users trust their respective platform to faithfully collect and store their data. This
assumption does not strongly differ from assumptions in classical architectures: in any
case, by generating it, sensors have access to privacy-critical data. Furthermore, all trust
requirements for the used SMC protocol realization apply.

9.4.2 Overview

The overall requirement for access control is that peers should stay in control of their data.
I.e., they should be able to decide when and how it is used (RA.14). In the last chapter we
already provided a veto mechanism which implements a final decision performed by every
peer which participates in a computation. This decision, however, is implicit access control
at runtime. Effectively, clients cannot know in advance which requests will be allowed or
not. More permission transparency should be provided for the clients.

We hence introduce Permission Grants which clearly and explicitly state the permissions
of a client. They are manifested as authorization certificates bound to and held by indi-
vidual clients. The Permission Grants are created by the Gateway, aiming to anticipate
and mirror the decisions the peers would make. This enables clients to know about their
abilities and also provides more insights for logging or accountability purposes. We model
the capability of the Gateway to assess whether a client should be given permission to
request a certain query as function Φ : (query, client, context) → {true, false}. It repre-
sents an access control structure which takes a tuple of a query, a requesting client and a
context and returns whether or not access is permitted.

9.4. Client-faced Access Control 147

grant request

client

<metadata>

certificate

fpr
. . .

queries

query

predicate preselector preprocessor protocol input

. . . query

sigclient

Figure 9.1: Structure of a Permission Grant Request

Permission Grants should also mimic the granularity of the peers’ veto ability. I.e., they
should be located on the level of individual request types. This is achieved by honoring the
metadata available about the peers and creating Permission Grants for specific metadata
combinations. These consider the semantically necessary attributes protocol, preselector,
preprocessor and the custom key/value pairs as described in Section 9.3.

Besides permission transparency for clients, the approach also yields several runtime ben-
efits: when permissions are granted and then persisted in advance, there is no need for
complex decision mechanisms during the actual Computation Request. In other words,
complex authorization decisions and permission granting on the one hand and permission
checking during Computation Requests on the other hand can be separated. In particu-
lar, permission checking does not need an online connection to some authorization system.
This is especially useful if the authorization system in turn has to negotiate the permissions
to be allowed with the corresponding peers.

9.4.3 Permission Grant Request

The client has to request a Permission Grant from the Gateway1 stating that it is allowed
to request certain types of information. For that purpose, the client first retrieves the
metadata of currently available data sources from the Gateway as described in the previ-
ous section. Based on this information the client decides (automatically or with manual
intervention) which information access should be requested. Thereof, it derives a Permis-
sion Grant Request with a structure as shown in Figure 9.1.

The cryptographic identity of the client is the fingerprint of its certificate. Client is a
hash containing further metadata like a purpose for accountability reasons. The queries

array contains all requested grants following the metadata structure shown in Listing 9.1.
Finally, the whole request is signed in order to guarantee authenticity.

The Permission Grant Request is then used to retrieve the Permission Grant using the
protocol in Figure 9.2. The Permission Grant is bound to the cryptographic identity of
the client.

1. The client sends the Permission Grant Request to the client.

2. The Gateway first validates the request itself. Given a request rc,grant of client c, two
facts are checked: the validity of the client certificate (Equation 9.1) and the client’s
possession of corresponding private key.2 Similarly, validity of the request signature

1We state above that issuance of Permission Grants and their validation during requests can be sep-
arately deployed on different systems. In the following we assume for simplicity that the functionality is
also located on the Gateway. If necessary, we differentiate both possible cases.

2When using TLS, this is already handled during TLS session establishment.

148 9. Private and Transparent Data Querying

Client Gateway

1 Send permission grant request

2 Validate request

alt [OK]

3 Check authorization

alt [OK]

4 Generate and sign Permission Grant

5 Send Permission Grant

[Fail]

6 Deny request

[Fail]

7 Error

Figure 9.2: Request of a Permission Grant

(Equation 9.2) is verified. This can also include arbitrary additional checks which
can further constrain the combinations a client is allowed to request. Exemplarily,
the type of preselectors or preprocessors can be constrained depending on the type
of data or the actual SMC protocol.

3. Then the semantics of the queries are checked (Equation 9.3) using Φ. The parame-
ters are set as follows: the query reflects the demanded data in a form as described
above. The client is represented by its certificate. The context is the current state of
the Gateway, this encompasses the information about currently connected peers and
environment information like the current time. Φ can be arbitrarily complex and can
especially be based on interaction with the peers and their decisions. Alternatively,
given the peers’ decision and veto logic stems from a third-party component, the
authorization system can also interact with this instance.

4. If the checks are positive, the Gateway generates a Permission Grant containing the
legitimate queries and approves it by its signature.

5. The Permission Grant is then sent to the client.

6. If a check fails, the request is denied and the client is informed about the decision.

7. If the initial validation step fails, the client is informed about its invalid request.

verify(rc,grant.cert) (9.1)

verify(rc,grant.sigclient , rc,grant.cert) (9.2)

∀q ∈ rc,grant.queries : Φ(q, rc,grant.cert , context) (9.3)

Given, the protocols has been carried out successfully, the client retrieves a Permission
Grant with a structure as in Figure 9.3.

9.4. Client-faced Access Control 149

grants

grant

holder

id
<metadata>

query

predicate
preselector
preprocessor
protocol
input

grantid
not before
not after
sigissuer

. . . grant

Figure 9.3: Structure of a Permission Grant

The grants array contains all accepted grants. The grant_id is an auto-generated random
string which allows to refer to a grant without sending the whole structure. The attributes
not_before and not_after define the time interval of validity. All other attributes are as
described in Figure 9.1. By featuring the fingerprint of the client’s identity, the Permission
Grant is bound to the client. In consequence, reuse and sharing of permissions is rendered
infeasible. The signature per grant is performed by the Gateway asserting that the request
type in question is indeed granted and allowed. Several of the provided attributes per grant
are redundant over the set of permitted grants. Each grant is then signed individually.
This is intentional. It allows a client to only send the corresponding grant when performing
a Computation Request and permits different expiration dates per grant.

Since the clients stay in control of their own permissions by storing the Permission Grant
themselves, revocation of permissions becomes non-trivial for the Gateway: permissions
are not represented as information which is easily changeable by the Gateway. Instead,
they are documents held by the clients.

Contrary to the Permission Grants, the Gateway’s authorization logic can adapt when
the set of available peers or their very decisions change. Hence, we address this problem
by adding an expiration date to the Permission Grant. Each permission is not valid
indefinitely but only during a constrained time window. A Permission Grant can be
renewed by the owning client, but when it is, adaptations in the authorization logic are
also reflected in the grants. This can lead to changing permissions in the Permission
Grants over time. The duration of validity should depend on the stability of the topology
(i.e., how often new peers have to be incorporated into the authorization logic) and the
effort to create or renew certificates (i.e., whether or not all peers have to be contacted at
authorization time).

In fact, privacy-preservation of raw data does not depend on the duration of validity: in
any case, peers remain able to veto against announced computations, notwithstanding the
former decision of the Gateway based on the Permission Grant.

Section 9.5.2 details how the Permission Grant is used during a Computation Request.

Example The public display in building part 04.03.* requests permission to access the
average temperature in the building part 04.02.* (and further permissions omitted here).
This is performed with a request as shown in Listing 9.4.

150 9. Private and Transparent Data Querying

1 {

2 holder: {

3 id: aadbbc22238fc401a127bb38ddf41ddb089ef012,

4 purpose: "Public display in building 04.03.*"

5 },

6 certificate: ...,

7 queries:

8 [

9 {

10 predicate: building = 04 ∧ buildingpart = 02,

11 preselector: last hour,

12 preprocessor: avg,

13 protocol: average,

14 input: temperature

15 },

16 { ... },

17]

18 sigclient: ...

19 }

Listing 9.4: Permission Grant Request – Example

The Gateway answers with a Permission Grant as shown in Listing 9.5. The original
query and the holder are copied into the grant. A time interval of validity is added. The
signature is replaced by the issuer’s signature.

1 {

2 grants:

3 [

4 {

5 holder: {

6 id: aadbbc22238fc401a127bb38ddf41ddb089ef012,

7 purpose: "Public display in building 04.03.*"

8 },

9 query: {

10 predicate: building = 04 ∧ buildingpart = 02,

11 preselector: last hour,

12 preprocessor: avg,

13 protocol: average,

14 input: temperature

15 },

16 grantid: 8b92f26d24c89c9a86225f02dffa9131e8beff81,

17 not_before: 1516696572,

18 not_after: 1546210800,

19 sigissuer: ...

20 },

21 { ... },

22]

23 }

Listing 9.5: Permission Grant – Example

9.5 Computation Request

The Computation Request is the ultimate aim all previously presented components sup-
port. It allows the client to request aggregated sensor data provided by our distributed
system from the Gateway. This means triggering an SMC computation among a set of
peers and forwarding the reply to the client via the Gateway. For that, a clients creates
a signed request stating what to compute and its permission to request this data. The
Gateway verifies whether the request is legitimate, transforms it into Task Description and
proceeds as described in Figure 8.4 on page 131 and Section 8.5.1.

9.5. Computation Request 151

computation request

grantid certificate

fpr
. . .

grant

holder
not before
not after
query
sigissuer

timestamp
sigclient

Figure 9.4: Structure of a Computation Request

9.5.1 Request Creation

With the preliminary work done by the DS and the previously described access control,
creation of a request merely comprises the selection of the corresponding grant and the
statement that exactly this information is currently desired. Technically, the client creates
a structure as described in Figure 9.4.

The request states the grantid of the desired query. The timestamp has two goals:
firstly, it acts as the reference point for relative preselectors like last hour. Secondly, it
prevents the possibility to replay formerly valid requests. The grant attribute reflects the
whole request. It states all necessary details to perform the desired computation. It only
needs to be sent if the current Gateway cannot know about issued grants. This is the
case when they were issued on a separate system and the grant has not been used before.
Otherwise, we suggest a caching solution which makes resending the grant at request time
superfluous. The Gateway then has to cache grants which it either issued itself or already
received during a previously sent request. The final signature states that the client whose
identity is bound inside the sent grant, indeed intended the stated request at the given
time.

Example Given the grant of Listing 9.5, the public display of building part 04.03.* can
now issue a computation request to obtain the current value. Such a request is exemplified
in Listing 9.6.

1 {

2 request: 8b92f26d24c89c9a86225f02dffa9131e8beff81

3 timestamp: 1516839284

4 grant: {

5 holder: {

6 id: aadbbc22238fc401a127bb38ddf41ddb089ef012,

7 purpose: "Public display in building 04.03.*"

8 },

9 query: {

10 predicate: building = 04 ∧ buildingpart = 02,

11 preselector: last hour,

12 preprocessor: avg,

13 protocol: average,

14 input: temperature

15 },

16 grantid: 8b92f26d24c89c9a86225f02dffa9131e8beff81,

17 not_before: 1516696572,

18 not_after: 1546210800,

19 sigissuer: ...

20 },

152 9. Private and Transparent Data Querying

21 sigclient: ...

22 }

Listing 9.6: Computation Request

9.5.2 Access Verification

We describe the basic validation process of request received by the Gateway. The whole
protocol is shown in Figure 9.5. The client sends a computation request providing a

Client Gateway Peers

1 Send computation request

2 Check request validity

alt [OK]

3 Grant available?

alt [False]

4 Request grant

5 Send grant

6 Check correspondence to grant

alt [Fail]

7 Correspondence error

alt [OK]

8 Validate grant signature

alt [OK]

9 Store and process request

10 Check acceptance

11 Peer-side validation

12 Answer

13 Accept notice

[Fail]

14 Invalid grant error

[Fail]

15 Invalid request error

Figure 9.5: Validation of an incoming request

request data structure as described in Section 9.5.1 (Step 1). Given a request rc,comp of
client c, the Gateway first checks the syntactical validity and whether the holder matches
the requesting client and the client certificate is valid (Equation 9.4). Then it checks the
authenticity of the request (Equation 9.5). (Step 2). If this is successful, the Gateway
checks whether the referenced grant is sent in the request or already cached (Step 3). If this
is not the case, the grant is requested from the client (Step 4) and sent back by it to the
Gateway (Step 5). If correspondence of the request attribute with the grantid is not given
(Step 6), the Gateway rejects the request (Step 7). If the grant is accepted syntactically, its

9.5. Computation Request 153

validity is checked by signature verification (Equation 9.6) and checking the expiration
dates (Equation 9.7 – 9.8) (Step 8).

On success, the request is accepted by the Gateway, stored and processed (Step 9). The
Gateway then announces the request to the peers (Step 10). Besides revalidating abovemen-
tioned checks, each peer p ∈ P can have a set Φp of local policies which define how their
data may be used and the corresponding privacy constraints. Satisfaction of these policies
can also be checked (Equation 9.9) (Step 11). Afterwards, they answer to the Gateway
accordingly (Step 12) (these steps sketch the prepare phase depicted in Figure 8.4 on page
131).

Assuming that all involved peers accepted the request, the client is informed about the
acceptance and provided a request identification number which allows later result retrieval
(Step 13). Lastly, in the error cases if the grant is expired, the signature is invalid, (Step 14)

or the request was syntactically invalid (Step 15), it is rejected.

rc,comp .grant .holder = c.cert .fpr ∧ verify(c.cert) (9.4)

verify(sigclient , c.cert) (9.5)

verify(issuer .cert) ∧ verify(sigissuer , issuer .cert) (9.6)

rc,comp .grant .not before ≤ now (9.7)

now ≤ rc,comp .grant .not after (9.8)

Φp ` (c, rc,comp.query) (9.9)

Examples for rules from Φp are:

• Trustworthiness of the requesting client.

• Appropriateness of the requesting client for the requested data.

• Appropriateness of the frequency of a certain request. Fine-granular information can
also lead to data leaks by tracking of the results.

• Legitimacy and plausibility of the set of participating peer. Sets are illegitimate
when the private raw data may leak to the client or the Gateway. This is the case,
e.g., when the set only consists of this single peer or the peer suspects collusion of
all other participants.

After the validation by the Gateway, the request is transformed into an adequate data
structure for the peers in Step 9. We describe this process in greater detail in the next
section.

9.5.3 Request Translation

The generation encompasses three steps: initially, a new session identifier is created for
later referencing. Multiple attributes are simply copied from the original request: these
are input, preselector, preprocessors, protocol. Similarly, the original request is
included. We consider this optional, since it is not strictly necessary for performing the
computation, but it is a vital contribution to improving request transparency for all peers.
The original request provides further insights which can be used to perform peer-side
assessment of the validity of the proposed computation session.

Lastly the participants map has to be created. Therefor, the predicate from the original
request is taken and resolved using the data from the Directory Service. This can be

154 9. Private and Transparent Data Querying

simply performed by iterating over all currently available peers and evaluating the provided
predicate. These peers are selected and their endpoint data is fetched. This information
is encoded in the participant map providing the endpoints for all other peers enabling
mutual connection establishment.

The same information is held in memory by the Gateway since the Task Description is
then sent out to all selected peers in order to inform them about the upcoming session.
The further process is described in Figure 8.4 and Section 8.5.1, where peers is given the
possibility to veto against the request or to process it.

Example A full and complete Task Description is shown in Listing 9.7.

1 {

2 sessionid: 3d8b3e197c7c903b7734e28224528554,

3 input: temperature,

4 preselector: last hour,

5 preprocessor: avg,

6 protocol: average

7 participants: {

8 37c178c9b4d0dd16b5f131e6ce8a8631:{

9 endpoint: alpha.local:8000

10 },

11 0ce847e87d13729dc01f05ca4ed299d6:{

12 endpoint: gamma.local:8000

13 },

14 fa812a395802f499ae22a2562c4bfd7a:{

15 endpoint: epsilon.local:8000

16 }

17 original_request: {

18 request: 8b92f26d24c89c9a86225f02dffa9131e8beff81

19 timestamp: 1516839284

20 grant: {

21 grantid: 8b92f26d24c89c9a86225f02dffa9131e8beff81,

22 holder: {

23 id: aadbbc22238fc401a127bb38ddf41ddb089ef012,

24 purpose: "Public display in building 04.03.*"

25 },

26 not_before: 1516696572,

27 not_after: 1546210800,

28 preselector: last hour,

29 preprocessor: avg,

30 protocol: average,

31 input: temperature,

32 predicate: building = 04 ∧ buildingpart = 02

33 sig: ...

34 },

35 sig: ...

36 }

37 }

Listing 9.7: Full Task Description

9.5.4 Result Receipt

We have shown in Chapter 4 that an SMC computation can take considerable time under
certain circumstances. Performing a Computation Request should hence not be blocking
for the client. Instead, request answers should be received asynchronously. Two possible
options exist. The clients provide a callback during their request. This is an URI which is
called later by the Gateway and where the result data is POSTed to. The other option is
allowing clients to poll the Gateway regularly for the result.

9.6. Evaluation 155

The callback approach would excel regarding performance: without any preliminary know-
ledge about the duration of the computation, the result would nevertheless be sent to the
client as soon as it is available. However, the process would become more complex: clients
would have to expose a reachable endpoint to the Gateway, the network would have to
allow connections to the clients (i.e., firewall), and the Gateway would need a connection
and retry logic which handles the result forwarding including possible error cases.

Considering the polling approach, setup is simpler: when a Computation Request is sent
to the Gateway, the Gateway generates a sessionid. This ID can also be sent to the
client as a reference. The client is then able to poll the Gateway using the reference until
the result is available. This implies only that the client is able to perform asynchronous
requests, store an ID and know another message type to send. The Gateway needs the
ability to store available results. This is easily feasible using the existing DS.

Since the technical details of these approaches are trivial, we omit them.

A further aspect to consider is result encryption: since the peers are in possession of the
client certificate for verification purposes, they can also use the included public key for
result encryption. This prevents leakage of the result to any third party including the
Gateway.

9.6 Evaluation

The content of this section has also been published as Section 6 of [vMBC19]. The text
was written completely by the author of this thesis.

9.6.1 Security and Privacy

We leave data processing of the underlying SMC intact without modification. I.e., the cor-
responding security properties still apply without constraints: the state of the art [DPSZ12,
DKL+13, KOS16, KPR18] is already secure against n−1 maliciously colluding peers. Since
the data owners’ device always participates in the computation when using their data, se-
curity of the own raw data is already achieved by guaranteeing that the own device is
not compromized. The computation request and the corresponding protocol allow third
parties to query for data computed by SMC (RA.1 and RA.2). By doing so, securely
computed information becomes accessible to outside clients. Access on the computed re-
sults can be controlled by authorization grants required for computation requests (RA.15).
This enables controlled data flow when serving a heterogeneous set of deployed services.
Making the request verification independent from the access control structure Φ and its
context parameter, i.e., not relying on complex state of the Gateway for access control but
on transferable documents, allows to use the same data structures to fulfill desired privacy
protection goals: peers are informed about upcoming computations and their context if
they are involved, since the requests include the query and the corresponding authorization
grant of the requesting client (RA.13). An authenticated history of data access and usage
can be built (RA.16), since authenticated requests can also be persisted by each peer. The
signatures of the client, the Gateway and the peer ensure that integrity of request and
corresponding grant is protected. Giving peers the ability to verify this request using their
own local policies Φp and allowing them to veto against requested computations enables
intervenability (RA.14). This is based on the fundamental necessity of SMC that compu-
tation cannot happen without cooperation of the data possessing peers. As a consequence,
data minimization is supported: data sources can make sure that there are not more or
different computations performed than they expect to happen.

Regarding possible attacks from Section 9.4.1, our solution performs as follows: the grant
represents obtained permissions. Consequently, A.1 is mitigated since the Gateway checks

156 9. Private and Transparent Data Querying

for the presence of a grant, and the peers are also able to perform this check. Without a
grant, a request is not accepted. A.2 is addressed by having the access authority as trust
anchor. It is assumed to only issue legitimate grants. This is complemented by enabling the
peers to perform semantic checks on the requests. Forging permissions (A.3) is prevented
by requiring a valid signature of the issuer on the grant (cf. Figure 9.4). Similarly, an
interval of validity is included in the grants to ensure their currency. Furthermore, the
possessor of the grant is included in the grant itself, ensuring that only this very client can
use the given permission, mitigating A.4. Permission checks performed by the Gateway
and the peers include all necessary steps to ensure these abovementioned assumptions.
Additionally, they verify whether the query of the current request is permitted by the
attached grant. This renders A.5 infeasible. The request is only forwarded to the peers if
the grant is found valid in the abovementioned sense by the Gateway. To avoid requiring
trust of the peers in the Gateway regarding these checks, all information are also forwarded
to the peers. They are able to recheck them themselves. This ensures that data is only
made available if the peers had sufficient proof of the validity of the request, mitigating A.6.
A.7 is prevented, since the obtained result is encrypted for the receiving client. Similarly,
the result cannot be changed by the Gateway (A.8), if the result is signed by the peers.

9.6.2 Performance

In order to perform an assessment of the performance of our solution, we conducted mea-
surements in a testbed using a prototype implemented in python.

As use case we consider a single floor in a smart building with around 10 to 30 peers
connected to a single Gateway. The Gateway is assumed to be decent commodity hardware
with several CPUs and a sufficient amount of main memory. The network is an intranet
with low latency, a typical throughput and no packet loss.

A client is present which performs requests directed to the Gateway. The performance of
the Gateway is evaluated.

9.6.2.1 Setup

In the following the describe the setup in which the measurements have been executed.
We provide an overview of the hardware used as well as the deployed operating system
and all used software. Afterwards, we describe our own implementation and the method
of the measurements.

Hardware

We use the same hardware as in Chapter 4: four homogeneous hosts are used which
feature a Intel Xeon E3-1265L V2 CPU, having eight cores at 2.50 GHz and a cache size
of 8.192 KB as well as 15.780 MB of RAM. All hosts use a 1 Gbit networking interface.

These hosts are connected via a single switch. Network latency is around 0.18 ms and no
packet loss occurs.

System

Differently to Chapter 4, all hosts are equipped with Debian Stretch (9.4) using a 4.9.0
Linux kernel. The stack of used software encompasses python 3.5.3 as interpreter, flask 1.0.2
as web framework, and uwsgi 2.0.17.1 as application server for the execution of the proto-
type. Data storage happens using a mongodb version 3.2.11 and authzforce 8.0.1 [Aut18]
is used as authorization backend. We distributed the Gateway, the client and the peers as
follows: the Gateway and the client were deployed on individual hosts each. One peer was
deployed on a dedicated host. The remaining peers were realized as processes on another
single host.

9.6. Evaluation 157

Implementation

The prototype was implemented as python REST application which was built upon flask.
Uwsgi is used to serve the application, using a single process and 8 worker threads if not
denoted otherwise. Wsgi provides a request queue which holds the connection of incoming
requests which could not yet be answered. This queue has been configured to have a length
of 100. When the queue is completely filled, further requests are immediately dropped.

During validation of an incoming computation request (cf. Figure 9.5.2), the Gateway con-
tacts peers to inform them about the upcoming computation. Peers themselves then check
and acknowledge the request. In consequence, the peer component was also implemented
as REST application in order to allow the Gateway to contact them. When contacting the
peers, the Gateway spawns a thread for each peer in order to allow simultaneous waiting
for all responses.

For testing purposes no actual SMC component was connected to our querying frame-
work. This allows to measure the overhead of our components without depending on the
performance characteristics of a chosen SMC implementation.

Method

The client has been scripted to offer identical requests with different frequencies. For each
measured frequency step, the client offered the desired load for either 30s (grant request
protocol) or 60s (computation request protocol).

We measured the duration of client requests handled by the Gateway (latency). The
measured time begins when the request is handed to our custom code; it ends when the
final response is handed back to uwsgi. In the results, the plotted value per frequency is
the median of all executed requests during that window. The vertical bar of each point
in the diagram reflects the 0.25 and 0.75 quantiles. For each frequency, we captured the
amount of requests the Gateway was able to handle successfully per second (throughput).
Lastly, we recorded the state of the request queue. Uwsgi allows to query its current degree
of saturation via a http stats interface. The queue state was always queried immediately
after the last request was sent, ensuring that the complete load has reached the Gateway
but was not yet handled by it.

9.6.2.2 Results

In the following, we present the results of our evaluation. In the first part the Grant
Request Protocol is focused, afterwards the Computation Request Protocol is taken into
consideration.

Grant Request Protocol

The grant request protocol is carried out when a client aims to obtain further access rights
to data queries offered by the Gateway. The frequency of this request depends on the
volatility of the environment: in a setting where peers and clients are deployed a single
time at the beginning of system lifetime and further changes are seldom, requests are
performed a small number of times per client. Every change might make further grant
requests necessary. In a setting where clients change often or data querying is based on
individual user interaction instead of automated predetermined processes, the frequency
can increase to a small number of requests per second during peak times. Furthermore,
renewal of grants makes repetition of requests necessary. This amount of requests is well
supported: even under a load of ≥ 100 requests per second, answer time stays below 20 ms
(Figure 9.6). The queue of the Gateway becomes saturated only after 170 requests per
second (Figure 9.7). Correspondingly, the throughput stagnates at the level of 170 requests
per second (Figure 9.8); all remaining requests are dropped. Since no peer interaction
happens, performance is independent of their number.

158 9. Private and Transparent Data Querying

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

2

4

·10−2

Load [req/sec]

L
a
te
n
cy

[s
]

10 peers
20 peers
30 peers

Figure 9.6: Grant Request Protocol: the duration of handling a single request inside the
Gateway component depending on the amount of requests performed by the client.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

50

100

Load [req/sec]

Q
u
eu
e
le
n
gt
h
[#

] 10 peers
20 peers
30 peers

Figure 9.7: Grant Request Protocol: saturation of the uwsgi request queue depending on
the amount of requests performed by the client. As long as the queue is not saturated, all
requests can be answered successfully. During higher loads, requests are dropped during
connection attempt.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

50

100

150

Load [req/sec]

S
u
cc
es
sf
u
l
re
q
u
es
ts

[r
eq
/s
ec
]

10 peers
20 peers
30 peers

Figure 9.8: Grant Request Protocol: the amount of successfully answered requests depend-
ing on the amount of requests performed by the client. Up to a load of 170 requests per
second, throughput increases proportionally and no drops occur. Afterwards, the queue is
filled and throughput stagnates on this level.

9.6. Evaluation 159

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Load [req/sec]

L
a
te
n
cy

[s
]

10 peers
20 peers
30 peers

Figure 9.9: Computation Request Protocol: the duration of handling a single request inside
the Gateway component depending on the amount of requests performed by the client.
This includes forwarding the request to all concerned peers and waiting for their request
acceptance. The biggest part of the overall duration is constituted by the cryptographic
actions to be taken for the communication with the peers.

Computation Request Protocol

The computation request protocol is always carried out when a computation on actual
sensor data is queried. With polling every second per client, and multiple clients being
connected, multiple requests per second can be expected.

With 30 peers connected, a single request per second yields a latency of ∼250ms. With
increasing load this converges to ∼1.7 seconds per request (Figure 9.9). Each added peer
approximately contributes additional 50 ms. The reason is computational overhead per
connection—mainly signing outgoing messages and verifying the signatures of incoming
messages—which cannot be handled in parallel due to the global interpreter lock in python.
Since SMC itself comes with a comparatively high communication overhead compared to
solutions featuring a middleware as trusted third party, an additional overhead of a second
seems acceptable in our use case. We can propose several mitigations for this overhead:

• Firstly, we assume a non-prototypical implementation in a language which optimizes
more for speed will provide a lower overhead. Especially using a language which pro-
vides real parallelization and/or more efficient implementations of the corresponding
actions should decrease this overhead.

• Caching can be considered: peers’ agreement to computations could be extended by
an interval of validity, implicitly allowing later consecutive identical requests without
further overhead.

• Our architecture can be applied hierarchically: allowing several Gateways per area
which segment peers into semantically sensible groups, being large enough to ensure
unlinkability. Recursively, Gateways can in turn function as higher-level peers for
further aggregation.

Concomitant with the increase in latency, the request queue is exhausted between 5 to
20 requests per second (Figure 9.10) and a high throughput is inhibited (Figure 9.11).
Here, the bottleneck is the CPU of the Gateway. Since this component is not resource-
constrained by design, we can mitigate this bottleneck by allowing several processes on
the Gateway to run in parallel on multiple cores. Providing 4 uwsgi processes shows
that parallelization doubles the throughput (Figure 9.12). Due to these limitations, we
understand our approach to be a feasibility result with further potential for optimizations.

160 9. Private and Transparent Data Querying

0 10 20 30 40 50 60 70 80 90 100
0

50

100

Load [req/sec]

Q
u
eu
e
le
n
gt
h
[#

]

10 peers
20 peers
30 peers

Figure 9.10: Computation Request Protocol: saturation of the uwsgi request queue de-
pending on the amount of requests performed by the client. During each request, the
Gateway contacts peers and waits for their response. The longer time needed by each re-
quest already causes the queue to fill up when requests come in with a delay of 100–200 ms.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Load [req/sec]

S
u
cc
es
sf
u
l
re
q
u
es
ts

[r
eq
/s
ec
]

10 peers
20 peers
30 peers

Figure 9.11: Computation Request Protocol: the amount of successfully answered requests
depending on the amount of requests performed by the client. Latency of single requests
restricts the amount of successful requests, since the request queue is already filled between
5 to 10 requests per second.

9.7. Generalization: Application without SMC 161

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Load [req/sec]

S
u
cc
es
sf
u
l
re
q
u
es
ts

[r
eq
/s
ec
]

10 peers
20 peers
30 peers

Figure 9.12: Computation Request Protocol: the amount of successfully answered requests
depending on the amount of requests performed by the client. A higher amount of Gateway
processes correspondingly improves throughput.

9.7 Generalization: Application without SMC

The presented solution shows how SMC technology can be utilized as a service which
makes it compatible to client-server architectures.

We yield several benefits here regarding management and privacy. Data consumers do not
have to be a part of a distributed or peer-to-peer system in order to access distributed
data. Instead, they can use classical client-server architectures which require less changes
on their side for compatibility. Regarding privacy, problems of central storage solutions
like linkability of data, loss of access transparency for data owners and loss of their con-
trol which accesses to allow are effectively solved. Here, while unlinkability is essentially
supported by the SMC part of the solution—since raw data has never to be accessed by
any party except the corresponding data owner—all other privacy improvements have to
be accounted to the distributed storage of data and the access mechanisms presented in
this chapter.

That means, even if no SMC solution is at the heart of a similar system, essential privacy
goals can be fulfilled using our access solution. It can be applied if the following premises
are fulfilled: the initial data is distributed among components which are also controlled by
the data owners. These components are connected via some network. Connectedness and
availability of components may be dynamic; adding further components during runtime is
possible. There are third parties, the data consumers, for which the data should be made
available. It should not be possible or at least necessary for them to connect to each single
source component. They should not have to know where which information is exactly
located. Their access should still be controlled by the original data sources. Potentially,
data should be preprocessed before reaching the client.

Example We exemplify the generalization by describing another setting where our ap-
proach is feasible. In many distributed systems, components exist which generate initial
raw data, e.g., by measuring their environment. Only the source itself and optionally com-
ponents in its logical proximity needs to handle the data in its original granularity. Often,
other components only need preprocessed data (e.g., aggregated or filtered) of lower gran-
ularity. In such a setting, we map our architecture as follows: components which generate
data and only need their own data are the data sources/peers in our terminology. We
denote them to be on level 0. Components which need the sources’ raw data to compute
on them are their clients. They are on level 1 and can also play the role of Gateways

162 9. Private and Transparent Data Querying

for other higher-level clients. These clients, in turn, do not need level 0 data, but com-
putation results based on data from level 1. This approach can be iteratively extended
until all components are included. The result is a hierarchy of components, creating a tree
structure or a directed acyclic graph with respect to information flow.

This approach avoids that every component has to connect to the raw sources which possess
the most critical data. Instead, we specify that every component may only connect to that
very Gateway which can provide the needed information while having least criticality
among all potential Gateways. These constraints for the data flow in the system build
the foundation of access control. Upon it, more fine-granular access control can then be
deployed by the means presented in this chapter.

There is a single important difference to realizing the full approach: without SMC, the
peers always have to trust their direct Gateways to which they forward their raw data.
The peers have to assume that these Gateways correctly aggregate their information with-
out misuse, manipulation or leakage. However, the peers do not have to trust any other
components besides their direct Gateway as these only receive aggregated data. In accor-
dance to out solution, unlinkability of raw data is improved since the Gateway can merge
data from the peers. Furthermore, assuming that the Gateway does not store nor cache
information3, peers always are informed when a higher level request has been performed
and the peers can intervene by exerting their veto right.

9.8 Discussion

In our design we made some decisions which are strongly influenced by the concrete setting
of application. We discuss them here and present alternative choices.

When a computation session is announced with a Task Description, the full initial Compu-
tation Request of the client is forwarded to the peers. This is not functionally motivated,
but intended to make initial requests fully transparent to the data sources. If this trans-
parency is not necessary nor desired, this part of the Task Description can be left out.
Communication overhead is then reduced, since the original Computation Request is a
notable fraction of the complete Task Description.

When peers receive the Task Description, they have the right to veto and to refrain from
participating in the computation session. This also contributes exclusively to the privacy
protection goals of the peers, namely intervenability. Our measurements showed that this
interaction (cf. Steps 10–12, Figure 9.5) is the bottleneck of the whole request validation
causing the latency shown in Figure 9.9 and fast saturation of the system with increasing
load (cf. Figure 9.10). It is hence worthwhile to discuss whether this feature should be
retained or given up: use cases are imaginable where this veto right is not necessary
since peers are not considered to be autonomous systems of individual data owners. Then
this feature should be left out. Besides the achieved speedup, communication would also
become more stable and more concise: vetoes can cause interactive adjustments on the
participant sets which also induces multiple rounds of communication until the participant
set converges. In any other case, one also has to keep in mind that deactivating the veto
right does not remove access control completely: the client-faced access control performed
by the Gateway is still in place. However, regarding data access, it becomes a trusted
third party for each peer with regard to their aggregated data. A compromise is achieved
when the peer-side checks are not performed in a synchronized fashion during the client
request but afterwards, asynchronously, when the computation is about to be carried out.
This reduces the delay of the acceptance note towards the clients but leaves peer-side

3We consider realistic since the sensors generate a stream. This means the most recent values always
change as do the preaggregated values like value for the last 24 hours.

9.8. Discussion 163

control in place. However, this would increase complexity on the clients, as they will only
asynchronously learn whether their request was finally accepted and whether adjustments
to the participant set had to be made.

We chose that the Gateway does not have to disclose the actual set of peers when addressing
them via a label; we call this label opaqueness. This improves unlinkability for peers since
the result of a computation does (in general) not leak information about which peers
actually participated in the computation and provided input. This can, however, be a
problem in some use cases. Firstly, when vanishing devices are typical for the environment,
e.g., very dynamic settings with moving devices connected via a wireless connection, the
client cannot assess whether its query currently includes all desired devices. Secondly,
some computations do not yield usable results when the set is completely unknown. E.g.,
the repeated computation of a sum over a set with changing but unknown cardinality
does not provide a consistent timeseries of data points. There are two main options how
these problems can be approached: the first is to weaken unlinkability for peers and to
improve transparency for clients: when the result of a finished computation is sent to the
client, the information about the participant set of the computation can also be disclosed
to it. It is then able to better assess the meaning of the obtained result. Alternatively,
the client might be given the ability to resolve labels and predicates directly via the DS.
The second approach is to weaken intervenability for the peers and to strengthen control
for clients, meaning that clients do not have to work with abstracting labels but may
choose the participant set itself. However, in these cases, the providers of the service have
to keep in mind that clients are potentially able to maliciously select sets which disclose
raw information about single peers. A trivial example is selecting a set of cardinality 1.
A slightly more sophisticated attack is a difference attack, where first a set of n peers is
chosen and then the same set reduced by a single peer, the victim. Depending on the used
protocol, its desired raw information can then be obtained by computing the difference (or
some equivalent) of both results.

In particular, the right to veto combined with label opaqueness can cause problems in some
use cases. We nevertheless chose to implement both to exemplify the possibilities of privacy
protection in this context. If a single peer vetoes against a computation, the computation
is retried with the participant set reduced by the vetoing peer. Normally, this action
is invisible to the client which provokes the problems discussed in the previous sections.
Besides the already mentioned options for generally weakening the privacy properties for
peers in order to solve these problems, one could also aim to weaken privacy only in these
exceptional cases: the first option is a fail-fast solution, where a veto does not lead to
invisible adjustments but to an error message for the client, informing it about the vetoing
peer. This should at best also include a rectification and reasons of the peer. Depending
on how clients can select computations, the client can then restart the computation itself.
The second option is automatic adjustment of the participant set and performing the
computation. The result however also includes the above described veto message from the
refraining peer.

Our solution proposes that permissions are manifested as authorization certificates. This
allows authorizations to be verified by anyone who has the corresponding certificates.
However, their application has some consequences which might be undesirable in some
contexts. A PKI is needed and at least the certificate of the issuer must accessible for
all verifying entities. In particular, the certificate distribution might become a further
problem to be solved. Furthermore, certificates do not possess high flexibility with respect
to changing permissions. We already addressed this problem by suggesting a small interval
of validity for each Permission Grant. In a more static environment, where the Gateway
does not typically change, one might opt for a solution where the grant issuer is identical
with the Gateway. Validation of grants by the Gateway can then be reduced to verifying

164 9. Private and Transparent Data Querying

a signature which was added earlier by itself to a created grant. If no grant documents
at all are desired, permissions can also be stored genuinely on the Gateway. In this case,
temporal separation between requesting Permission Grants and performing Computation
Requests is still given, but permission verification is simply performed by a permission
lookup locally on the Gateway. This reduces the overhead of sending permission grants
and makes permission adjustments and revocation very flexible. However, this weakens
transparency: clients cannot state their permission explicitly and the validity of a request
cannot be directly stated to peers anymore. If the veto right remains in place, peers
nevertheless stay in full control of their data.

9.9 Key Contributions of this Chapter

In this chapter, we presented the second part of our approach to make SMC available as a
classic service. It addresses the question how a distributed SMC solution can be extended
into a centrally accessible service for data consumers. For that, we create an adapter on
three levels: architecture, data flow and execution of logic. Having established a very
defined channel, we add fine-grained access control in order to control the actual data
flows.

Centralized SMC Access

In this context, the Gateway addresses the initial architectural mismatch between SMC—
which works rather in a peer-to-peer manner—and a classical client-server architecture.
SMC is inherently distributed and enables computations among peers; it is not initially
designed to be a service available to third-party clients. The Gateway now acts as an
architectural adapter for connecting both structures: towards the one side, it manages and
orchestrates SMC sessions. Concomitantly, the Gateway finally receives the computation
result by participating itself or by obtaining the result from one or more peers afterwards.
Towards the other side, the Gateway presents a very standard data querying interface via
REST (RA.2). Clients solely have to post their Computation Requests via this interface
(RA.1) in order to make peers compute a desired result. Since SMC computation can
introduce a notable delay, clients do not have to wait for the result in a synchronous
manner. Instead, they are given a session ID which they can use afterwards for polling
the data until received (RA.5).

Directory Service

The next necessary adapter is on the level of metadata. In order to enable Computation
Requests, clients must be initially informed which data is available. This is solved via
metadata which is collected among the peers, post-processed and stored centrally on the
Gateway and made available to the clients (RA.3). In this context, the DS acts as an ex-
tended and dynamic service announcement sine it communicates what computations are
potentially available. The real adapter functionality is expressed by the post-processing
of the Gateway: while every single peer holds its own metadata, is cannot be aware of
which computations are actually possible (where it could participate) and which groups are
semantically sensible. This needs an overview which only the Gateway possesses. Its post-
processing solves this since it creates—in a manual or rule-based fashion—semantically
sensible groups of peers and stores which data can be computed among them. This en-
hanced data is then made available to the clients for request selection.

Request Translation

Since the Gateway shadows the actual SMC architecture and the DS performs the same
regarding the metadata, incoming client requests are not initially executable for SMC

9.10. Statement on Author’s Contributions 165

peers. Hence, the Gateway has to translate the incoming client-side Computation Request
into a Task Description which is a understandable and executable data structure for all
peers (RA.4). The translation includes transferring computation details and resolving the
chosen group to an actual set of participating peers.

Client-Faced Access Control

The above mentioned features provide means for data access from the clients to the peers,
mediated by the Gateway. Since information flows are now fundamentally enabled, sensible
access control is put in place. It preserves the peers’ ability to exert control over their
own data. We introduced access control on two levels. The basic level of control is the
peers’ right to veto against computations (see Chapter 8). In this chapter, we introduced
another additional layer of access control at the Gateway (RA.15). While it should reflect
all participating peers’ intentions, it facilitates access control and provides further benefits:
with its help, permissions are stated explicitly as documents which can be held by the
clients itself. Hereby, clients’ rights become transparent for the peers. Furthermore, the
permission granting process (which might be computationally or communication intensive)
is separated from the actual permission verification which is performed during each request
and therefore should be fast to execute. Lastly, Permission Grants can be forwarded to
participating peers, allowing them to verify the permission themselves.

Fully Privacy-Preserving Service

Given our notion of privacy from Chapter 2, we understand a fully privacy-preserving
service to enable and support the protection goals of data minimization, unlinkability,
transparency, and intervenability. We found that SMC already supports data minimiza-
tion and unlinkability initially if applied correctly. Hence, we designed an architecture with
SMC at its core which also provides the other two. Our approach is to provide an access
control scheme which is based on permissions made explicit and communicable as grant
documents. Similarly, queries, i.e., data requests are stated explicitly and in an authenti-
cated and integrity-protected manner. This enables peers to gain all vital insights about
a computation requested by any client, which in turn fulfills transparency for the peers.
Furthermore, the request and the permission grant can be checked by the peers before the
computation is carried out. This enables intervenability, since each peer is able to refrain
from a compution it objects due to some reason. This veto capability is fundamentally
enabled by the data architecture provided by SMC. Since all data remains at the peers,
their cooperation is indispensable to perform a computation with their data. Exerting the
veto right is realized as an expected exception. The session orchestration layer is able to
handle them accordingly.

9.10 Statement on Author’s Contributions

The findings of this chapter have been published in the following paper:

M. von Maltitz, D. Bitzer, and G. Carle. Data Querying and Access Control for Secure Multiparty Computation.

In Proceedings of the 16th IFIP/IEEE International Symposium on Integrated Network Management, Washington,
DC, USA, 2019. IEEE (reference [vMBC19]).

The publication is based on the design developed by the author and refined and implemented by Dominik Bitzer in
his Master’s Thesis guided by the author of this thesis and supervised by Georg Carle. The author of this thesis

contributed to the results in the publication and the chapter by designing the overall idea, the concept and the

protocols. The author also contributed to detailed design and implementation decisions during Dominik Bitzer’s
Master’s Thesis. Dominik Bitzer refined and implemented the designed protocols. The measurements have been

performed and evaluated by the author of this thesis.

The message structures in Figures 9.1 and 9.4 are an extended and slightly adjusted version of the figures in the

publication. In the version shown here, clients obtain separated grants for each requested query. When sending
a Computation Request, clients do not have to reveal all unrelated grants, but only the one corresponding to the

request. This improves clients’ confidentiality and unlinkability. The protocols in Figures 9.2 and 9.5 are a detailed

version of the protocols published in the paper. The equations have been adapted from the publication.

166 9. Private and Transparent Data Querying

10. Advantages and Disadvantages of
applying SMC

In the previous chapters, we analyzed performance and applicability of SMC. Afterwards,
we presented an approach to utilize SMC for the processing of sensor data in dynamic
environments. Several state-of-the-art solutions exist which address the same problem
domain. In this chapter, we perform a comparison of these solutions with our approach.
We first identify several representatives. Then, we compare them in the categories of
architecture and implications of architectural differences, data protection, performance
and resource consumption.

10.1 Baseline

We first identify how other solutions solve the problem we address. Here, we focus on a
selection of available and established systems from similar domains.

10.1.1 Qualification for Comparison

From a functional point of view, we address the problem of collecting and processing
initially distributed data. The goal is to drive other services and clients with the computed
results. The latter, in turn, should have the ability to specify and query the data they
need for operation.

Other systems qualify for comparison if they have a similar purpose. We state this more
precisely by specifying a blackbox with input/output equivalence: before entering the
system, data is distributed logically or physically in the realm of system application. The
data itself is in a shape that allows processing and computation. I.e., it is numerical or at
least ordinal, but typically not nominal. By this, more mathematical or logical operations
can be carried out. The most vivid domain here is the handling of sensor data. The data
has to be collected and processed. The results of processing are, in turn, the input for
other services or clients; each of them needs one or more types of results. These types do
not change frequently, but obtaining current data is performed continuously. While the
input data can be deemed critical with respect to some notion of privacy, the output data
is not.

10.1.2 Real-World Architectures and Solutions

We now consider some established solutions from the industry which are compatible with
the specification above.

168 10. Advantages and Disadvantages of applying SMC

Siemens: MindSphere

MindSphere [Sie18] by Siemens is a “cloud-based, open IoT operating system” aiming for
application in the industrial Internet of Things (IoT). Automation devices and networks
are the producers of sensor data. That data has to be analyzed and evaluated by different
stakeholders in order achieve “optimized processes, resource and productivity gains, the
development of new business models and the reduction of operations and maintenance
costs”. In-depth topics among others are condition monitoring, predictive maintenance and
asset performance management. They address this problem with a cloud-based solution.
Intermediary devices (MindConnect) are attached to the automation networks. They
create or collect the data from the networks and push it to the cloud-based platform.
Further storage and processing of the data is then performed on the tenancy-enabled cloud
system. The consumers are applications which are provided by Siemens, its ecosystem or
third-party developers. These also run on the cloud platform. For securing their solution,
they mainly name three building blocks: Data-in-motion is encrypted using TLS. Storage
in the cloud is secured by “highest standards” by which they mainly mean organizational
measures. And intrusion and tampering is mitigated by making the MindConnect devices
read-only inside the automation network. Accepting that they employ the cloud as a
trusted third party, they enable fine-grained access control down to the level of individual
data within single services.

Their way of data handling is best described by their concept of data lakes [Sie18]:

Data lakes hold large amounts of raw data, from multiple sources and across federated sys-
tems, until needed. Applications or services can consume data and contextualize it with any
other kind of data in the data lake.

General Electrics: Predix

Predix [Gen18] by General Electrics is a “distributed application and services platform for
building and running powerful digital industrial solutions”; they also address the industrial
IoT. Assets (e.g., machines at an industrial plant) are the producers of sensor data. Data
from these assets is used to build a digital twin as a management abstraction and “single
source of truth”. Data consumers are provided or custom but specifically tailored third-
party applications connected to the Predix platform.

Like Siemens, General Electrics addresses this problem by a cloud-based solution. They
especially focus on data integration (called ingestion) aiming for consolidation of a high
amount of diverse data coming from heterogeneous sources into a single platform storage.
That allows to use this data in a standardized manner and to further leverage its potential
by enabling data combination.

In addition to their cloud-based approach (Predix Cloud), they support edge computing
use cases, allowing applications to be deployed on the edge devices for lower latency of
analysis and lower bandwidth consumption.

For security, they use established methods like firewalls, intrusion detection systems and
containerization as well as data separation by tenants and access control. Structurally, they
apply security on different levels of their architecture (“defense-in-depth”). These technical
measures are complemented by organizational processes, made tangible by complying to
a multitude of international security standards. They also directly address privacy, but
merely identify it with data retention and deletion policies. There do not seem to be any
technical enforcements of privacy in place, either.

10.1. Baseline 169

Bosch IoT [Bos16]

Bosch provides a “comprehensive toolbox in the cloud provided as Platform-as-a-Service”
for managing the IoT. They mainly provide a software-based solution. This can then be
deployed on other vendor’s clouds like Amazon Web Services (AWS), Microsoft Azure,
SAP Leonardo or on premise. Devices are connected to the cloud where the Bosch IoT
Hub and the Bosch IoT Remote Manager are located. These manage the connected devices
and their data. On top, applications can then connect to the Hub in order to obtain needed
data.

In order to connect heterogeneous sensors to the Hub, intermediary devices—the cloud
or field connectors—are used for protocol translation. These intermediaries provide “local
management, local data processing, and connectivity to the cloud or other gateways”
[Bos17b].

Their focus in the area of security is authentication of devices by employing X.509 certifi-
cates and using a PKI. On this foundation, secure channels and encrypted communication
are realized. The topic of data protection and privacy is handled organizationally by pro-
viding policies for data usage transparency and adhering to the German data protection
regulations. Further security best practices are provided in [Bos17b] where they rather
state guidelines to ensure security as a developer for the Bosch platform than giving in-
sights into their own measures. In our opinion, the reason is that Bosch is providing rather
an open infrastructure as IoT foundation instead of offering a fixed architecture like the
competitors in this section do.

Microsoft Azure IoT

Microsoft Azure IoT [Mic18] basically models IoT infrastructures using three domains:
Things, Insights, Actions. Things is the set of heterogeneous devices which create data.
Insights is the realm where data is stored and processed. Actions are performed by business
logic which is driven by the outcomes of previously processed data.

The reference architecture is as follows: devices or edge gateways—intermediaries enabling
communication—register at the Azure cloud. By this, they can send and retrieve data from
the cloud. Sending is vital for telemetry data which has been collected by the devices.
Retrieval is used for management and configuration of the devices. The cloud hosts a
gateway which accepts the telemetry data and performs the device management. Behind
this gateway, in the cloud, stream processors perform analyses and storage components
perform persistence of the data. Furthermore, UIs and reporting tools are made available
for user interactions. Business applications are either connected via the stream processors
or the storage. These applications are the data consumers and use the available data as a
foundation for their actions.

Azure IoT supports use cases of edge computing by providing Intelligent edge devices
and field gateways. These can perform aggregation, filtering, transformation and further
processing of telemetry data as well as buffering of data, protocol translation and event
rule processing before submitting data to the cloud.

The field gateways are also considered to be an important enabler for security. Things
i.e., sensor devices might not be powerful enough to perform the cryptographic operations
considered necessary to ensure security. In these cases, they are forbidden to perform
direct cloud connections and placed behind a field gateway. The latter, in turn, obtains
the data and tunnels it to the cloud via secure channels.

Besides, Azure IoT understands security to be the requirements of having encryption for
data-at-rest, using TLS for data-in-motion while it is sent to the cloud, and providing

170 10. Advantages and Disadvantages of applying SMC

Figure 10.1: Abstraction of state-of-the-art architectures

cryptographic identities of the Things, created, stored and provided by the IoT Hub in the
cloud. Furthermore, established methods of authentication and authorization are taken
into consideration. Notably, they require that Things perform outbound-only connec-
tions, reducing the attack surface of the most vulnerable devices in the system. A similar
approach has been mentioned before in the context of MindSphere.

10.1.3 Abstraction

In Section 4.3, we already derived a comparison of SMC with a Trusted Third Party (TTP)
based on the formal theory behind SMC: typically, simulation-based proofs are used to
prove correctness and security of SMC protocols simultaneously. These proofs inherently
perform a formal comparison with a TTP-based solution. We adapted this view and based
our performance comparisons in the previous chapters on these considerations.

By the previously considered examples, we could demonstrate that referring to a TTP
as comparison actually takes account for current real world deployments: State-of-the-
art architectures are centralized systems having a single component at its core (cf. the
data platform in Figure 10.1). They are either located in the realm of deployment—on
premise—or in the cloud. Data sources, be it very low-end sensors or complex automation
networks are equipped with a proxy component that performs data preparation and acts
as a bridge to the target architecture in general and the central core in particular. The
solutions differ in the importance of the proxy and how strongly the proxy shields the
sensors from the remaining infrastructure. The core performs the task of consolidating
received data and persisting it. On demand or continuously, stored data is processed to
obtain results which are forwarded to client applications. These clients are typically also
located on the central platform or connected via standardized interfaces. Notwithstand-
ing of their exact location, interaction most often happens via APIs for requesting and
obtaining data from the system. Users interact with the client via a web interface. The
specific type of these clients, in turn, mainly depends on the realm of deployment and the
concrete use cases.

The adequacy of the described abstraction is also underscored in the diagrams of the
whitepapers about the previously described systems: [Sie18, p. 5]. [Gen18, p. 7], [Bos16,
p. 7], [Bos17b, p. 6], [Bos17a, p. 7], and [Mic18, p. 27].

10.2. Categories of Comparison 171

10.2 Categories of Comparison

In the last section, we specified an abstraction of state-of-the-art architectures. We de-
manded that is has the same purpose as our proposed system in order to qualify for
comparison. For doing so, we defined the purpose as an input/output equivalence while
handling the system itself as a blackbox.

Having the same functional purpose, there are several properties which allow comparison
of solution quality. We define our categories for comparison here:

The first, most vivid differences are those in the architecture of the solution. More specifi-
cally, differences in the topology encompass changes in the set of the deployed components
and in the set of the connections between them. Furthermore, differences of the properties
of components and connections consider the specific characteristics of the components,
influenced by the environment or operational requirements of the whole system. When
the topology changes, it is not trivial to determine which components of both architec-
tures should be compared with each other. To take this into account, we will establish a
mapping by functionality in advance.

Further comparison is made in the realm of security. Firstly, we address the question
where trust is needed in the system and of what kind it is. Furthermore, the classical
security properties of confidentiality, data integrity, and availability are discussed. This
is complemented with data minimization and the privacy protection goals unlinkability,
transparency, and intervenability.

Finally, the performance of the solutions is compared. This especially considers the delay
between result request and its response. Besides, the resource consumption in terms of
memory, CPU cycles and storage is discussed.

10.3 Comparison

Based on the provided state-of-the-art systems and the categories to be examined, we
carry out the actual comparison here.

10.3.1 Architecture

In classical architectures and our solution likewise, we have four roles of components:

• The sensors provide the raw data coming from the analogue world or other measured
devices.

• The proxies enable access to the sensors or serve as the first hop, towards which
the sensor data is sent. In our solution, they correspond to the peers, i.e., the
sensor platforms to which the sensors are connected. In the classical solution, they
constitute intermediaries like the MindConnect devices.

• A central core component which mediates between the proxies and the clients. In
classical architectures this is the data platform, a central database or the cloud. In
our system, this role is taken by the SMC Gateway.

• The clients are the data consumers which obtain data from the core component.
Neither classical architectures nor our architecture prescribe the concrete function-
ality of these components. The only characterization is that they consume parts of
the provided and processed data.

172 10. Advantages and Disadvantages of applying SMC

From a topological viewpoint, the set of components is not notably changed. However, our
solution makes new connections necessary. Proxies have to be reachable by each other and
they have to communicate directly. Changes regarding NAT (network address translation)
traversal and firewall configurations have to be considered. Besides, no further connections
are required. In particular, clients still only have to contact a single point for data request
and reception. We deliberately decided that changes of client behavior should be restricted
to a minimum.

There are larger differences between the properties of the deployed components in a clas-
sical solution and our proposal. The reason is that functionality is intentionally shifted to
achieve our privacy properties. We consider the following functionalities:

• Holding or storing sensor data

• Processing the sensor data

• Accepting and handling queries of clients

In classical architectures, functionality is centralized on the core component. Directly after
its creation, sensor data is forwarded to the core component. It stores the data (after an
optional preprocessing) and makes it available for analytics and processing. These tasks
are also carried out on the core component. The core also provides APIs enabling third-
party applications—they are the clients in this context1—to request and obtain available
data.

In our solution, data of individual sources should remain private, i.e., should not be shared
with any other party. Due to this reason, storage happens on the sensor platforms itself.
Here, it depends on the use case whether long term persistence is needed or an in-memory
storage for a sliding window of available data points is sufficient. Processing is not per-
formed by the SMC Gateway as core component, but only orchestrated by it. Instead,
processing is carried out as SMC protocol between the sensor platforms. This raises the
aforementioned new requirement of reachability for all sensor platforms. Accepting and
handling requests of clients remains a task for the core component. However, translation
of requests has to work differently. Instead of being translated into, e.g., an SQL query
or some other data retrieval language, the request has to be transformed into an SMC
session. The core component merely acts as a façade.

10.3.2 Data Protection

We now compare both types of solutions with respect to data protection, i.e., trust, security
and privacy properties.

10.3.2.1 Trust

For the meaning of trust, we refer to Definition 3.1 in Section 3.1 on page 18.

In classical architectures, it is necessary to have a high amount of trust towards several
components: initially, the sensors create the private data. They are trusted that they do
not forward it to any undesired third party. The same is true for deployed proxies. After
the private data has been sent to the core component, it is necessary to trust that it stores
and processes the data only as expected. Under the assumption that the results obtained
by data processing are uncritical with respect to privacy, no special trust is necessary

1As long as a functioning access control over the available data is carried out, there is no vital difference
between clients being individual components—as in our abstraction—or being software deployed on the
same core component—as in some of our real world examples in Section 10.1.2.

10.3. Comparison 173

towards the clients. However, the core component is additionally trusted to carry out
access control correctly, so that every client only gets the data it is allowed to obtain.

In our solution, a reduction and distribution of trust is achieved. While the trust in the
sensors and in the sensor platforms remains identical, storage is distributed among the
sensor platforms. They store their own data and only their own data. I.e., no trust has to
be laid in another party to perform faithful storage for them. Similarly, processing is not
carried out on a single component but by SMC protocols. This removes the necessity of
trust from the former processing component. Strictly speaking, these protocols do not have
to be trusted either, since their correctness and security is typically proven mathematically.
As described in Section 3.3.1, protocols can be secure in the honest-but-curious or in the
malicious model. The system security and the corresponding amount of trust to be brought
towards the SMC Gateway strictly depend on the security of the employed SMC protocols;
i.e., the type of model they are proven to be secure in. Due to this reason, we only sketch
the trust implications and refer for details to the exact security properties of the employed
protocols. In the honest-but-curious model, we trust the computing parties, i.e., the sensor
platforms that they perform the desired protocol invocation correctly. Then, they do not
learn anything about the inputs of the other parties. However, if protocols are used which
are secure in the malicious model, even this trust becomes superfluous, since malicious
interaction becomes detectable.
With respect to querying and access control, our solution also distributes the obligations
which again shifts the necessity of trust. Clients are allowed to obtain certain data if they
can provide a corresponding grant (cf. Section 9.4). This grant is provided by an authority
which, consequently, has to be trusted to issue these permissions faithfully. Normally, the
Gateway, being the corresponding instance for verifying the grants, has to be trusted to
only react on correct and granted requests. However, this trust is strongly reduced since
our solution also allows the peers to check the query and the corresponding grant. If
they have enough knowledge about the clients and the environment, they can decide for
themselves whether or not a request is legitimate. In consequence, the amount of necessary
trust in the Gateway for correct verification depends on the degree of autonomy of the
peers. This has to be decided in each deployed instance of our system anew. Since the role
and behavior of the clients are not changed by our system, no new trust considerations
arise here.

10.3.2.2 Security

We use the notion of security as established in Chapter 2. In all cases, our assessment
focuses on whether technical mechanisms are in place which guarantee the fulfillment of
the mentioned properties. We do not consider a solution to be valid if it makes trust
necessary in a way described in the previous section.

In classical systems, confidentiality of the raw data towards a third party is not given,
since all data is stored on a central unit which has to be trusted. Similarly, there are no
integrity guarantees after the data leaves the sources. Manipulation of data on the central
system is possible. However, the availability is high since central storage easily enables
backup strategies and redundant storage of data. Furthermore, outages of proxies only
affect future data collection and no data that has already been created.

In our solution, sensor data remains on the sensor platform where it has been collected.
It is not shared with any other party, particularly not with the Gateway. Hence, confiden-
tiality is achieved to a high degree. Confidentiality can even be extended to computation
results: in Section 8.4, we describe how the result is sent from the peers executing SMC
to the Gateway. In order to prevent access to the result by the SMC Gateway, the results
can be encrypted in advance for the receiving client. This is possible since the client’s

174 10. Advantages and Disadvantages of applying SMC

certificate is already known by the peer in order to verify the request.
Integrity protection is not actively improved by our solution, but typical attack vectors
are mitigated. There is no core component which has access to the data. This removes a
common high value target for data manipulation from the system. Each sensor platform
only holds its own data. We already decided to trust the sources to correctly create initial
data. This automatically implies that we trust them not to manipulate the data. Adver-
saries attacking a single sensor platform would have a comparably lower impact on the
system than attacking a central unit. Only a single source’s data could be manipulated
then. Furthermore, if protocols with security against malicious adversaries are employed,
manipulation of the computation process can be detected. If the results are signed in
advance by the peers, tampering by the SMC Gateway can also be prohibited (cf. Sec-
tion 8.4). For that, however, the cryptographic identities of the peers have to be known
by the clients.
Guaranteeing availability becomes harder with our solution. Due to distributed storage,
it is more complex to achieve redundancy and robustness. Furthermore, outages of nodes
have a higher impact since not only future collection is affected but also access to historic
data. The reason is locally storing data on each node. Our solution specifically addressed
failing nodes and failing connections. We realized automated recovery to counteract the
naturally higher chance of these failures in dynamic environments. Disconnected nodes are
able to recover themselves and to reconnect to the managing SMC Gateway. The Gateway
itself is designed to be stateless, hence, Gateways can be deployed redundantly. Lastly,
backup solutions are still possible and can even be centralized, since the data-at-rest can
be stored in a state-of-the-art encrypted manner.

10.3.2.3 Privacy

We could show that in the realm of security our solution already improves the state of the
art of sensor data handling and processing. This is continued with respect to privacy. The
notion of privacy has been described in detail in Chapter 2. Based on this understanding,
we examine the privacy protection goals of unlinkability, transparency, and intervenability.
Again, only technical guarantees without necessity of trust are considered.

In classical architectures, data minimization is not considered a goal. All available data is
pooled and retained as long as legitimate. The aim is to support all potential purposes,
even if discovered only after data collection. Peers are not necessarily informed when new
purposes emerge.
Also unlinkability is not achieved. The reason is that data of different sources from varying
physical and logical domains is stored at the same central place. This enables arbitrary
data combination. While we consider this as a strong violation of a desirable privacy
protection property, most vendors actually frame this practice to be a vital benefit, called
data integration. Without considering privacy, they state that the potential of the available
data can only be leveraged to full extent if all data is available at a single place and can
be combined after collection. While this is true it avoids the tradeoff between privacy and
utility by ignoring the former and fulfilling the latter.
By storing sensor data centrally, transparency is also not given. Since data is detached
from the local data sources by transmission, the usage of their data moves out of the
data sources’ perception. For the data sources, it neither becomes clear which legitimate
computations are carried out on their data or for whom they are performed. Nor do
attempts of misuse become recognizable where their data is used in a way which would
not be considered legitimate by the sources.
Since transparency is a precondition for intervenability, the latter is not fulfilled either.
The last action of control that data sources can perform, is the decision what data to
forward to the central storage and what to omit. After transmission, control by the data

10.3. Comparison 175

sources is lost. This also means that data retention, deletion and revocation mechanisms
all depend on trusting the core component.

In our solution, data minimization is considered important. Possible computations are
specified by making the corresponding SMC protocols available. Hence, the purpose of
computation must be known in advance. It is impossible to create new purposes and cor-
responding computations without knowledge of the peers.
Also, unlinkability is fundamentally achieved. Critical data of different sources is never
stored at the same place, but held in the physical or logical separation in which it was col-
lected. Classical architectures solve the privacy-utility-tradeoff by negating the first goal
und fully achieving the second. It should, however, be tried to achieve a balance so that
both goals are reached to an acceptable extent. Driven by the innovation of SMC technolo-
gies, we could refrain from finding a balance, but solve the tradeoff, fully achieving both
goals without compromise between them. In detail, two types of unlinkability are achieved
by our application of SMC: the results obtained by computation become unlinkable with
the peers, since it cannot be recovered which sensor platform contributed which input in
general. And the results become unlinkable among each other. That means, while raw
data might allow recombination to gain new insights, results can be crafted by aggregation
which do not allow combination with other results obtained. If any linkage is desired, it
must be performed explicitly and openly. This always becomes known to the peers by the
mechanisms for transparency described as follows.
We extended SMC so that also transparency is achieved. Since data remains at the peers,
their interaction is needed when performing processing via SMC. We developed this basic
necessity of SMC into a query-based mechanism of request processing which provides all
insights about upcoming requests and their origins to the peers before the computation
is carried out (Computation Request). By doing so, data usage becomes fully transparent
and accountable.
Based on this extension, also intervenability is realized. Since peers are informed be-
fore performing the computation, they are given the opportunity to evaluate themselves
whether or not to agree to the demanded way of processing and usage. We further provide
a structured way of vetoing against a request which enables the Gateway to find a solution
to the conflict itself or, if not successful, to forward an intelligible error message to the
client.

10.3.3 Resource Consumption and Performance

Shifting functionality to other components, as done by our proposal, not only influences
security and privacy properties, but also moves resource requirements. This makes it
possible to also compare both types of solutions in the dimensions of performance and
resource consumption.

To conduct a fully quantitative comparison we would also need performance data of classi-
cal solutions. Since these are currently not available, we continue on performance estimates
for comparison.

Resource Consumption

In Section 10.3.1, we already discussed that the architecture of classical solutions and our
proposal is different. To achieve a valid comparison we reuse the mapping presented above.

We identified four roles of components: Sensors, proxies, a core component and the clients.
From them, sensors and clients remained unchanged by our proposal. We can therefore
exclude them from comparison.

The main changes occur at the proxies and the central core. Functionality is shifted here,
and in consequence, their resource requirements change.

176 10. Advantages and Disadvantages of applying SMC

Proxies The functionality for the proxies moves from receiving data and forwarding
data—including an optional step of translation transformation and preprocessing—to per-
sisting the data locally and performing secure computations.

As hardware baseline we use the current version of the MindConnect [Sie] device. It has
the following specifications: An Intel Quark X1020 processor with 400 MHz, 1 GB of RAM,
a 10/100 Ethernet network interface and 500 MB buffering space for collected data.

Storage requirements for the proxies depend on the data retention strategy. If only current
raw data is of interest, providing a sliding window of recent data is sufficient and auto-
matically fulfills privacy-preserving data deletion requirements. This does not necessarily
affect (uncritical) aggregated data and previous reports; they can be stored centrally and
considerably longer. We assume that this is the typical setting in many use cases. For
these applications, the mentioned baseline already fulfills the storage requirements. Back-
ups are still possible and can be stored at a central place in an encrypted manner. One can
even think of solutions that support queries based on that outsourced data. Peers could
be enabled to restore this data on demand and make it again available for corresponding
computations. In the other case when long-term data should be stored on the proxies,
dimensioning strongly depends on the use case and the required duration of availability.
The fact that each proxy only stores the data of its own sensors reduces the amount of
required storage by several orders of magnitude.

Memory requirements of the proxies are influenced by the proxies’ involvement in secure
computations. We saw in Chapter 4 that memory consumption is influenced by funda-
mental factors as the number of participating peers or the number of elements. The heap
allocation even exceeded 1 GB in a setting with 15 peers. However, this observation has
to be contextualized correctly: Our prototype is based on an SMC framework written in
Java. It is well known that Java has a quite liberal handling of the memory that was
allocated for the executing JVM. Detailed memory usage diagrams like Figure 4.13 show
that the high amount of memory is not actually needed but an artifact of the specifics
of the garbage collector. I.e., when having only 1 GB available on the proxies, we expect
that the computations are still possible. The JVM will not react on the constraints by
swapping to the hard disk, but by invoking the garbage collector more often. This in turn
will lead to a higher CPU utilization by the garbage collector. While memory is therefore
not a hindrance, having SMC implementations in other programming languages which are
more resource efficient would be desirable.

Taking part in the secure computations, the proxies get a new purpose which also influences
CPU utilization. Our measurements show that, depending on the algorithm, the power
of the CPU plays a varying role in overall computation performance. In the baseline
measurements in Chapter 4, the computation duration is actually influenced by the number
of CPUs and the frequency. Here, the number of cores is more important than their actual
strength. In our use case in Chapter 6, we could not identify any influence of these
parameters on the computation duration. Its seems plausible that the higher complexity
makes more communication necessary and shifts the bottleneck towards the network. In
any case, when considering the possibility of performing several computations in parallel,
the proxies should have more than one core. Against this background, our hardware
baseline of 400 MHz might not be sufficient yet.

However, the trend of edge computing is further evolving and demanding higher computing
power at edge devices like the proxies. On this wave of new hardware requirements and
developments, secure computation will automatically become better supported.

Core Component The functionality we shift to the proxies, is moved away from the
core component. It should not store raw data anymore and computation are no more

10.3. Comparison 177

carried out as local processes. In turn, is has to orchestrate the set of connected proxies,
transform queries into SMC sessions and perform the corresponding management actions.

If we actually perform this extreme shift, data storage on the core component becomes
superfluous. The SMC Gateway is designed to be practically stateless and data can be
obtained from peers and forwarded to clients in-memory. Our architecture suggests letting
the Gateway participate as a neutral peer with no own input. Then, the abovementioned
resource requirements for proxies also constitute the absolute minimum for the Gateway.
Practically, resource requirements will be even higher since it will have to perform the
orchestrating of several computations at the same time.

When looking at real-world settings, we do not suggest to do such an extreme shift but
rather to build a hybrid between classical systems and our approach. I.e., core components
remain able to store data and to do complex data processing. It is then possible to employ
SMC on the input data until an intermediary result is achieved which is deemed uncritical
regarding privacy. All further processing on it can then happen centrally on the core
component. Result data, created insights and reports can then also be saved on the core
component. We point out that identifying up to which step SMC has to be used and when
uncriticality of data is achieved depends on the semantic of the processed data and is a
highly non-trivial task. Nevertheless, we consider it sensible to show that our approach is
not only applicable as a whole but also hybrid application is conceivable.

When shifting fully to SMC, the storage ability can be removed from the core component.
Furthermore, CPU power becomes less important. A multi-core architecture is nevertheless
desirable for carrying out several computations at the same time and to cope with the
bottleneck discussed in Section 9.6.2.2 on page 159.

When applying the hybrid approach, existing data platforms should already fulfill hardware
requirements.

Performance

Having a deployment at hand which suffices the hardware requirements described in the
previous paragraph we can compare the time for executing computations. For that, we
refer to the measurements conducted in Chapter 6 and perform an approximation for the
durations in classical architectures.

Assuming an input of 100 lines, each peer has data of ∼1300 Bytes. Sending this to the core
component in parallel by each peer costs 0.18 ms for latency and 0.0104 ms for transmission
via a 1 Gbit link. When executing the algorithms centrally, the computation time is in
the range of 0.1–0.2 ms. Another transmission happens when transferring the result to
the client. Since this takes place in both architectures likewise, we omit this from our
comparison. We gain an overall duration of ∼0.4 ms.

When applying SMC the whole process is dominated by the costs for execution of SMC.
We can hence omit the overhead introduced by our management framework which is at
most in the range of a small number of seconds. The execution, however, costs around
7800 seconds for the union algorithm and 200 seconds for the Log-Rank computation, i.e.,
around 2.25 hours as a total.

From this, we obtain a performance penalty for SMC of 107 as multiplicative factor. This
is not fully in line with literature. E.g., Yakoubov et al. [YGS+14] identify a multiplicative
factor of 101–104. The reasons for the differences are located on several levels: Different
algorithms perform a varying number of basic operations. These basic operations also
vary strongly in their execution performance. Lastly, the available measurements utilize
various implementations of SMC. This impedes reliable comparison.

We have summarized all our findings in Table 10.1.

178 10. Advantages and Disadvantages of applying SMC
T

a
b
le

1
0
.1:

S
ch

em
a
tic

ov
erv

iew
of

th
e

com
p
arison

b
etw

een
classical

ap
p
roach

es
an

d
ou

r
solu

tion
.

O
w

n
d
ata

alw
ay

s
refers

to
th

e
sen

sor
d
ata

of
th

e
in

d
iv

id
u
al

p
eer

in
q
u

estio
n
,

a
ll

d
ata

alw
ay

s
refers

to
th

e
sen

sor
d
ata

collected
b
y

all
p

eers.

C
a
tego

ry
C
la
ssica

l
A
rch

itectu
res

O
u
r
A
p
p
roa

ch

P
ro
xies

C
o
re

P
ro
xies

C
o
re

In
fr
a
str

u
c
tu

r
e

C
o
m

p
o
n

en
ts

o
co

llect
o
w

n
d

a
ta

o
fo

rw
a
rd

o
w

n
d

a
ta

o
sto

re
a
ll

d
a
ta

o
p
ro

cess
a
ll

d
a
ta

o
sin

g
le

p
o
in

t
o
f

a
ccess

o
co

llect
o
w

n
d

a
ta

o
sto

re
o
w

n
d
a
ta

o
p
ro

cess
o
w

n
d

a
ta

o
p
a
rticip

a
te

in
S

M
C

o
m

a
n

a
g
e

S
M

C
sessio

n
s

o
sin

g
le

p
o
in

t
o
f

a
ccess

N
etw

o
rk

+
o
u

tb
o
u

n
d

co
n
n

ectio
n

s
o
n

ly
o

req
u

est
a
n
sw

erin
g

–
in

-
a
n
d

o
u

tb
o
u
n

d
co

n
n

ectio
n
s

o
req

u
est

tra
n
sla

tio
n

D
a
ta

P
r
o
te

c
tio

n

T
ru

st
o

crea
te

o
w

n
d

a
ta

o
a
ccess

co
n
tro

l
to

w
a
rd

s
clien

ts

–
sto

re
a
ll

d
a
ta

–
p
ro

cess
a
ll

d
a
ta

o
crea

te
o
w

n
d

a
ta

+
sto

re
o
w

n
d
a
ta

+
p
ro

cess
o
w

n
d

a
ta

+
fo

rm
a
lly

p
ro

v
en

S
M

C
p

ro
to

co
ls

o
(a

ccess
co

n
tro

l
to

w
a
rd

s
clien

ts)

C
o
n

fi
d
en

tia
lity

–
d
a
ta

fo
rw

a
rd

ed
to

co
re

–
rea

d
a
ccess

to
a
ll

d
a
ta

+
d
a
ta

rem
a
in

s
lo

ca
l

+
n
o

rea
d

a
ccess

to
d

a
ta

+
n
o

rea
d

a
ccess

to
resu

lts

In
teg

rity
–

d
a
ta

fo
rw

a
rd

ed
to

co
re

–
w

rite
a
ccess

to
a
ll

d
a
ta

+
d
a
ta

rem
a
in

s
lo

ca
l

+
n
o

w
rite

a
ccess

to
d

a
ta

+
n
o

w
rite

a
ccess

to
resu

lts

A
v
a
ila

b
ility

o
o
u

ta
g
e

a
ff

ects
n

ew
d

a
ta

+
n
o

eff
ect

o
n

h
isto

ric
d

a
ta

+
h
ig

h
a
v
a
ila

b
ility

+
red

u
n
d

a
n
cy

o
o
u

ta
g
e

a
ff

ects
n

ew
d

a
ta

–
a
n

d
h
isto

ric
d

a
ta

o
d
a
ta

b
a
ck

u
p

+
sta

telessn
ess

+
sessio

n
reco

v
ery

+
p

eer
o
rch

estra
tio

n

P
r
iv
a
c
y

D
a
ta

M
in

im
iza

tio
n

–
u
sa

g
e

p
u

rp
o
ses

in
d

ep
en

d
en

t
fro

m
p

eers

–
a
lso

u
n
k
n

o
w

n
to

p
eers

–
rep

u
rp

o
sin

g
o
f

d
a
ta

p
o
ssib

le
a
fter

co
llectio

n
+

n
ew

p
u

rp
o
ses

a
n
d

co
m

p
u
ta

tio
n

s
k
n

o
w

n
to

p
eers

+
o
n

ly
p

erfo
rm

in
g

p
red

eterm
in

ed
co

m
p

u
ta

tio
n

s

+
d
efi

n
ed

p
u
rp

o
ses

U
n

lin
k
a
b

ility
—

–
p
h
y
sica

l/
lo

g
ica

l
p

o
o
lin

g
o
f

a
ll

d
a
ta

+
sto

re
o
n
ly

o
w

n
d
a
ta

+
p
h
y
sica

l/
lo

g
ica

l
sep

a
ra

tio
n

+
n
o

k
n

o
w

led
g
e

a
b

o
u

t
so

u
rce-to

-d
a
ta

rela
tio

n
sh

ip

+
d
eco

u
p

le
resu

lts
fro

m
d

a
ta

so
u

rces

T
ra

n
sp

a
ren

cy
–

n
o

k
n
o
w

led
g
e

a
b

o
u
t

p
ro

cessin
g
,

–
d
a
ta

u
sa

g
e,

a
n

d
clien

ts

+
k
n
o
w

led
g
e

a
b

o
u
t

clien
ts’

q
u

eries
+

fu
ll

k
n
o
w

led
g
e

a
b

o
u
t

p
ro

cessin
g
,

+
d
a
ta

u
sa

g
e,

a
n
d

clien
ts

+
a
cco

u
n
ta

b
ility

+
k
n
o
w

led
g
e

a
b

o
u
t

clien
ts’

q
u

eries

In
terv

en
a
b

ility
–

n
o

co
n
tro

l
o
v
er

o
w

n
d

a
ta

+
a
ccess

co
n
tro

l
to

w
a
rd

s
clien

ts
+

fu
ll

co
n
tro

l
o
v
er

o
w

n
d
a
ta

+
v
eto

m
ech

a
n
ism

+
a
ccess

co
n
tro

l
to

w
a
rd

s
clien

ts

P
e
r
fo
r
m

a
n
c
e

R
eso

u
rce

C
o
n

su
m

p
tio

n
+

sim
p

le

+
lo

w
-en

d

+
slid

in
g
-w

in
d

o
w

sto
ra

g
e

+
sin

g
le

h
ig

h
-en

d
co

m
p

o
n

en
t

o
ed

g
e

co
m

p
u

tin
g

d
ev

ices
n

ecessa
ry

–
lo

n
g
-term

sto
ra

g
e

–
m

u
lti-co

re
C

P
U

d
esira

b
le

+
co

m
m

o
d

ity
h
a
rd

w
a
re

o
m

u
lti-co

re
C

P
U

E
x
ecu

tio
n

T
im

e
+

in
d

ep
en

d
en

t
fro

m
p

eers
+

in
ra

n
g
e

o
f

m
illiseco

n
d

s
–

d
ep

en
d

s
o
n

n
u

m
b

er
a
n

d
reso

u
rces

o
f

p
eers

–
d
ep

en
d

s
o
n

n
etw

o
rk

–
in

ra
n

g
e

seco
n

d
s

to
h

o
u

rs

Part III

Conclusion

11. Conclusion

In this thesis, we set our goal to better understand characteristics of solutions based on
Secure Multiparty Computation (SMC) and to build a fully privacy-preserving service
with SMC at its core. We used several research questions as a guidance during this task.
In the following, we provide answers to the questions and present an overview of our
contributions to the topic. Based on them, we conclude the thesis by giving an outlook
on further problems to be addressed in the area of SMC.

11.1 Central Findings and Contributions

We elaborate our findings by answering the questions stated in Chapter 1.

Research Question Q1 – Which understanding of privacy can be used to create
privacy-preserving technology?

In Chapter 2, we elaborated on several concepts of privacy of the last centuries. In the late
19th century, Warren and Brandeis identified that the protection of certain private affairs
was not yet legally considered. Examining law like slander and libel, the law of defamation
as well as the early copyright, they came to the conclusion that a new personal right should
be formulated, the right to privacy. Their fundamental notion of privacy is to decide
oneself how much own information should be shared with the outer world. Furthermore, it
includes the freedom to withdraw from the world when desired. In the middle of the 20th
century, this theory is developed further by Alan Westin. He restated and strengthened the
personal right of having control over own personal information and to decide oneself how
and when to communicate. Furthermore, he stated that privacy is constitutive for other
civilatory achievements, i.e., personal autonomy as well as balancing the enforcement
of social norms and legal rules on the one hand and freedom of the individual on the
other hand. Against the background of technological changes, Nissenbaum reframed the
understanding of privacy. She turned away from the perception that some information
are inherently private while others never are. Instead, privacy is given if the person about
whom the information is considers that information to be adequate in the context where it
is communicated. In turn, privacy violations happen if some information is made available
in another context or information is moved from one to another context without consent.
We further considered privacy frameworks like the Global Privacy Standard, Privacy by
Design and the ISO/IEC 29100 Privacy Framework. Finally, we selected a privacy notion
initially established by Pfitzmann, Rost, et al. They followed the established practice to

182 11. Conclusion

dissect security into the protection goals confidentiality, integrity, and availability, and
applied the same method to privacy. This also results in a triad of protection goals:
unlinkability, transparency, and intervenability. It complements the security triad and
uses it as a premise. In particular, confidentiality is a necessary foundation for privacy,
but not sufficient to realize it. In the subsequent years, the notion found wide-spread
adaptation, on the national level as well as the international level of the European Union.

Research Question Q2 – What are the performance characteristics of SMC and
which environments for application do they suggest?

In Chapters 4 and 5, we performed baseline measurements of the state-of-the-art SMC
framework Fresco. Using a simple use case, we evaluated the behavior of SMC compu-
tations with respect to resource consumption. We considered the dimensions of wall-clock
duration, CPU cycles and instructions, heap and stack memory consumption, and the
amount of transmitted packets and Bytes over the network. As variable parameters we
manipulated the setting—the number of participating peers, input elements per peers—,
the network—the latency, transmission rate and packet loss—and the host properties—the
number of CPU cores and their frequency.

Our analyses reproduced the insight that SMC computations are mainly communication
bound. As a consequence, network latency has the strongest influence on the duration of
the computations. Even with latencies which are normal for Internet or mobile Internet
environments, the duration is already prohibitive for real-time use cases. An interactive
setting can be imagined, but this depends on the actual computation being implemented.
However, batch computations with no strict time constraints are well supported.

The next strongest parameter is the number of peers. A strictly linear relationship could
be identified. Theoretically, one would expect a quadratic increase, since the group of peers
builds a clique where every pair of parties performs an equal amount of communication
during the computation. However, this communication happens in parallel which reduces
the increase to a linear dependency. The CPU is not challenged in a notable way.

Additionally to systematic measurements we also performed use case measurements, emu-
lating intranet, Internet and mobile Internet settings. Here, we could confirm the previous
statements.

From our measurements we conclude as follows: at the time of writing, SMC is mainly
suitable for settings in which the network latency is low and transmission rate exceeds
1 MByte. Requirements for the actual peers are of secondary interest, however, a low
amount of GBytes of RAM should be available. Due to this reason, in the architecture
of Chapters 7, 8 and 9, we focus on the intranet environment as it is present in smart
environments and smart buildings. Further requirements for the architecture have been
derived as part of the next question.

Research Question Q3 – Which infrastructural requirements must be addressed
when applying SMC in domains with critical data and which privacy require-
ments are then fulfilled?

In Chapter 6, we selected a use case from the medical sector. It demonstrates a setting in
which application of SMC is highly desirable: a multi-centric study is carried out amongst
several institutions with different groups of participants. Merging the obtained data yields
more reliable results than considering the individual institutions’ outcomes separately.
However, permission to data combination and fulfillment of data protection requirements
normally imply a high organizational overhead. We showed how SMC can be applied
to achieve data combination in a secure and privacy-preserving manner while avoiding

11.1. Central Findings and Contributions 183

the need for organizational measures. The data of individual institutions is always kept
confidential, making sharing agreements superfluous.

Concretely, we implemented the established Log-Rank test for evaluating Kaplan–Meier
estimators as a secure protocol. The first milestone was rewriting the computation so
that multiple input sources are supported. On this foundation, we could then design the
secure protocol. For that, we employed the union algorithm of [BA12] and real number
arithmetic using fixed point numbers for the statistical part.

We derived several insights from carrying out this task which supported our further steps
to develop a service architecture around SMC: the infrastructure of the service has to take
into consideration how peers can be addressed and reached. Also, the network has to sup-
port the interaction between the individual peers for computation. To each peer and its
endpoint, a cryptographic identifier has to be assigned for identification. In the use case
for our service architecture, the critical data should be initially distributed since privacy-
preserving techniques “on top” of centralized storage typically do not achieve the desired
privacy goals. To enable automatic computation, the data collected by the data sources
must exhibit certain elements of conformity. Furthermore, we have to support selection
among multiple protocols, several kinds of data and, optionally, the application of a pre-
processing function (e.g., aggregation, filtering) at runtime. Lastly, orchestration measures
must setup and synchronize the execution of the secure computations. A management and
monitoring layer should ensure the success of the process.

Privacy protection goals are already fulfilled by SMC to some degree. Its application
achieves data minimization and unlinkability. However, transparency and intervenability
are not realized out of the box. Hence, we have to consider their fulfillment in particular
when designing the service.

Like in the chapters before, we also conducted performance measurements to assess our
solution. The differences are that the addressed problem is harder and consequently the
employed algorithm is more sophisticated. It contained not only arithmetic but also binary
(set) operations. Furthermore, the implementation is not based on BGW [BOGW88]
anymore, but SPDZ [DPSZ12, DKL+13].

In general, we can confirm our observations from the previous chapters. This is especially
valid for the insight that network parameters have a notably stronger influence on the
overall performance than host parameters. Due to the higher algorithmic complexity this
effect is significantly stronger.

We found out that basic arithmetic operations differ by orders of magnitudes in their
complexity. In particular, the division operation is comparatively costly, since it is realized
using the Goldschmidt algorithm [Gol64]. This approach converges against the result by
iteratively applying multiplications. I.e., division itself is not a basic operation.

Additionally, we performed real world measurements outside the testbed. In coopera-
tion with two medical institutions, the University Hospital of the Ludwig-Maximilians-
Universität München and the Charité Berlin, we conducted the same measurements over
the Internet. The results are in line with our testbed measurements. The overall computa-
tion from 10 to 100 input lines per peer took around 262 to 1229 seconds, where 50 %–70 %
fall onto the actual log-rank computation. These results again underscore our decision to
focus on intranet settings when developing an architecture for privacy-preserving process-
ing of sensor data.

Research Question Q4 – How must SMC be managed to work reliably in dy-
namic environments?

In Chapter 8, we present an approach to bridge the gap between the architectural assump-
tions SMC poses to its environment and the actual properties of dynamic environments.

184 11. Conclusion

We provide a management framework which acts as a wrapper around an SMC core which
handles the dynamic settings and provides the guarantees SMC needs to function reliably.

The most fundamental mismatches are: in a dynamic environment, the set of available
peers can change over time, and peers are not initially known to each other, nor do they
have the ability to perform secure and authenticated communication. This contradicts the
assumptions of SMC that a stable set of peers is given, and that they are aware of each
other to build a clique. Secure channels are a premise for the addressed SMC computations.
Furthermore, before performing a computation, peers must already have decided upon
which data to compute and which computation to carry out. This is not possible without
previous coordination. Similarly, the start of the computation has to happen roughly at
the same time in a synchronized manner. Furthermore, continuous availability cannot be
assumed in a dynamic environment. However, this has to be guaranteed since the SMC
computations itself are not robust in these terms.

We address these challenges as follows: a Gateway is deployed which acts as a management
and coordination node among the peers deployed in a given setting. It is discoverable by
multicast DNS and DNS-based Service Discovery. When peers connect to the Gateway,
they perform a pairing which establishes a trust relationship between them, provides the
means for encrypted communication, creates a control channel which allows the Gateway
to orchestrate the peer in terms of SMC computations and provides all peer information
about available data and computations to the Gateway. The Gateway in turn builds up
a directory of all currently available peers and their capabilities. During operation, the
Gateway is able to initiate computation sessions. It communicates the session to all peers
in question and performs orchestration so that the actual computation can be carried out.
For doing so, we developed a declarative Task Description Scheme that is able to describe
a desired computation result, including the peers to consider, the data type to use, an
optional preprocessing on the data to perform per peer and the actual computation type
to carry out. During the computation session, the Gateway monitors the process and
performs error handling and recovery if necessary.

We designed our framework in a way which abstracted from the actual SMC implementa-
tion. This enables us to exchange the latter without larger changes to our contribution.

Research Question Q5 – How can our architecture be extended in order to
realize a fully privacy-preserving service?

In Chapter 8, we achieved robust execution of SMC in the setting of dynamic environments.
Building upon these achievements, we proceed in Chapter 9 to create SMC as a service
which fulfills all desired privacy protection goals as identified in Chapter 2. The goal
is, hence, two-fold: creating a service out of SMC and realizing the expected privacy
properties.

For the first part, we extend the established Gateway solution. The Gateway becomes
the single point of contact for potential clients. This allows SMC to fit into the client-
server paradigm and the service-oriented architecture in dynamic environments. On the
foundation of the directory which has been built during the pairing of the peers, the
Gateway is able to inform clients about all available data and computations. In turn,
clients are enabled to request data using classical REST queries without having to know
about SMC themselves. Here, the Gateway acts as a translator which interprets the queries
sent by the clients and transforms them into valid SMC sessions. These are then executed
using the approach described above.

From our notion of privacy, unlinkability and data minimization can be fulfilled by SMC
itself. The aim is then to add the protection goals of transparency and intervenability.

11.2. Further Research Directions 185

We achieve this by adding a sophisticated access control layer: permissions for clients
are given by an authority, i.e., the Gateway or another specifically selected entity. These
permissions are formulated on the query level, i.e., it is possible to decide per query which
clients are allowed to access the corresponding data. Clients are extended with metadata,
e.g., the purpose of the data access and the type of the service for which the clients use
the requested data. The permissions are made explicit by stating them as authorization
certificates. This allows not only to check authorization at the Gateway while querying
data, but to forward the grant to all affected peers. Giving peers the full information about
the client, its query, and the reason for the data request realizes transparency on the side of
the peers. It allows them to perform further checks and to log the data for accountability.
Intervenability is realized by giving the peers a right to veto against data requests. If the
peer-side checks fail, peers are allowed to decide against providing their data for the current
request. Instead, they can refrain from cooperation and cancel the current participation.
This is communicated as an expected error, which is, in turn, handled by the orchestration
layer of the Gateway.

11.2 Further Research Directions

In this thesis, we examined the baseline performance of SMC, employed SMC in the real
world setting of multi-centric medical studies, and developed an architecture for applica-
tion of SMC in dynamic contexts. Yet, several challenges remain open for obtaining a
systematic understanding of performance and behavior of SMC.

Furthermore, there are several other current areas of research which could highly benefit
from the application of secure computation. We name two of them here: distributed ledger
technologies are currently understood as another candidate for realizing certain security
and privacy goals. A combination with SMC might yield more advanced privacy-preserving
architectures. Machine learning, on the other hand, is a technology that benefits from
access to high amounts of data. More often than not, data is confidential, privacy-critical
or at least pooled from several stakeholders. An application of SMC in this domain seems
to be a natural fit.

Comparable Benchmarking of Secure Computation Solutions

Our research of the state of the art unveils that there is a high heterogeneity on several
levels in the area of secure computation.

• There exist fundamentally different approaches. Garbled circuits, homomorphic en-
cryption, and (linear) secret sharing are the most important representatives. These
are accompanied by a multitude of special purpose solutions. These approaches
highly differ in terms of their premises for application, their exact security proper-
ties, their performance and their maturity. In consequence, the realms in which they
can be utilized also vary strongly.

• Given a single approach, e.g., secret sharing, different manifestations still have vary-
ing adversary models, their security is proven in different security models and appli-
cability depends on special premises like offline preprocessing to enable efficient com-
putation phases.

• Additionally, on the technical level, implementations differ: the API presented to
the user developing protocols highly varies from framework to framework. Some
present library-like objects and methods, allowing to construct circuits by invoking
predefined methods of fundamental operations (e.g., arithmetic operations), others
provide a compiler and demand some script, be it written in a special purpose lan-
guage or some established programming language like python.

186 11. Conclusion

This heterogeneity has negative implications: it is hard to systematically assess solutions
regarding their performance and resource consumption characteristics in a fair and com-
parable manner. Due to this reason, we highly encourage the design and development of
a testing and benchmarking framework. A testing harness should be given which allows
implementing the same algorithm on different technical foundations. Execution should
then allow to assess important factors like the execution duration, CPU cycles, network-
ing overhead and memory consumption in a comparable manner. Lastly, a set of standard
benchmarking problems should be established. They should cover the most relevant base
operations as well as some more realistic problems. The former category contains arith-
metic operations, comparison and bitwise operations. The latter can feature algorithms
like AES encryption and sorting.

Performance Analysis of Base Operations and SMC Profiling

In Chapter 6, we assessed an algorithm that makes use of several fundamentally different
operations. In a map-like structure, we used integer as keys, and needed operations like
comparison for sorting and equality for aggregating values of identical keys. The values of
the map itself were real numbers. Here, we performed arithmetic computation, covering
addition, subtraction, multiplication and division. Performance analysis and inspection
of the implementation provided the insight that division is the main factor driving the
complexity of the computation and, hence, severely increasing the execution time. As
future work, we consider it helpful to perform systematic analyses, providing insights in
the exact complexity of the individual base operations. A goal could be to enable profiling
of secure implementations, allowing to assess performance bottlenecks in greater detail,
identifying hot spots and perform focused improvements of the protocols in question.

Integration of Distributed Ledger Technologies

In Chapters 7 to 9 we presented an approach to integrate SMC into client-server archi-
tectures and to allow the execution of secure computations on demand by third parties.
We showed how such a solution can realize the privacy protection goals unlinkability,
transparency, and intervenability. Here, we touched the topic that peers could realize ac-
countability of data access based on the insights we made transparent in our approach.
As a future work, the development of an appropriate accountability solution should be
addressed.

In the last years, blockchain or distributed ledger technologies (DLT) emerged. A critical
premise for application is that several parties exist which provide a sufficient level of
cooperation. Only then, deployment of a blockchain is sensible. In our context, this
premise is naturally fulfilled by the peers, since they already cooperate in performing
common secure computations. Hence, we assume that our setting would well support the
application of DLTs and that it would benefit from such a solution since its provides an
approach to accountability which complements our architecture for secure computation.

Secure Machine Learning

Another highly promising trend of the last years is machine learning in general, and the
application of neural networks in particular. They perform remarkably well in a multi-
tude of settings and problem domains. In any case, a key for successful application is
the availability of big data as training material. In many domains, a big amount of data
becomes only accessible if it is collected from a high quantity of individual entities. This
immediately comes into conflict if the individual data points are personal data. Conse-
quently, we recommend as future work to further investigate how the tradeoff between
data usage and data protection can be solved, by making data available for aggregation

11.2. Further Research Directions 187

and building of machine learning models while keeping raw data inaccessible otherwise.
Here, already some approaches exist [MMR+17, PAE+17, BIK+17, WGC19], but more
should be done to understand the possibilities of privacy-preserving machine learning and
to enable wide-spread application.

188 11. Conclusion

Part IV

Appendix

A. Real-World Results of the Log-Rank
Test Evaluation

193

P
ro

to
co

l
in

vo
ca

ti
on

s
P

ro
to

co
l

b
at

ch
es

L
at

en
cy

[s
]

C
P

U
T

im
e

[s
]

T
ra

n
sm

it
te

d
D

at
a

[M
B

y
te

s]
a
lg

or
it

h
m

a
lg

o
p
a
rt

in
p

u
t

en
tr

ie
s

k
m

d
u

m
m

y
lo

g
ra

n
k

1
0

16
18

83
9

44
36

6
0.

45
40

0.
46

0a
0.

00
78

21
2
5

74
61

52
3

44
39

6
2.

33
00

2.
05

0
0.

03
04

59
5
0

15
04

04
69

44
43

1
5.

42
20

4.
40

5
0.

06
02

91
7
5

22
93

66
87

44
48

8
9.

08
50

7.
17

5
0.

09
13

11
1
0
0

29
56

96
94

44
54

9
11

.9
01

5
9.

62
0

0.
10

41
56

u
n

io
n

1
0

11
72

36
2

58
51

7
0.

66
55

0.
71

0
0.

00
19

39
2
5

47
31

85
5

81
84

4
2.

03
60

2.
11

5
0.

00
40

51
5
0

12
85

08
23

10
91

51
5.

09
65

5.
22

5
0.

00
75

49
7
5

22
83

38
76

14
03

83
8.

96
75

9.
13

5
0.

01
08

49
1
0
0

31
60

17
73

14
05

69
12

.5
84

0
12

.7
45

0.
01

38
19

k
m

sm
c

lo
g
ra

n
k

10
10

70
17

6
14

02
4

18
2.

16
95

4.
23

0
6.

95
21

98
25

24
97

18
2

14
04

3
28

9.
90

70
8.

35
5

14
.8

60
47

9
50

50
33

94
5

14
06

7
42

0.
45

15
15

.5
35

28
.2

12
92

9
75

76
76

49
5

14
09

6
52

9.
66

70
22

.9
00

41
.9

59
58

6
10

0
98

96
50

7
14

11
9

65
2.

06
90

30
.0

70
53

.8
48

91
4

u
n

io
n

10
67

16
81

37
29

7
80

.2
47

0
2.

62
5

2.
14

35
41

25
27

15
94

4
52

15
7

16
5.

55
65

8.
23

0
6.

68
09

32
50

73
82

40
0

69
53

2
30

8.
74

55
21

.4
25

16
.6

81
84

3
75

13
12

19
96

89
42

9
49

9.
77

60
38

.1
05

29
.2

62
29

8
10

0
18

16
33

40
89

50
0

57
6.

96
65

52
.9

35
39

.4
10

62
5

T
ab

le
A

.1
:

T
h
e

re
su

lt
s

of
th

e
re

a
l-

w
or

ld
m

ea
su

re
m

en
t

of
th

e
K

ap
la

n
–M

ei
er

es
ti

m
at

io
n

an
d

it
s

lo
g-

ra
n
k

te
st

ev
al

u
at

io
n
.

W
e

al
w

ay
s

sh
ow

th
e

m
ed

ia
n

va
lu

e
of

10
ru

n
s

p
er

co
n

fi
g
u
ra

ti
on

.

a
T

h
e

C
P

U
m

ea
su

re
m

en
ts

a
re

in
v
o
k
ed

a
t

a
h
ig

h
er

le
v
el

o
f

th
e

p
ro

g
ra

m
co

d
e

th
a
n

th
e

ti
m

e
m

ea
su

re
m

en
ts

.
T

h
er

ef
o
re

,
it

ta
k
es

a
sl

ig
h
tl

y
h
ig

h
er

b
u
t

co
n
st

a
n
t

ov
er

h
ea

d
in

to
a
cc

o
u
n
t.

List of Figures

2.1 The six protection goals for privacy engineering [HJR15] 14

3.1 Different usage models for SMC by [ABPP16] 28

4.1 Topology of the test setup . 43

4.2 The impact of polled memory profiling on number of CPU cycles consumed
by the measured process . 47

4.3 The impact of polled memory profiling on number of instructions performed
by the measured process . 47

4.4 The impact of the number of input elements on the execution time 49

4.5 The impact of the number of input elements on the number of consumed
CPU cycles . 49

4.6 The impact of the number of input elements on the maximum allocated
stack memory . 50

4.7 The impact of the number of input elements on the maximum allocated
heap memory . 50

4.8 The impact of the number of input elements on the amount of transmitted
packets . 51

4.9 Amount of packets transferred over the time of a SMC session with 1000
input points. Vantage point is the second peer in a set of three. 52

4.10 The impact of the number of peers on the execution time 53

4.11 The impact of the number of peers on the number of consumed CPU cycles 54

4.12 The impact of the number of peers on the maximum allocated heap memory 55

4.13 The behavior of the garbage collector regarding heap memory during a
computation (detailed view of run 26, 27, and 28 with 15 nodes) 55

4.14 The impact of the number of peers on the amount of transmitted packets . 56

4.15 The impact of the number of CPU cores and their frequency on the execution
time . 57

4.16 The impact of the number of CPU cores and their frequency on the number
of consumed CPU cycles . 58

4.17 The impact of transmission rate on the execution time 59

4.18 The impact of transmission rate on the number of consumed CPU cycles . . 60

196 List of Figures

4.19 The impact of transmission rate on the amount of transmitted packets . . . 60

4.20 The impact of transmission rate on the length distribution of the transmit-
ted packets. 61

4.21 The impact of packet loss on the execution time 62

4.22 The impact of packet loss on the number of consumed CPU cycles 63

4.23 The impact of packet loss on the amount of transmitted packets 63

4.24 The impact of packet loss on the amount of transmitted Kbytes 64

4.25 The impact of network latency on the execution time 65

4.26 The impact of network latency on the number of consumed CPU cycles . . 66

4.27 The impact of network latency on the number of CPU instructions 66

4.28 The impact of network latency on the amount of transmitted packets 67

4.29 The impact of network latency on the execution time depending on paral-
lelization by utilization of 8 cores per node. 68

4.30 The impact of network latency on the execution time depending on paral-
lelization compared by the number of cores. 68

4.31 The impact of network latency on the execution time depending on paral-
lelization compared by the number of cores. 69

4.32 The impact of protocol parallelization on the amount of transmitted packets 71

5.1 Execution time in the use cases . 82

5.2 CPU cycles in the use cases . 83

5.3 Transmitted packets in the use cases . 83

6.1 Visualization of the example data from Table 6.1. Each decrease in the line
indicates the occurrence of a corresponding amount of events. Each marker
on a horizontal line is the censoring of a participant. In the visualization a
clear distinction between the survival of the participants of the treatment
and the control group becomes clear. 88

6.2 Protocol invocations depending on the lines and peers. The union algorithm
is plotted depending on the overall number of input lines n ∗m. The log-
rank algorithm, in contrast, is linear in m and its complexity is independent
of the number of peers. 96

6.3 Batches depending on the lines and peers. When increasing the overall
number of input lines, the sorting network becomes bigger, leading to more
sequential computation batches. On contrast, the log-rank algorithm is
optimally implemented so that the number of sequential steps becomes in-
dependent from the number of input lines. 97

6.4 Time depending on the lines and peers. The computation time between
a TTP, a dummy implementation and real SMC varies by orders of mag-
nitudes. The reason is the increasing amount of network exchange which
becomes necessary with secure computation. It becomes visible that the
SMC algorithms mainly depend on the overall number of input lines. The
number of peers itself has only a subordinate influence. This matches our
expectations since communication to all peers can be parallelized. 99

List of Figures 197

6.5 CPU time depending on the lines and peers. We can also see that the CPU
is moderately more utilized when having more participating peers. The
reason are the steps necessary to manage and perform communication with
other peers (notwithstanding the communication delay itself). 100

6.6 Transmitted data depending on the lines and peers. The graph depicts the
amount of MBytes transferred between a single pair of hosts in the network.
In the SMC case, they nearly perfectly correlate to the amount of protocol
invocations. 100

6.7 Influences of network latency manipulation. The upper row shows the union
algorithm, the lower row the log-rank algorithm. It becomes clear, how
network latency influences the overall execution time while neither changing
CPU time nor the amount of packets transmitted. 101

7.1 Interactions between the clients, the SMC Gateway and the SMC peers. . 112

8.1 The state diagram of the peer . 124

8.2 The state diagram of the Gateway . 125

8.3 Discovery and pairing process between Gateway and peer 128

8.4 Orchestration process . 131

8.5 Peer-Internal Interaction . 138

9.1 Structure of a Permission Grant Request . 147

9.2 Request of a Permission Grant . 148

9.3 Structure of a Permission Grant . 149

9.4 Structure of a Computation Request . 151

9.5 Validation of an incoming request . 152

9.6 Grant Request Protocol: the duration of handling a single request inside
the Gateway component depending on the amount of requests performed
by the client. 158

9.7 Grant Request Protocol: saturation of the uwsgi request queue depending
on the amount of requests performed by the client. As long as the queue
is not saturated, all requests can be answered successfully. During higher
loads, requests are dropped during connection attempt. 158

9.8 Grant Request Protocol: the amount of successfully answered requests de-
pending on the amount of requests performed by the client. Up to a load of
170 requests per second, throughput increases proportionally and no drops
occur. Afterwards, the queue is filled and throughput stagnates on this level.158

9.9 Computation Request Protocol: the duration of handling a single request
inside the Gateway component depending on the amount of requests per-
formed by the client. This includes forwarding the request to all concerned
peers and waiting for their request acceptance. The biggest part of the
overall duration is constituted by the cryptographic actions to be taken for
the communication with the peers. 159

198 List of Figures

9.10 Computation Request Protocol: saturation of the uwsgi request queue de-
pending on the amount of requests performed by the client. During each
request, the Gateway contacts peers and waits for their response. The
longer time needed by each request already causes the queue to fill up when
requests come in with a delay of 100–200 ms. 160

9.11 Computation Request Protocol: the amount of successfully answered re-
quests depending on the amount of requests performed by the client. La-
tency of single requests restricts the amount of successful requests, since the
request queue is already filled between 5 to 10 requests per second. 160

9.12 Computation Request Protocol: the amount of successfully answered re-
quests depending on the amount of requests performed by the client. A
higher amount of Gateway processes correspondingly improves throughput. 161

10.1 Abstraction of state-of-the-art architectures 170

List of Tables

4.1 Assessment of SMC candidate frameworks for our performance evaluation . 38

4.2 Performance comparison SMC vs. TTP. Computations are counted in basic
(arithmetic) operations, communication in number of messages. 42

4.3 Maximum data latency where parallelization yields a benefit 70

6.1 Example data. For each t, the size of both risk sets and the number of
events (failures) are reported. Two cases appear: in transition from t = 1
to t = 2, two failures in the control group lead to a decrease of the risk set
from size 21 to size 19. In transition from t = 8 to t = 10, no failures are
reported in the treatment group. Nevertheless, the size decreases from 16
to 15. Here, censoring of a participant occurred. 87

6.2 Merged data table. If multiple parties provide partial study results, they
are merged in to a single data table like the one shown in Figure 6.1. 92

6.3 Comparison of the original log-rank algorithm with a variant where all di-
vision operations have been replaced by multiplication operations. The
impact on the number of protocol invocations, batches, and consequently
the execution time is very strong. 98

6.4 Comparison of the testbed and the real-world measurement results for the
union algorithm (median values). The input lines refer to the overall number
from the whole set of participants. The real-world results plausibly fall
between the results of the testbed. 103

6.5 Comparison of the testbed and the real-world measurement results for the
log-rank algorithm (median values). The input lines refer to the number
of lines the log-rank algorithm has to process after the merge step. The
real-world results plausibly fall between the results of the testbed. 103

8.1 TXT attributes of the Gateway announcement 125

10.1 Schematic overview of the comparison between classical approaches and our
solution. Own data always refers to the sensor data of the individual peer
in question, all data always refers to the sensor data collected by all peers. 178

A.1 The results of the real-world measurement of the Kaplan–Meier estimation
and its log-rank test evaluation. We always show the median value of 10
runs per configuration. 193

Listings

4.1 Calculating the distance between two GPS coordinates 39

4.2 Streaming Interface for Running Average 39

4.3 Secure Summation Protocol in Fresco v0.2 39

4.4 Host System . 43

4.5 Starting the Fresco Application . 46

4.6 Setting up artificial CPU core and frequency restrictions using the /sys
interface . 56

4.7 Setting up artificial bandwidth and network latency restrictions using tc . . 58

6.1 Kaplan–Meier Estimation with Log-Rank Test 90

6.2 Secure Union Set Protocol by [BA12] . 92

6.3 Secure Kaplan–Meier Estimation with Log-Rank Test 93

6.4 Host System Testbed . 94

6.5 Host System LMU . 95

6.6 Host System CB . 95

8.1 SRV Record of Gateway Announcement . 124

8.2 TXT record of Gateway announcement . 124

8.3 Task Description Scheme . 134

9.1 Peer Metadata . 143

9.2 GET /directory . 144

9.3 Realization of Predicates . 144

9.4 Permission Grant Request – Example . 150

9.5 Permission Grant – Example . 150

9.6 Computation Request . 151

9.7 Full Task Description . 154

Bibliography

[ABC+15] F. Armknecht, C. Boyd, C. Carr, K. Gjosteen, A. Jäschke, C. A. Reuter, and
M. Strand. A Guide to Fully Homomorphic Encryption. IACR Cryptology
ePrint Archive, pages 1–35, 2015.

[ABPP16] D. W. Archer, D. Bogdanov, B. Pinkas, and P. Pullonen. Maturity and Per-
formance of Programmable Secure Computation. IEEE Security and Privacy,
14(5):48–56, 2016.

[Ans18] Ansible. http://www.ansible.org, 2018.

[Aut18] AuthZForce. https://authzforce.ow2.org/bin/view/Main/, 2018.

[BA12] M. Blanton and E. Aguiar. Private and Oblivious Set and Multiset Opera-
tions. In Proceedings of the 7th ACM Symposium on Information, Computer
and Communications Security, Seoul, Korea, 2012. ACM Press.

[BCD+09] P. Bogetoft, D. L. Christensen, I. Damg̊ard, M. Geisler, T. Jakobsen, M. Krøi-
gaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach,
and T. Toft. Secure Multiparty Computation Goes Live. In Financial Cryp-
tography and Data Security, pages 325–343. Springer Berlin Heidelberg, 2009.

[BDNP08] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: A System for Secure
Multi-Party Computation. Proceedings of the 15th ACM Conference on Com-
puter and Communications Security, pages 257–266, 2008.

[Bea92] D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In
J. Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, pages 420–
432. Springer Berlin Heidelberg, 1992.

[BIK+17] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,
D. Ramage, A. Segal, and K. Seth. Practical Secure Aggregation for Privacy
Preserving Machine Learning. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 1175–1191, 2017.

[BLLP14] D. Bogdanov, P. Laud, S. Laur, and P. Pullonen. From Input Private to Uni-
versally Composable Secure Multi-Party Computation Primitives. Proceedings
of the Computer Security Foundations Workshop, pages 184–198, 2014.

[BLW08] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A Framework for Fast
Privacy-Preserving Computations. In S. Jajodia and J. Lopez, editors, Pro-
ceedings of the 13th European Symposium on Research in Computer Security,
pages 192–206, Málaga, Spain, 2008. Springer Berlin Heidelberg.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The Round Complexity of Secure
Protocols. In Proceedings of the 22nd Annual ACM Symposium on the Theory
of Computing, pages 503–513, 1990.

204 Bibliography

[BNTW12] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson. High-performance secure
multi-party computation for data mining applications. International Journal
of Information Security, 11(6):403–418, 2012.

[Bog13] D. Bogdanov. Sharemind: programmable secure computations with practical
applications. PhD thesis, University of Tartu, 2013.

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for
Non-Cryptographic Fault Tolerant Distributed Computation. Proceedings of
the 20th Annual ACM Symposium on the Theory of Computing (STOC),
pages 1–10, 1988.

[Bos16] Bosch. The Bosch IoT Suite. Whitepaper, Berlin, 2016.

[Bos17a] Bosch Software Innovations. Device management: How to master complexity
in IoT deployments. Whitepaper September, 2017.

[Bos17b] Bosch Software Innovations. Holistic IoT security. Whitepaper March, 2017.

[BOZ11] R. Bendlin, C. Orlandi, and S. Zakarias. Semi-homomorphic Encryption and
Multiparty Computation. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 169–188. Springer, 2011.

[BPPB11] K. Borcea-Pfitzmann, A. Pfitzmann, and M. Berg. Privacy 3.0 := Data Mini-
mization + User Control + Contextual Integrity. it - Information Technology,
53(1):34–40, 2011.

[BPW07] M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability
(RSIM) framework for asynchronous systems. Information and Computation,
205(12):1685–1720, 2007.

[BR11] K. Bock and M. Rost. Privacy By Design und die Neuen Schutzziele. DuD -
Datenschutz und Datensicherheit, 35(1):30–35, 2011.

[BSMD10] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos. SEPIA: Privacy-
preserving Aggregation of Multi-domain Network Events and Statistics. In
Proceedings of the 19th USENIX Conference on Security, Berkeley, CA, USA,
2010. ACM Press.

[BTr16] BTrace. https://github.com/btraceio/btrace, 2016.

[BTW12] D. Bogdanov, R. Talviste, and J. Willemson. Deploying Secure Multi-Party
Computation for Financial Data Analysis. In A. D. Keromytis, editor, Finan-
cial Cryptography and Data Security, pages 57–64. Springer Berlin Heidelberg,
2012.

[Bur11] M. Burkhart. Enabling Collaborative Network Security with Privacy-
Preserving Data Aggregation. PhD thesis, ETH Zürich, 2011.

[Can00] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

[Can13] R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In Proceedings of the 42nd IEEE Symposium on Founda-
tions of Computer Science, pages 136–145, 2013.

[Cav06] A. Cavoukian. Creation of a Global Privacy Standard. Technical report,
Information and Privacy Commissioner of Ontario, Ontario, Canada, 2006.

Bibliography 205

[Cav10] A. Cavoukian. Privacy by Design – The 7 Foundational Principles Imple-
mentation. Technical Report 2, Information and Privacy Commissioner of
Ontario, Ontario, Canada, 2010.

[CDN15] R. Cramer, I. B. Damgard, and J. B. Nielsen. Secure Multiparty Computation
and Secret Sharing. Cambridge University Press, New York, NY, USA, 2015.

[Cha81] D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Technical Note Programming Techniques and Data Structures,
24(2):84–88, 1981.

[Cha16] Chair of Network Architectures and Services, Technical University of Munich.
MeasrDroid. http://www.droid.net.in.tum.de, 2016.

[CK13a] S. Cheshire and M. Krochmal. DNS-Based Service Discovery. RFC 6763
(Proposed Standard), February 2013.

[CK13b] S. Cheshire and M. Krochmal. Multicast DNS. RFC 6762 (Proposed Stan-
dard), February 2013.

[CKV+02] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu. Tools for Pri-
vacy Preserving Distributed Data Mining. SIGKDD Explorations Newsletter,
4(2):28–34, 2002.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Composable
Two-Party and Multi-party Secure Computation. In Proceedings of the 34th
Annual ACM Symposium on Theory of Computing, pages 494–503, New York,
New York, USA, 2002. ACM.

[CS06] S. Cheshire and D. Steinberg. Zero Configuration Networking: The Definitive
Guide. O’Reilly Media, 2006.

[Cyb17] Cybernetica. https://www.cyber.ee, 2017.

[Dav10] S. Davies. Why Privacy by Design is the next crucial step for privacy pro-
tection. Technical Report November, London School of Economics & Privacy
International, 2010.

[DDN+17] I. Damg̊ard, K. Damg̊ard, K. Nielsen, P. S. Nordholt, and T. Toft. Confiden-
tial Benchmarking based on Multiparty Computation. In Financial Crypto-
graphy and Data Security, pages 169–187, 2017.

[DJN10] I. Damg̊ard, M. Jurik, and J. B. Nielsen. A generalization of Paillier’s public-
key system with applications to electronic voting. International Journal of
Information Security, 9(6):371–385, 2010.

[DKL+13] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart.
Practical covertly secure MPC for dishonest majority – Or: Breaking the
SPDZ limits. In Proceedings of the 13th European Symposium on Research in
Computer Security, pages 1–18, 2013.

[DOS17] I. Damg̊ard, C. Orlandi, and M. Simkin. Yet Another Compiler for Active
Security or: Efficient MPC Over Arbitrary Rings. ePrint, 2017.

[DPSZ12] I. Damg̊ard, V. Pastro, N. Smart, and S. Zakarias. Multiparty Computation
from Somewhat Homomorphic Encryption. In R. Safavi-Naini and R. Canetti,
editors, Advances in Cryptology – CRYPTO 2012, pages 643–662. Springer
Berlin Heidelberg, 2012.

206 Bibliography

[DSD+13] M. Djatmiko, D. Schatzmann, X. Dimitropoulos, A. Friedman, and R. Boreli.
Collaborative Network Outage Troubleshooting with Secure Multiparty Com-
putation. IEEE Communications Magazine, (November):78–84, 2013.

[EH11] D. Eastlake and T. Hansen. US Secure Hash Algorithms (SHA and SHA-based
HMAC and HKDF). RFC 6234 (Informational), May 2011.

[ElG85] T. ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

[Eur14] European Union Agency for Network and Information Security. Privacy and
Data Protection by Design – from policy to engineering. Technical report,
2014.

[Fre18] FRESCO: A FRamework for Efficient Secure COmputation.
https://github.com/aicis/fresco, 2018.

[Gei] M. Geisler. Viff, the Virtual Ideal Functionality Framework.
http://www.viff.dk.

[Gei10] M. Geisler. Cryptographic Protocols: Theory and Implementation. PhD thesis,
Aarhus University, 2010.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of the 41st annual ACM Symposium on Theory of Computing, 2009.

[Gen18] General Electrics. PREDIX – The Industrial IoT Application Platform.
Whitepaper, 2018.

[GH11] C. Gentry and S. Halevi. Implementing Gentry’s Fully-Homomorphic En-
cryption Scheme. In K. G. Paterson, editor, Advances in Cryptology – EU-
ROCRYPT 2011, pages 129–148. Springer Berlin Heidelberg, 2011.

[GHD18] How to use SPDZ: Alternative to DUMMY preprocessing? #312.
https://github.com/aicis/fresco/issues/312, 2018.

[GM82] S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental
poker keeping secret all partial information. In Proceedings of the 14th annual
ACM Symposium on Theory of Computing, pages 365–377, 1982.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of in-
teractive proof-systems. Proceedings of the 17th annual ACM Symposium on
Theory of Computing, pages 291–304, 1985.

[GMS08] V. Goyal, P. Mohassel, and A. Smith. Efficient Two Party and Multi Party
Computation Against Covert Adversaries. In Proceedings of the 27th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 289–306, Istanbul, Turkey, 2008.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game.
In Proceedings of the 19th Annual ACM Conference on Theory of Computing,
pages 218–229, New York, NY, USA, 1987. ACM.

[Gol64] R. E. Goldschmidt. Applications of Division by Convergence. PhD thesis,
Massachusetts Institute of Technology, 1964.

Bibliography 207

[Gol09] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, 2009.

[GPS] Calculate distance between two GPS coordinates.
http://www.androidsnippets.com/calculate-distance-between-two-gps-
coordinates.html.

[Gri07] P. A. Grillet. Abstract Algebra. Springer, New York, New York, USA, 2007.

[Han12] M. Hansen. Top 10 Mistakes in System Design from a Privacy Perspective
and Privacy Protection Goals. In J. Camenisch, B. Crispo, S. Fischer-Hübner,
R. Leenes, and G. Russello, editors, Privacy and Identity Management for
Life, pages 14–31. Springer Berlin Heidelberg, 2012.

[HEKM11] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster Secure Two-Party Com-
putation Using Garbled Circuits. In Proceedings of the 20th USENIX con-
ference on Security, number August, pages 8–12, San Francisco, CA, USA,
2011. ACM.

[HJR15] M. Hansen, M. Jensen, and M. Rost. Protection Goals for Privacy Engineer-
ing. In 2015 IEEE Security and Privacy Workshops, pages 159–166, 2015.

[HKS+10] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg.
TASTY: Tool for Automating Secure Two-Party Computations. Proceedings
of the 17th ACM Conference on Computer and Communications Security,
pages 451–462, 2010.

[Ish05] Y. Ishai. Constant-Round Multiparty Computation Using a Black-Box Pseu-
dorandom Generator. In Proceedings of the 25th annual international confer-
ence on Advances in Cryptology, pages 378–394, Santa Barbara, California,
USA, 2005. ACM.

[ISO11] ISO/IEC 29100:2011(E). Information technology – Security techniques – Pri-
vacy framework. Standard, International Organization for Standardization,
Geneva, Switzerland, 2011.

[KBD09] F. Kerschbaum, D. Biswas, and S. De Hoogh. Performance comparison of se-
cure comparison protocols. In Proceedings of the 20th International Workshop
on Database and Expert Systems Application, pages 133–136, Linz, Austria,
2009. IEEE.

[KDSB09] F. Kerschbaum, D. Dahlmeier, A. Schröpfer, and D. Biswas. On the practical
importance of communication complexity for secure multi-party computation
protocols. Proceedings of the 2009 ACM symposium on Applied Computing,
pages 2008–2015, 2009.

[KL08] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman &
Hall/CRC, 2008.

[KM58] E. L. Kaplan and P. Meier. Nonparametric Estimation from Incomplete Ob-
servations. Journal of the American Statistical Association, 53(282):457–481,
1958.

[KM03] J. P. Klein and M. L. Moeschberger. Survival Analysis: Techniques for Cen-
sored and Truncated Data, Second Edition. Springer, 2003.

208 Bibliography

[KMR14] V. Kolesnikov, P. Mohassel, and M. Rosulek. FleXOR: Flexible garbling for
XOR gates that beats free-XOR. Advances in Cryptology, pages 440–457,
2014.

[KOS16] M. Keller, E. Orsini, and P. Scholl. MASCOT: Faster Malicious Arithmetic
Secure Computation with Oblivious Transfer. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 830–
842, 2016.

[KPR18] M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making SPDZ great again.
Advances in Cryptology, pages 158–189, 2018.

[Kre17] B. Kreuter. Secure Multiparty Computation at Google. Real World Crypto
Symposium, 2017.

[KS08] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates
and applications. In L. Aceto, I. Damg̊ard, L. A. Goldberg, and M. M.
Halldorson, editors, Automata, Languages and Programming, pages 486–498.
Springer, 2008.

[KSS12] B. Kreuter, A. Shelat, and C.-H. Shen. Billion-Gate Secure Computation
with Malicious Adversaries. In Proceedings of the 21st USENIX Conference
on Security Symposium, pages 386–405, Bellevue, WA, USA, 2012. USENIX
Association.

[LHM10] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid pro-
totyping for software-defined networks. In Proceedings of the 9th ACM SIG-
COMM Workshop on Hot Topics in Networks, Monterey, California, USA,
2010. ACM.

[LP07] Y. Lindell and B. Pinkas. An Efficient Protocol for Secure Two-Party Com-
putation in the Presence of Malicious Adversaries. Advances in Cryptology,
pages 52–78, 2007.

[LS79] C. T. Lewis and C. Short. A Latin Dictionary. Clarendon Press, Oxford,
1879.

[Man66] N. Mantel. Evaluation of survival data and two new rank order statistics
arising in its consideration. Cancer Chemother Reports, 50(3):163–170, 1966.

[Mic18] Microsoft Corporation. Microsoft Azure IoT Reference Architecture.
Whitepaper, 2018.

[MMR+17] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y Ar-
cas. Communication-Efficient Learning of Deep Networks from Decentralized
Data. In Proceedings of the 20th International Conference on Artificial Intel-
ligence and Statistics, volume 54, Fort Lauderdale, Florida, USA, 2017.

[MNPS04] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — Secure Two-Party
Computation System. In Proceedings of the 13th conference on USENIX Se-
curity Symposium, pages 287–302, 2004.

[Moc87] P. Mockapetris. Domain names - implementation and specification. RFC 1035
(INTERNET STANDARD), November 1987. Updated by RFCs 1101, 1183,
1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535, 2673, 2845,
3425, 3658, 4033, 4034, 4035, 4343, 5936, 5966, 6604.

Bibliography 209

[MR92] S. Micali and P. Rogaway. Secure computation. Advances in Cryptology,
576:392–404, 1992.

[NAK+18] M. Niyazi, S. Adeberg, D. Kaul, A.-L. Boulesteix, N. Bougatf, D. F. Fleis-
chmann, A. Grün, A. Krämer, C. Rödel, F. Eckert, F. Paulsen, K. A. Kessel,
S. E. Combs, O. Oehlke, A.-L. Grosu, A. Seidlitz, A. Lattermann, M. Krause,
M. Baumann, M. Guberina, M. Stuschke, V. Budach, C. Belka, and J. Debus.
Independent validation of a new reirradiation risk score (RRRS) for glioma pa-
tients predicting post-recurrence survival: A multicenter DKTK/ROG anal-
ysis. Radiotherapy and Oncology, 127(1):121 – 127, apr 2018.

[Nis98] H. Nissenbaum. Protecting Privacy in an Information Age: The Problem of
Privacy in Public. Law and Philosophy, 17:559–596, 1998.

[Nis04] H. Nissenbaum. Privacy as contextual integrity. Washington Law Review,
79:119–157, 2004.

[NO07] T. Nishide and K. Ohta. Multiparty Computation for Interval, Equality, and
Comparison Without Bit-Decomposition Protocol. Public Key Cryptography,
pages 343–360, 2007.

[PAE+17] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow, and K. Talwar. Semi-
supervised Knowledge Transfer for Deep Learning from Private Training Data.
In Proceedings of the 5th International Conference on Learning Representa-
tions, 2017.

[Pai99] P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuos-
ity Classes. Advances in Cryptology, 1592:223–238, 1999.

[Per16] Perf Wiki. https://perf.wiki.kernel.org, 2016.

[PP72] R. Peto and J. Peto. Asymptotically efficient rank invariant test procedures.
Journal of the Royal Statistical Society, 135(2):185–207, 1972.

[PSSW09] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure Two-Party
Computation Is Practical. Advances in Cryptology, 5912:250–267, 2009.

[PW01] B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems
and its Application to Secure Message Transmission. Proceedings of the IEEE
Symposium on Security and Privacy, (May):184–200, 2001.

[RAD78] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On Data Banks and Privacy
Homomorphisms. Foundations of Secure Computation, pages 169–180, 1978.

[Ras17] Raspberry Pi Models. https://www.raspberrypi.org/products, 2017.

[RM09] B. K. Rashid Sheikh and D. K. Mishra. Privacy-Preserving k-Secure Sum Pro-
tocol. International Journal of Computer Science and Information Security,
6(2), 2009.

[Ros17] M. Rost. Bob, es ist Bob! FiFF-Kommunikation, (4):63–66, 2017.

[RP09] M. Rost and A. Pfitzmann. Datenschutz-Schutzziele — revisited. Datenschutz
und Datensicherheit - DuD, 33(6):353–358, 2009.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

210 Bibliography

[RZL13] R. Roman, J. Zhou, and J. Lopez. On the features and challenges of security
and privacy in distributed internet of things. Computer Networks, 57:2266–
2279, 2013.

[SDM15] Das Standard-Datenschutzmodell. Whitepaper, Konferenz der unabhängigen
Datenschutzbehörden des Bundes und der Länder, Darmstadt, 2015.

[Sha79] A. Shamir. How To Share a Secret. Communications of the ACM, 22(11):612–
613, 1979.

[Sie] Siemens. MindConnect IoT 2040. Product Sheet July 2018.

[Sie18] Siemens. MindSphere – Enabling the world’s industries to drive their digital
transformations. Whitepaper, Siemens, Plano, USA, 2018.

[SK03] S. Steinbrecher and S. Köpsell. Modelling Unlinkability. Privacy Enhancing
Technologies, 2760:32–47, 2003.

[SKM10] R. Sheikh, B. Kumar, and D. K. Mishra. A Modified ck-Secure Sum Protocol
for Multi-Party Computation. Journal of Computing, 2(2):62–66, 2010.

[Sny12] P. Snyder. Yao’s Garbled Circuits: Recent Directions and Implementations.
2012.

[TCF12] C. Thoma, T. Cui, and F. Franchetti. Secure Multiparty Computation Based
Privacy Preserving Smart Metering System. In Proceedings of the 44th North
American Power Symposium, 2012.

[Tim94] Timothy C. May. The Cyphernomicon: Cypherpunks’ FAQ and more, 1994.

[Tin19] tinder. Match Group, LLC, a Delaware limited liability company.
https://www.tinder.com, 2019.

[vMBC19] M. von Maltitz, D. Bitzer, and G. Carle. Data Querying and Access Control
for Secure Multiparty Computation. In Proceedings of the 16th IFIP/IEEE
International Symposium on Integrated Network Management, Washington,
DC, USA, 2019. IEEE.

[vMC18a] M. von Maltitz and G. Carle. A Performance and Resource Consump-
tion Assessment of Secret Sharing based Secure Multiparty Computation.
In J. Garcia-Alfaro, J. Herrera-Joancomarti, G. Livraga, and R. Rios, edi-
tors, Data Privacy Management, Cryptocurrencies and Blockchain Techno-
logy, pages 357–372. Springer International Publishing, Barcelona, Spain,
2018.

[vMC18b] M. von Maltitz and G. Carle. Leveraging Secure Multiparty Computation
in the Internet of Things. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services, pages 508–510,
New York, New York, USA, 2018. ACM Press.

[vMDC16] M. von Maltitz, C. Diekmann, and G. Carle. Taint Analysis for System-Wide
Privacy Audits: A Framework and Real-World Case Studies. In 1st Workshop
for Formal Methods on Privacy, Limassol, Cyprus, 2016.

[vMDC17] M. von Maltitz, C. Diekmann, and G. Carle. Privacy Assessment Using Static
Taint Analysis. In A. Bouajjani and A. Silva, editors, Formal Techniques for
Distributed Objects, Components, and Systems. FORTE 2017. Lectures Notes
in Computer Science, volume 10321. Springer International Publishing, 2017.

Bibliography 211

[vMSKC18] M. von Maltitz, S. Smarzly, H. Kinkelin, and G. Carle. A Management Frame-
work for Secure Multiparty Computation in Dynamic Environments. In Pro-
ceedings of 30th IEEE/IFIP Network Operations and Management Sympo-
sium, Taipei, Taiwan, 2018. IEEE.

[WB90] S. D. Warren and L. D. Brandeis. The Right to Privacy. Harvard Law Review,
4(5):193–220, 1890.

[Wes70] A. F. Westin. Privacy and Freedom. IG Publishing, New York, New York,
USA, 1970.

[WGC19] S. Wagh, D. Gupta, and N. Chandran. SecureNN: 3-Party Secure Com-
putation for Neural Network Training. In Proceedings of the 19th Privacy
Enhancing Technologies Symposium, Stockholm, Sweden, 2019.

[Yao82] A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science, Washington, DC,
USA, 1982. IEEE.

[Yao86] A. C. Yao. How to generate and exchange secrets. In Proceedings of the 27th
IEEE Symposium on Foundations of Computer Science, pages 162–167. IEEE
Computer Society Press, 1986.

[YGS+14] S. Yakoubov, V. Gadepally, N. Schear, E. Shen, and A. Yerukhimovich. A sur-
vey of cryptographic approaches to securing big-data analytics in the cloud.
In Proceedings of the 2014 IEEE High Performance Extreme Computing Con-
ference. IEEE, 2014.

[ZDT+16] M. Zanin, T. T. Delibasi, J. C. Triana, V. Mirchandani, E. Álvarez Pereira,
A. Enrich, D. Perez, C. Paşaoğlu, M. Fidanoglu, E. Koyuncu, G. Guner,
I. Ozkol, and G. Inalhan. Towards a secure trading of aviation CO2 allowance.
Journal of Air Transport Management, 56:3–11, 2016.

ISBN 978-3-937201-67-2

9 783937 201672

ISBN 978-3-937201-67-2
DOI 10.2313/NET-2019-07-2

ISSN 1868-2642 (electronic)
ISSN 1868-2634 (print)

2

