
Looping with Untyped
λ-calculus in Python & Go

Lambda calculus is an important formal system used in
theoretical computer science to describe computation.

The Y combinator introduces recursion into this language
and is defined as λf. (λx. f (x(x))) (λx. f (x(x))). In this
one-pager, we are going to practically derive some of its core
ideas. We will use our favorite untyped λ-calculus shell,
which is ipython3. Let’s get started.

user@box:~$ ipython3

In [1]:

The rules of λ-calculus only allow the following:
1. Referencing bound variables: given x, we may write x.
2. Defining anonymous functions: given e, we may write

λx. e. Formally, this is called lambda abstraction.
3. Calling functions: given e and x, we may write e(x).

Formally, this is called function application.
This is all we need to describe any computation. We won’t
need control flow statements, such as if, while, or for. We
won’t define variables and won’t define non-anonymous func-
tions. Of course, import os; os.system("python -c'...'")

and eval are prohibited. For convenience, we allow ourselves
a bit of arithmetic, namely the + function.

We will only use lambda and + to build our own infinite
loop. Our goal is to print all natural numbers. We want to
call print(n) for all n, til the physical limits of our underlying
finite machine (python’s recursion depth) stop us.

Since the print function is given, we reference it (rule 1).

In [1]: print(n)

NameError: name 'n' is not defined

Since n was not given, we get an error. To make n available
in this scope, we build a lambda abstraction (rule 2).

In [2]: lambda n: print(n)

In [2]: <function __main__.<lambda>>

We get a valid function. To test it, we apply the function
(rule 3) to our starting value, which gives the expected result.

In [3]: (lambda n: print(n))(1)

1

Now, we only need to print the remaining natural numbers.
The following recursive function1 would solve our problem:
def f(n): print(n)+f(n+1). Yet, the rules only permit to
define anonymous functions. We continue with a trick from
mathematics. We just assume stuff! We assume f already
exists and also assume f references our current function.

In [4]: lambda n: print(n)+f(n+1)

In [4]: <function __main__.<lambda>>

Let’s test.

In [5]: (lambda n: print(n)+f(n+1))(1)

1

NameError: name 'f' is not defined

1Why can we combine print and f with the + operator? The function
print returns None and + is not defined on None. We don’t see the ex-
pected TypeError: unsupported operand type(s) for +, since f never re-
turns. The cool kids say that f diverges.

There is no magic f in our scope. Since we don’t know f,
let’s assume someone will provide it for us.

In [6]: lambda f, n: print(n)+f(n+1)

In [6]: <function __main__.<lambda>>

Since f needs to refers to ourselves, we need to pass our-
selves along when calling ourselves recursively.

In [7]: lambda f, n: print(n)+f(f,n+1)

In [7]: <function __main__.<lambda>>

Looks good, we just need to provide the function f and
the starting value 1. Let’s mock f temporarily by

In [8]: (lambda f, n: print(n)+f(f,n+1))(..., 1)

1

TypeError: 'ellipsis' object is not callable

Works as expected, we print 1 and try to call ... after-
wards. Now we need a real implementation for f instead of
.... Our f should be the function we are currently imple-
menting. Copy and paste to the rescue!

In [9]: (lambda f, n: print(n)+f(f,n+1))(

...: lambda f, n: print(n)+f(f,n+1), 1)

1

2

3

...

985

986

987

RecursionError: maximum recursion depth exceeded

while calling a Python object

Goal achieved!

That escalated

quickly!

Debrief. As an exercise to the reader, simplify the previous
expression such that it fits in a single line. The solution is
below.

(lambda f: f(f,1))(lambda f, n: print(n)+f(f,n+1))

What is the type of f? Well, it’s a function, where the
first argument is a function, where the first argument is a
function, where the first argument is a function,, and the
second argument is a number.

We port our code to Golang – a statically typed language.

package main

import "fmt"

func main() {

func(f interface{}) {

f.(func(interface{}, int))(f, 1)

}(func(f interface{}, n int) {

fmt.Println(n)

f.(func(interface{}, int))(f, n+1)

})

}

gopher by
Renee French

CC BY 3.0

In fact, whenever we write interface{}, it should be
func(func(func(..., int), int), int). But since Golang,
as a statically typed language, does not permit infinite types,
we use interface{}, which is a type synonym for yolo.

Cheers.

