
DR
AF
T

Architectures for Fast and Flexible Software Routers

Paul Emmerich, Sebastian Gallenmüller, Rainer Schönberger, Daniel Raumer, and Georg Carle
Technical University of Munich

Department of Informatics
Chair of Network Architectures and Services

{emmericp|gallenmu|schoenbr|raumer|carle}@in.tum.de

ABSTRACT
Network experiments contribute greatly to advancements in
computer networks. Scientific prototypes being at the heart
of this research should be able to reflect realistic conditions
of current and future network environments. Only recently,
specialized software frameworks such as DPDK or netmap
have shown that handling 100 million packets per second is
possible on affordable commodity server hardware. Build-
ing on this development, we designed MoonRoute, a flexible
framework for building software routers with the ability to
reuse existing components. MoonRoute also allows for quick
prototyping of individual components in the packet process-
ing pipeline of a software router with the Lua scripting lan-
guage. Based on this framework, we discuss a proposed
architecture for high-speed software routers. Our reference
implementation of this architecture can saturate multiple 10
Gbit/s Ethernet ports with minimum-sized packets. These
properties of our architecture make MoonRoute an attrac-
tive framework for conducting network experiments, investi-
gating new components and applying them to network band-
widths of 40 Gbit/s and beyond.

MoonRoute, including the reference router implementa-
tion, runs on Linux and is available as free software under
the MIT license.

CCS Concepts
•Networks → Network experimentation;

Keywords
Software routers; User space networking; Lua; DPDK

1. INTRODUCTION
Creating quick and dirty prototypes is a simple and effec-

tive way to demonstrate the feasibility of new ideas in sci-
entific research. Network research in particular is driven by
an almost dogmatic belief in running code [15]. Though, af-
fordable small scale proof-of-concepts may have limited sig-

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

nificance in a real world scenario. The situation is currently
changing due to frameworks such as DPDK or netmap, which
enable high performance software implementations on af-
fordable hardware. We present MoonRoute, a framework to
realize software routers achieving performance figures cur-
rent implementations cannot provide [23, 40].

MoonRoute is an extensible framework for building soft-
ware routers employing a high-performance architecture. We
implement an architecture new to software routers by dis-
tributing packets between a simple, high-performance part
and a slower, more sophisticated processing path. This ar-
chitecture requires a new kind of batching called drop-out
batching, to make use of this concept. The router comprises
different modules glued together by the scripting language
Lua. These modules can either be written in Lua – for rapid
prototyping – or reuse existing C/C++ implementations for
optimal performance. A foreign function interface conve-
niently allows code reuse in Lua. Performance is further
increased by focusing on linear multi-core scaling, using im-
mutable data structures and avoiding shared states.

The main contributions of this paper are:

• A novel architecture for software routers

• A new concept for batched packet processing

• An open source router experimentation framework

The paper begins with a short overview over related work
in Section 2. We discuss the background in Section 3 ex-
plaining the approaches and frameworks for software routers.
Design principles for architecture and approaches to batch-
ing are presented in Section 4; details of MoonRoute’s imple-
mentation in Section 5. Benchmarking results, discussed in
Section 6, demonstrate that MoonRoute is 40% faster than
Click with batching and DPDK.

2. RELATED WORK
All major operating systems come with integrated routing

capabilities which have been subject to benchmarking [11,
40, 23, 16, 49]. Alternative software routers have been pro-
posed, the Click modular router being the most prominent
one. On introduction Click achieved a fourfold increase in
throughput over the Linux router while increasing flexibil-
ity at the same time [40]. The increased performance came
from avoiding the overhead from interrupt handling in favor
of polling, an optimization that has since been applied to the
Linux router [3] and it thus has caught up. Though, Click re-
mains an attractive framework in the scientific community
for prototyping and receives many improvements, such as

1

10.1145/1235

DR
AF
T

Packet

Hash

Redirect

q0

q1

qn

Figure 1: Receive side scaling

parallelization, batch processing, and IO optimizations [36,
13, 50, 51, 17, 39, 10].

In recent years, the performance of packet processing soft-
ware has seen improvements by moving from the default
network stacks to special-purpose packet IO engines such
as netmap [50], PF RING ZC [44], PacketShader IO engine
(PSIO) [29], or DPDK [33]. Utilizing these IO engines, per-
formance increases have been achieved for packet forwarding
applications [50, 36, 29, 23, 26]. Once again Click is used as
a benchmark of choice for netmap [50, 10], the PacketShader
IO engine [29, 36], or DPDK [10], which achieved between
a sixfold and a tenfold throughput improvement when using
a specialized framework as back-end for Click.

Click has also been used in the area of network function
virtualization (NFV): ClickOS implements service function
chaining (SFC) with the help of click [42]. NFV with SFC
is typically realized by connecting virtual machines, incur-
ring a large overhead. Thus, frameworks moving networking
functions from isolated VMs into containers or into embed-
ded modules have been developed [52, 46]. MoonRoute can
also be used as a NFV framework: we provide facilities to
interconnect modules implementing a specific function. Our
evaluation here is, however, focused on a router application.

3. BACKGROUND
MoonRoute and our reference router utilize several tech-

nologies and frameworks as building blocks. In the following
we discuss important aspects of them.

High performance NICs.
Modern NICs offer an extensive feature set improving the

performance of software routers. An important capability is
the support for multiple queues that can be used indepen-
dently from each other. For example, the Intel X540 we use
features 128 receive and transmit queues [32], other NICs
support up to 1536 [31]. Multiple transmit queues allow
using the NIC from multiple threads simultaneously. Multi-
ple receive queues are used to divide incoming traffic at the
NIC. Synchronization overhead is eliminated by assigning
CPU cores to queues for exclusive access. Incoming packets
can be distributed to receive queues by hashing over packet
headers; this is called receive side scaling (RSS) and illus-
trated in Figure 1. Explicit filters can also be configured,
e.g., to direct packets handled by the control plane (e.g.,
ARP and ICMP) to a different queue.

CPU and memory architecture.
Modern server CPUs have a three-level cache architec-

ture where the lower two levels are per-core exclusive (in
the 100 kB range per core) and the third (around 8 to 20 MB)

User space

NIC Kernel

NIC 1 NIC n

DPDK

libmoon

...

Master

userscript

Slave

userscript

execute API API

spawn

Figure 2: MoonGen architecture

shared among all cores. NUMA (non-uniform memory-access)
found in multi-CPU systems also needs to be considered:
PCIe devices are local to a single CPU. For such systems
accessing NICs from a remote CPU incurs an overhead.

DPDK.
The Data Plane Development Kit (DPDK) is an open

source framework for high-speed packet IO by Intel [33]. It
maps the whole PCIe memory space of a NIC into a user
space process, thereby giving an application exclusive ac-
cess to a NIC. DPDK comes with tightly integrated drivers
for NICs from a wide range of vendors [19]. These drivers
actively poll packets and the whole framework is heavily
optimized for batch processing of packets. Moreover, data
structures and memory allocators for packet buffers are sim-
plified and optimized.In addition to its performance, DPDK
provides extensive libraries of algorithms and data struc-
tures for packet processing. The wide range of supported
NICs and the included libraries make DPDK an ideal back-
end for MoonRoute.

libmoon.
libmoon [21, 22] is a Lua wrapper for DPDK with multi-

threading based on multiple independent LuaJIT [45] VMs
with utility functions for inter-VM communication. This
architecture, shown in Figure 2, is suitable to build a multi-
threaded software router. The independent nature of the
different threads is beneficial as we aim to avoid dependen-
cies between threads to ensure linear scaling. The combina-
tion of Lua with DPDK allows easy and flexible composition
of different router modules while still maintaining perfor-
mance. Prototyping of modules with JIT compiled scripts
is also feasible.

Design patterns for packet processing systems.
Network systems are often split into different tiers ranging

from simple and fast forwarding to complex handling of high-
level protocols. Routers can be split into two parts: The data
plane handles the forwarding of packets, the control plane
manages the routing table and implements high-level routing
protocols [35]. This separation is clearly visible in high-end
hardware routers where the two parts are often implemented
on different hardware units within the same chassis, e.g., in
Juniper [34] or Cisco [14] routers.

This separation also exists in software routers. For ex-
ample, the whole kernel implementation of the Linux router

2

DR
AF
T

can be interpreted as the data plane of the router. The con-
trol plane can be left to a third-party implementation like
BIRD [1], Quagga [2], or XORP [30] to provide the kernel
with the routing table. However, this still leaves significant
complexity like handling ICMP in the data plane – a task
with lower priority that could be moved to the control plane
to simplify the performance-critical part. Open vSwitch, a
software OpenFlow switch, slims down the data plane to
a bare minimum called the data path consisting only of a
table lookup. A second separate user-space process imple-
ments OpenFlow and manages the low-level rules used by
the data path [48]. These two components together rep-
resent the data plane of an OpenFlow system, the control
plane is an external OpenFlow controller [43].

Simple functions are typically fast and complex functions
slow. A good design clearly categorizes and separates func-
tionality to achieve a high performance.

4. MOONROUTE ARCHITECTURE
RFC 1812 [8] defines the basic functional requirements

for routers. We also focus on the following non-functional
requirements.

• High performance. One server, using currently avail-
able hardware, should be able to saturate multiple
10 GbE ports with minimum-sized packets.

• Multi-core scaling. As the trend in processing hard-
ware moves from multi-core to many-core architectures,
the router should incorporate the benefits and chal-
lenges of this development.

• Flexibility. It should be possible to change and add
functionality easily.

• Code reuse. Implemented components should be
reusable with as few changes as possible.

In the following, we elaborate how these requirements are
achieved in MoonRoute.

High performance & multi-core scaling.
Routers implemented with MoonRoute support multi-core

scaling by respecting the following design principles:

1. Use lock-free message queues for synchronization.

2. Avoid working on shared data structures.

3. Use immutable data structures if sharing is necessary.

Incoming packets are distributed across multiple CPU cores
at the NIC via the previously explained RSS feature, multi-
ple TX queues are used to merge the outgoing packets. This
offloads the challenging parts of packet flow parallelization
and serialization to hardware. As routing information has to
be shared among threads, we opted to provide an interface
to integrate an immutable data structure.

Multi-CPU systems feature multiple PCIe hierarchies; each
NIC has one local CPU. Other (remote) CPUs can only be
accessed through expensive inter-CPU connections. For op-
timal efficiency, incoming packets should be handled by the
local CPU to avoid unnecessary overheads.

Fast Path Slow Path

Receive
packet

Complex
packet?

Do fast
pro-

cessing

Enqueue
packet

Send
or drop
packet

no

yes

Dequeue
packet

Do
complex

pro-
cessing

Send
or drop
packet

Figure 3: Lock-free handling of complex packets

Flexibility & code reuse.
Flexibility and the ability to reuse existing code is a main

driver of software components in networking. The Click
router [40] is popular because of its modular structure. Users
customize software routers by changing the interconnects be-
tween predefined functional modules. However, adding new
functionality to Click is only possible by writing new ele-
ments in C++.

We go one step further and implement the main loop in
the scripting language Lua. This allows both changing the
interconnect between pre-defined modules and simple intro-
duction of new modules or algorithms. It also allows fast and
flexible prototyping by changing or adding core functionality
directly in Lua code as well as using modules optimized for
performance, which may be implemented in C. The reuse of
code is easily possible due to the foreign function interface
of LuaJIT which allows embedding C into Lua. In the latter
case, Lua code acts as glue, joining the modules together
and defining the packet flow. The main forwarding loop of
our reference router is less than 40 lines of code and consists
of calls to predefined blocks and interconnect logic.

4.1 Separation into slow and fast components
Following the design patterns discussed in Section 3, Moon-

Route splits the router into two main parts: Simple but effi-
cient components for forwarding, i.e., validity checks, lookups
in the routing table, and necessary packet modifications are
implemented in the fast path. Any packets requiring com-
plex actions, e.g., ICMP responses or ARP lookups are for-
warded to a slow path. In the following, we refer to all
directly routable packets as simple packets, to packets re-
quiring additional processing (e.g., TTL expired) as com-
plex packets. The slow path components also manage the
routing table used by the fast path. This combination is
roughly equivalent to what is offered by the router in the
Linux kernel.

Figure 3 shows a control-flow graph of a packet through
the fast and slow components. The slow path and fast path
run in separate threads and communicate and pass packets
via bounded lock-free queues. Note that the throughput of
complex packets is not critical and the fast path will simply
drop packets immediately if the communication queues over-
flow. In our implementation, the slow path is an order of
magnitude slower than the fast path. But it is still capable
of processing packets in the order of one million packets per
second, which is sufficient to handle ICMP responses (which
are typically rate-limited) and high-level protocols. The slow
path is also responsible for a seamless connection to the OS

3

DR
AF
T

Slow Path

Complex
Processing

Linux

Fast Path

config

...

p1 pn−1 pn

Fast Path

config

...

p1 pn−1 pn

Rx Port

PHY
Filter

+

RSS

Tx Port

PHY
CHK
Sum

Offload

Tx Port

PHY
CHK
Sum

Offload

Table Table

Thread

Processing module

Data structure

Packet flow, high load

Packet flow, medium load

Packet flow, low load

Configuration data flow

Data structure inclusion

Figure 4: MoonRoute architecture

(omitted from the figure for simplicity). Packets that must
be handled by the control plane, e.g., routing protocols, are
forwarded to the OS and handled by a third-party control
plane.

4.2 Architecture
MoonRoute contains three different types of components:

Fast path components perform fast packet forwarding
according to forwarding rules specified in a routing ta-
ble. Packet processing is done in batches using multi-
ple processing steps (p1, p2, ..., pn).

Slow path component performs multiple tasks:

• Handles complex packets, which cannot be pro-
cessed by the fast path.

• Performs synchronization for fast and slow path
units (manage shared data).

• Provides a user interface.

• Exchanges information with the underlying OS to
integrate third-party control planes.

Linux as underlying OS provides a general purpose net-
work stack for advanced packet processing and proto-
cols.

To allow scaling with an increasing number of CPU cores,
multiple identical instances of the fast path are created.
Each fast path runs in a separate thread pinned to a distinct
CPU core. In the following, we define the number of ingress
network ports as nrx and the number of egress ports as ntx.
The number of fast path processing units shall be nf , each

fast path can read from multiple NICs via a round-robin
arbiter. This configuration is read from a file on startup.
Figure 4 shows an example of the router architecture with
nrx = 1, ntx = 2 and nf = 2.

Rx and tx ports.
On each rx port, incoming packets are distributed among

all fast paths on the local CPU via hashing. Explicit hard-
ware filters configured on the NIC direct packets addressed
to the control plane to the slow path. Each tx port configures
nf + 1 tx queues. Note that all fast path units, regardless
of NUMA association, need to access a tx port.

Fast path.
Each fast path unit reads packets from its dedicated rx

queue on each rx port assigned to it in a round-robin fash-
ion. Figure 4 omits arbitration as this example uses only
one rx port to keep the figure simple. All processing steps
pi are user-replaceable modules. The last processing step
pn distributes the packets to the tx ports via a tx queue
associated with this fast path.

There are two communication interfaces to the slow path
via lock-free queues. The first escalates packets requiring
complex but low-priority processing to the slow path. The
second is a message-based synchronization interface to con-
figure fast path units during runtime. For example, this is
used for routing table updates.

Slow path.
The slow path manages the configuration and routing ta-

ble and can be managed via a command line interface (CLI).
It connects to all fast paths, all NICs, and the Linux kernel.

4

DR
AF
T

Processing step

A

A

B

A

C

B

A

A

A

B

B

C

(a) Arrays

Processing step

1

1

1

1

1

1

A

A

B

A

C

B

A

1

1

1

0

0

0

B

1

1

0

0

0

0

C

1

0

0

0

0

0

A

A

B

A

C

B

(b) Bit masks

Processing step

1

1

1

1

1

1

A

A

B

A

C

B

1

1

1

0

0

0

A

A

B

A

C

B

B

C

B

(c) Drop-out batching

Figure 5: Batch scattering

Routing table.
To efficiently utilize the CPU caches, one routing table

must be shared among all fast path instances. This repre-
sents a potential bottleneck for multi-core scaling. There-
fore, we need a lock-free data structure. However, lookup
data structures are often general-purpose implementations.
Routing tables are special cases with a very large read/write
ratio. One lookup is required per routed packet, but routers
on the Internet update their routing table only a few hun-
dred times per second [28]. These updates can be batched
since a small latency is of little consequence.

We implement a double buffering approach and maintain
two routing tables: an active and a passive one. The active
table is immutable and used by the fast path units, the in-
active table can be updated in the background by the slow
path, cf. Figure 4. The slow path periodically initiates a ta-
ble swap by sending a message to all fast paths which then
swap the used pointer before the next batch of packets is
processed. Once all fast paths have acknowledged the swap,
the slow path begins updating the previously active table.
This effectively immutable data structure in the fast path
avoids cache contention (cf. Section 4). This operation can
be implemented for any general-purpose data structure.

Similar solutions to multi-threaded scaling are used in
other routing table implementations. For example, the Linux
routing table uses the read-copy update (RCU) synchroniza-
tion mechanism provided by the kernel [47]. Another exam-
ple is the Poptrie data structure [7]. Both operate on a
finer granularity and only swap modified parts of the data
structure, we swap the whole table. Our approach is inde-
pendent from the routing table implementation, which can
be replaced. MoonRoute can be modified to support a na-
tively multi-threaded data structure if such a data structure
is to be benchmarked or tested.

4.3 Batch scattering
Batch processing is crucial to high-speed packet processing

in software [36, 50, 26]. Batches improve cache performance
as each processing step uses different memory regions and
code, thus affecting both instruction and data caches.

Each batch is represented in a statically sized array that
is passed to the processing units. However, different packets
within a single batch may require different processing. For
example, invalid packets must be dropped instead of being
forwarded, complex packets must be sent to the slow path.
Modules like firewalls can cause even more diverging paths
within the fast path.

Two approaches for batch scattering to handle packet
divergence found in the literature [36, 33] are: splitting
batches into multiple batches on demand (Figure 5a) and

using bit-masks to mask out packets for certain processing
steps (Figure 5b). We introduce a hybrid between the two
called drop-out batching (Figure 5a) that is optimized for
forwarding a few packets to the slow path as shown in Fig-
ure 5c. Different batch scattering algorithms can be used
depending on the processing steps. MoonRoute provides all
three variants shown in Figure 5.

Arrays.
Figure 5a shows batch scattering used to implement batch

processing in Click [36]. One processing step outputs multi-
ple arrays that are passed to the following processing steps.
A disadvantage shows if only few packets diverge from the
main processing path. This affects both the diverging pack-
ets and the normally processed packets. The former are
now in a small batch which affects performance, the lat-
ter need to be moved just to remove a few packets from
the original batch. Smaller batches can be rebatched, i.e.,
buffered and combined with the next batch of packets. This
avoids smaller batches at the cost of additional complexity
and overhead.

Bit masks.
A second approach is used in multiple modules of the

DPDK packet processing library [33]. Bit masks mask pack-
ets for processing steps as shown in Figure 5b. Processing
steps accept bit masks as additional inputs and outputs.
These bit masks are only as large as the maximum batch
size, i.e., 64 bit to 128 bit in a typical configuration. Only
packets with the corresponding bit set are processed by the
module, all other packets are ignored. Outputs of processing
steps mark packets in different bit masks. For example, a
module implementing RFC 1812 [8] validity checks can mask
out invalid packets and free the associated memory. Subse-
quent processing steps then ignore the invalid packets in the
batch completely and the packets are implicitly dropped at
the end as the output step ignores them as well.

This is based on the assumption that only few packets are
masked out, which is the case in the validity check exam-
ple. This approach still performs some unnecessary work for
masked out packets in the fast path. The total performance
is not impacted and flooding the router with packets that
must be masked out is not a threat. The router needs to be
able to handle the same amount of valid packets. An invalid
packet requires less processing time than a valid packet in
the fast path.

Drop-out batching.
We implement drop-out batching, a hybrid approach to

handle small path divergences, e.g., handling complex pack-

5

DR
AF
T

ets. As visualized in Figure 5c, the processing step also
operates on a bit mask and masks out packets, but it addi-
tionally gathers marked packets in a separate new batch.

Our reference router uses this in all processing steps ex-
cept the last: Distributing packets to different NICs is done
with batch scattering and rebatching, see Figure 6. The de-
cision for this technique is based on the assumptions that
simple packets requiring high processing performance (‘A’
in Figure 5c) constitute the biggest share and traverse the
same processing path; complex packets, requiring different
processing (‘B’ & ‘C’ in Figure 5c) may be treated with low
priority or dropped.

5. ROUTER IMPLEMENTATION
In this section, details about the MoonRoute reference

implementation and its building blocks are explained.

5.1 Packet processing modules
Lua code connects different processing modules. The mod-

ules are implemented in a mixture of C and Lua code and
provide a documented interface for use in the Lua program-
ming language. For most of the modules multiple implemen-
tations are available.

5.1.1 IP validity checking
MoonRoute performs an IP header validation described

by RFC 1812 [8]. It checks the length reported by the link
layer and the IP header length for the minimum value of 20,
the IP version, and the IP checksum. The last three tests are
already performed in hardware, so these results can be read
from the metadata of a packet. For simplicity, the total
length of the IP packet is not checked against the actual
packet length but merely if it is large enough to contain a
minimum sized header of 20 B.

5.1.2 Longest Prefix Matching
This module performs Classless Inter-Domain Routing as

described in RFC 4632 [25]. Our module is based on the
longest prefix matching (LPM) library in DPDK [20]. The
LPM module is a variation of the DIR-24-8 [28, 27] algo-
rithm which is based on a trade-off between lookup speed
and memory usage.

Our configuration allows up to 256 next hop entries result-
ing in a routing table size of 33.6 MB. A sufficient number
according to Asai et al. who found a median of 125 next hops
and an average of 219.5 (σ = 202.9) on n = 39 routers [7] in
December 2014.

Unfortunately, the DIR-24-8 algorithm does not scale to
IPv6. Our module is meant as a prototype and can easily be
replaced to test and benchmark other algorithms under real-
istic conditions. A prime candidate would be the Poptrie [7]
data structure. However, we include the DPDK LPM li-
brary by default as the license for the published source code
of Poptrie forbids commercial use [6] and is thus incompat-
ible with MoonRoute’s MIT license.

5.1.3 Route application
Looking up the route provides the required information

but does not modify the packet for forwarding. We perform
this step in a separate module for two reasons: flexibility
and performance. Maintaining flexibility, the contents of
the nextHop entry in the routing module are defined by the

packet

nextHop

mux
redirect

reBatch
txQueues

Figure 6: Packet distribution with rebatching

route application module and opaque to the routing mod-
ule. Our default module stores the MAC address of the
next hop and the associated interface. However, a more
complex module can store more information, e.g., to sup-
port equal cost multi-path routing, without modifying the
lookup table. The second reason is increased performance
due to better cache-locality when processing batches. The
lookup operates on the lookup table which stores only in-
dices into the next hop table. Since the information from
the next hop table is not yet required during lookup, it does
not have to be loaded into the cache while the destinations
for a whole batch are looked up. Thus, this two-step process
minimizes the overall cache pressure.

5.1.4 TTL decrement
This module updates the TTL field in the IP header ac-

cording to RFC 1812 [8]. Expired packets are forwarded to
the slow path for further processing.

5.1.5 Packet distribution
The final step sends out packets and causes the largest

diversion in paths taken by packets as different packets in
the same batch can be sent to different NICs. As shown in
Figure 6, this module implements a packet multiplexer con-
trolled by the nextHop entry. Näıvely splitting packets at
transmit time and immediately transmitting them results in
small transmit batches when using multiple NICs. Batching
at transmit time is important since the call into the driver
incurs an overhead independent of the batch size. There-
fore, we implemented rebatching, i.e., one queue per NIC in
the distributor module to accumulate packets to send out
larger batches at once. Each queue has a configurable size
and timeout to avoid starving and excessive latencies at low
loads. Queue management algorithms like RED [12] can also
be embedded in this step.

5.1.6 Packet filters
Three different filters are implemented for packet classifi-

cation and can be used to implement firewall rules or to for-
ward certain packets directly to the slow path. The first two
filters are hardware filters for Intel NICs. One matches layer
2 packets, e.g., to forward ARP packets directly to the slow
path. The second is a 5-tuple filter matching on layer 3 ad-
dresses and the layer 4 protocol and ports. This filter is used
to efficiently handle traffic addressed to the control plane.
The third filter is the DPDK ACL library [18] that also im-
plements 5-tuple filtering. It uses bit mask based batch scat-
tering for differentiated processing in the fast path. Hard-
ware filters can only choose an rx queue and thus a specific
fast path or the slow path.

6

DR
AF
T

5.2 Fast Path
The source code of the fast path main loop connecting the

submodules consists of only about 100 lines of Lua code and
is meant to be modified to customize MoonRoute. Packet
reception is handled via a round-robin arbiter, i.e., a loop
over all queues containing the packet processing logic. The
main component of the fast path is the interconnect between
the previously discussed modules, i.e., glue logic written in
Lua. It initializes several bit masks and calls the processing
steps; the reference router includes six such steps. The last
component are periodic tasks: flushing rebatching queues
in the packet distributor and handling commands from the
slow path.

5.3 Slow Path
The slow path handles complex packet processing and ad-

ditional low priority tasks in the same thread. Currently
the slow path is single-threaded since it only handles tasks
with a low priority or low throughput. By moving synchro-
nization and user interface tasks into a separate thread, the
functionality can be parallelized.

5.3.1 Routing table management
As mentioned in Section 4.2, the routing table is dou-

ble buffered to allow lock free-operation. The slow path
updates and synchronizes the tables from three different
sources: Static routes read from the router configuration
file, dynamic routes configured during runtime via a CLI,
and Linux routes extracted from the Linux host system.

Updating the routing table works as follows. Routing en-
tries are retrieved from these sources and the next hop IP
addresses are resolved to MAC addresses via the ARP table
that is also in the slow path. Our double buffered approach
to routing tables ensures that the slow path has exclusive
access to a copy of the routing table to modify it. Finally, a
pointer to the new routing table is sent to all fast path units
via the command queues. Fast paths confirm that they are
using the new table via a message back to the slow path.

5.3.2 Packet processing
The slow path receives and processes packets from three

sources: ARP packets arriving at the NIC ports are redi-
rected to the slow path where they are handled to maintain
an ARP table and to respond to ARP requests. Fast paths
deliver complex packets to the slow path for further process-
ing. Finally, the slow path provides Linux network interfaces
through which packets can be exchanged.

The slow path implements a full router but is less opti-
mized for performance. Packets generated by the slow path,
e.g., ICMP responses, are handled by this routing process
directly in the slow path without reentering the fast path.
This keeps the fast path as slim as possible.

Flows to local subnets (subnets with no next hop IP that
are directly reachable) also need special attention: the fast
path needs to know the MAC addresses of each directly
reachable host. It usually gets the required MAC address
from the routing table which directly stores the MAC ad-
dress to avoid an unnecessary ARP lookup. If the destina-
tion IP of a local subnet is unknown the packet is sent to the
slow path which performs the ARP lookup. A new dynamic
/32 route to the destination IP is created by the slow path.
Hence, subsequent packets to the same destination can be
handled by the fast path.

5.4 Interaction with the Linux network stack
MoonRoute is transparent to router control planes and

can exchange packets with the host stack using DPDK’s
Kernel Network Interface (KNI) library. NIC ports bound
to DPDK are invisible to the Linux kernel, they are exclu-
sively being used by DPDK and the kernel is not aware of
them. Therefore, we create a virtual twin with the same
MAC for each physical port. All egress traffic from Linux
to these virtual ports is forwarded to their physical counter-
part. Ingress ARP packets are cloned and forwarded to fill
the Linux ARP table. Incoming packets are also sent to the
virtual port if the interface itself is addressed

Advanced routing protocols implemented in BIRD [1],
Quagga [2], or XORP [30] running on the Linux host can
be made available to MoonRoute. They see all necessary
incoming messages from the virtual twin interfaces and can
send messages through them. Control planes built on Linux
leave the actual routing to the Linux kernel by setting routes
in the kernel routing table. This routing table is periodically
copied by MoonRoute.

6. EVALUATION
MoonRoute outperforms commonly used software routers,

we show this through benchmarking in this section.

6.1 Methodology
All tests use the following setup and configuration.

Hardware.
We use two different servers as device under test (DuT)

to evaluate MoonRoute: one representing a low-end server
and one a mid-range server for heavier workloads. The first
server features a quad-core 3.2 GHz Xeon E3-1230 CPU with
8 MB L3 cache and a dual 10 Gbit/s Intel X520-T2 NIC,
the second an octa-core 2 GHz Xeon E5-2640 v2 CPU with
20 MB L3 cache and two dual 10 Gbit/s Intel X540-T2 NICs.
Hyper-threading is disabled on both CPUs to avoid uninten-
tional resource contention.

The CPUs’ clock frequencies are set manually with power-
saving features disabled. Manually reducing the frequency
allows us to artificially enforce a CPU bottleneck in scenarios
where the throughput would usually be limited by other
factors.

Software.
All servers were running Debian with a Linux 3.7 kernel.

perf [41] together with pmu-tools [37] was used to measure
cache behavior. The LuaJIT profiler was used to measure
relative CPU usage of the different modules.

MoonGen was used as packet generator and counter on a
separate server with direct connections to the DuT. Latency
measurements where conducted using MoonGen’s hardware
timestamping [22].

Configuration and test traffic.
The following parameters were used for each experiment

unless mentioned otherwise.

• Constant bit rate (CBR) test traffic with minimum-
sized packets (64 B)

• Traffic was randomly split between used output ports

• Rx and tx batch sizes of 128

7

DR
AF
T

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.6
0

5

10

15
10 Gbit

CPU frequency [GHz]

T
h
ro
u
g
h
p
u
t
[M

p
p
s]

Single dst. IP 20 bit rnd. dst. IPs

21 bit rnd. dst. IPs 24 bit rnd. dst. IPs

Figure 7: Scaling with the CPU frequency

• Latency measurements are based on at least 40 000
random samples

The throughput of DPDK-based applications is very sta-
ble within a single test run consisting of an uninterrupted
stream of packets. However, it varies by up to 2% between
different runs. This effect is not specific to MoonRoute but
an effect of the ixgbe driver in DPDK. We could reproduce
this with a simple DPDK application that only sends out
packets without any processing on ixgbe-based NICs. The
effect disappears when using a NIC with the i40e driver. We
repeat all throughput tests four times and report the aver-
age and standard deviation (typically less than 1% relative
deviation).

6.2 Single core forwarding throughput
Forwarding traffic from one port back to the same port

using only a single fast path thread gives a baseline perfor-
mance in Figure 7. We vary the CPU frequency and apply a
linear regression to the results, demonstrating linear scaling
(results limited by the 10 Gbit/s line rate at 3.6 GHz were
excluded).

We also randomize the varying ranges of the upper 24 bits
of the destination IP address to get a baseline for routing ta-
ble lookup performance. Note that the contents of the rout-
ing table do not matter for the performance in this scenario:
the DIR-24-8 algorithm uses the upper 24 bits as index and
the single large default route we installed is realized as 224

rules in the data structure [28].

6.3 Packet sizes
We tested packet sizes between 64 B and 544 B on a CPU

underclocked to 1.2 GHz. The size does not influence the
throughput measured in packets per second unless limited
by the line rate of the network link.

6.4 Multi-core scaling
We use our octa-core server to show that MoonRoute

scales beyond one thread by forwarding traffic with two
10 Gbit/s ports with an increasing number of fast-path units.
Figure 8 plots how MoonRoute achieves perfect multi-core
scaling independent of the routing table utilization and clock
frequency.

Figure 9 shows the behavior with an increasing number of
used routing table entries. MoonRoute benefits more from

1 2 3 4 5 6 7
0

5

10

15

20

25

30
2× 10 Gbit

Number of cores

T
h
ro
u
g
h
p
u
t
[M

p
p
s]

2.0 GHz single 2.0 GHz random

1.2 GHz single 1.2 GHz random

Figure 8: Scaling with the number of CPU cores

216 217 218 219 220 221 222 223 224
0

5

10

15
10 Gbit

L3 cache size

Number of /24 networks used

T
h
ro
u
g
h
p
u
t
[M

p
p
s]

2× 1.6 GHz

3.2 GHz

2.6 GHz

2.2 GHz

Figure 9: Effects of the routing table on throughput

an increased number of cores than from faster cores: The
throughput of two cores clocked at 1.6 GHz is higher than
one core at 3.2 GHz. This can be explained by looking at
caches. Adding an additional core adds not only processing
power but also additional cache capacity (256 KiB on this
CPU). This result shows that MoonRoute is well adapted for
multi-core architectures. The following results are limited to
a single core for simplicity.

6.5 Routing table performance
Overloading the L3 cache leads to the performance degra-

dation as depicted in Figure 9. We measure the number
of cache misses to show that this is the bottleneck. Fig-
ure 10 shows the throughput and cache misses of single-core
forwarding at 3.2 GHz. The correlation between the drop
in achieved throughput and the increase in L3 cache misses
demonstrates that the cache size is the bottleneck.

6.6 Batching
MoonRoute uses both tx and rx batching, both affect the

throughput and latency. We underclocked the CPU fre-
quency slightly to 3.0 GHz and used random traffic with 224

routing table entries. The lower speed avoids coming close
to line rate, the large routing table presents a worst-case
scenario for the caches.

8

DR
AF
T

216 217 218 219 220 221 222 223 224
0

5

10

15
10 Gbit

L3 cache

size

Number of /24 networks used

T
h
ro
u
g
h
p
u
t
[M

p
p
s]

0

0.33

0.66

1.00

M
is

s
ra

te
[1

/
p
k
t]

Throughput

L2 misses

L3 misses

Figure 10: Cache effects (3.2 GHz)

20 21 22 23 24 25 26 27 28 29 210
0

4

8

12

Rx batch size [packets]

T
h
ro
u
g
h
p
u
t
[M

p
p
s]

TxB 2 TxB 4 TxB 8

TxB 128 TxB 256

Figure 11: Effects of batching (3.0GHz)

Throughput.
Figure 11 shows the throughput achieved by different rx

and tx batch configurations. Increasing the batch sizes leads
to a higher throughput. The optimum throughput for Moon-
Route is reached at batch sizes of 128, increasing either rx or
tx batch sizes further lowers the performance. The impact
of tx batching is smaller than rx batching: only one process-
ing step is affected by the tx batch size, while rx batching
affects all.

Profiling.
We look at the CPU’s hardware profiling counters to ex-

plain the observed effects. Figure 12 shows the cache and
branch misses on average per packet as a function of the rx
batch size. The tx batch size is fixed to 128. As mentioned
above, we use random destination addresses here. Hence,
the large base-line for cache misses (cf. Figure 10). Low
performance at low batch sizes correlates with a high branch
miss-prediction rate that virtually disappears at batch sizes
of 16 and above. It remains unclear from this experiment
what causes the increase of 20% when going from batch size
16 to 128. Higher batch sizes suffer due to contention in the
L1 cache.

20 21 22 23 24 25 26 27 28 29 210
0

5

10

15

Rx batch size [packets]

T
h
ro
u
g
h
p
u
t
[M

p
p
s]

0

3.3

6.6

10.0

M
is

s
ra

te
[1

/
p
k
t]

Throughput Branch miss L1 misses

L2 misses L3 misses

Figure 12: Hardware events (3.2 GHz)

Latency.
This increased performance at larger batch sizes comes at

the cost of latency. Measuring latency correctly is a chal-
lenging task. One cannot simply apply full line rate as this
would fill up all buffers – resulting in an unrealistic worst-
case latency. Neither can a low constant rate be applied as
the packet rate determines the fill speed of batches and thus
affects latency. We therefore applied 90% of the previously
determined maximum throughput for each tested configura-
tion as test traffic for the latency tests.

Figure 13 shows the latency under increasing rx batch
sizes. We only include results for tx batch sizes 128 (opti-
mum performance) and 8 (only 3% slower than the optimum,
cf. Figure 11) to keep the graph readable. Large rx and tx
batch sizes or a large tx to rx batch size ratio increases la-
tency. Considering both the throughput in Figure 11 and
the latency here, the optimum rx batch size is between 16
and 64. Tx batch size of 8 can be preferred for latency-
sensitive applications. Note the effective tx batch size for
latency considerations depends on the number of tx ports (1
in this scenario) and a low timeout for the tx buffer should
be configured if many ports are used (cf. Section 5.1.5).

The rx batch size represents only an upper bound for the
batch size: the input module simply retrieves all available
packets from the NIC. A batch that is not completely full
means that there is spare processing capacity and continu-
ing with the smaller batch does not affect throughput. This
leads to the outlier and comparatively high latency in Fig-
ure 13 for rx and tx batch size 128. MoonRoute runs at 90%
capacity, resulting in smaller rx batches and some packets
spend time in the tx rebatching process.

6.7 Code profiling
We use the profiler included in LuaJIT to estimate the

time spent in the different modules. This is possible since
the top-level module is written in Lua and all modules start
with a Lua function that calls into optimized C versions.

Table 1 shows the time spent in the different modules
when forwarding random packets. A faster routing table
module based on a modern data structure can increase the
performance significantly: 33% of the CPU time is spent in

9

DR
AF
T

20 21 22 23 24 25 26 27 28 29 210
0

10

20

30

40

50

60

70

80

90

100

110

Rx batch size [packets]

L
a
te
n
cy

[µ
s]

TxB 128 (median) TxB 8 (median)

TxB 128 (min/max) TxB 8 (min/max)

Figure 13: Latency (90% of maximum throughput)

Module Relative CPU usage

Distribute and send 35%
Routing 24%
Receive 17%
Apply route 9%
Other∗ 16%

* Includes glue logic and checksum update.

Table 1: Time spent in modules

the routing table and route application module.

6.8 Comparison with DPDK Click
We run the single-core forwarding test described in Sec-

tion 6.2 on the Linux router, vanilla Click [40] with DPDK
enabled, and on FastClick [10] with both DPDK and batch-
ing enabled on the same hardware. Table 2 shows the re-
sulting throughput: MoonRoute is about 4 Mpps (40%)
faster than FastClick. Expanding the test to two cores re-
sulted in the same performance for FastClick and Moon-
Route: 14.88 Mpps.

We used the fastest routing table available in Click: Range
IPLookup [24]. Inserting into this table during run-time re-
sulted in a significant impact on the forwarding performance:
99% of the packets were dropped during large modifications
via the ctrl handler of the socket API. Inserting a large
number of rules was also too slow for tests with 224 rout-
ing tables entries in Click. MoonRoute’s architecture with
double-buffering for routing tables and the clear distinction
between control and forwarding plane prevents such prob-
lems. The configuration files and packet generator script
used by us are available in our git repository [4].

6.9 Comparison with published performance
data

Table 3 shows a comparison with other available software
routers. The table consists of our own measurements from
Table 2 and published measurements scaled to be compara-
ble to MoonRoute. We assume that the other routers can
also scale linearly with the CPU’s frequency and the number

Implementation Routing tbl. Mpps Relative

MoonRoute 1 14.6 100%
MoonRoute 220 14.2 97%
MoonRoute 224 11.6 79%
FastClick DPDK∗ 1 10.4 72%
FastClick DPDK∗ 220 10.4 72%
Click DPDK† 1 4.3 29%
Click DPDK† 220 4.2 28%
Linux 3.7 1 1.5 11%

* Batching, git revision 57177d2 from [9]
† No batching, git revision 2c6c837 from [38]

Table 2: Maximum single core forwarding performance com-
parison.

of cores. Note that older publications have a slight disad-
vantage in this comparison due to improvements in CPU
architecture (the 3.2 GHz CPU used by us was released in
2011). Despite these limitations, the table gives a rough
overview over the performance compared to other software
routers.

Of particular interest are the results of the 6WIND Turbo
Router that achieves 75% of MoonRoute’s throughput while
claiming production quality. It is unfortunately proprietary
and was not available for evaluation on our hardware.

7. CONCLUSION
MoonRoute provides a flexible prototyping and experi-

mentation platform for building software routers. It features
a seamless integration of user-provided Lua scripts allowing
quick prototyping of new modules and features. Modular-
ity, flexibility and high performance – often considered as
conflicting optimization goals – are achieved by our architec-
ture through careful design choices: the separation of perfor-
mance critical tasks from low priority tasks, the application
of new batching techniques to optimize CPU utilization, and
an architectural focus on multi-core scalability. The perfor-
mance evaluation of our reference router offers insights in its
scalability, the positive effects of batching, and influence of
cache effects. The overall performance achieved by our ar-
chitecture in MoonRoute is superior to similar frameworks
and implementations. Moreover, latency measurements for
routing are included, a dimension often neglected by other
publications.

Limitations.
MoonRoute is not meant for production networks, only to

prototype specific features in a data plane. We do not im-
plement all edge cases: most notably, MoonRoute currently
does not support fragmentation of packets, IP extension
headers and multicast, i.e., MoonRoute is not fully compli-
ant with RFC 1812. However, our design ensures that edge
cases like fragmentation can be handled in a flexible way
without impacting the performance of the core forwarding
engine.

NUMA support is still preliminary and requires manual
mapping of threads to CPU cores for optimum performance.
Only a single slow path unit is supported; NUMA setups
might benefit from multiple slow paths.

10

DR
AF
T

Implementation Source Routing tbl. CPU freq. Mpps Mpps scaled to 3.2 GHz Relative

MoonRoute — 1 3.2 GHz 14.6 14.6 100%
MoonRoute — 220 3.2 GHz 14.2 14.2 97%
MoonRoute — 224 3.2 GHz 11.6 11.6 79%
6WIND Turbo Router [5] Unknown 2.8 GHz 9.6 11.0 75%
FastClick (DPDK 2.2)∗ – 1 3.2 GHz 10.4 10.4 72%
FastClick (DPDK 2.2)∗ – 220 3.2 GHz 10.4 10.4 70%
Batching Click (PSIO) [36] Unknown 8x 2.66 GHz 41.7 6.27 43%
Click (DPDK 2.2)† – 1 3.2 GHz 4.32 4.32 29%
Click (DPDK 2.2)† – 220 3.2 GHz 4.18 4.18 28%
FreeBSD 11-routing [16] 2 8x 2.0 GHz 9.5 1.91 13%
Route Bricks [17] 218 8x 2.8 GHz 12 1.71 12%
Linux 3.7 – 1 3.2 GHz 1.5 1.5 10%
Click [40] 8 0.7 GHz 0.35 1.60 11%
FreeBSD 10.2 [49] 8 4x 2.13 GHz 1.78 0.67 4.6%
Linux 2.2.14 [40] 8 0.7 GHz 0.095 0.43 2.9%

* Batching, git revision 57177d2 from [9]
† No batching, git revision 2c6c837 from [38]

Table 3: Maximum single core forwarding performance comparison.

Reproducible research.
A development snapshot of our internal repository is pub-

licly available on GitHub at [4], this version was used for the
measurements in this paper. The repository also contains
scripts and configuration files used to perform the evalua-
tion, the raw data for the plots, and the Click configuration
file used for the comparison.

Acknowledgments
This research is supported by the German BMBF projects
DecADe (16KIS0538) and SENDATE-PLANETS (16KIS0472)
The authors alone are responsible for the content of the pa-
per.

8. REFERENCES
[1] BIRD. http://bird.network.cz/. Accessed: 2017-01-21.

[2] Quagga. http://www.nongnu.org/quagga/. Accessed:
2017-01-21.

[3] ALS ’01: Proceedings of the 5th Annual Linux
Showcase & Conference - Volume 5, Berkeley, CA,
USA, 2001.

[4] MoonRoute development snapshot, scripts, raw data,
and click configurations.
https://github.com/emmericp/MoonRoute-data, 2017.

[5] 6WIND. 6WIND Turbo Router. http:
//www.6wind.com/products/6wind-turbo-router/.
Accessed: 2017-01-21.

[6] H. Asai. An Implementation of Poptrie IP Routing
Table Lookup Algorithm.
https://github.com/pixos/poptrie, 2016. Accessed:
2017-01-21.

[7] H. Asai and Y. Ohara. Poptrie: A Compressed Trie
with Population Count for Fast and Scalable Software
IP Routing Table Lookup. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data
Communication, pages 57–70. ACM, 2015.

[8] F. Baker. Requirements for IP Version 4 Routers.
RFC 1812, RFC Editor, June 1995.

[9] T. Barbette. FastClick - A faster version the Click
Modular Router.
https://github.com/tbarbette/fastclick, 2016.
Accessed: 2017-01-21.

[10] T. Barbette, C. Soldani, and L. Mathy. Fast Userspace
Packet Processing. In Architectures for Networking
and Communications Systems (ANCS), pages 5–16.
IEEE, 2015.

[11] R. Bolla and R. Bruschi. Linux Software Router: Data
Plane Optimization and Performance Evaluation.
Journal of Networks, 2(3):6–17, June 2007.

[12] B. Braden, D. D. Clark, J. Crowcroft, B. Davie,
S. Deering, D. Estrin, S. Floyd, V. Jacobson,
G. Minshall, C. Partridge, L. Peterson,
K. Ramakrishnan, S. Shenker, J. Wroclawski, and

11

http://bird.network.cz/
http://www.nongnu.org/quagga/
https://github.com/emmericp/MoonRoute-data
http://www.6wind.com/products/6wind-turbo-router/
http://www.6wind.com/products/6wind-turbo-router/
https://github.com/pixos/poptrie
https://github.com/tbarbette/fastclick

DR
AF
T

L. Zhang. Recommendations on Queue Management
and Congestion Avoidance in the Internet. RFC 2309,
RFC Editor, April 1998.

[13] B. Chen and R. Morris. Flexible Control of
Parallelism in a Multiprocessor PC Router. In
USENIX Annual Technical Conference, General
Track, pages 333–346, 2001.

[14] Cisco. Cisco ASR 1000 Series Aggregation Services
Routers.
http://www.cisco.com/c/en/us/products/collateral/
routers/asr-1000-series-aggregation-services-routers/
white paper c11-452157.pdf, 2015. Accessed:
2017-01-21.

[15] D. Clark. A Cloudy Crystal Ball - Visions of the
Future. In Proceedings of the Twenty-Fourth Internet
Engineering Task Force, pages 539–543, July 1992.

[16] O. Cochard-Labbé. fbsd11-routing.r287531.
https://github.com/ocochard/netbenches/tree/
master/Xeon E5-2650-8Cores-Chelsio T540-CR/
fastforwarding-pf-ipfw/results/fbsd11-routing.r287531,
2015. Accessed: 2017-01-21.

[17] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh, and
S. Ratnasamy. RouteBricks: exploiting parallelism to
scale software routers. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems
principles, pages 15–28. ACM, 2009.

[18] DPDK. ACL Library. http://dpdk.org/doc/guides/
prog guide/packet classif access ctrl.html. Accessed:
2017-01-21.

[19] DPDK. Supported NICs. http://dpdk.org/doc/nics.
Accessed: 2017-01-21.

[20] DPDK. LPM Library.
http://dpdk.org/doc/guides/prog guide/lpm lib.html,
2015. Accessed: 2017-01-21.

[21] P. Emmerich. libmoon.
https://github.com/libmoon/libmoon, 2017.

[22] P. Emmerich, S. Gallenmüller, D. Raumer,
F. Wohlfart, and G. Carle. MoonGen: A Scriptable
High-Speed Packet Generator. In Internet
Measurement Conference 2015 (IMC’15), Tokyo,
Japan, Oct. 2015.

[23] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle.
Assessing Soft- and Hardware Bottlenecks in
PC-based Packet Forwarding Systems. In Fourteenth
International Conference on Networks (ICN 2015),
Barcelona, Spain, Apr. 2015.

[24] E. K. et al. Click IPRouteTable Element
Documentation. http:
//www.read.cs.ucla.edu/click/elements/iproutetable,
2016. Accessed: 2017-01-21.

[25] V. Fuller and T. Li. Classless Inter-domain Routing
(CIDR): The Internet Address Assignment and
Aggregation Plan. BCP 122, RFC Editor, August
2006.

[26] S. Gallenmüller, P. Emmerich, F. Wohlfart,
D. Raumer, G. Carle, et al. Comparison of frameworks
for high-performance packet IO. In Architectures for
Networking and Communications Systems (ANCS),
pages 29–38. IEEE, 2015.

[27] P. Gupta. Algorithms for routing lookups and packet
classification. PhD thesis, Stanford University, 2000.

[28] P. Gupta, S. Lin, and N. McKeown. Routing lookups
in hardware at memory access speeds. In
INFOCOM’98. Seventeenth Annual Joint Conference
of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 3, pages 1240–1247. IEEE,
1998.

[29] S. Han, K. Jang, K. Park, and S. Moon.
PacketShader: a GPU-accelerated software router.
ACM SIGCOMM Computer Communication Review,
41(4):195–206, 2011.

[30] M. Handley, O. Hodson, and E. Kohler. XORP: An
open platform for network research. ACM SIGCOMM
Computer Communication Review, 33(1):53–57, 2003.

[31] Intel. Intel Ethernet Controller XL710 Datasheet,
2014. Rev. 2.1.

[32] Intel. Intel Ethernet Controller X540 Datasheet, 2015.
Rev. 2.8.

[33] DPDK. http://dpdk.org/. Accessed: 2017-01-21.

[34] Juniper. Understanding MX Fabric.
http://kb.juniper.net/InfoCenter/index?page=
content&id=KB23065&actp=search, Sept. 2012.
Accessed: 2017-01-19.

[35] H. Khosravi and T. Anderson. Requirements for
Separation of IP Control and Forwarding. RFC 3654,
RFC Editor, November 2003.

[36] J. Kim, S. Huh, K. Jang, K. Park, and S. Moon. The
power of batching in the click modular router. In
Proceedings of the Asia-Pacific Workshop on Systems,
page 14. ACM, 2012.

[37] A. Kleen. Intel PMU profiling tools. https:
//github.com/andikleen/pmu-tools/tree/d70840ba,
2015. Accessed: 2017-01-21.

[38] E. Kohler. The Click modular router: fast modular
packet processing and analysis.
https://github.com/kohler/click, 2016. Accessed:
2017-01-21.

[39] E. Kohler, B. Chen, M. F. Kaashoek, R. Morris, and
M. Poletto. Programming language techniques for
modular router configurations. Technical report,
Technical Report MIT-LCS-TR-812, MIT Laboratory
for Computer Science, 2000.

[40] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. ACM Trans.
Comput. Syst., 18(3):263–297, Aug. 2000.

[41] Linux. perf: Linux profiling with performance
counters. https://perf.wiki.kernel.org/index.php?
title=Main Page&oldid=3535, 2015. Accessed:
2017-01-21.

[42] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,
M. Honda, R. Bifulco, and F. Huici. Clickos and the
art of network function virtualization. In 11th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pages 459–473,
Seattle, WA, Apr. 2014. USENIX Association.

[43] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, 2008.

[44] ntop. PF RING ZC (Zero Copy). http://www.ntop.
org/products/pf ring/pf ring-zc-zero-copy/. Accessed:

12

http://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/white_paper_c11-452157.pdf
http://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/white_paper_c11-452157.pdf
http://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/white_paper_c11-452157.pdf
https://github.com/ocochard/netbenches/tree/master/Xeon_E5-2650-8Cores-Chelsio_T540-CR/fastforwarding-pf-ipfw/results/fbsd11-routing.r287531
https://github.com/ocochard/netbenches/tree/master/Xeon_E5-2650-8Cores-Chelsio_T540-CR/fastforwarding-pf-ipfw/results/fbsd11-routing.r287531
https://github.com/ocochard/netbenches/tree/master/Xeon_E5-2650-8Cores-Chelsio_T540-CR/fastforwarding-pf-ipfw/results/fbsd11-routing.r287531
http://dpdk.org/doc/guides/prog_guide/packet_classif_access_ctrl.html
http://dpdk.org/doc/guides/prog_guide/packet_classif_access_ctrl.html
http://dpdk.org/doc/nics
http://dpdk.org/doc/guides/prog_guide/lpm_lib.html
https://github.com/libmoon/libmoon
http://www.read.cs.ucla.edu/click/elements/iproutetable
http://www.read.cs.ucla.edu/click/elements/iproutetable
http://dpdk.org/
http://kb.juniper.net/InfoCenter/index?page=content&id=KB23065&actp=search
http://kb.juniper.net/InfoCenter/index?page=content&id=KB23065&actp=search
https://github.com/andikleen/pmu-tools/tree/d70840ba
https://github.com/andikleen/pmu-tools/tree/d70840ba
https://github.com/kohler/click
https://perf.wiki.kernel.org/index.php?title=Main_Page&oldid=3535
https://perf.wiki.kernel.org/index.php?title=Main_Page&oldid=3535
http://www.ntop.org/products/pf_ring/pf_ring-zc-zero-copy/
http://www.ntop.org/products/pf_ring/pf_ring-zc-zero-copy/

DR
AF
T

2017-01-21.

[45] M. Pall. LuaJIT. http://luajit.org/. Accessed:
2017-01-21.

[46] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy,
and S. Shenker. Netbricks: Taking the v out of nfv. In
12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages
203–216, GA, 2016. USENIX Association.

[47] M. Paul. What is RCU, Fundamentally?
https://lwn.net/Articles/262464/, 2007. Accessed:
2017-01-21.

[48] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer,
P. Shelar, K. Amidon, and M. Casado. The Design
and Implementation of Open vSwitch. In 12th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15), pages 117–130,
Oakland, CA, May 2015. USENIX Association.

[49] B. R. Project. Forwarding performance lab of an IBM
System x3550 M3 with 10-Gigabit Intel 82599EB.

http://bsdrp.net/documentation/examples/
forwarding performance lab of an ibm system x3550
m3 with 10-gigabit intel 82599eb, 2015. Accessed:
2017-01-21.

[50] L. Rizzo. netmap: A Novel Framework for Fast Packet
I/O. In USENIX Annual Technical Conference, pages
101–112, 2012.

[51] W. Sun and R. Ricci. Fast and flexible: Parallel
packet processing with GPUs and Click. In
Proceedings of the ninth ACM/IEEE symposium on
Architectures for networking and communications
systems, pages 25–36. IEEE Press, 2013.

[52] W. Zhang, J. Hwang, S. Rajagopalan,
K. Ramakrishnan, and T. Wood. Flurries: Countless
fine-grained nfs for flexible per-flow customization. In
Proceedings of the 12th International on Conference
on Emerging Networking EXperiments and
Technologies, CoNEXT ’16, pages 3–17, New York,
NY, USA, 2016. ACM.

13

http://luajit.org/
https://lwn.net/Articles/262464/
http://bsdrp.net/documentation/examples/forwarding_performance_lab_of_an_ibm_system_x3550_m3_with_10-gigabit_intel_82599eb
http://bsdrp.net/documentation/examples/forwarding_performance_lab_of_an_ibm_system_x3550_m3_with_10-gigabit_intel_82599eb
http://bsdrp.net/documentation/examples/forwarding_performance_lab_of_an_ibm_system_x3550_m3_with_10-gigabit_intel_82599eb

	Introduction
	Related work
	Background
	MoonRoute Architecture
	Separation into slow and fast components
	Architecture
	Batch scattering

	Router implementation
	Packet processing modules
	IP validity checking
	Longest Prefix Matching
	Route application
	TTL decrement
	Packet distribution
	Packet filters

	Fast Path
	Slow Path
	Routing table management
	Packet processing

	Interaction with the Linux network stack

	Evaluation
	Methodology
	Single core forwarding throughput
	Packet sizes
	Multi-core scaling
	Routing table performance
	Batching
	Code profiling
	Comparison with DPDK Click
	Comparison with published performance data

	Conclusion
	References

