
Precise Rate Control for Software Packet Generators

Paul Emmerich, Sebastian Gallenmüller, and Georg Carle
Technische Universität München, Department of Computer Science

Chair for Network Architectures and Services
{emmericp|gallenmu|carle}@net.in.tum.de

Keywords
Packet generation; Traffic pattern; Interpacket gaps

1. INTRODUCTION
Precise control of interpacket gaps is an important feature

of a packet generator as it is required to produce different
traffic patterns. However, achieving the required precision
is a challenging problem for software packet generators [1].
We evaluate existing software approaches and quantify

their shortcomings. We then present a novel method for
precise control of interpacket gaps in software.
https://youtu.be/hnxrnQY4zvI shows our demo.

1.1 Packet Generation in MoonGen
This work is based on our free and open source packet

generator MoonGen1. MoonGen is a scriptable high-speed
packet generator based on DPDK2 and LuaJIT3. Beside the
rate control feature discussed here, it also features latency
measurements with sub-microsecond precision and accuracy
by (mis-)using hardware features found on commodity NICs.
Interested readers are referred to a draft of our full paper

about MoonGen [2]. A short discussion of MoonGen’s archi-
tecture was presented as a poster/demo at NSDI 2015 [3].
This paper focuses on rate control in MoonGen.

2. SOFTWARE RATE CONTROL
Packet generators built on a traditional networking API of

an operating system face a multitude of challenges including
timing problems due to system calls and context switches
which limits their precision significantly [1]. Software built
on modern userspace networking frameworks like DPDK2

or PF_RING ZC4 eliminate most of these by moving the
whole driver into the userspace.
1www.github.com/emmericp/MoonGen
2www.dpdk.org
3www.luajit.org
4www.ntop.org/products/pf_ring/pf_ring-zc-zero-copy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Loadgen

NIC

DuT

NIC
p5

p5 p4 p3 p2 p1 p0

Qmemory QNIC Wire

Figure 1: Software-based rate control

Loadgen DuT

NICNIC
p9

p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

HW rate control
enabled

Qmemory QNIC Wire

Figure 2: Hardware-based rate control

However, packet generators still face a fundamental prob-
lem when trying to insert a gap between packets. For ex-
ample, Pktgen-DPDK5 and zsend6 simply wait for a certain
time in a busy-wait loop. This assumes that the driver can
push a packet to the NIC and send it immediately.
However, NICs use an asynchronous push-pull model [5].

Sending a packet only places it in a queue in main mem-
ory, the NIC fetches it asynchronously via DMA. The whole
transmit operation includes two round-trips across the PCIe
bus and a delay between informing the NIC about the new
packet and the NIC fetching it. These delays add uncertain-
ties to the operation and limit the precision.
Figure 1 shows this concept. Another drawback is that

neither the queue in the main memory Qmemory nor the
transmit queue QNIC on the NIC can be utilized as all pack-
ets in a queue would be sent out back-to-back. So a batch
size of 1 must be used, this affects performance as batch
processing is crucial for high-speed packet IO.

3. HARDWARE RATE CONTROL
Modern NICs, e.g. the Intel X540 used here, often support

rate control in hardware. However, this feature is limited to
constant bit-rate (CBR) traffic as it is designed to control
bandwidth in multi-tenant virtualization environments and
not for packet generators [5]. Figure 2 shows that this ap-
proach allows utilizing the queues.
5www.github.com/pktgen/Pktgen-DPDK
6An example application of PF_RING ZC

https://youtu.be/hnxrnQY4zvI
https://github.com/emmericp/MoonGen
http://dpdk.org/
http://luajit.org/
http://www.ntop.org/products/pf_ring/pf_ring-zc-zero-copy
https://github.com/pktgen/Pktgen-DPDK

0

15

30 MoonGen (hw)

0

15

30

P
ro
ba

bi
lit
y
[%

]

Pktgen-DPDK (sw)

0.5 1 1.5 2
0

30

60

Inter-Arrival Time [µs]

zsend (sw)

Figure 3: Histograms of inter-arrival times

0 0.5 1 1.5 2
0

0.5

1

1.5

·105

Offered Load [Mpps]

In
te
rr
up

t
R
at
e
[H

z]

CBR load generated with MoonGen
CBR load generated with zsend

Figure 4: Interrupt rate with micro-bursts

MoonGen is, to our best knowledge, the first publicly
available software packet generator that utilizes this feature
for CBR and bursty traffic (by varying the rate control pa-
rameter periodically).

4. EVALUATION
We compare the two approaches by configuring the packet

generators Pktgen-DPDK, zsend, and MoonGen (with hard-
ware rate control) to generate 1Mpps of 64 byte packets on a
1Gbit/s link. Figure 3 shows the histograms (64 ns bins) of
the inter-arrival times measured with an Intel 82580 which
supports timestamping all received packets [4]. The ex-
pected inter-arrival time is 1µs, the leftmost bucket marked
with a black arrow contains back-to-back frames on the wire.
This measurement shows that software rate control al-

ready fails at relatively low rates. The hardware rate control
of the Intel X540 NIC used here also oscillates around the
target rate, but it avoids generating micro-bursts. zsend,
on the other hand, generates bursty traffic, even though we
explicitly configured it to generate CBR traffic.
Bursts have a measurable impact on the device under test

(DuT), Figure 4 shows the interrupt rate of an Open vSwitch
packet forwarder. The bursts trigger the interrupt modera-
tion feature of the driver too early. Bad software rate control
causes undesirable behavior in a tested system and affects
the validity and reproducibility of experiments.

5. NOVEL SOFTWARE RATE CONTROL
We were unsatisfied with the precision of the software ap-

proach and the flexibility of the hardware solution on com-
modity NICs. Therefore, we present a new solution here:
instead of generating gaps, we fill them with invalid pack-
ets. This allows us to produce arbitrary traffic patterns with
a precision of 0.8 ns (length of a byte at 10Gbit/s), this is
even better than hardware rate control on the X540 NIC.

Loadgen DuT

NICNIC
p6

p6 pi
3p5pi

4 pi
0p2pi

1p3pi
2p4 p1 p0

HW rate control
disabled

p5

Qmemory QNIC Wire

Figure 5: Arbitrary traffic patterns in MoonGen

0 20 40 60 80
0

25

50

75

100
0.5Mpps

8.6µs

Latency [µs]

C
um

ul
at
iv
e
P
ro
b.

[%
]

CBR
Poisson

0 20 40 60 80 100

1Mpps

Latency [µs]

CBR
Poisson

Figure 6: Latency of Open vSwitch with CBR and
poisson traffic (cumulative density function)

Figure 5 shows this concept. Shaded packets pi are sent
with an invalid CRC checksum and an illegal length if neces-
sary. The DuT drops these packets in hardware on reception
without affecting the forwarding engine. We have tested and
verified this with various NICs like the X540 used here. If a
DuT is affected by invalid packets, a switch can be used to
discard the packets before they reach the DuT.
Figure 6 shows the forwarding latency of Open vSwitch

with CBR and poisson traffic at 0.5Mpps and 1Mpps. The
median latency differs by 20% at a packet rate of 0.5Mpps.
This experiment shows that our approach can generate dif-
ferent traffic patterns with a measurable impact on the DuT.
One reason for this influence are interrupt rate moderation
algorithms on the DuT (cf. Figure 4).
Generating the CBR traffic in hardware and with our ap-

proach yields a virtually identical result (≤ 2% deviation in
median latency at all packet rates [2]), so the invalid packets
do not affect the DuT.

6. LIVE DEMO
We will present a live demo of MoonGen’s rate control

features. Our demo loads a DuT with configurable traffic
patterns and shows a live histogram of the latencies to visu-
alize how a DuT responds to different traffic patterns. The
video at https://youtu.be/hnxrnQY4zvI shows our demo.

7. REFERENCES
[1] Alessio Botta, Alberto Dainotti, and Antonio Pescapé.

Do you trust your software-based traffic generator?
IEEE Communications Magazine, 48(9):158–165, 2010.

[2] Paul Emmerich et al. MoonGen: A Scriptable
High-Speed Packet Generator.
http://go.tum.de/566578, 2015. Draft.

[3] Sebastian Gallenmüller et al. MoonGen: Software
Packet Generation for 10 Gbit and Beyond. In USENIX
NSDI, 2015.

[4] Intel 82580EB Gigabit Ethernet Controller Datasheet.
[5] Intel Ethernet Controller X540 Datasheet.

https://youtu.be/hnxrnQY4zvI
http://go.tum.de/566578

Demo Requirements
We will bring our portable testbed for the live demo.

Equipment to be Used
• Packet generator server: Barebone Mini-ITX PC
• Device under test 1: Barebone Mini-ITX PC
• Device under test 2: MikroTik 10Gbit/s router
• Laptop
• Small projector

Space Needed
A table with a length of 2meters should be sufficient since
our portable testbed is relatively small.
We also need a surface to project the GUI of our live demo

onto, ideally beside the poster. If this is not possible, then
we require a large display, e.g. a TV, to show our demo in
an appealing way.

Setup Time Required
Approximately 20 minutes.

Additional Facilities
Power supply:

Component Power
Barebone PC 1 100W
Barebone PC 2 100W
MikroTik Router 80W
Laptop 30W
Small projector 90W
Total 400W

Some additional experiments and examples may be shown
on our remote testbed. Therefore, we need a stable Internet
connection, preferably via a cable.

	Introduction
	Packet Generation in MoonGen

	Software Rate Control
	Hardware Rate Control
	Evaluation
	Novel Software Rate Control
	Live Demo
	References

