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Abstract

The recent developments and research in distributed ledger
technologies and blockchain have contributed to the in-
creasing adoption of distributed systems. To collect relevant
insights into systems’ behavior, we observe many evalua-
tion frameworks focusing mainly on the system under test
throughput. However, these frameworks often need more
comprehensiveness and generality, particularly in adopt-
ing a distributed applications’ cross-layer approach. This
work analyses in detail the requirements for distributed sys-
tems assessment. We summarize these findings into a struc-
tured methodology and experimentation framework called
METHODA. Our approach emphasizes setting up and assess-
ing a broader spectrum of distributed systems and addresses
a notable research gap. We showcase the effectiveness of
the framework by evaluating four distinct systems and their
interaction, leveraging a diverse set of eight carefully se-
lected metrics and 12 essential parameters. Through exper-
imentation and analysis we demonstrate the framework’s
capabilities to provide valuable insights across various use
cases. For instance, we identify that a combination of Trusted
Execution Environments with threshold signature scheme
FROST introduces minimal overhead on the performance
with average latency around 40 ms. We showcase an emula-
tion of realistic systems behavior, e.g., Maximal Extractable
Value is possible and could be used to further model such
dynamics. The METHODA framework enables a deeper un-
derstanding of distributed systems and is a powerful tool
for researchers and practitioners navigating the complex
landscape of modern computing infrastructures.

Keywords: Evaluation, Distributed Systems, Reproducabil-
ity, Testbed

1 Introduction

Since the introduction of Bitcoin in 2008 [64], we have seen
increased activity in distributed and decentralized systems
research and solutions. The area of Blockchain-based solu-
tions is of particular interest, with the introduction of Layer-1
protocols such as Algorand [55], Aptos [37], Cosmos [61],
or Ethereum [44] offering advances and extensions on con-
sensus and execution layers. Furthermore, there is a notable
emphasis on advanced cryptographic protocols. Some of
these protocols rely on threshold cryptography for secure

private key protection, while also incorporating privacy fea-
tures through Zero Knowledge Proofs (ZKPs) at the appli-
cation layer for users [40]. Recent developments have also
focused on scalability, utilizing Zero Knowledge (ZK) rollups
to increase Transaction per Second (TPS) [73]. Additionally,
Trusted Execution Environments (TEEs) are employed for
secure computation [63]. Other innovations include privacy-
preserving networks like Nym [48] and distributed storage
solutions such as the InterPlanetary File System (IPFS) [41].
Often, these heterogenous systems interact on different ap-
plication stack layers for improved performance, security,
usability or privacy. For instance, ZK rollups built on top
of underlying Layer-1 solutions, TEEs, or threshold cryp-
tosystems, should run within the consensus mechanisms of
a corresponding blockchain [42] or as an off-chain solution.
Privacy-preserving networks, e.g., Nym, offer unlinkability
on the networking layer for various deployments.

As modern distributed systems continue to evolve, they
become increasingly complex. To grasp their practical im-
plications and potential improvements, it’s crucial to un-
derstand each component in detail. This requires precise
control over the deployment environment. Such insights can
help the core developers of given systems to identify and
document relevant parameters for the best performance. Si-
multaneously, research can identify optimization approaches
on individual layers, do system modeling, and investigate
particular extensions and their impact on the system.

When examining cross-layer approaches, we identified
that existing frameworks exhibit shortcomings in terms of
modularity, upgradeability, and their ability to comprehen-
sively assess broader distributed protocols, like threshold
cryptography. Some solutions tend to focus on specific as-
pects or a restricted set of metrics and parameters [56, 65].
Notably, prior evaluations of large-scale systems, particularly
those tied to cloud deployments [56], or those constrained by
limited hardware resources for scalability assessments [65],
may not accurately reflect real-world system dynamics and
could introduce artifacts that affect measurement results.

We propose a methodological approach to assess various
solutions on a common platform and observe their inter-
actions and possible implications on scenario-specific Key
Performance Indicators (KPIs). The methodology considers
the deployment strategies, suitable experiment design, and
systematizes experiment metrics and parameters.



We focus on local deployments that limit artifacts, affect-
ing the reproducibility and interpretability. Also we need
to ensure scalability and versatility, comparable to cloud
deployments. Also, to handle the complexity of large-scale
distributed systems, we have to define fitting experiment
methodology applicable to current and future versions of the
systems. This goes in hand with having a tight and granular
control not only over the load generation [56], but even more
importantly, on the cross-layer setup phase of such systems,
as the conditions under which a system is tested can affect
the results.

In the related work analysis, we investigate various frame-
works towards facilitation of the identified requirements
and suitability for future extensions. Rezabek et al. [67, 68]
introduced a framework called Environment for Generic In-
vehicular Networking Experiments (EnGINE). Its implemen-
tation [16] relies on Ansible [1] and provides the foundation
for basic infrastructure deployments, with an emphasis on
finely-tuned experiment setups. Its extensibility allows it
to not only support current e.g., blockchain systems, but
also be future-proof. This sets it apart from other single-
layered frameworks [56, 65]. While EnGINE does have some
limitations, which we address in this paper, we recognized
its potential for large-scale deployments. We recognize En-
GINE as a suitable base for extension towards large-scale
deployments.

In this paper, we present the Multilayer Environment
and Toolchain for Holistic NetwOrk Design and Analysis
(METHODA), an extension of EnGINE. We integrate TEE
and lightweight virtualization solutions for scalable systems
into the base system. Since the focus is on distributed solu-
tions, we decided to integrate three sample services - Algo-
rand, Ethereum 2.0, and the FROST [59] threshold signature
scheme based on Schnorr’s algorithm [71]. We also conduct a
baseline evaluation of TEE-based deployments and combine
it with the FROST [59] threshold signature scheme. Lastly,
we validate our approach and the METHODA capabilities
by evaluation in a dedicated Hardware (HW) infrastructure.
The results show an initial assessment of the capabilities
and a verification of the methodological approach. The TEE
in a combination with threshold protocol introduces negli-
gible overhead on the End-to-End (E2E) delay, which was
already shown by the baseline evaluations. Next, we are able
to emulate a particular scenario in the blockchain space fo-
cusing on Maximal Extractable Value (MEV) extraction on
Ethereum 2.0. This can serve as a base for further modelling
of such dynamics on Ethereum 2.0 but can be also applied to
other solutions. We do a detailed parameter study for Algo-
rand with evaluation of latency TPS based on various HW
specifications and peer’s conditions. We further publish the
codebase, presented results, and additional documentation
as an online repository.

Overall we present the following Key Contributions (KCs):
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Figure 1. Deployment Stack and Layers, cf. [51]

KC1 Methodological approach to assess various distributed
systems performance and their possible integration

KC2 Detailed analysis of related work focusing on blockchain
frameworks

KC3 METHODA - an enhancement to the EnGINE frame-
work for deploying large-scale distributed systems

KC4 Comparison of two recent blockchain systems and one
threshold signature scheme

KC5 Evaluation of a TEE relying on recent Virtual Machine
(VM) based solutions

2 Problem Analysis

This section offers a comprehensive view of the METHODA dis-
tributed system stack. We introduce a methodological ap-
proach and requirement description to address the challenges
we identified in Section 1. Additionally, we conduct a compar-
ative analysis with related studies, quantifying the research
gap that motivates our approach. Finally, given the plethora
of research on evaluating the performance and scalability of
blockchain and agreement systems, we distinctly recognize
their limitations our work aims to solve.

2.1 Distributed Systems Application Stack

Distributed systems, reliant on the TCP/IP stack, facilitate
data exchange on a global scale. As illustrated in Figure 1,
experimental frameworks must accommodate the entire ap-
plication and ISO/OSI stack for comprehensive distributed
system assessment. Within this stack, blockchains and the
deployment of side-chain or Layer-2 solutions, can be viewed
as separate systems. These systems need to interact with one
another, and our goal is to facilitate this interaction within
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the proposed framework. In the following, we provide addi-
tional information on layers shown in Figure 1.

(D refers to the Physical Layer, a supplementary considera-
tion. Nevertheless, if compatible with upper-layer protocols,
the underlying transport medium can be modified. In (@,
Ethernet is envisioned with support for queuing discipline
(qdisc) configuration, Precision Time Protocol (PTP) [21]
usage on Network interface cards (NICs), Single Root I/O
Virtualization (SR-IOV), and specific NIC configuration and
offload capabilities. SR-IOV enables scalability of interfaces
and better utilization of the underlying link and PTP en-
ables precisely synchronized clocks. On the Network Layer
(3, we focus on IPv4 utilization, where IP addresses are di-
rectly assigned to corresponding interfaces. The Transport
Layer () should be protocol-agnostic but provide options
for execution via e.g., TCP, UDP, or QUIC.

Distributed systems predominantly operate on the Ap-
plication Layer (), relying on underlying network proto-
cols and infrastructure. The Data Layer ¢2 handles vari-
ous data types, distributed among individual peers in an
overlay Network Layer 6D using schemes like gossip or
privacy-preserving networks. In permissioned and permis-
sionless ledgers, the Consensus Layer 69 deploys Sybil re-
sistance mechanisms (e.g., Proof-of-Stake (PoS), Proof-of-
Work (PoW)) and consensus algorithms (e.g., Practical BFT
(PBFT) [46], Gasper [45], or Algorand’s Byzantine Agree-
ment (BA) [55]). Resilience against crash or byzantine fail-
ures can be achieved via the State Machine Replication (SMR)
approach [70]. Therefore, for Crash Fault Tolerant (CFT) and
Byzantine Fault Tolerant (BFT) systems, we aim to identify
configurations of thresholds under which the system behaves
as expected or starts to deteriorate. The Execution Layer 6J
runs smart contract logic in a corresponding ledger VM, e.g.,
Ethereum Virtual Machine (EVM), Algorand Virtual Machine
(AVM). The Application Layer Ge) houses the logic of smart
contracts and Distributed Applications (DApps).

To ensure secure data exchange beyond distributed ledgers,
incorporating additional distributed protocols like threshold
cryptosystems is required. Therefore, we introduce a parallel
Cryptography Protocol Layer (7) positioned between layers
and 69. We note that in native deployments (e.g., only
running a threshold signature protocol), the additional layers
may not carry the same level of importance.

Another essential element is the underlying Hardware
and Infrastructure Layer (6). Consequently, we not only fa-
cilitate bare-metal deployments but also extend support to
various lightweight container solutions such as Linux Con-
tainer (LXC) [20], Kata [19], or Docker [2]. While the system
may potentially be improved by Linux Container Daemon
(LXD) [31] for comprehensive VM deployments in the fu-
ture, the current selections offer all requisite features without
additional overhead. Additionally, the underlying infrastruc-
ture provides supplementary features, including the recent
integration of confidential computing capabilities via TEE,

as well as other hardware acceleration capabilities provided
by the Central Processing Unit (CPU) or Graphics Processing
Units (GPUs). Finally, it is crucial to emulate users/clients in
the system (8) and ascertain their interaction with it, as they
furnish vital insights regarding the load and its pattern.

2.2 Potential Use-Case Scenarios

We now introduce some exemplary use cases for METHODA.
For evaluation of both distributed system in general, and
Blockchain systems in particular METHODA facilitates thor-
ough assessment of Peer-to-Peer (P2P) network properties,
such as latency, bandwidth, and node connectivity, crucial
for a comprehensive understanding of network performance.
Such insights can be later used to confirm or model met-
rics, such as worst-, average-, and best-case latencies, among
others. In context of MEV analysis, our solution allows to
shed light on transaction ordering strategies, their influence
on blockchain security, and the overhead impact of various
privacy-preserving techniques. Furthermore, the framework
facilitates examining node operator overhead, offering in-
sights into resource requirements to ensure optimal system
scalability and reward calculation. It also allows analysis of
communication protocol replacement, extension, and con-
figuration, providing a controlled environment for rigorous
experimentation with various networking approaches.

2.3 Evaluation Methodology

This section outlines the methodology we employ to effec-
tively evaluate distributed systems’ performance and func-
tionality. We discuss deployment strategies, considered ex-
periment design, as well as metrics and parameters.

2.3.1 Deployment Strategies. In terms of deployment
capabilities, we identify two options — simulation and em-
ulation. For emulation we further consider either a private
network or data centers (cloud). Based on the related work,
we see that simulators [72, 74] focus only on particular sce-
narios and might provide limited insights to cross-layer and
infrastructure impact, including networking properties of
the system. However, their main advantage is a pure focus on
a given algorithm’s scalability without introducing noise and
other artifacts affecting involved peers. For the emulation
deployments, we see both examples in the related work, e.g.,
Gromit [65] relies on private infrastructure, whereas Dia-
blo [56] on cloud deployments. The main argument for cloud
deployments is simple access to more computational nodes,
which can improve the scalability of the evaluation. However,
a critical shortcoming is experiment reproducibility, espe-
cially for configurations and investigation of layers -(®),
as the underlying experiment conditions change depending
on too many factors, such as a load in the used data centers,
latencies among the networks, and many others. Such noise
and instabilities make collecting precise insights challenging.
In comparison, private networks do not have such issues as



all experiments are executed in a controlled environment.
Therefore, our approach focuses on private networks and
enabling scalability within them while ensuring tight con-
trol over the environment and removing unwanted noise.
Nevertheless, the framework should be extensible to deploy-
ments in the cloud, as it can still be a relevant approach, for
instance, long-term probes used to collect data about active
systems or single-node experiments.

2.3.2 Experiment Design. Our approach uses private net-
work infrastructure to guarantee precise insights and con-
trol. To address scalability, we first consider the experiment
design for large-scale systems. First, we discuss the applica-
bility of white box and black box testing. White box testing
requires a detailed code analysis and allows interaction with
code to collect new insights, e.g., how expensive a given
function is. When considering white box testing, introducing
code changes is not welcome as in fast-paced environments,
e.g., blockchain codebases, introduced changes might soon
become obsolete. As an example of such changes, Ethereum’s
Geth client [8] observed 14 releases and more than 800 com-
mits in one year (1 October 2022-2023). Similar holds for
Algorand’s client [4] with 17 releases. Nevertheless, white
box testing methods are encouraged in the sense of under-
standing the code’s functionality, undocumented behavior,
and configuration parameters. In case one needs to profile
a given code, using external tools, e.g., perf [26], would be
a preferred option. On the other hand, black box testing
considers only the system’s external behavior based on a
provided input such as a load. Therefore, aiming at black box
testing for fast-paced systems without code modification is
more suitable. As a result, we use white box understanding of
the code and use it to improve experiment campaigns while
relying on the systems’ output to collect relevant insights.

For a suitable experiment methodology it is essential to
address the diversity in hardware capabilities among peers
within the system. Identifying the minimal hardware specifi-
cations that still allow for targeted system performance and
sustainable operation is critical. Thus, the ability to emulate
various configurations becomes crucial for pinpointing the
optimal balance between performance and operational costs
of the underlying infrastructure. Furthermore, for scenarios
where the performance of specific peers in the production
system deteriorates, perhaps due to outages or deteriorating
network conditions, it is essential to be able to emulate the
system’s properties under such adverse circumstances.

To implement these approaches, we consider both local
and global perspectives within the system. The local view em-
phasizes individual peer performance, optimizing resource
allocation. In contrast, the global view assesses overall per-
formance based on collective peer contributions. This dual
approach offers a comprehensive understanding of system
behavior. Additionally, this strategy necessitates a thorough
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Term Definition
Metrics

Throughput  Rate of executed target operations

Latencies Latency between e.g., adding a transaction
to a block, round-trip-time, processing time,
end-to-end latency,...

Finality DLT and Blockchain context, Timeout for
trust in transaction fixation.

Queue size Amount of data in a queue/mempool

CPURAM,I/O Local view compute time, RAM usage, I/O

Parameters

Node number Number of participants in different roles

Thresholds Threshold values that determine the sys-
tem’s security and availability guarantees
(e.g., amount of redundancy in BFT context)

Runtime config Config options that determine networking,
processing, and protocol versions

Message size / Message size and contents of, e.g., votes,

payloads transactions, blocks, signatures

HW specs HW specification of system nodes

Network Applicable to private networks (but also

params cloud and simulations), component specific
configuration of delays, packet loss, ...

NIC config NICs configuration and offloading features

Load Workload generation profile, e.g, requests,
transactions and smart contracts

Fees DLT and Blockchain context, dynamic
(transaction) fee configuration

Faults Introduction of faults to assess SUT capabil-

ities in edge cases

Table 1. Identified Metrics and Parameters

examination of each layer. A feasibility study for every com-
ponent ensures fair evaluation conditions and provides in-
sights into their combined performance potential.

2.3.3 Experiment Metrics & Parameters. To comprehen-
sively evaluate a System Under Test (SUT), we define key met-
rics and parameters tailored to specific experiments. While

TPS and finality are commonly discussed in blockchain con-
texts [56, 65], they offer only partial insights. To address this,
we extend the configuration space to allow for evaluation

of additional KPIs. Table 1 outlines eight identified metrics

and ten parameters. Our aim is not to provide an exhaus-
tive list, but to demonstrate possible experiment dimensions

when designing an evaluation framework. Given the rapid

evolution of systems, periodic updates to measurements and

parameters will be essential. Therefore, the evaluation frame-
work should be designed with flexibility and extensibility in

mind to adapt to present and future requirements.
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2.4 Requirements Definition

We formalize METHODA requirements (R) based on the de-
fined application stack in Figure 1 and the evaluation method-
ology introduced in Section 2.3. The EnGINE [67, 68] authors
introduced 13 relevant requirements, but their definitions
must be extended to fit our context and needs, as discussed
in Section 2.1. First, we cover the requirements introduced
by EnGINE, which we do not amend. The general motivation
and focus on R1: Repeatability, R2: Reproducibility, and
R3: Replicability in experiments is highly applicable to our
scope. To enable those, deployment in private infrastructure,
avoiding (e.g., geodistributed) cloud infrastructure is valu-
able [36]. For usability, we rely on R4: Openness (e.g., open
source) solutions that are, and use, openly available com-
ponents. Similarly, to handle large-scale deployments, the
experiments must run in R6: Autonomy (without human in-
teraction) once defined. Second, we list amended and newly
defined requirements. Insights about the system’s behav-
ior in R7: Malfunction Scenarios is essential. The frame-
work must offer capabilities to emulate crash and byzantine
failures in SUTSs to study their robustness and the effect of
relevant configuration parameters (e.g., redundancy). This di-
rectly leads to R9: Granular Control. Starting on the node
level, we need to have the option to directly allocate given
resources, e.g., number of CPU cores, RAM, or NIC config-
urations. Continuing up the deployment stack (Figure 1),
each individual SUT offers distinct configuration parameters.
These encompass e.g., the number of peers within the system,
communication protocols between them, or transaction fees
in blockchain environments. It is imperative to permit the
adjustment of such parameters to study their implications
in real-world deployments. The objective is to attain a high
level of control over as many aspects of the SUT as possible.
Experiment scalability (R12: Scalability) stands as an
essential requirement. Our focus extends beyond support
and actual measurement of large node count, also including
factors like system load (e.g., TPS), wallet numbers, and the
overall volume of requests and interactions within the sys-
tem. Our approach complements real-world deployments,
owing to the R14: Diversity of SUT types, log data formats,
and number of experiment metrics it supports. Unlike central-
ized applications, distributed systems, typically lack a global
perspective on system state and configuration. The operator
can gather local logs, traffic loads, and general telemetry.
However, given the distinct data generated by systems like
Algorand or Ethereum, this presents challenges. To enable
meaningful comparisons between different approaches and
systems, a R15: Standardized configuration scheme is an
essential criterion. This means that, similar configuration
and postprocessing options (e.g., according to an abstract
template) can be applied across various SUTs. The aim is to
minimize variability from configuration differences, allowing
results to rather reflect the SUTs intrinsic capabilities.

Fulfillment of the discussed requirements aids with achiev-
ing a set of general evaluation goals. Given R6: Autonomy,
R7: Malfunction Scenarios, R9: Granular Control, and
R12: Scalability, a framework can facilitate experiments
mirroring real-world environments, accounting for factors
like peer ratios in production versus local setups, correspond-
ing workloads, network characteristics, etc. A modular frame-
work architecture allows for easy integration of new SUTs.
It also facilitates maintaining compatibility to dynamically
changing SUT upstream codebases. All of these characteris-
tics help acquiring insights into bottlenecks, robustness and
performance behavior of target SUTs.

2.5 Related Work Analysis

Over the past years, we have seen many evaluation solu-
tions focusing on classical BFT systems and permissioned or
permissionless blockchains. In our assessment, we have iden-
tified distinct categories of frameworks. Some are tailored to
single systems or their specific families [7, 17, 38, 52, 53, 57],
while others, like Gromit[65] and Diablo[56], aim to pro-
vide a more generalized evaluation approach for specific
blockchains. An assessment, if these systems facilitate the
requirements from Section 2.4, is summarized in Table 2.

2.5.1 Classical Agreement-Focused Frameworks. BFT-
Bench introduced in [57] emulates various types of faults,
collects metrics such as delay and throughput, and consid-
ers underlying system CPU or network utilization. The au-
thors claim implementation of six BFT protocols, includ-
ing PBFT [46] and Zyzzyva [60]. Since the source code is
not available, actual scalability potential and standardiza-
tion are unknown. Details on post-processing are not pro-
vided. In a similar direction, Paxi [38] implements Paxos
[62] and its variants [3], allowing for linearization checks
and framework-level fault injections, for e.g., network and
node failures. Presented measurements were conducted in a
geodistributed cloud deployment. More recent works intro-
duce and use the Bamboo [52, 53] evaluation framework, a
rework of the Paxi codebase, to prototype and test chained-
BFT protocols. The authors implement support for multiple
HotStuff [77] variants as well as Streamlet [47]. The source
code is available online[10]. Bamboo allows for load defini-
tion and distribution of additional configuration files among
peers. It supports a simulation and deploy mode, running
on several physical nodes or a single machine. The authors
state that their measurements were conducted in a cloud
deployment, albeit with all machines placed in the same dat-
acenter. Lastly, a pure simulation approach is introduced by
BFTSim [72] building on the NS-2 network simulator [22].
It allows for measurement of various latencies and through-
put and various workloads to be provided. No reference to
simulator sources is given. Tool [6, 74] is a more recent,
open-source simulation framework, implementing a selec-
tion of classical agreement algorithms and variants (PBFT,
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Table 2. Analysis of Related Work Solutions. v full, © partial,
x no, (?) unknown satisfaction, { pure simulation, ¥ Imple-
ment algo in framework sourcecode, & Runs third-party code

HotStuff) but also protocols, aimed at large-scale blockchain
deployments (Algorand [55] Consensus). The system allows
additional integration of various attacker types.

2.5.2 Blockchain-Focused Evaluation Frameworks.
BlockBench [49] introduces a benchmarking framework us-
ing smart contract cost. It allows for tunable workloads and
collection of various metrics, e.g., scalability and fault toler-
ance insights [14]. It works with PoW Ethereum and Hyper-
ledger Fabric [39]. For Hyperledger evaluation the authors
introduce Hyperledger Caliper [17] that recently added sup-
port for Ethereum. A purely EVM focused solution, starting
with Ethereum, is Chainhammer [7]. According to the paper,
measurements were conducted in private network of com-
modity machines. Gromit [65] aims to be a generic evaluation
framework for seven blockchain systems [11]. While the au-
thors conducted measurements with emulated network delay,
automatable fault injection is not implemented in the frame-
work. Experiments were run in a cloud deployment, with
machines located in the same datacenter. Lastly, the Diablo
framework [56] similarly studies latencies and throughput
for a range of Blockchain systems. Additionally, general load
profiles, smart contracts, and regular transactions are consid-
ered. Measurements were conducted in geodistributed cloud
deployment. An open-source implementation is available
[13], automatable fault-injection is not implemented.

2.5.3 Additional Systems. Additionally, we explore eval-
uations of other systems that our framework aims to support.
A simulator for Nym is introduced in [66], which measures
the system’s performance and models its latency based on
the number of mix nodes and modeled anonymity set size.
In the realm of TEE, [75] introduces TEE-based evaluations
of various VM-based solutions. For low-level assessments
of Zero-Knowledge Proofs (ZKP), zk-Bench [50] presents a
framework to evaluate ZK circuits and arithmetic.

2.5.4 Summary. The analyzed systems from Table 2 come
in three types: Pure simulators ({), frameworks that require
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implementation of a target algorithm within the native frame-
work source code (), and frameworks that orchestrate and
run third-party code (). While simulators help avoiding
setup-related artifacts, insights into complex, real-world de-
ployments is limited. The best approximation of realistic
scenarios can be provided by frameworks that orchestrate
original codebases in real-world stacks (f). Systems, rely-
ing on (geodistributed) cloud deployments, potentially offer
less strict service guarantees, thus allowing for measure-
ment artifacts and variance. Private network deployments
with granular control better facilitate R1-R3. Frequent par-
tial satisfaction in R9 results from limited configuration
capabilities below the application layer. No competitor to
METHODA offers automated HW allocation or configura-
tion. While only true orchestrators (&) effectively handle
SUT codebases, logs, and post-processing, most competi-
tors focus on a very limited set of evaluation metrics (e.g.,
throughput and latency), affecting R14. In conclusion, our
analysis highlights the demand for a true orchestrator (),
facilitating replicability, that also excels in R9, R14, and R15.
This includes the ability to evaluate a wider range of metrics,
parameters, and experiment methods. Such a framework
should not only address classical BFT or permissioned and
permissionless blockchains but also support a broader spec-
trum of distributed systems to enable research of potential
synergies between them.

3 Design & System Architecture

To satisfy all the outlined requirements defined in Section 2,
we outline our design decisions and provide more details
about the METHODA architecture.

3.1 Requirements Satisfaction

To ensure R1, R2, and R3, we start by clearly outlining the
capabilities of the employed HW and Software (SW) versions.
All experiments are conducted in a controlled environment
and, free from additional noise. Our code repository is pub-
licly accessible. The SW artifacts we used are predominantly
open-source solutions and Commercial off-the-Shelf (COTS)
hardware, ensuring both R4 and helping to establish R6.

3.1.1 Scalability. For large-scale deployments, an experi-
ment setup with up to tens or hundreds of nodes is crucial
(R12). Starting with the Link Layer ((2), Figure 1), we use SR-
IOV. Unlike traditional virtualized environments, where net-
work traffic passes through the hypervisor, SR-IOV bypasses
this bottleneck by direct communication with the physical
NIC. As a result, it significantly reduces CPU overhead and
enhances network performance [54]. This is achieved by
partitioning the resources of a physical NIC to multiple Vir-
tual Functions (VFs), where each VF acts as an independent
Peripheral Component Interconnect (PCI) function with its
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own configuration space and capabilities, e.g., qdisc configu-
rations. The VFs can be assigned to individual virtualization
solutions, granting them direct access to the physical NIC.

To emulate realistic deployments and increase the number
of peers, we introduce, among others, lightweight virtualiza-
tion on the Infrastructure Layer ((¢), Figure 1). From many
variants among application- or system containers, we se-
lected LXC system containers. LXC is an Operating System
(OS) system-level lightweight virtualization method that al-
lows multiple isolated Linux systems, known as containers,
to run on a single host. Unlike an application container, such
as e.g., Docker [2], LXC’s lifecycle is longer and are man-
aged similar to VMs. On the other hand, unlike traditional
VM, LXC operates at the kernel level, enabling efficient re-
source utilization [76]. Key components for LXC are Linux
namespaces and Control Groups (cgroups) to create isolated
application environments. Namespaces provide process and
network isolation, file system views, and more, while cgroups
manage resource allocation, including CPU, memory, and
disk I/O. Each LXC container is allocated one of the created
VF interfaces enabled for the corresponding NIC. LXC sup-
ports a variety of Linux distributions, allowing containers to
run different OS distributions and versions. Also, LXC can
be extended by LXD for deployments of full VM if needed.
Similarly, to integrate and support TEEs at scale, we use Kata
containers [19] tailored for the use-case of confidential com-
puting. Kata is an open-source project and runs containers in
its own lightweight VM, leveraging hardware virtualization
technology that can be fully deployed in a TEE environment.
This approach ensures strong isolation, making it more chal-
lenging for potential attackers to compromise the guest or
host system and isolation among various containers running
on the same system. Kata Containers’ are compatible with
orchestration SW like Kubernetes. They are also Open Con-
tainer Initiative (OCI) [24] compliant. Therefore, the runtime
environment supports various container images, facilitating
a smooth transition from or to, e.g., Docker containers.

We rely on the VM-based solutions, introduced above, for
TEE integration. The process-based solutions, exemplified by
Intel Software Guard Extension (SGX), enable the creation
of secure enclaves with restricted interaction. In contrast,
VM-based deployments, such as Intel Trusted Domain Exten-
sions (TDX) or AMD Secure Encrypted Virtualization (SEV),
enhance virtual machine security through Secure Nested Pag-
ing, encrypting and isolating guest VMs from the hypervisor,
and supporting nested virtualization. The Kata containers
then fully run inside the trusted enclave provided by the
underlying CPU, which is, in our case, AMD SEV-SNP [58].
Nevertheless, Kata containers allow for other TEEs technolo-
gies such as the Intel TDX once present in COTS.

3.1.2 Realistic Deployments. Emulating system realism
in a controlled environment is a continuous process, espe-
cially when the deployed systems evolve. Therefore, it is

crucial to have granular control over individual components
in the infrastructure. In addition, it is important to design
experiments that can reflect and properly abstract the com-
plexity and state one can observe in the systems. For our
experiments, we mainly rely on loads identified by related
work and do additional analysis of mainnet (Blockchain con-
text: Production network) data for certain Algorand and
Ethereum 2.0 blockchains. We deploy several strategies to
ensure proper emulation of such setups.

Starting on the Link Layer (), Figure 1), we can emulate
various network conditions using the Network Emulator
(netem) [33] in combination with Multiqueue Priority Qdisc
(MQPRIO) [32] qdisc. The module is controlled by the traffic
control (tc) [34] functionality of the networking stack. qdiscs
allow prioritizing and manipulating network traffic to en-
sure shaped transmission. Different qdiscs employ various
algorithms to determine how they are processed. MQPRIO
is a qdisc module that facilitates multi-queuing with prioriti-
zation. It divides network traffic into different queues, each
with their own priority level. This allows for fine-grained
control over which packets are processed first. Depending on
the requirements, it allows for Quality of Service (QoS) and
combination with additional child qdiscs. A relevant child
qdisc is netem, which allows to introduce various network
conditions like delay, jitter, packet loss, and packet reorder-
ing. By default, the same rule used is applied to all outgo-
ing interfaces. Therefore we combine netem with MQPRIO,
introducing the capability to modify traffic based on e.g.,
source IP address or port. We apply various netem configu-
rations to each HW queue and use nftables [23] to map the
corresponding traffic to the relevant HW queue on the Ap-
plication Layer ((®)). We offer multiple options to configure
dedicated resources on each node/peer/container, modify
the NIC configuration, and scale the number of peers.

Similarly, due to the tight control on the Infrastructure
Layer ((&), Figure 1), we can allocate dedicated resources to
each node using either LXC or dedicated NIC configurations
to emulate not only delays, but also, for instance, lower
the throughput of a given interface and control what HW
offload capabilities are being used. We use native interactions
with each system (e.g., provided Software Development Kits
(SDKs) or native calls on exposed Application Programming
Interfaces (APIs)) and do not rely on any middleware layer.
Therefore, any type of interaction can be emulated.

As outlined, a big challenge are versioning and regular
changes. So, for each protocol we evaluate - e.g., Algo-
rand and Ethereum 2.0 — we can also easily select differ-
ent versions of node and protocol to evaluate and compare
their current, previous, and, more importantly, future per-
formance. METHODA supports collection of the metrics
defined in Table 1 and due to tightly synchronized clocks, we
allow for nanosecond precision on NICs that support IEEE
802.1AS [69]. We rely on the Linux PTP project [21] to han-
dle time synchronization. The PTP project implements the
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Figure 2. Simplified Topology used in our Deployments, Groups corresponds to HW Specification in Table 3

IEEE 1588 standard for PTP and can function over Ethernet,
IPv4, or IPv6 networks. The ptp4l [29] daemon must run on
all interfaces, enabling it to synchronize the system’s clocks
and identify the PTP Grandmaster Clock (GM), which serves
as the reference time for the entire system. Additionally,
the phc2sys [27] tool can synchronize clocks within a single
node and operate in automatic mode, leveraging informa-
tion from the ptp4l daemon to achieve synchronization. Due
to the precise synchronization, we can inject specific faults
and emulate dynamic changes in the system precisely at a
given time and observe its effects. This allows for valuable
insights into the reliability and security of the SUT (R?7). Fur-
thermore METHODA supports modification of the various
threshold parameters, such as the number of expected active
participants, stake distributions in the PoS systems, waiting
parameters, expected synchronicity models in BFT settings,
and others.

As outlined in Section 2.4, satisfying R9 and R14 facili-
tates realistic emulation of complex distributed systems. We
employ Ansible and YAML for a standardized structure of ex-
periments (R15) that can be easily ported and to ensure fair
comparisons. Lastly, to support extentions with new metrics,
parameters, and services, we strive for modularity the design
of METHODA. This contributes to easier maintenance and
compatibility to upstream changes of SUTs.

3.2 Integration into EnGINE

EnGINE is a key component of a broader orchestration ap-
proach for consistent, replicable, and verifiable networking
experiments [67, 68]. It offers an adaptable experiment coor-
dination tool, implemented in Ansible, which can be easily
integrated with COTS hardware. Experiments conducted in
EnGINE follow a structured process orchestrated through a
management node, encompassing four key phases (Figure 3).
The 1. Install phase involves HW machine allocation, config-
uration, OS deployment, and is something we did not modify.

1. Install -=:>[ 2. Setup ]1—4>[3 Scenario]=:>[4. Process]

A x - A

L - Experiments '

' . A}

e .

v, Setup Process, =

:" Letworklstack SE D Collect, Clean ‘l
'

[ 00-nodes.yml ][ 01-network.yml ][ 02-stacks.yml ][)4-experiment.ym][ 05-process.yml ]

Figure 3. Overview of Extended Modules (highlighted in
red) to EnGINE Framework [43]

The 2. Setup phase installs all necessary dependencies. The
actual measurements are executed in the 3. Scenario phase,
covering all experiments within a given campaign. The phase
also includes network configuration, as well as the prepara-
tion and execution of applications for traffic generation and
data collection. Each experiment is initiated and concluded,
with this cycle repeating until all defined experiments for
the scenario are finished. The collected results are then pro-
cessed in the final 4. Process phase.

We now discuss our modifications of EnGINE modules,
starting with the 2. Setup step. We implemented additional
features related to SR-IOV, container technologies, and other
aspects of virtualiziation. We also extended the experiment
flow by relevant dependencies as well as network configura-
tion changes. We no longer rely on Open vSwitch (OvS) since
we want to generalize the framework with a focus on func-
tionalities from the Network Transport Layer and above. We
already identified suitable technologies that achieve scalabil-
ity and realism using the Linux network stack (Section 3.1).

Similarly, the 3. Scenario module now features new exper-
iment campaigns for which we defined all relevant applica-
tions and services. For definition of individual experiments,
we extended the 00-nodes.yml by new options, related to
e.g., the use of containers, but also network modes. After the
configuration changes containers are treated similar to full
nodes. Through this abstraction, no per-service changes are
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Table 3. Node families used for experiments with HW specs, their count, and (relevant) supported standards by NICs

CPU (cores/threads)

RAM

NICs

Group 1 (4x)

24C/48T Intel® Xeon Gold 6312U 512 GB DDR4

4x 25 GbE E810-C", 2% 100 GbE E810-XX VT
2x 10 GbE X552F

Group 2 (4x) 32C/64T AMD EPYC 7543 512 GB DDR4 4% 25 GbE E810-CT, 2% 100 GbE E810-XXV*
2x 10 GbE BCM574F
Group 3 (4x) 32C/64T AMD EPYC 9354 768 GB DDR5 4x 25 GbE E810-CT, 2x 100 GbE E810-C'

Group 4 (2x)

32C/64T Intel® Xeon Gold 6421N 512 GB DDR5

2x 10 GbE BCM574", 4x 10 GbE X7107

2x 100 GbE E810-XXVT, 2x 100 GbE MT28908" *
2x 10 GbE X552, 4x 10 GbE X710, 4x 25 GbE E810-C'

Total capacity 416C/832T

8192 GB

On average 9 ports per node

TIEEE 802.1AS, E810 family, E710, X552, and 1210 are manufactured by Intel®

# Only two out of four nodes have this NIC

necessary and all deployments and tasks in the pipeline can
be reused. The same applies to both LXC and Kata containers
and Docker, respectively. @1-network.yml now supports ad-
ditional flags for interface and extended qdiscs configuration
for the usage of netem. @3-stacks. yml structure itself has
not been extensively modified but instead extended by more
than ten new services and additional flags for the process-
ing pipeline. Lastly, we newly introduced @5-process.yml,
which contains additional metadata relevant to each sce-
nario and its experiment run. Combining these aspects, we
defined 15 experiment scenarios to collect relevant insights
and validate our methodology and approach. We enclose a
repository with artifacts and source code.

Last, we extended 4. Process to support large-scale de-
ployments and easier data access and processing via database
storage. This includes various applications and various for-
mats such as packet captures, logs, or .csv. These results are
correlated and used for visualizations of our metrics (Table 1).

3.3 Infrastructure

Combining all design decisions, we deploy the framework
to a private testbed. A simplified topology setup is shown
in Figure 2, with all 14 nodes interconnected via dedicated
test switches. The nodes are grouped based on their HW
specifications and NICs. Table 3 introduces the NIC types
and each group HW specifications in addition to the total
capacity of the testbed. Figure 2 uses colors to differenti-
ate NIC ports. For clarity, we mark each NIC family with
a corresponding color. Of note, there is additional wiring
between the nodes, but for readability reasons it is omitted.
The additional connections are essential for the PTP syn-
chronization. Depending on the system, we can scale our
experiments to tens or hundreds of nodes represented by the
LXC containers, based on the total capacity (Table 3).

For our experiments, we use Ubuntu 22.04 with a 5.15-
lowlatency Linux kernel. This image our base OS for the

Algorand, Ethereum 2.0, and FROST Signature scheme ex-
periments. For Ethereum 2.0, we use go-ethereum version
1.20 [8] as an execution client and Prysm as a consensus
client 4.0.4 [15]. For the Proposer-Builder Separation (PBS)
relay we use version 1.11.5-0.2.3 [9]. Algorand uses the go-
algorand release 3.18.1 [4]. The FROST library builds on top
of the FROST-Dalek implementation [12] but was signifi-
cantly extended by the communication stack and other parts.
For Kata we also use Ubuntu, but with a version of 20.04
and Linux kernel version 5.19 with additional AMD patches
to allow for deployments in the AMD SEV-SNP enclave [5].
Additional details can be found in the enclosed repository.

4 FEvaluation & Validation

This section introduces the experiments outlined in Sec-
tion 3.3, serving as a validation to our outlined methods.

4.1 Feasibility Study

In this study, our objective is to analyze the effects of imple-
menting the FROST scheme within a TEE to enhance the
security of individual private key shares. TEEs are being
explored for their potential applications in distributed sys-
tems, ranging from privacy preservation to security optimiza-
tion [63]. We conduct separate performance assessments of
both TEEs and the FROST threshold signature scheme, as
well as their combined impact. This includes overhead com-
parisons for Kata containers in TEE vs. native deployments,
and white box vs. black box testing for FROST. We maintain
consistent configurations, varying only the virtualization
technique. TEE-related experiments run on Group 3 nodes,
while FROST without TEE runs on Group 2 nodes (Table 3).

In initial TEE experiments, we evaluate the application
execution impact. For CPU-bound evaluations, we utilize
the triad benchmark [25], while matrix multiplication is
employed for memory-bound CPU tests, as illustrated in Sec-
tion 4.1. The results depicted in Figure 4a reveal comparable
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behavior across baseline (bare metal), Docker and Kata na-
tive deployments. Kata within the TEE, shows a spike for 224
elements, attributed to caching effects. Similarly, Figure 4b
displays consistent performance across various matrix di-
mensions and Mega Floating-Point Operations Per Second
(MFLOPS) in the memory-bound test, indicating no signifi-
cant performance degradation for Kata within the TEE.

4.1.1 White box and Black box testing. After establish-
ing the baseline performance of the TEE, we proceed with
the evaluation of Schnorr’s signature scheme. This involves
employing both white box and black box testing methods
to measure the E2E latency. The micro-benchmarking is
supported by FROST-Dalek [12] and results are shown in
Figure 5. This setup emulates the operations of a distributed
scenario on a single node without a networking stack. No-
tably, nonce generation (preprocessing phase) is excluded.
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The benchmark breaks down performance into individual
steps within each phase, providing a detailed assessment.
Conducted on a Group 2 node (Table 3), each operation is
executed approximately 500 times, with n =3 and t = 2.
The Distributed Key Generation (DKG) phase consists of
initial operations from Participant Creation until the Finish
step. This phase also encompasses the LT Verification Shares
step, where a participant computes long-term public key
shares (Y;) of its peers. Although not strictly part of DKG,
our system includes it. The sign phase involves the Partial
signature creation that is executed on each peer, followed by
Signature aggregation—theoretically involving the broadcast
of individual partial signatures to all other peers. Finally,
the client executes the last step in our system, Signature
verification. In summary, FROST-Dalek’s DKG operation,
without network communication, takes approximately 2 ms,
while threshold signature generation requires around 0.5 ms.
Using black box testing, we assess the E2E latencies for
signing operation while varying the parameters n and ¢,
message size m, and execution within or without TEE (Sec-
tion 4.1.1). Utilizing hosts from Group 2, we deploy up to
eight LXC containers per node, each with fixed resources
and without threading the signature application. To evaluate
the scheme’s scalability, we increase the node count to 32
and message size up to 8092 B. Using METHODAs dynamic
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fault injection capabilities, we employ netem to introduce a
delay among peers on the same physical machine, mirroring
the delay among the rest of the peers.

In Figure 6a, we observe that the value of ¢ has a less
significant impact on signature generation. This is attributed
to its influence being confined to the summation of partial
signatures—an operation with low cost (as seen in Figure 5).
Consequently, the summation of ¢ partial signatures exhibits
nearly constant complexity due to the marginal increase in ¢.
Similarly, while the differences in means for various message
lengths are measurable, they are less critical. Building on the
findings from the study of Kata in TEE, we present Figure 6b.
Here, the mean delay for specific values of n, t, and message
size remains consistent, albeit with more outliers.

In summary, threshold Schnorr, in conjunction with TEE,
achieves mean delays of up to 42ms for 32 nodes and a
message size of 8092 B. Comparing this with Figure 5, we
observe an approximate 5x increase for signature generation,
primarily attributable to communication overhead.

4.1.2 Applicability to Blockchain. From the perspec-
tive of a single peer, we are interested in measuring how

EN
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Figure 7. Ethereum 2.0 Client to Mempool E2E Latency
using tcpdump

long a client takes to process a single transaction. Instead
of modifying the code of a client node, we want to measure
the processing time of a node. Therefore, we measure E2E
memory pool (mempool) confirmation measured on a client
node using tcpdump [35]. Figure 7 indicates that the majority
of transactions exhibit processing delays ranging from 2 to
3 ms. Note that no transaction is confirmed between 20 and
140 s, which is due to the execution clients waiting for the
Terminal Total Difficulty (TTD) to be reached to switch to
PoS [30]. A similar approach can be applied to metrics sup-
ported by the framework, especially due to the deployment
of PTP for high precision for raw network data collection.

4.2 Use-case: Emulation of Ethereum’s PBS

In a specific use-case, we emulate an MEV scenario of Ethereum
2.0. To mitigate the adverse effects of MEV, Ethereum 2.0
introduced PBS, enabling clients to send transactions directly
to block builders [28], instead of validators directly creating
blocks. Consequently, a double-order auction occurs before
a block is dispatched to the proposer, involving three par-
ties: searchers, builders, and relays. Each relay is linked to a
group of block builders and selects the most profitable block
from the connected set of builders. Given that searchers are
continually on the lookout for MEV opportunities, they for-
ward a transaction bundle (a list of transactions) to one or
more builders. The builder’s goal is to maximize profits by
constructing the most lucrative block. This constitutes the
first auction, where searchers bid for their bundles in compe-
tition with one another. Subsequently, builders compete for
the relay’s selection of their block, constituting the second
auction. We now shift our focus to the first-level auction,
specifically on the builder side, to extract the maximum value.
We simplify the setup by assuming only a single builder.
To investigate this behavior, we emulate a scenario with
continuously increasing MEV profit space, leading to in-
creased transaction count and gas value increasing per block.
Consequently, certain transactions arriving at the mempool
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have higher gas fees. Out of a load of 20 TPS, 15 % have
higher gas fees. The builder then dispatches updated blocks,
extracting increased value in each slot, as depicted in Figure 8.
This value incrementally rises with each new proposed block
within the same slot, and cumulatively over the course of the
entire experiment. This underscores the builders’ objective
to generate blocks prioritizing transactions with higher gas
fees. Overall, this scenario emulates increasing MEV profit
space, e.g., as present in a bidding competition for trans-
action inclusion in the subsequent block. As such, it is a
basic representation that can be further refined with more
sophisticated strategies and the integration of a second-order
auction in the future.

4.3 Optimal Resources

Algorand’s network differentiates between relay and non-
relay (consensus participation and non-participation) nodes,
where relays are mainly used to forward traffic to other
nodes. Therefore, we investigate the impact of the HW spec-
ifications of relay nodes on the performance. Our Algorand
network comprises four relay nodes, eight participation (p),
and eight non-participation (r) nodes. Those nodes are dis-
tributed as LXC containers across four physical nodes with
64 virtual cores each, s.t. each physical node hosts one relay
and two p-nodes and n-nodes each. Each n-node has a client
container connected to it. Those clients generate payment
transactions and forward them to the -nodes. Both -nodes
and p-nodes have always eight virtual cores assigned to them.
For the relays, we consider 8 and 16 virtual cores. Algorand
recommends eight virtual and 16 cores for 1-/p- and relay
nodes, respectively [18]. Figure 9 shows the system’s perfor-
mance under increasing load profiles. We observe that both
the relay setups can operate loads of up to 6000 TPS with-
out reaching network congestion. The block time increases
slightly with increasing load in both scenarios. In our re-
stricted setting, we conclude that the number of relay cores
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does not significantly impact performance. In practice, a re-
lay has to handle large numbers of concurrent connections
to p and 5 nodes, which is not reflected in our experiment.

5 Challenges

We encountered several notable challenges while designing
METHODA. The testbed’s diverse hardware specifications
led to varying base performances and capabilities. This di-
versity is common in real-world deployments, allowing us to
conduct assessments that closely resemble realistic scenarios.
For experiment execution, we used a fixed distribution
and kernel. Yet, many distributions with potentially distinct
performance profiles are common in real-world deployments.
Nevertheless, METHODA facilitates highly-automated and
standardized testing of different systems and their respective
versions, offering valuable insights into their impact.

6 Conclusion & Future Work

In this study, we unveil METHODA, an extension of the
EnGINE framework, tailored to heterogeneous, large-scale
distributed systems. This advance encompasses a compre-
hensive requirements and related work analysis, as well as
the introduction of a sophisticated application stack and
experiment methodology. These components cover a spec-
trum of experiment strategies and their corresponding met-
rics and parameters. Additionally, we discuss prerequisites
and design choices for EnGINE integration in detail. We
conduct a series of experiments to showcase the effective-
ness and potential of our methodology within the frame-
work. We present measurements of Ethereum 2.0 and Al-
gorand, the FROST threshold cryptography scheme, and
assess performance overhead of processing within a TEE.
METHODA offers protocol developers and researchers a
holistic approach to acquire in-depth system insights. We
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validate METHODA on four SUTs, collecting eight metrics
and modifying 12 parameters. For the integration of TEE
with FROST, we observe minimal overhead on the perfor-
mance with average latency around 40 ms. For Algorand, we
see less impact by weaker HW specifications on the through-
put but rather on latency. Last, emulation of realistic systems
behavior e.g., MEV is possible and could be used to further
model such dynamics.

For future work, we plan to integrate an even broader
spectrum of applications, spanning from permissioned and
permissionless blockchains to threshold cryptosystems and
privacy-preserving networks, among others. Also, while
cloud deployments may not be fitting for reproducible ex-
periments, they hold promise as a pertinent infrastructure
for sustained data collection, especially with the inclusion of
network probes. Consequently, we envision extending the
framework to facilitate deployments of such experiments in
the cloud.
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