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Abstract—Firewall capabilities of operating systems are tra-

ditionally provided by inflexible filter routines or hooks in the

kernel. These require privileged access to be configured and are

not easily extensible for custom low-level actions. Since Linux 3.0,

the Berkeley Packet Filter (BPF) allows user-written extensions in

the kernel processing path. The successor, extended BPF (eBPF),

improves flexibility and is realized via a virtual machine featuring

both a just-in-time (JIT) compiler and an interpreter running in

the kernel. It executes custom eBPF programs supplied by the

user, effectively moving kernel functionality into user space.

We present two case studies on the usage of Linux eBPF.

First, we analyze the performance of the eXpress Data Path

(XDP). XDP uses eBPF to process ingress traffic before the

allocation of kernel data structures which comes along with

performance benefits. In the second case study, eBPF is used to

install application-specific packet filtering configurations acting

on the socket level. Our case studies focus on performance aspects

and discuss benefits and drawbacks.

Index Terms—Linux, eBPF, XDP, Performance Measurements

I. INTRODUCTION

Controlling and monitoring network packets traveling from
and to a program on a specific host and network is an important
element in computer networks. In theory, the application itself
could determine whether to interpret and process a packet
received from the network and what information to send back,
but current implementations lack the ability for four reasons.
Our perspective is focused on Linux:

R1: Traffic should be filtered as early as possible to reduce
unnecessary overhead.

R2: Application developers know best about the packet fil-
tering configuration concerning their application and therefore
should be able to ship policies together with their application
in an easy way.

R3: Considering the system administrator would know the
requirements of each application, she still would have to man-
age huge amounts of all slightly different and ever changing
configuration files, complicating central policy implementation
and verification.

R4: Orthogonal to these three policy related issues, mod-
ern applications have to cope with performance and latency
requirements.

Over the past years, the state of the art was to have all of
the hosts’ packet filtering rules installed at a central location in
the kernel. Configuring and maintaining a centralized ruleset
using, e.g., iptables or nftables, requires root access, a scheme

not only used on UNIX-based systems. By the time a packet
is filtered in kernel space, rejected traffic already caused
overhead, as each single packet was copied to memory and
underwent basic processing. To circumvent these problems,
two trends for packet filtering can be observed: Either the
filtering is moved to a lower level leveraging hardware support
(e.g., offloading features or FPGA-based NICs), or breaking
up the ruleset and moving parts to user space.

In this paper we show how eBPF can be used to break up the
conventional packet filtering model in Linux, even in environ-
ments of 10 Gbit/s or more. Controlling the information flow
only at the network endpoints is appealing in its simplicity and
performance. Therefore, we use XDP (eXpress data path) for
coarse packet filtering before handing packets to the kernel.
This provides a first line of defense against traffic that is in
general unwanted by the host, e.g., spoofed addresses [1] or
Denial-of-Service flooding attacks. We contribute by compar-
ing the achievable performance and latency for basic filtering
operations to using classic approaches like iptables or nftables.

Additionally, policy rules become simpler if only one appli-
cation on a host at a time has to be considered and the risk of
leaving an application exposed to the network unintentionally
is reduced if both packet filtering and application form a
single unit. Default packet filtering rules could be shipped
by application developers alongside their product, bringing us
closer to secure-by-default systems while allowing techniques
like port-knocking without root access. For that vision, we
propose our solution for socket attached packet filtering.
Because traffic unwanted by the host in general is already
taken care of on a lower level, at socket level, per application
decisions regarding the traffic of interest can be made. We
show that both eBPF applications can be configured and used
from user space even in high-performance environments of
10 Gbit/s networks.

This paper is structured as follows. In Section II, we
present an overview of packet filtering on Linux machines
at different points in the processing chain. A short history
of eBPF in Linux is presented in Section III. In Section IV,
we present measurements of common kernel packet filters as
baseline for our case studies. Section V presents our XDP case
study. Section VI describes our proposal for socket attached
eBPF packet filtering and details the performance implications
thereof. Related work is discussed as part of each case study,
before we conclude with Section VII.
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Figure 1: Different levels of packet filtering in Linux

II. PACKET FILTERING ON DIFFERENT LEVELS

Packets can be filtered at different stages on their way from
the physical network interface until they reach the application.
Figure 1 presents a rough overview of this; every non-dashed
box presents a point where filters can be applied.

A. Hardware Level

The first, and from a performance perspective most attrac-
tive point for filtering as part of a firewall, is on the network
interface card (NIC) itself. Modern server NICs offer hard-
ware offloading or filter capabilities, which can be configured
via driver parameters and tools like ethtool. Furthermore,
dedicated platforms based on FPGAs or SmartNICs for packet
filter offloading like HyPaFilter [2] have emerged. However,
the functionality is limited and depends on the vendor and the
specific NIC, resulting in a lack of general availability and no
common interface for configuration.

B. Network Level

We refer to network level firewalls as any kind of packet
filtering before the routing subsystem has started to process a
packet. From performance perspective this is more attractive
than a system level firewall as fewer CPU cycles are consumed
for dropped packets.

In Section V, we analyze the benefits of early filtering via
XDP, e.g., against DoS attacks.

C. System Level

Packet filters on system level like iptables or the newer
nftables are widely used in Linux systems, achieving per-
formance levels acceptable for today’s applications. They
hook into the processing at different locations, e.g., at the
routing subsystem of the Linux kernel and therefore before
the application. However, these firewalls require root access
and system-specific knowledge; different rules may interfere
and it is not possible to ship meaningful application-specific
packet filters with the application.

In Section IV, we use both iptables and nftables as baseline
for the performance measurements of our case studies.

D. Application Level

Application level firewalls look into traffic addressed for
a specific application. In our second case study, we add
application-specific eBPF-based packet filters to sockets using
systemd’s socket activation (cf. Section VI). This allows
application developers to ship packet filtering rules that can
be deployed together with their application. Those rules are
specific to an application and simplify the central system-level
firewall.

III. SHORT HISTORY OF BPF VMS IN LINUX

The increase of dynamic features is a general trend in the
Linux kernel: Virtual machines, byte code interpreters, and
JIT compilers help to abstract features and move complexity
into the user space. Both case studies in this paper (XDP and
our application level packet filters) are based on eBPF, which
is available in Linux 4.x. eBPF allows for high-performance
packet filtering controlled from user space. When filtering
sockets of specific applications, root access is not required.

A. Berkeley Packet Filter VM

BPF, developed in 1992 for UNIX [3], has the purpose
of packet filtering, improving the performance of network
monitoring applications such as tcpdump. BPF has long
been part of the Linux kernel. In the original paper [3], a
BPF program can be found, which loads a packet’s Ethernet
protocol type field and rejects everything except for type IP,
demonstrating the internal workings.

Since the release of Linux 3.0, the BPF VM has been
improved continuously [4]. A JIT compiler was added for
the filter, which enabled the Linux kernel to translate the
VM instructions to assembly code on the x86 64 architecture
in real time. In Linux 3.15 and 3.16, further performance
improvements and generalizations of BPF were implemented,
leading to the extended Berkeley Packet Filters (eBPF).

B. Extended Berkeley Packet Filters

eBPF is an extended form of the BPF VM with a network
specific architecture designed to be a general purpose filtering
system. While the features provided by or implemented with
eBPF continues to grow [5], it can already be used for other
applications than socket filtering, such as packet filtering,
traffic control/shaping, and tracing. The IO Visor Project [5]
lists eBPF features available by kernel version.

eBPF is a byte code with 64-bit instructions running on
a machine with ten 32-bit registers, either dynamically inter-
preted or compiled just-in-time [5]. The instructions of the
eBPF VM are usually mapped 1:1 to real assembly instructions
of the underlying hardware architecture [6][7]. When the
kernel runs an eBPF program, it sets up the memory this
program can access depending on the type of the program
(e.g., socket filtering or event tracing) and allows calling
a predefined and type-dependent set of functions provided
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Figure 2: Maximum throughput for iptables and nftables

by the kernel [8]. eBPF programs are like regular programs
running on hardware with two exceptions: First, when an eBPF
program is loaded into the kernel, it is statically verified. This
ensures that the program contains no backward jumps (loops)
and does not exceed a maximum size of 4096 instructions.
This verifier cannot be disabled without root access, impeding
users from overloading the system with complex filtering rules.
Thus, a malicious eBPF program cannot compromise or block
the kernel, which makes it possible to allow non-root users to
use eBPF [9]. All memory accesses are bound-checked.

The second difference are the key-value stores, coined maps.
While regular programs can retain state and communicate with
other programs using a variety of methods, eBPF programs are
restricted to reading from and writing to maps. Maps are areas
in memory which have to be set up by a user space helper
before the eBPF program is loaded into the kernel. Both, the
size of the key and value type, as well as the maximum number
of entries are determined at creation time. Data can then be
accessed in a secure manner by both user space and eBPF
kernel space using a file descriptor [5].

C. eXpress Data Path
Linux 4.8 integrated eXpress Data Path (XDP) [5] into the

kernel. XDP provides the possibility for packet processing at
the lowest level in the software stack. Functions implemented
in network drivers expose a common API for fast packet
processing across hardware from different vendors. Through
driver hooks, user-defined eBPF programs can access and
modify packets in the NIC driver’s DMA buffers. The result
is a stateless and fast programmable network data path in the
Linux kernel. It allows early discarding of packets, e.g., to
counteract DoS, and bypassing of the Linux network stack to
directly place packets in the egress buffers.

XDP is already actively used. Cloudflare integrated XDP
into their DoS mitigation pipeline [10]. Incentives are the low
cost for dropping packets and the ability to express rules in
a high level language. In addition to deploying their own
DoS protection solution based on XDP [11], Facebook has
published plans to use XDP as layer 4 load balancer [12].
In their proposed scheme, each end-host performs the load
balancing. This again is possible, because XDP hooks are
performed before any costly actions.

IV. LINUX PACKET FILTERING PERFORMANCE

The iptables packet filter utility is part of Linux since
kernel version 2.4 in 2001. It was introduced together with
the netfilter framework that provides functionality to hook in

0

20

40
nftables

0

20

40

R
el
a
ti
v
e
P
ro
b
a
b
il
it
y
[%

]

iptables

20 40 60 80 100 120 140 160 180 200
0

20

40

Latency [µs]

No Firewall

Figure 3: Latency distribution for iptables and nftables at
0.03 Mpps. Maximum outlier (blue cross) and median (dotted
red line) are marked for better visibility.

at different occasions in the Linux network stack. iptables
rules trigger different behavior implemented in different kernel
modules. This approach has shown to introduce drawbacks,
like the need to implement additional modules for IPv6, which
are, although copied in large parts from IPv4, a separate
module in the Linux kernel.

In 2014, with Linux 3.13 nftables [13] was introduced. It
also builds on the netfilter framework, but has only basic
primitives like compare operations, or functionality to load
information from the packets implemented in the kernel.
The actual packet filters are created in the user context via
translation of rules into a list of basic primitives that are
evaluated via pseudo-machines whenever a packet needs to be
checked. This for instance allows to extend packet filtering
functionality for new protocols without kernel updates, by
updating the userspace program for rule translation.

We consider both, iptables and nftables packet filters based
on the netfilter framework of the Linux kernel as the default
way of packet filtering in Linux. Therefore, we use them
as baseline comparison for our subsequently described case
studies of eBPF-based packet filtering approaches.

We perform basic tests to measure the performance of
iptables and nftables by installing rules that do not apply to the
traffic, but are sequentially checked before the packet passes.
Figure 2 shows the maximum throughput for increasing rule
set sizes. Our results coincide with related work, showing that
iptables yields better performance [14]. Both approaches are
able to process up to 1.5 Mpps for few number of rules, but
quickly decline when increasing the number of traversed rules.
The test traffic consists of a single flow, processing was hence
restricted to a single 3.2 GHz CPU core. Figure 3 shows the
latency distribution without firewall and with 3000 installed
nftables and iptables rules at 0.03 Mpps which equals 15 Mbit/s
at minimum packet size. iptables induces five times increased
latency compared to not using any packet filters, while the
median for nftables is further increased by roughly 20 µs. Both
applications show two peaks and a long tail which can stretch
up to 180 µs compared to 110 µs for no firewall.
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V. PRE-KERNEL DOS PROTECTION

XDP yields performance gains as processing happens before
allocation of meta-data structures like the kernel’s sk_buff
or buffering in software queues [15]. The programmability
aspect is realized with eBPF. As result of the processing, a
packet can either be dropped, passed to the Linux TCP/IP
stack or transmitted back via the same NIC it was received
on. Beside functionality that is usually deployed in firewalls
on system level, this offers the possibility to use XDP for
packet processing, coarse filtering, e.g., to protect against
common DoS flooding attacks, stateful filtering, forwarding,
load balancing tasks, etc. In other words, XDP is useful to
protect the complete host from certain traffic, not to protect
single applications.

A. Measurement Setup
For all measurements we connected two hosts directly with

each other via a 10 Gigabit Ethernet (GbE) link. One host
is used as load generator and sink using the traffic generator
MoonGen [16]. The second host is the device under test (DuT)
and runs the packet filtering program. The DuT is equipped
with an Intel Xeon E3-1230 CPU (4 cores) @ 3.20 GHz and
16 GB DDR3 RAM and an Intel X540-T2 Network Adapter.
The DuT runs a live boot Debian Stretch image with a Linux
4.12 kernel supporting XDP for Intel NICs. We used the
Linux profiling utility perf for whitebox measurements of the
DuT. All incoming traffic was pinned to one core to reduce
the influence of jitter and side-effects on our measurements.
Furthermore, we statically set the CPU frequency to 100 % and
disabled Turbo Boost and Hyper-Threading. Each workload
was tested for 30 s.

1) XDP Sample Program: The sample program we used
for packet filtering with XDP is based on netoptimizer’s
prototype-kernel1. It consists of two parts: A command-line
application to add and remove filtering rules and an application
that attaches the XDP program to the network driver of the
specified interface. The processing of an incoming packet is
as follows. The XDP program first parses the Ethernet frame
and performs sanity checks. If the parsing fails, the packet is
passed on to the TCP/IP stack for further handling, otherwise
it attempts to parse the IPv4 header and extract the source
IP. If the extracted IP is contained in a blacklist, the packet
is dropped. If not, execution continues to check the layer 4

1https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/
samples/bpf/xdp ddos01 blacklist kern.c

header, extract the ports and look up another eBPF map that
contains a list of blocked ports. If the port is blacklisted, the
program returns XDP_DROP, otherwise, the packet is passed
to the network stack.

We slightly modified the XDP program. Instead of passing
valid packets to the TCP/IP stack, we swap source and desti-
nation MAC addresses and return the packet to the sender with
XDP_TX. Including the network stack introduces complexity
and potential side effects. Analysis of the network stack can
be found in numerous related work [17], [18].

2) Filtering Using Kernel Bypass: In addition to comparing
the results with the baseline measurements presented in Sec-
tion IV we compare XDP with current state of the art kernel
bypass technology. We use a packet filtering example based on
the libmoon/DPDK framework [19]. The filter sample program
was configured to align the number of threads and TX/RX
queues to the same amount used by the XDP sample.

3) MoonGen Load Generator: We use the MoonGen [16]
high-performance, software packet generator based on lib-
moon/DPDK for traffic generation. MoonGen is able to sat-
urate a 10 Gbit/s link with minimum sized, user-customized
packets (14.88 Mpps) using a single core and offers precise
nanosecond-level hardware assisted latency measurements. All
measurements were performed using an example script2 send-
ing minimum sized 64 B packets.

B. Performance Results
1) eBPF Compiler Mode: At the time of writing this paper

(2018-03), the JIT compiler is still disabled by default as it is
deemed experimental and not mature enough. To analyze the
effect of the JIT compiler, we used the most basic XDP exam-
ple, dropping every received packet. Our measurements show
that enabling the JIT can improve the performance by up to
45 %, resulting in 10 Mpps total processed packets. As shown
in Figure 4, the JIT increases the CPU cycles spent per packet
for low packet rates. The optimizations through the JIT reverse
this effect for higher rates. Processing packets with only 50 %
of the cycles yields the observed increase in performance. With
increased maturity and continuous optimization of the JIT this
performance gain compared to static compilation is likely to
increase further.

An XDP program uses the routines of the Linux network
stack for packet reception and transmission. The costs for the
operations of the NIC driver are known to be roughly 700
CPU cycles per packet [18]. Thus, we can estimate the lower
bound for executing the XDP code to roughly 300 CPU cycles
per packet when JIT compiled.

2) Maximum Processing Rate: Figure 5 shows the maxi-
mum performance when filtering packets with XDP with JIT
enabled. XDP can process up to 7.2 Mpps in the case of 90 %
packets dropped, a 28 % performance loss compared to the
basic drop example. When reaching the point of full CPU
utilization, the amount of processed packets remains constant,
i.e., excess packets cannot be processed and are dropped

2https://github.com/emmericp/MoonGen/blob/master/examples/
l3-load-latency.lua
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Figure 5: Packet filtering performance for different amount of
filtered packets (JIT enabled)

(independent of eBPF rules and XDP actions). The 3 Mpps
reduction in peak performance compared to the simple drop
example is because the filter program performs additional tasks
including the parsing and forwarding of packets. Depending on
the percentage distribution of dropped and forwarded packets,
the performance differs. Dropping packets costs less cycles
than forwarding a packet. However, towards the worst case,
i.e., all packets are forwarded, less than a 10 % reduction in
performance is visible.

The results show a ⇠10-fold performance increase
compared to iptables and nftables. As expected, the
libmoon/DPDK-based kernel bypass approach was able to
process at 10 Gbit/s line-rate for all scenarios.

In the following, our analysis is limited to the case of 90 %
flows being passed. We chose this scenario to obtain more
samples for our latency analysis, as only packets that pass the
device can be timestamped.

3) Profiling: We use Linux’ perf record profiling util-
ity to analyze the costs of different internal processing steps.
Linux’ perf record allows us to count CPU cycles spent
per function. As this results in hundreds of kernel functions,
we group the functions by category. bpf_prog contains
the eBPF program code itself (packet processing), while
bpf_helper are functions that can be called from eBPF
programs such as map lookups. Driver related functions of
the NIC are grouped in ixgbe, while kernel denotes all
other kernel functions. Finally, idle contains idle functions
and unused CPU cycles. Note that in order to get mean-
ingful output when profiling a JIT-compiled eBPF program,
the net/core/bpf_jit_kallsyms kernel parameter has
to be set, exporting the program as a kernel symbol to
/proc/kallsyms.

Disregarding idle times for lower rates in Figure 6, the eBPF
program’s relative cost account for the highest percentage with
approximately 60 % of CPU usage. The second highest is the
ixgbe driver code, requiring close to 20 % of the resources,
primarily for handling DMA descriptors (13 %). The BPF
helper functions consume approximately 10 %. This is almost
exclusively utilized for the execution of lookup functions. The
processing performed by the kernel amounts to less than 5 %
accounted to various utility functions.

4) Latency: Figure 7 shows latency percentiles up to the
99.99th percentile for the XDP packet filtering example with
90 % packets passed. We compare the cases with and without
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JIT to analyze the effect of the JIT compiler on latency
outliers.

As with the drop example, the JIT compiled code yields
3 Mpps more performance for the filter example. Two different
areas of latency can be observed. Overloading the device leads
to a high latency (800 µs to 1500 µs) caused by buffers. During
normal operation, the program shows a median latency of
roughly 50 µs. With increasing load the 99.99th percentile
extends up to the worst case latency. At both edges, latency
optima with median latency of 10 µs to 20 µs are observable.
For very low data rates this extends throughout the 99.99th
percentile.

Figure 8 shows the latency histograms for both optima and
the average case during normal operation. These latency fig-
ures are in the expected and normal range for in-kernel packet
processing with interrupt throttling (ixgbe ITR) [20], [21]. The
histograms for the optima show similarities, independent of the
JIT compiler. The difference is that the optimum for high data
rates shows a long tail with outliers between 100 to 300 µs.
During the average steady-state case (1.4 Mpps/3.9 Mpps) the
median latency raises to roughly 50 µs. Both cases have a long
tail, however, enabling JIT causes more and higher outliers up
to 900 µs.

In comparison to the iptables and nftables baseline mea-
surements, XDP achieves slightly better median latencies for
the steady-state. However, the downside is the long tail,
which can appear for all data rates beyond 0.5 Mpps and
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can induce 20 times increased latencies. The JIT compiler
increases this effect. This is a significant problem for modern
high-performance applications with high demand to low and
stable latency [22]. Such outliers do not appear when running
an application on DPDK [21], the trade-off is that the CPU is
always fully utilized by the poll-mode driver.

C. Discussion
Our measurements have shown that XDP provides a sig-

nificant performance increase in comparison to iptables or
nftables. Enabling the eBPF JIT compiler further increases
the performance up to 10 Mpps. However, the line rate per-
formance of a kernel bypass application like DPDK cannot be
reached.

The mean latency of XDP is comparable to in-kernel filter-
ing applications. Latency is dominated by interrupt throttling
in the driver (ixgbe ITR) and dynamic interrupt disabling and
polling in NAPI [20]. DPDK-based applications with a pure
poll-mode driver provide a consistent low latency at the cost
of 100% CPU load regardless of the offered load.

XDP offers a tradeoff. While performance is not as good
as dedicated high-performance frameworks that bypass the
kernel, it offers flexibility. It is fast enough to be deployed as
DoS protection, but also offers kernel integration, i.e., packets
can be passed through the network stack with all its benefits.
While being able to process 7.2 Mpps might seem insufficient
as it is only 50 % of 10 GbE line rate, this represents the
performance of a single core, i.e., it scales with the number
of CPU cores.

VI. SOCKET-ACTIVATED FILTERING

Our second case study aims at fine-grained filtering before
packets reach the application. The purpose is not DoS protec-
tion. This should be handled in general for the complete host
on a lower level, e.g. with XDP. Allowing to filter packets on
a per-socket basis has clear advantages. Application develop-
ers can bind to the wildcard address, circumventing startup
problems in case an address or interface is not yet available.
The developers can ship their program with packet filters to

Application

Socket

Forward packet

to application

Drop packet

 LLVM/BCC
Attach

as filter

eBPF

Bytecode
Kernel VM

Figure 9: Steps from C based packet filter definition to
effective socket attached packet filter

restrict the network exposure according to their requirements.
Also, the user can define application specific firewall rules
without privileges. This does not introduce security problems,
i.e. one application can not mess with the domain of another, as
rules can only be attached to a specific socket, only impacting
the application listening on the socket. Lastly, network tool
developers can implement complex firewall tools on top of this
approach, such as custom port-knocking solutions or traffic
analysis programs.

As a result, the complex firewall is decentralized, consisting
of smaller, easy to maintain rulesets per application. This ap-
proach is less prone to errors and requires less administration.

A. Technical Overview

We combined the eBPF features in the Linux kernel and
the systemd init daemon. systemd creates the socket, adds an
eBPF machine and then passes it to the application via sys-
temd socket activation. We implemented a proof-of-concept,
available as open source [23], for demonstration and use it to
analyze what performance penalty is inherited when attaching
an eBPF filter to an application socket. Our implementation
offers a command line interface, enabling to quickly write
applications requiring even complex support from the firewall.
We demonstrate this with an implementation of port-knocking
using our tool [23].

Figure 9 shows the steps to instantiate application specific
packet filtering rules via eBPF. In the first step, C code
is compiled with clang into eBPF programs, before being
attached as filter to an application socket. The kernel VM now
runs the program to determine which packets are to be dropped
and which to be forwarded to the application.
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1) BPF Compiler Collection: As programming with the
low-level eBPF instruction set (cf. [24]) can be cumbersome,
the BPF Compiler Collection (BCC) [25] provides the C com-
piler clang to compile restricted C code into eBPF programs.
The restrictions with byte code verifier in the kernel are:
no loops, limited number of instructions, no function calls,
etc. BCC wraps LLVM/clang and enhances it with support
for special syntax for defining eBPF maps inside the actual
C program code. The eBPF maps are used to store state
across multiple invocations of the eBPF program and for
communication with the user space.

2) Socket Activation: Socket activation allows to spawn
services on arrival of incoming connections. This allows the
application to only start if and when a client actually connects
to it, and to only stay active for the duration of the connection.
While the first popular implementation, inetd, spawned a pro-
cess for new requests, the systemd socket activation protocol
only starts the main application once and passes the listening
socket to it via a file descriptor with a specified number.
We take advantage of this capability to pass sockets in our
implementation and use this to implement application-level
packet filtering. The server socket is created before the filter
program is attached to the socket using the BCC library. The
socket is then passed to the application via systemd socket
activation. As both systemd and socket activation have become
popular, many applications support preconfigured socket file
descriptors. For those, our application firewall can be added
without changes.

3) Data Availability: When transferring a stream of data
using TCP sockets, the user space only sees one packet
containing the TCP/UDP payload. The lack of Ethernet and
IP headers makes packet filtering impossible.

Fortunately, eBPF allows negative memory addresses to
implement certain Linux-only extensions such as getting the
current time or determining the CPU core the filter program
is currently running on [26]. Our implementation uses this to
read from memory addresses containing the layer 2 and layer 3
headers, even if the filter is attached to a UDP or TCP socket.

B. Measurement Setup

The measurement setup differs in comparison to Sec-
tion V-A. As benchmarking an application-level packet filter
requires all packets to pass the kernel, it is expected that the
performance is clearly below 10 GbE line rate on the same
hardware. Initial measurements using a simple echo daemon
without any packet filters confirmed that the peak throughput
is below 4 Gbit/s. To maximize the impact of our socket-

activated packet filters, we decided to measure the performance
using the loopback interface of the DuT. Using a virtual link
accomplishes this, as the results will be largely dominated by
how efficient the eBPF filters (and the TCP/IP stack) work
on Linux, assuming that processor and memory speeds are
constant. Furthermore, we decided to use the Linux utility
iperf instead of MoonGen as traffic generator and sink. This
approach requires no dedicated networking hardware, allowing
for simpler to reproduce experiments at the cost of not being
able to analyze the latency behavior. However, we expect that
latency will be primarily influenced by the same mechanisms
discussed previously.

All measurements are performed using IPv6/TCP traffic
generated by iperf. Instead of the packet rate, we measure
the throughput of the application, as it is the important metric
for application developers. We tested three different configura-
tions. As in Section V-B1, we evaluated the impact of enabling
the JIT compiler for eBPF. Furthermore, we analyzed the
performance when also enabling dynamic frequency scaling
of the CPU, Turbo Boost, and Hyper Threading (referred to as
TB/HT). Note that these are usually disabled for performance
measurements as they introduce jitter and for instance raise
the CPU frequency above 100 %. However, we argue that it
represents a realistic scenario for an application using a socket
attached filter as they are enabled per default on Linux-based
systems.

C. Performance Measurements
The following discusses the performance results of our

socket-activated packet filtering tool.
1) Baseline: To determine maximum achievable transmis-

sion speed of our setup, we ran a performance test with iperf
serving as both the client and server at the default MTU of the
loopback interface (65536 bytes). The measurement showed a
maximum transmission speed of roughly 3.8 GB/s as the limit.

Figure 10 shows the peak throughput for increasing MTU
when using our client and server programs without attaching a
socket filter. Instead, they use classic systemd socket activation
to create and pass the socket.

The results show that our program without any filtering
rules is able to reach the maximum throughput starting with
approximately 42 kB. As we are not using socket filters, this
is independent of the usage of the JIT compiler. For smaller
MTU the correlation between MTU size and transmission
speed appears sub-linear. This suggests a slightly increasing
overhead with growing packet size. We attribute the visible
steps of performance to side effects of the Linux memory
management.

2) Subnet Filtering: The first scenario configures a socket
filter to compare all ingress traffic against a configurable set
of IPv6 subnets and only allow the packet to pass if a match
was found, i.e., a whitelist filter. The matching rule is put
increasingly further in the back of the list of subnets given
to the socket filter, starting from index 0 up to index 22,
which is the biggest index our filter supports, because of
the maximum size of an eBPF program. We ran the test for
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Figure 11: Subnet filtering performance at various MTUs and matching rule indices
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Figure 12: Interface filtering performance at various MTUs and matching rule indices

four different MTUs typically encountered. 1280 bytes is the
minimum MTU allowed with IPv6 [27], 1500 bytes the default
MTU for Ethernet [28], 9000 bytes a commonly supported size
for Jumbo frames [29], and 65536 bytes is the default MTU
of the loopback interface on Linux [30]. The results relative
to the baseline speed at the corresponding MTU are displayed
in Figure 11.

For all configurations, the performance degrades the further
back the matching rule is in the set of whitelisted subnets.
This is expected as rules are matched sequentially, i.e. non-
matching rules before a match do cost performance. Higher
MTUs generally lead to better performance, even though the
performance is relative to the baseline performance of that
MTU. This is because a higher MTU not only means fewer
packets for the TCP/IP stack to handle, but also implies fewer
invocations of the socket filter.

Enabling JIT (cf. Figure 11b) yields significant performance
gains up to 100 % for the worst case of lowest possible MTU
and highest possible index for the matching rule. Enabling
further optimizations (cf. Figure 11c) further increases the
performance, such that the minimum performance is 80 % of
the baseline. Due to the baseline being slightly lower for the
1280 and 1500 bytes MTUs, the relative throughput for the
9000 bytes MTU is worse than the other measured MTUs.

3) Interface Filtering: The second scenario filters ingress
packets depending on their incoming interface. The difference
to the first scenario is that the (byte-) code for checking
whether a packet arrived via a particular interface (32 bit
integer) is shorter than the code required for doing a full IPv6
subnet matching (128 bit integer + logic for subnet matching).
Consequently, the eBPF program can contain four times as
many rules, allowing to further investigate the performance of
the match and action processing.

The results of the worst case without JIT compilation in
Figure 12a are almost identical to Figure 11a, despite the
increase in the number of rules. Only when enabling JIT

(cf. Figure 12b) or all optimizations (cf. Figure 12c), the
performance degrades to 50 % and 70 % of the baseline,
respectively, when having to process more than 100 rules. In
fact, in this scenario, when having to process the same number
of rules as in the previous scenario (up to 22), the performance
is equal or slightly better. This is due to the simpler packet
filter, i.e., the interface ID in comparison to an IPv6 subnet.

D. Discussion
Making the packet filtering or general firewall decisions, at

least partially, at the application level instead of the network
or system level provides both better isolation between appli-
cations and also more freedom for application developers and
users. While not all applications may require that freedom,
there are examples (such as local file sharing solutions or
remote management interfaces) whose overall security could
be increased, if their network exposure could be limited in
a flexible and configurable way. Additionally, an application
level firewall does not have to care about the system-level
configuration and its limitations, thus reducing the risks of
creating an error-prone ruleset affecting other applications on
the host.

The idea of filtering network traffic at the application
level has in fact been implemented before with for instance
TCP Wrappers [31]. However, these implementations typically
require explicit application support (linking against a shared
library [32]), and, more importantly, do not allow applications
to ship their own, arbitrary, filtering rules. Instead, they are
restricted to what the system administrator has set up in the
global TCP Wrappers configuration file.

Our approach circumvents these issues. We have shown that
this can be done at high data rates in both scenarios, once with
few complex rules, and in the second case with one hundred
simple rules. When using optimizations available and enabled
per default in modern systems, the performance loss is below
30 % on a single core.



We argue that the bottleneck is the limit of the eBPF
program size, i.e., the number and complexity of rules that
can be attached to the socket. Considering machines with a
realistic number of interfaces and therefore required socket
filter rules, this is likely to be acceptable for packet filtering
at application level. Besides packet filtering, our tool can also
be used for more complex firewalling operations, which we
demonstrated with a port-knocking application [23].

VII. CONCLUSION

As shown by our two case studies, eBPF can be used for
versatile and high performance packet filtering applications.

XDP, hooking at the lowest level before the network stack, is
well suited for coarse packet filtering such as DoS prevention.
Our measurements have shown that XDP can yield four times
the performance in comparison to performing a similar task in
the kernel using common packet filtering tools. While latency
outliers exist, which will likely be improved with increasing
maturity of the XDP code base, the median latency also shows
improvements. JIT compiled code yields up to 45 % improved
performance at the cost of more and higher latency outliers.
Furthermore, eBPF and XDP are constantly being improved
or extended, e.g., eBPF hardware offloading or redirecting
packets to another NIC for XDP, which will likely improve
the performance and support more use cases.

Our approach for socket-activated packet filtering shows that
eBPF provides flexibility. Application specific firewall rules
can be set by each application individually without requiring
root access. Our tool grants the freedom to the application
developer to restrict the network exposure of the application to
its needs. This can improve the classic, error prone, centralized
configuration schemes used with iptables and nftables. The
complexity of the global, system level firewall is reduced
while security is improved through better isolation between
applications. Performance losses are below 20 % for the worst
case of maximum number of rules with minimum MTU when
enabling JIT compilation and modern performance features
like Turbo Boost.

The code of our eBPF demo application is available as free
and open source [23].
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