
Efficient Dynamic Flow Tracking
for Packet Analyzers

Paul Emmerich, Maximilian Pudelko, Quirin Scheitle, Georg Carle
Chair of Network Architectures and Services

Department of Informatics
Technical University of Munich

{emmericp|pudelko|scheitle|carle}@in.tum.de

Abstract—Analyzing large amounts of traffic at the packet or
flow level is an important part of managing and monitoring cloud
network infrastructure. Common scenarios that require low-level
packet analysis are troubleshooting problems, accounting traffic,
and security applications such as intrusion detection systems or
firewalls. Moreover, researchers often analyze traffic for scientific
purposes. For such low-level traffic analyses, tracking flows is a
feature required for both commercial and scientific purposes.
However, there is no good shared library available to implement
this functionality in an efficient, configurable, and dynamic way
that is suitable for real-time analysis. We implement a high-
performant generic flow tracker that can track millions of
simultaenous flows based on arbitrarily complex definitions of
a flow. We make this implementation available as open source
in our traffic analysis tool FlowScope. The highly efficient real-
time tracking of flows by arbitrarily complex user-defined flow
criteria and filters is enabled by just-in-time (JIT) compilation of
flow tracking rules. The code and evaluation scripts are available
as free and open source at:

https://github.com/emmericp/FlowScope
Keywords—DPDK, traffic analysis, flows

I. INTRODUCTION

Traffic analysis in real time is required in cloud network
infrastructure to troubleshoot problems and for security ap-
plications like intrusion detection systems (IDS) and firewalls.
Beside these commercial applications, researchers also look at
packet data on a flow level. All of these applications require
efficient tracking of flows by various configurable parameters.
This core functionality is currently re-implemented on a case-
by-case basis for each new tool.

We provide an extensible framework as a building block
for applications that consume raw packets and need to track
state on a per-flow basis. Examples for such applications
are tools calculating statistics for monitoring, accounting, or
DoS detection, as well as tools for security analysis. Our
flow tracker is integrated in our FlowScope [1] tool which
already provides other functionality for these scenarios. For
example, our QQ data structure can be used for time traveling
network debugging and security analysis together with the new
flow tracker. All crucial parts of the flow tracker are under
full control of the application built on top of it: extracting
the relevant header fields to identify flows is done in JIT-
compiled user-defined code. The user’s application is informed
via callbacks of all packets and events such as (configurable)
flow timeouts. High performance is achieved by building on

DPDK [2] for fast access to hardware and on libmoon [3], [4]
to provide a fast and flexible scripting interface and protocol
stack implementations [5].

Our main contributions are the first fast and flexible
open source implementation of flow tracking in software on
commodity hardware. Compared to other implementations, our
implementation handles arbitrary flow types and identifiers
(from simple 5 tuple to complex protocol-level tracking) while
achieving packet rates of above 10 Gbit/s with minimum sized
packets with millions of flows. We provide a performance
analysis with both real-world traces and a worst-case analysis
with small packets and 10 million flows that are tracked bidrec-
tionally. Moreover, we provide detailed example programs for
the presented use cases in our git repository [6]. We publish
all of our code used for the experiments to make this paper
fully reproducible.

The remainder of the paper is structured as follows. We
start with a dive into the background of flow-level analysis
and tracking by looking at related work in the next section.
We then describe the architecture and implementation of our
framework in Section III followed by an explanation of one of
our example analyzer module in Section IV. Section V looks
at the performance of our implementation. We conclude in
Section VI by showing how you can reproduce our research by
deploying and running FlowScope with our new flow tracker.

II. RELATED WORK

This work builds on our tool FlowScope [1], [6], a scriptable
network traffic recorder and analyzer. FlowScope builds on
the metaphor of a digital storage oscilloscope: it continuously
records traffic in an in-memory ring buffer and dumps specific
traffic to disk flows to disk on user-defined trigger events.
This effectively allows time travel to find root causes of
anomalous flows. It is designed for both debugging networks
and security applications in mind. However, despite the name,
it featured no flow tracking or any flow-specific functionality
in the version published in 2017. The previous paper focused
on the underlying data structure for efficient packet storage.

Flow tracking for monitoring is often done via the IPFIX [7]
flow exporter protocol, a deployment consists of two parts:
the exporter extracting flow information from raw traffic
and the collector receiving only the summarized flows. The
exporter is typically implemented either directly on routers or

FlowScope Framework
High level overview

Dumper

Filter A
Filter B
Filter C
...

Dumper

Filter A
Filter B
Filter C
...

AnalyzersAnalyzers

handlePacket()

Analyzers

NIC

dequeue()

QQ

Key Value

Src IPv4: 10.0.0.1 Bytes: 64

Src IPv4: 8.2.7.8 Bytes: 58226

... ...

Key Value

Src IPv4: 10.0.0.1 Bytes: 64

Src IPv4: 8.2.7.8 Bytes: 58226

... ...

Key Value

Src IPv4: 10.0.0.1 Total Bytes: 64

Src IPv4: 8.2.7.8 Total Bytes: 58226

... ...

peek()

RSS

Checker

Delete expired filtersCreate new filters
on detection

checkExpiry()

Dumpers

Filter A
Filter B
Filter C
...

Disk

Hash maps

User Module

Figure 1: FlowScope - Design Overview

M. Pudelko — FlowScope 4

Figure 1. New FlowScope architecture

in specialized appliances that are either based on hardware
or software [8]. However, modern cloud networks aim to run
on softwarized network deployments on commodity hardware.
Several open source IPFIX implementations exist, most no-
tably the C/C++ library libfc [9] (last updated in 2014).
None of the open source software implementations is tuned
for performance and real-world deployments therefore built on
purpose-built appliances. Building an IPFIX exporter is one of
the usage scenarios for our framework. We include an example
(liveStatistician.lua) of a simple per-flow statistics
tool with similar semantics to IPFIX to showcase how to build
such a tool in a high-speed version with our platform.

Examples of analyzers featuring flow tracking are DPDK-
Stat [10] and FlowMon-DPDK [11]. Both are limited to hard-
coded flow identifications and cannot track more complex
protocols. FlowMon-DPDK’s design also prohibits bidirec-
tional tracking of flows, limiting the analyses that can be
performed. Further, they are limited to a low number of flows,
no evaluation is given for more than 200k parallel flows.
The limiting factor for both flexibility and performance is
the custom fixed-size hash table implementation relying on
partially offloading hash calculation to the NIC (which has no
concept of bidirectional flows or high-level protocols). The aim
of our implementation is to track several million concurrent
flows with arbitrary flow identifiers. Moreover, we also provide
support for dumping selected flows to disk.

Security applications such as Bro [12] also implement
exhaustive flow tracking, however these have a narrow focus
and are typically built to only track and match on header fields.
Bro also leverages tracking of TCP sequence numbers to assert
whether flows have been observed in full, or whether packets
are missing. We extend this approach by providing generic,
scriptable flow tracking, permitting arbitrary rules to match
and track flows.

Other efforts in this area primarily focus on offline anal-
ysis of data streams, for example improved heavy hitter

analysis [13]. These analyses are not fast enough for real-
time analysis in bigger networks. These research efforts are
orthogonal to our framework. Another seemingly similar, but
very different scenario is load balancing flows. This is typically
implemented by hashing over a defined set of protocol fields
and distributing flows by hash. These techniques can be found
all over the protocol stack, from high-level load balancers to
low-level bonding of several network links via LACP [14] or
ECMP [15]. However, they cannot keep individual state per
flow, they merely use the hash to distribute traffic.

III. ARCHITECTURE

Besides the original QQ data structure [6], most parts
of FlowScope required major changes to achieve arbitrary
flow tracking. Figure 1 shows the updated architecture of
FlowScope as a high-level overview. Packets are received at
one or multiple NICs and are enqueued in one or multiple
QQ ring buffers. All packets are then analyzed in a separate
analyzer thread: the first step is to look up or create the
corresponding flow state in a hash map via a user-defined
flow key extraction function. The packet is then passed to a
user-defined function together with its flow state. This user-
defined function can decide whether the flow shall be dumped
to hard disk for persistent storage by informing the dumper
threads with filter functions. Concurrently, a checker thread
performs garbage collection on inactive flows based on a
configurable timeout. All customizable functions such as flow
state definition, the flow key extraction, and the analyzer code
are loaded from a user module.

Each of these functions runs in a separate thread, and each
step can be handled by multiple threads to allow for multi-core
scaling at all steps. We support multi-threaded reading from
both multiple and single input NICs by supporting the RSS
(receive side scaling) hardware feature.

A. QQ (Queue-in-Queue) ring buffer

FlowScope can use the QQ ring buffer to keep packets in
memory instead of discarding them after the analyzer step.
QQ is a high-speed circular buffer data structure optimized
for large memory sizes (≥ 100 GB) at large packet and data
rates (tested at ≥ 120 Gbit/s). This data structure was the focus
of our previous publication [1] and is therefore only discussed
briefly here.

QQ consists of two levels of nested queues; the outer
queue holding references to the inner ones, and the inner
queues actually storing the data. This layered design improves
multi-threaded performance by reducing the contention for the
mutex guarding access. Instead of acquiring the lock on every
insert/dequeue, threads get a complete inner queue exclusively
for a short time. This model works nicely with the common
receive-side scaling (RSS) optimization in NICs, because QQ
preserves intra-flow packet ordering. The inner queues store
variably sized objects (like packets) tightly packed without
losing useful properties like random access. Further, QQ
allows access to elements at the queue head without dequeuing
them, permitting analyzers to see new packets as soon as
possible. Contrary to other buffers, QQ aims to be as filled
as possible. It does not allow dequeuing packets until the fill
level reaches the high water mark, so that as many packets as
possible are available in case of detected anomalies.

Using QQ is optional in FlowScope. Enabling it allows
using the time traveling dumper feature. It can also improve
performance as the work done for packet reception in the
DPDK driver is shifted to a separate thread. Minimizing work
done in the thread performing the actual reception by using
QQ can also help with packet drops compared to the usual
run-to-completion model of DPDK [11].

B. Hash map

The hash map is a central part of FlowScope: it contains
an entry for each flow consisting of the flow identifier key
and a user-defined flow state. It needs to be accessed at
least once per packet and usually a second time to update
the flow state making a potential performance bottleneck.
Multiple hash maps are supported to track different flow types
simultaneously (e.g., IPv4 and IPv6 flows).

Our requirements for the hash map are not only high
performance with a large number of entries, it also needs
to handle concurrent access from multiple threads. Packet
analyzers often rely on hardware flow splitting features like
RSS to ensure that packets belonging to one flow are always
processed by the same core to avoid expensive and compli-
cated handling of multi-thread safety (e.g., [11]). FlowScope
features a completely user-defined flow identifier key that
might not be handled by the RSS hardware flow splitter. A
simple example is tracking both directions of a flow on a
mirror port, a splitting function typically not supported by
hardware. In this case, full multi-threading safety is required.

We evaluate several well-known hash tables for use
in FlowScope: Google’s sparsehash [16], Facebook’s
folly [17], Jeff Preshing’s Junction concurrent maps [18],

Table I
HASH MAP COMPARISON

Implementation Speed Lock-free Arbitrary key size

sparsehash [16] + 7 3
folly [17] - 3 3
Junction [18] ++ 3 7
TBB [19] + 3 3

and concurrent_hash_map from Intel’s Thread Building
Blocks (TBB) library [19]. Table I lists our requirements
(see [18] for a detailed performance analysis) and whether the
hash maps can fulfill them. The Junction maps are the fastest,
however, they gain that speed at the cost of only supporting
64 bit keys. As we aim to support arbitrary, user-defined
flow-identifiers, arbitrary sized keys are a requirement for us.

We select Intel’s TBB library for the hash table based on
these results. TBB, like most C++ data structures, requires
the key size as a template parameter, i.e., as a compile-
time constant. User-defined keys in FlowScope are completely
dynamic and determined at run time. We solve this by pre-
instantiating the C++ template with all relevant sizes and
we chose the correct implementation at run time. This only
affects the size of our executable, there is no run-time overhead
of the unused implementations in memory. Only the classes
specialized to the sizes actually being required are used.

C. Analyzer threads
Analyzers dequeue packets either directly from a NIC or

through an intermediary QQ ring buffer (QQ) as soon as they
arrive. The user module defines an extractFlowKey()
function that is called for each packet to classify it into one of
the flow tables by extracting its identifying flow feature (e.g.,
5-tuple or VXLAN VNI). This process does not yet involve
any state or expensive hash map access: Basic pre-filtering can
be performed very cheaply here, e.g., by discarding IPv4 traffic
in an IPv6-only measurement. The function therefore returns
three values: if a packet is interesting at all, to which flow
table (i.e., hash map) it belongs, and the flow identification
key to use for the lookup.

Using the flow identifier key, the flow state is looked up
in the corresponding hash map. This locks the entry for
exclusive read-write access until the user module function
handlePacket() returns. handlePacket() can per-
form arbitrary flow analysis based on the flows previous state
and the current packet and updates the flow state.

Should a threshold be passed or an anomaly be identified,
the function can request the on-disk archival of this flow for
forensic purposes if the QQ module is enabled. In this case,
buildPacketFilter() in the user module is tasked with
transforming a flow into a pcap filter expression (or arbitrary
JIT-compiled code) to match packets for this flow in the
dumper thread.

D. Checker thread
Since the module’s handlePacket() function is only

called for arriving packets, there would be no way to detect and

handle inactive flows (e.g., to implement an IPFIX exporter’s
inactivity timeout). Therefore, a checker thread iterates over
all flows in the hash maps in regular intervals and passes
them to the checkExpiry() user module function. Here
the user can decide if a flow is still active, e.g., by keeping
the timestamp of the last seen packet or protocol specific flags
(such as TCP FIN). Should a flow be deemed inactive, it is
purged from the hash map and the dumpers are instructed to
forget its matching filter rule when reaching the current time
stamp in the buffer.

E. Dumper thread

Note that the dumper thread existed for our previous publi-
cation, but it was limited to a single simple filter in the past.
We significantly extended its capabilities to permit multiple
filters and threads.

Dumpers dequeue packets from the QQ ring buffer as late
as possible to maximize the amount of information available
in case of a detected anomaly. Due to their delayed processing
of the packets, rules can not be immediately discarded once
a flow is inactive or the capture of interesting flows could
end early, leading to missing packets. If the checkers requests
deletion of of a flow rule, the timestamp of the last seen packet
is also included. With this information dumpers know exactly
when it is safe to finally forget about a rule; if the other
dequeued packets in QQ are older than the timestamp.

The pflua [20] framework is used to facilitate high perfor-
mance packet matching with the familiar PCAP filter syntax.
pflua works by compiling filters to Lua which is then JIT-
compiled by LuaJIT [21] for performance. This approach
to packet filtering has proved itself for packet filtering and
switching in other implementations [22], [23].

Another new feature of the dumper thread is that it can
now also be triggered externally via a JSON REST API. We
are using this feature to build a distributed anomaly detection
system that can respond to events in remote locations.

F. JIT compilation of user-defined functions

All previously mentioned user-defined functions can be
written in the Lua programming language and JIT-compiled
with LuaJIT [21]. Using a scripting language here maximizes
the flexibility as user modules can be swapped without re-
quiring recompilation of the code. Lua was chosen because
of the availability of LuaJIT, a very fast JIT compiler and
its fast and simple integration with existing C/C++ code.
This makes Lua a good choice even for performance critical
functions that need to access every single packet in the user
module. LuaJIT has proven itself suitable for performance-
critical packet processing tasks in the past [4], [22].

Another advantage of LuaJIT is that it can call into C/C++
functions without marshalling overhead in most cases. This
makes it possible to write all user module functions in C/C++
if Lua is not suitable for a given task or if pre-existing libraries
are required.

function module.handlePacket(key, state, buf, isFirst)
local t = lm.getTime()
state.packets_interval = state.packets_interval + 1
state.bytes_interval = state.bytes_interval + buf.size
state.packets_total = state.packets_total + 1
state.bytes_total = state.bytes_total + buf.size
if isFirstPacket then

state.first_seen = t
state.interval_start = t

end
state.last_seen = t

end

Listing 1: handlePacket() in the stats example

IV. EXAMPLE SCRIPTS

All references to line numbers in files in this section refer
to commit c7b22db1371d in the FlowScope repository [6].
Code excerpts in the paper are slightly modified and shortened
to fit the format.

FlowScope comes with example modules meant
as a basis for custom user modules and analyzers.
The following is a walkthrough of the code in our
examples/liveStatistician.lua example module
to aid understanding how FlowScope processes a packet
and interacts with the user module. This example script is a
simple flow statistics module with IPFIX-like semantics.

The module starts by importing utility functions (e.g.,
protocol parsing) from libmoon and flowscope in lines 1-6.
Next, the modules defines local variables that are not exposed
to the FlowScope driver. This can be configuration or values
required for calculations.

A. Statistics: Analyzer

Next come the required module definitions so that Flow-
Scope knows what to initialize and which functions to call.
Lines 12 to 22 define a C struct which encapsulates the
state of a flow. module.stateType (line 25) exposes this
type, such that FlowScope can instantiate the hash maps with
this as the value type on startup. It is possible to provide a
default state for new flows (default is zero-initialized) via the
module.defaultState (line 26) configuration. Lastly the
flow key types are defined. Since FlowScope already comes
with a IP 5-tuple key and extraction function, it is reused
from the tuple lib. This default implementation, found in
lua/tuple.lua, already handles both IPv4 and IPv6 and
tracks flows bidirectionally.

FlowScope uses this information to to look up or create
the flow state in the central hash map. It then calls the
handlePacket function reproduced in Listing 1. The fields
available in state are directly mapped to the C struct defined in
module.stateType previously using a LuaJIT FFI struct.
Accesses to these fields are directly compiled to memory
accesses to the corresponding hash map entry, there is no
overhead or copying from using a scripting language.

B. Statistics: Checker

Next is the checker thread is configured:
module.checkInterval (line 42) sets how often it
should run, we configure it to run every 5 seconds here.

Optionally, checkInitializer() (line 44) can perform
setup actions for the checker state. It is run once per checker
run before any flow is accessed. Here, it sets up counters and
prepares the list of the current top flows (line 45-49).

The checkExpiry() (line 67 et seq.) function is then
called for every flow currently present in the hash maps. In
its arguments it holds the flow key, flow state, checker state
and to which table the flow belongs. The example module
calculates basic traffic metrics in lines 70 to 72: throughput
in bytes and packets. Note that the checker updates the flow
state by resetting the _interval fields.

Finally, it calculates the requested statistics and generates a
top list of currently active flows. The timestamp set previously
by the analyzer is used to decide whether a flow is still active
(line 85 et seq.). At the end of a checker run, the collected
data is printed out in the checkFinalizer() (line 93 et
seq.) function.

C. Further use cases

Beside the statistics script, we also include a more sophis-
ticated tracking scenario as an example: tracking QUIC flows
based on the QUIC connection ID instead of the usual 5-tuple.
The file quicDetect.lua contains all necessary definitions
to track QUIC flows for further analysis. Running this on real
Internet traffic on a mirror port at an ISP reveals a problem:
we encountered a large number of flows from and to VPN
service providers that tried to disguise their traffic as QUIC.
QUIC is almost completely encrypted and it is therefore not
possible to distinguish between real QUIC traffic and other
traffic on UDP port 443 in many cases.

More sophisticated analyzers are also feasible with Flow-
Scope. We used a FlowScope user module to track anomalies
in the IP TTL field on a mirror port of an ISP. FlowScope
allowed us to identify flows where the TTL value has changed,
possibly indicating an attack on a user via spoofed traffic.
QQ then allowed us to selectively and retroactively dump the
affected flows to disk. Capturing all flows to find anomalous
TTL behavior later would have been prohibitive due to the
large bandwidth of the monitored link.

V. EVALUATION

We validate the functionality of FlowScope by running it
on a replay of the Abilene traces [24]. This suffices as a
validation of the functionality and for a quick demonstration
of FlowScope’s capabilities. However, synthetic traffic is more
suitable for a performance analysis. We use MoonGen [4] to
generate worst-case traffic with minimum-sized UDP packets
and a configurable number of flows.

We use a server with an Intel Xeon E5-2620 v3 CPU with 6
cores at 2.4 GHz, 128 GB RAM, and an Intel XL710 40 Gbit/s
NIC and an Intel X540 10 Gbit/s NIC for the evaluation here.

A. Multi-thread scaling

Figure 2 shows how the processing rate of FlowScope
scales with the number of analyzer threads when handling
1 M flows. To minimize influence of user module functions,

1 2 4 6 8 10
0

10

20

#
C
P
U

c
o
re
s

10Gbit/s line rate

Number of Threads

P
a
ck
et

R
a
te

[M
p
p
s]

XL710 NIC

X540 NIC

Figure 2. Processing rates for no-op analysis function with 1 million flows
with 64 byte packets, 6 core (+ HT) CPU

0

1

2

3

4

5

6

C
h
ec
k
er

ti
m
e
[s
]

1 K 10 K 100 K 1 M 10 M
0

10

20

Flows
P
a
ck
et

R
a
te

[M
p
p
s]

Throughput, XL710 NIC

Figure 3. Processing rates for no-op analysis function with 4 threads
(logarithmic x axis)

the benchmark was created with the noop.lua module.
This module extracts ordered 5-tuples and tracks them in a
hash map, but does not perform more specific calculations.
This measurements hence assesses the upper bound for the
performance of a user module tracking bidirectional 5-tuple
flows.

Performance increases linearly as more analyzer threads are
added until the number of physical CPU cores is exhausted.
Beyond the number of physical CPU cores, only virtual hyper-
threading cores are available, leading to slightly diminishing
performance gains on the 40 Gbit/s XL710 NIC. The X540
NIC hits the line rate limit and adding more virtual cores
hurts performance slightly.

B. Number of flows

Increasing the number of flows extends the performance
benchmark beyond the analyzer threads: The hash map, grow-
ing in size, slows down as cache misses increase, and the
checker thread needs to iterate over more entries.

Figure 3 shows how the performance with four analyzer
threads changes as the number of flows is increased expo-
nentially. Performance initially increases as there are fewer
memory access conflicts between the threads. When stepping
from 100 K flows to 1 M flows, performance drops from
14.1 Mpps to 9.5 Mpps. This drop can be explained by the
fact the the hash map does not fit into the CPU’s L3 cache
(15 MiB) anymore at that flow rate. Each flow entry consumes
about 40 byte of memory, which includes flow identifier, flow
state, and a hash map overhead. Hence, tests with 1 M or more

flows can not store the hash map in the L3 cache any more and
need to perform accesses to main memory, which are slower
by several orders of magnitude. This is a worst-case scenario
with a uniform distribution of flow sizes. Traffic observed at
ISPs or IXPs typically follows a Zipf distribution for the flow
– the top flows are accessed more often and therefore more
likely to be found in the CPU’s cache.

Besides this effect of the hash map growing larger than CPU
cache, another component of our system is affected when more
flows are observed: The checker thread, which periodically
iterates over the hash map to identify timed out flows, will
take more time for its end-to-end pass. Figure 3 also plots the
time required by the checker to iterate over the whole hash
map with one thread. This sets a lower bound for the timeout
of inactive flows and for periodic checks such as statistics
reports. Note that there is currently only a single thread in
FlowScope, extending this to multiple threads is possible but
not necessary given these performance results.

Based on these results, we claim FlowScope to be suitable
for tracking about 10 million flows without further optimiza-
tions. This is an order of magnitude more than other flow
trackers [11] (≈200 K) while simultaneously offering more
features and flexibility.

C. Validation with Real-World Flow Levels

We compare out benchmark against flow levels observed at a
80% utilized 10 Gbit/s ISP uplink. In one 24-hours period1, we
observe 960M flows, including TCP, UDP and other protocols.
97% of flows lasted less than 1 minute, hence we derive a
worst-case median flow length of 1 minute. This results in
an average of 666k parallel flows, which is easily within the
10 M flows our system is capable of, even when assuming
peak loads of 2-3 times the average load.

We also observed an incoming DDoS attack on this link
generating 3.4 M new flows per minute lasting for 53 minutes.
Handling such attack scenarios is especially important: these
unusual network conditions are exactly the time a analyzer or
forensic tool like FlowScope is required. This shows that our
improved performance is relevant for real-world scenarios.

VI. CONCLUSIONS

We presented a flexible flow tracker integrated into our
FlowScope framework running on commodity hardware that is
completely user programmable. FlowScope is not restricted to
hard-coded flow types and can use arbitrary identifier keys
for flows. As we anticipate 5-tuples as the most common
use case, we ship flow key extractors for bidirectional 5-
tuples on both IPv4 and IPv6 to simplify deployment. Despite
the increased flexibility, we can track at least an order of
magnitude more flows than other implementations. We have
already used custom FlowScope modules on a uplink in a
carrier-grade network for anomaly detection.

Reproducible Research Our code is available as open
source on GitHub [6] under the MIT license. The repository’s

1Covering a Tuesday, i.e., a normal load

README file contains further information on running Flow-
Scope as well as the raw data used here.

ACKNOWLEDGMENTS

This research was supported by the German BMBF
projects X-CHECK (16KIS0530), DecADe (16KIS0538), and
SENDATE-PLANETS (16KIS0472).

REFERENCES

[1] P. Emmerich, M. Pudelko, S. Gallenmüller, and G. Carle, “FlowScope:
Efficient Packet Capture and Storage in 100 Gbit/s Networks,” in IFIP
Networking 2017, Stockholm, Sweden, Jun. 2017.

[2] Intel, “Data Plane Development Kit,” http://dpdk.org. Last visited
2017-01-15.

[3] P. Emmerich, “libmoon,” https://github.com/libmoon/
libmoon, Technical University of Munich.

[4] P. Emmerich, “MoonGen,” Technical University of Munich, https:
//github.com/emmericp/MoonGen.

[5] D. Scholz, P. Emmerich, and G. Carle, “Efficient Handling of Protocol
Stacks for Dynamic Software Packet Processing in the Cloud,” Under
submission to IEEE CloudNet 2018, 2018.

[6] P. Emmerich, “FlowScope,” https://github.com/emmericp/
FlowScope, Technical University of Munich.

[7] B. Claise, B. Trammell, and P. Aitken, “RFC 7011: Specification of the
IP Flow Information Export (IPFIX) Protocol for the Exchange of Flow
Information,” 2013.

[8] ntop, “nBox: An Embedded NetFlow v5/v9/IPFIX Probe (IPv4,
IPv6, MPLS),” https://www.ntop.org/products/netflow/
nbox/.

[9] B. Trammell and S. Neuhaus, “libfc,” https://github.com/
britram/libfc, ETH Zurich.

[10] M. Trevisan, M. Mellia, M. Munafò, and D. Rossi, “DPDKStat: 40Gbps
Statistical Traffic Analysis with Off-the-Shelf Hardware,” 2016.

[11] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, and D. Rossi,
“FlowMon-DPDK: Parsimonious per-flow software monitoring at line
rate,” in Network Traffic Measurement and Analysis Conference 2018
(TMA’18), 2018.

[12] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[13] K. Cho, “Recursive lattice search: Hierarchical heavy hitters revisited,”
in Proceedings of the 2017 Internet Measurement Conference, ser.
IMC ’17. New York, NY, USA: ACM, 2017, pp. 283–289. [Online].
Available: http://doi.acm.org/10.1145/3131365.3131377

[14] IEEE, “802.3ad-2000 - Aggregation of Multiple Link Segments,” 2000.
[15] IEEE, “802.1Qbp - Equal Cost Multiple Paths,” 2011.
[16] Google, “sparsehash,” 2005, https://github.com/

sparsehash/sparsehash.
[17] Facebook, “Folly: Facebook open-source library,” 2017, https://

github.com/facebook/folly.
[18] J. Preshing, “New Concurrent Hash Maps for C++,” 2016,

http://preshing.com/20160201/new-concurrent-
hash-maps-for-cpp/.

[19] Intel, “Thread Building Blocks (TBB),” https://www.
threadingbuildingblocks.org/. Last visited 2017-01-15.

[20] K. Barone-Adesi, A. Wingo, D. Pino, J. Muñoz, and P. Melnichenko,
“pflua: Packet filtering in Lua,” 2018, https://github.com/
Igalia/pflua.

[21] M. Pall, “LuaJIT,” http://luajit.org/, last visited 2017-01-15.
[22] L. Gorrie, “Snabb: Simple and fast packet networking,” 2018, https:

//github.com/snabbco/snabb.
[23] J. Fanguede, M. Paolino, D. Dimitrov, and D. R. Virtual, “A novel

pflua-based openflow implementation for vosyswitch,” in 2018 Third
International Conference on Fog and Mobile Edge Computing (FMEC),
April 2018, pp. 43–49.

[24] WAND Group, “WITS: Waikato Internet Traffic Storage,” https://
wand.net.nz/wits/index.php.

