
TEE Time at P4—Performance Analysis of Trusted
Execution Environments for Packet Processing

Manuel Simon, Sebastian Warter, Sebastian Gallenmüller, and Georg Carle
Chair of Network Architectures and Services, Technical University of Munich, Germany

{simonm|gallenmu|carle}@net.in.tum.de, sebastian.warter@tum.de

Abstract—Modern computer networks, such as 5G/6G net-
works, require high-performance, low-latency, and secure packet
processing while ensuring data confidentiality in cloud environ-
ments. Trusted Execution Environments (TEEs) address these
security requirements and provide encrypted memory areas that
protect sensitive data from untrusted cloud providers. This paper
presents a performance analysis of TEE technologies, specifically
Intel SGX and AMD SEV-SNP, in the context of software-based
user-space packet processing with DPDK and the P4 language.
We evaluate two architectural approaches: (1) integrating TEEs
as external processing modules implemented with SGX and (2)
executing the entire P4 pipeline inside a TEE using AMD-
SEV. Our analysis examines computational and I/O overhead
across different CPU architectures. The results show the trade-
offs between TEE designs, implementations, and performance,
demonstrating that AMD SEV-SNP offers better scalability with
lower performance penalties compared to Intel SGX.

Index Terms—TEE, SGX, SEV-SNP, P4, Packet Processing

I. INTRODUCTION

Modern computer networks, i.e., 5G/6G, aim for high-
performance, low-latency, secure, and highly customizable
end-to-end connections. This trend shifts functionality into the
network using cloud-based network functions (NFs). However,
moving functionality and data to third parties requires trust to
guarantee the desired execution and protect sensitive data. For
instance, monitoring and intrusion detection may involve the
analysis of IP addresses of known entities or even include
analyzing the payload. Sensitive user information must be
protected from the third party. Moreover, administrators want
to ensure that program code and functionality are not modi-
fied (maliciously) by the cloud provider. These problems are
tackled by Trusted Execution Environments (TEE), offering
encrypted memory in which the keys are only accessible by
the underlying hardware itself. Therefore, CPUs offering TEE
abstract the underlying secure execution from users. This way,
the operator only has to trust CPU manufacturers but not
cloud providers. Different implementations of TEEs exist; the
most prominent include Intel’s Software Guard Extensions
(SGX) and AMD’s Secure Encrypted Virtualization with Se-
cure Nested Paging (SEV-SNP).

We analyze the performance of the different approaches and
compare the use cases w.r.t. software packet processing. For
that, we investigate T4P4S [1], a P4 software switch based on
DPDK. P4 [2] is a programming language for data planes of
software-defined networks. It brings the advantage of a high-
level, domain-specific language to build high-performance NFs

in a target-independent way. T4P4S translates the P4 programs
to DPDK code, allowing the execution on commodity, gen-
eral purpose hardware. Its implementation in software makes
T4P4S a suitable choice for execution in the cloud. We will
investigate two different modes: P4 provides the option of
using external, non-P4 functionality, which we can use to
define the API between common packet processing and the
execution of sensitive parts inside the TEE. Alternatively, the
whole packet processing pipeline may lay inside the TEE.

Our contributions are: Implementation of a P4 user-space
software pipeline inside/next to a TEE, comparison of differ-
ent TEE designs and implementations, detailed performance
analysis of TEEs and implementations for user-space packet
processing, and a performance model for I/O overhead.

II. BACKGROUND

a) P4 [2]: is a programming language for data planes.
P4 supports hardware and software targets. So-called “ex-
terns” add non-P4, target-specific functionality. P4 offers a
programmable pipeline to introduce new protocols. Our study
utilizes the open-source P4 software target T4P4S [1] to
investigate packet processing with and without TEEs. T4P4S
is based on DPDK and, therefore, offers high performance.

b) DPDK: is a framework for high-performance packet
processing. Its performance relies on: (1) packet reception via
polling of batches, avoiding costly interrupts; and (2) running
entirely in user space to bypass the kernel network stack.
Direct Memory Access (DMA) for packet I/O causes issues
when used with trusted execution (cf. Sec. II-0e). DPDK offers
drivers that bind the NIC to the kernel while copying every
packet to user space, i.e., XDP sockets (cf. Sec. II-0f); the
copy operations increase processing costs. In return, DPDK
programs can still run without required modifications if the
user space drivers cannot be used.

c) TEEs: guarantee, according to Sabt et al. [3], the
“authenticity of the executed code, the integrity of runtime
states [. . .], and the confidentiality of its code, data and
runtime states [. . .].” Customers running code in a TEE need
only trust the executed code and CPU manufacturer—not
the hardware operator or hypervisor. To ensure the defined
properties, TEEs encrypt the memory, using protected secrets
on the CPU. Examples of TEEs include Intel SGX and AMD
SEV. For packet processing, different use cases are possible:
calculations on encrypted traffic, as secure network gateways,
or as a privacy-preserving monitor of (encrypted) traffic.

Table I: Comparison of TEE implementations

Intel SGX AMD SEV-SNP

Type User space VM
Mem. encryption/integrity ✓ / ✓ ✓ / ✓
Overhead Context switches swiotlb
Architecture split (secure enclave) all in secure VM
Requires refactoring ✓ ✗

d) Intel SGX: implements a TEE by extending the In-
struction Set Architecture. SGX allows the creation of so-
called enclaves that are separated from the regular user space.
Memory in the enclave is encrypted. Running programs can
verify their integrity via a secure hash using a web service.
SGX programs must be modified, requiring a split into un-
trusted and trusted parts, running in regular user space or the
enclave. Since memory in the enclave is limited, only the parts
of the software that require trust will run there. We did not
investigate Intel TDX, a more recent TEE implementation, as
we did not have access to a machine with TDX support.

e) AMD SEV: isolates the hypervisor from guest VMs
and encrypts their memory. The AMD Secure Processor man-
ages the access to the involved keys. Neither the hypervisor
nor other VMs can access the data of the TEE VM. Hypervisor
and guest kernel must be adapted to handle encrypted pages.
To facilitate data sharing, memory pages can be marked as
unencrypted. To transfer packets into trusted VMs, “bounce
buffers” are used, which transfer all data from a temporary,
unencrypted memory area—used for DMA operations by the
NIC—to the encrypted memory area of the trusted VM. This
transparent process allows the use of existing kernel drivers
inside the VM without modifications. However, it introduces
additional latency as all data must be copied. AMD proposed
SEV Trusted-I/O (SEV-TIO) [4], which allows direct DMA
operations on private and trusted memory pages, eliminating
the detour through bounce buffers. This feature increases
performance and mitigates attacks against the memory encryp-
tion [5]. Table I lists the features of the two investigated TEEs.

f) XDP Framework: Shared memory pages cannot be
created inside an AMD SEV VM from user space. We can use
the eXpress Data Path (XDP) [6] kernel hook and AF_XDP
sockets as workaround. The hook is called early in the Linux
network stack, and inside, extended Berkeley Packet Fil-
ters (eBPF) can control packet (pre-)processing. The eBPF VM
is a register machine that runs verified code, and the NF can
redirect packets to an AF_XDP socket for further processing
outside eBPF. This way, packets from kernel space, where the
shared pages are located, can be transferred to a user space
application, i.e., DPDK. In copy mode, packets are duplicated
and made accessible by DPDK early in the networking stack,
thus avoiding costly kernel execution. Without SEV-TIO, in
total, two copies (bounce buffers, XDP copy) are required to
use DPDK inside the TEE. [3]

III. RELATED WORK

LightBox [7] is an SGX-enabled implementation for secure
middleboxes. It offers flow state management and secures
packet payloads and metadata. LightBox uses a complex setup

P4 Pipeline

Parser
Match-
Action
Ingress

Match-
Action
Egress

Traffic
Manager

DeparserPacket Packet

TEE
extern

(a) TEE extern / extern approach
TEE

P4 Pipeline

Parser
Match-
Action
Ingress

Match-
Action
Egress

Traffic
Manager

DeparserPacket Packet

(b) P4 pipeline in TEE / secure P4 pipeline

Figure 1: TEE positions for a P4 pipeline; packet path in green,
data path in purple; dashed paths may involve copies

with custom virtual network interfaces, whereas our solution
uses standard technologies. OFTinSGX [8] runs the OpenFlow
rules of Open vSwitch inside an SGX enclave. Therefore, it
isolates and secures the existing tables and rules. However,
it cannot handle encrypted data flows. Our P4-based solution
is more flexible, allowing arbitrary protocols and advanced
processing. ShieldBox [9] leverages SGX enclaves to create
secure containers. It uses Click [10] and SCONE to run NFs in
the enclave. SafeBricks [11] similarly enables secure NF exe-
cution inside SGX enclaves. It uses DPDK for I/O and shared
buffers to communicate with the NF in the enclave without
the need for an additional copy. It splits the DPDK processing
part from the trusted function. SafeBricks uses NetBricks [12]
to program NFs; our solution relies on the target-independent
P4. rkt-io [13] is a framework to run applications inside Intel
SGX having a direct userspace network I/O stack within the
TEE. They provide a POSIX-compatible socket() API.
The modified DPDK version of rkt-io runs inside the SGX
enclave to provide network access. We do not want to rely
on highly customized and specialized solutions but investigate
common, easy-to-adapt DPDK processing approaches. Li et
al. [14] proposed a kernel module allowing hardware access to
DPDK from inside an SEV VM. Their implementation partly
relies on bounce buffers. Our approach uses existing kernel
technologies instead.

We create and investigate DPDK-based applications inside
TEEs, i.e., in secure pipeline mode, without adapting the
application. Avoiding custom solutions sacrifices performance.
However, the investigated application can be used inside TEEs
or outside, or potentially in a more performant way using
the upcoming SEV-TIO, without significant modifications. We
rely on the established and multi-target P4 language instead
of specialized frameworks to program the NFs. The results of
our study show the bottlenecks when using standard solutions.

IV. DESIGN

A. TEE extern next to the P4 pipeline

In the extern approach, the standard, fast packet processing
is defined in P4, where trust is unnecessary. Inside the P4
pipeline, a well-defined API can be used to call the “extern”,
hard-coded functions of the TEE (cf. Fig. 1a). The TEE holds

SGX enclave

DPDK/T4P4S

Host OS/HV

Hardware NIC

Direct access

P4 extern

(a) SGX enclave in P4 extern

SEV-SNP VM

DPDK/T4P4S

Guest OS DRV

Host OS/HV

Hardware NIC

Direct access

AF XDP (copy mode)

(b) P4 pipeline in SEV-SNP

Figure 2: TEE implementations for a P4 software Pipeline

secrets and can selectively use (encrypted) header fields or
payload for processing.

Use cases: include trusted computation on secret data,
while normal packet processing, including routing, is not part
of the trusted area. As it follows the typical application split of
SGX applications, the separated TEE module can be used to
analyze privacy-concerned (meta-)data, i.e., access patterns of
IP addresses. This way, the application in the TEE can be fed
traffic data. Inside the TEE, the traffic is monitored to detect
suspicious or malicious traffic, i.e., (DOS) attacks. The trusted
application can return required actions, e.g., blocking users or
IP addresses. The secret data cannot be accessed from outside
the TEE to ensure privacy.

B. P4 Pipeline inside the TEE

The secure pipeline puts the whole P4 pipeline into the
TEE (cf. Fig. 1b). The whole packet processing, including
access and modification to all header fields, is secured in the
trusted environment. Packets are copied from/into the TEE
and processed as a whole. Moreover, packets can potentially
be altered before or after the pipeline during the exchange with
the NIC since the access to the NIC is still untrusted. Using
SEV-TIO would provide a remedy: fetching the packets from
the NIC would be possible from inside the TEE, preventing
untrusted modification and additional copies.

Use cases: include trustworthy forwarding and routing.
This approach secures the whole packet processing pipeline.
In addition to the extern approach, unencrypted header data,
e.g., IP addresses and ports, is also protected. These header
fields may influence the control flow of the packet processing.
However, there is no split so that the whole pipeline can access
all information. In the case of privacy-enhanced monitoring—
in contrast to the extern approach—the monitoring state,
including potential user data is accessible by the whole packet
processing pipeline, reducing isolation.

V. IMPLEMENTATION

a) P4 extern with SGX: Due to the split architecture, we
implement the P4 TEE extern using Intel SGX (cf. Fig. 2a).
Theoretically, externs can be implemented in AMD SEV;
however, running a VM for just a single operation may not
justify the overhead. Furthermore, the processing logic must
be highly adapted to fit the communication model with a VM.

As only the extern runs in a TEE, we can run T4P4S
the common way, directly on the CPU cores. T4P4S utilizes

DPDK to directly access the NIC using DMA. The P4 pipeline
is generated by T4P4S out of the P4 program. The extern code
which runs inside the SGX enclave is written in C. The input
fields and the output are copied from/to the enclave. T4P4S
has to be adapted/extended to run the extern.

b) Secure P4 pipeline in SEV-SNP VM: To implement
the whole P4 packet processing pipeline in a TEE, we use
SEV-SNP Linux VMs, shown in Fig. 2b. We run a patched
Ubuntu inside the VM with the required SEV extensions
for the Linux kernel. It is not possible for T4P4S/DPDK to
directly access the NIC, even if the NIC is exclusively bound
to the VM (cf. Sections II-0e & II-0f). Therefore, we used the
Linux kernel driver of the guest system to overcome that issue
and built an AF_XDP socket that T4P4S/DPDK can access.
Our experiments showed that it is required to run the AF_XDP
socket in the copy mode (by setting a specific flag), leading
to an additional copy of every packet. Then, T4P4S/DPDK
can run without further required modifications, with the cost
of additional copies by the bounce buffer and the AF_XDP
socket. However, as no modifications to the code are required,
the application can easily be used in an untrusted environment
as well. Additionally, it may be used in a TIO environment
without XDP later, probably performing better.

VI. PERFORMANCE MODEL

We model I/O overhead and performance based on rrx
(ingress of DuT) and rtx (egress of DuT). To build our model,
we define, rmax: the maximum packet rate transmitted, n:
number of packets received in a batch, trx(n), tp(n), ttx(n):
time to receive/process/sent all n packets of a batch, tb(n):
total time to handle all n packets. We make the following
assumptions: (i) the packets have a fixed size, (ii) the number
of packets in a batch is constant but, depending on the packet
rate, may be lower than the maximum batch size, (iii) packets
are only lost if more packets arrive than can be processed
and the batch size is already maximized, (iv) times to receive,
process, and send a batch depends linearly on the number
of packets (factor b); additional constant per-batch overhead
(constant a) is possible. Based on the assumptions, we model:

tb(n) = trx(n) + tp(n) + ttx(n) trx(n) = arx + n · brx
tp(n) = ap + n · bp ttx(n) = atx + n · btx

To approximate parameters arx, atx, brx, btx we conducted
measurements (1500-byte packets) to determine n by using
different rrx using linear-least squares. Using the model, mea-
sured values for rtx can be split into the I/O and processing
times. On our setup, we measure these times for different rrx
and apply the model to calculate the general shares of I/O
and processing time for the packets. We provide all model
parameters for all experiments on GitHub [15].

VII. EVALUATION

Scenario: Our two-host topology consists of a Device
under Test (DuT) and a load generator (LoadGen). The DuT
runs T4P4S with our extensions for TEEs. The P4 programs
forward all incoming packets and emulate an operation on

Table II: Setup configurations

Setup CPU NIC

A Intel Xeon Gold 6421N (1.8 GHz) Intel E810 (100 Gbit/s)
B Intel Xeon Gold 6312U (2.4 GHz) Intel E810 (100 Gbit/s)
C AMD EPYC 9354 (3.25 GHz) Intel E810 (100 Gbit/s)
D AMD EPYC 7543 (2.8 GHz) Intel E810 (100 Gbit/s)

CPU C CPU DCPU A CPU B

0

1

2

3

r m
a
x
[M

p
p
s]

AF XDP ICE

CPU A CPU B CPU C CPU D

0

20

40

60

80

100

B
a
tc
h
T
im

e
[µ
s]

I/O time

Figure 3: Maximum packet rates (rmax), batch processing times
(tb(32)) without TEE, and I/O times (trx(32) + ttx(32))

an encrypted header field that XORs (decrypt), increments
(operation), and XORs (encrypt) a 4 B field. This happens
inside the enclave for SGX experiments. The load generator
utilizes MoonGen [16] to generate constant bitrate traffic
with a default packet size of 1500 B, while measuring the
corresponding latencies and throughputs.

Configuration: Table II lists the four investigated DuT
setups. The DuT runs Ubuntu Jammy with AMD’s SEV-SNP
host kernel for the SEV-SNP hypervisor or else AMD’s SEV-
SNP guest kernel based on Linux 6.7.0. All four Setups A–D
were investigated using the same kernel and AMD’s SEV-
SNP QEMU v8.2.0 to eliminate any impact of version dif-
ferences on measurement results. We assign 1 GB hugepages
for DPDK: 48 GB for the host system, and 32 GB for VMs,
if used. The TX/RX ring sizes are set to 1024. Experiments
involving XDP drivers are configured for busy polling accord-
ing to the DPDK documentation, with a busy_budget of
half the batch size.

A. Baseline

First, we determine the baseline performance of a P4
forwarder to calculate the overhead of the different TEE
implementations. Our baseline measurements use the four
listed CPUs, with the “normal”, so-called ICE driver in polling
mode and the AF_XDP driver in copy mode.

Throughput: Fig. 3 shows the maximum packet rates for
a baseline forwarder (bare-metal, single core). The forwarding
rates are slightly higher for the Intel CPUs (2.28/2.14 Mpps,
for A/B), than for the AMD CPUs (2.06/1.96 Mpps, for C/D)
using the ICE driver. Rates significantly decrease on AF_XDP
due to the additional copies. For the Intel CPUs, the forward-
ing rates decrease to 0.68 Mpps (29.8 % of the ICE driver)
for CPU A, and 0.74 Mpps (34.6 %) for CPU B. Again, the
AMD CPUs perform worse, in absolute and relative terms.
Using the AF_XDP driver, rmax reduces to 0.52 Mpps (25.2 %)
for Setup C, and 0.42 Mpps (21.4 %) for Setup D. Notably,
no correlation between throughput and CPU clock rates is
observable.

Time: We measured the batch processing times and the
overhead for generated packet rates between 0.1–3.0 Mpps to

calculate the model parameters atx, arx, ap and btx, brx, bp.
Applying these, we calculate the I/O overhead for the optimal
case (batch size n = nmax = 32).

Using the model, the batch processing times and the I/O
overhead can be calculated (cf. Fig. 3). While the processing
timesare nearly constant in all cases, the I/O overhead is more
significant for AF_XDP. The XDP I/O overhead is relatively
lower for Intel than for AMD CPUs. Single-packet I/O takes
between 800–1000 ns (brx + btx) on Intel and >1400 ns on
AMD CPUs. The DPDK driver is more efficient, and due to
the small number, it is hard to measure the exact share, but
the relative difference is about 100 to 150 times.

B. Overhead of TEE

After determining the baseline, we can now measure the
overhead of the TEEs. For AMD CPUs, we additionally
compare it with a VM setup without SEV-SNP to see the
overhead produced by each part of it.

Throughput: Again, we first investigate the influence of
the TEE technologies on the maximum throughput. Fig. 4a
depicts the rmax for the different scenarios: bare-metal without
TEEs (for comparison), SGX, VM without TEE, and SEV-
SNP. Each experiment was performed with both drivers on a
single CPU core with a packet size of 1500 B.

First, we look into the extern approach implemented using
Intel SGX. There is a considerable performance drop for both
investigated Intel CPUs when packets have to traverse the
secure enclave. rmax falls from 2.28 Mpps to 0.24 Mpps for
CPU A, which is only 10.5 % of the baseline performance. A
similar picture can be drawn for CPU B: there, rmax decreases
from 2.14 Mpps to 0.20 Mpps, which is 9.3 %. The perfor-
mance for the AF_XDP is depicted only for completeness but
not used in the extern approach.

Second, we investigate the secure P4 pipeline approach,
using AMD SEV-SNP. We can only use the AF_XDP driver
for that and depict the performance of the ICE driver only
for completeness. For both CPUs, the performance is similar.
Surprisingly, using a VM on Setup C improves rmax from
0.52 Mpps to 0.55 Mpps, which is 105.7 % of the baseline. We
speculate that the memory alignment of the VM is improved
by chance, enhancing cache performance. Enabling SEV-SNP
reduces rmax to 0.44 Mpps, which is 84.6 % of the baseline,
and 80.0 % of the vanilla VM. It is again similar to the
other AMD CPU D: Baseline rmax is 0.42 Mpps, 0.53 Mpps
(126.2 %) for vanilla VM, and 0.42 Mpps for SEV-SNP (100 %
or 79.2 %, respectively).

While the overhead for SGX is relatively high, the overhead
of SEV-SNP is handy. For this solution, most overhead is in-
troduced by the required AF_XDP driver. Comparing both so-
lutions, the SEV-SNP achieves a higher rmax, 0.44/0.42 Mpps
for SEV-SNP, compared to 0.24/0.22 Mpps for SGX, approx-
imately half. The performance is better, even though all the
packets have to be copied several times. On the other side, the
input and output values of the enclave have to be copied as
well. Additionally, context switches are required.

CPU A CPU B CPU C CPU D

0

1

2

3

r m
a
x
[M

p
p
s]

AF XDP SNP - AF XDP VM - AF XDP ICE

VM - ICE SGX - AF XDP SGX - ICE I/O time

(a) Maximum packet rates (rmax)

CPU A CPU B CPU C CPU D

0

50

100

150

200

B
at
ch

T
im

e
[µ
s]

(b) Batch processing times (tb(32)), I/O times (trx(32) + ttx(32))

Figure 4: Different drivers with and without TEE

Time: We can again model the parameters for the I/O
overhead of the batch times (cf. Fig. 4b). For experiments with
a low rmax (i.e., SGX), the data points to create the linear
approximation functions are limited, as the system becomes
overloaded quickly, resulting in maximum batch sizes.

Fig. 4b shows similar I/O overhead inside and outside of
the SGX enclave. The additional workload arises from higher
processing times due to the SGX enclave transition. For SEV-
SNP, i.e., in Setup C, the processing share stays nearly the
same for SEV-SNP as without TEE. However, the I/O costs in-
crease for tb(32) between 44.54–59.44 µs (133.5 %) due to the
additional copy. But, we can measure better performance for
a VM than bare-metal, and we cannot calculate a significant
difference for the CPU D. Thus, the overhead of SEV-SNP
is minimal despite the additional copy. Comparing the per-
packet processing times (bp) for SEV (408/429 ns) and SGX
(2249/1560 ns), we can, despite the decreased precision of the
model, observe the overhead produced through the context
switches between untrusted part and the secure enclave.

VIII. DISCUSSION & CONCLUSION

We investigated two different approaches for TEE together
with P4 pipelines. The extern approach builds a TEE next
to the pipeline and relies on Intel SGX. The secure pipeline
implements the whole P4 pipeline inside AMD SEV-SNP. We
aimed not to build a custom solution but to use DPDK applica-
tions without required modifications to ensure their portability.
However, this requires workarounds using bounce buffers and
AF XDP involving additional packet copies and negatively
influencing the performance. Nevertheless, we showed that the
secure pipeline using SEV-SNP offers higher throughputs. Us-
ing SGX enclaves for the extern approach drastically increases
processing times for the required context switches. While the
SGX extern can be optimized further, as related work shows,
it will likely not scale as well as SEV-SNP.

Future work may investigate scenarios based on latency
and multi-core scaling. The secure pipeline approach may be
implemented using Intel TDX and compared to AMD SEV.
SEV-TIO devices might increase the performance without
fundamental changes to the application. A reevaluation will be
worthwhile after first NICs with SEV-TIO become available.

ACKNOWLEDGMENTS

This work was supported by the EU’s Horizon 2020 pro-
gramme as part of the projects SLICES-PP (10107977) and
GreenDIGIT (101131207), by the German Federal Ministry
of Education and Research (BMBF) under the projects 6G-
life (16KISK002) and 6G-ANNA (16KISK107), and by the
German Research Foundation (HyperNIC, CA595/13-1).

REFERENCES

[1] P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel, and S. Laki,
“T4P4S: A Target-independent Compiler for Protocol-independent
Packet Processors,” in 19th International Conference on High Perfor-
mance Switching and Routing, HPSR, Bucharest, Romania. IEEE, 2018.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming Protocol-Independent Packet Processors,” CCR, vol. 44,
no. 3, pp. 87–95, 2014.

[3] F. Parola, R. Procopio, R. Querio, and F. Risso, “Comparing User Space
and In-Kernel Packet Processing for Edge Data Centers,” CCR, vol. 53,
no. 1, p. 14–29, Apr. 2023.

[4] AMD, “AMD SEV-TIO: Trusted I/O for Secure Encrypted
Virtualization,” 2023, Last accessed: 2025-01-27. [Online]. Avail-
able: https://www.amd.com/content/dam/amd/en/documents/developer/
sev-tio-whitepaper.pdf

[5] M. Li, Y. Zhang, Z. Lin, and Y. Solihin, “Exploiting unprotected
I/O operations in amd’s secure encrypted virtualization,” in Security
Symposium (USENIX Security), Santa Clara, CA, USA. USENIX, 2019.

[6] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Her-
bert, D. Ahern, and D. Miller, “The eXpress Data Path: Fast Pro-
grammable Packet Processing in the Operating System Kernel,” in
International Conference on emerging Networking EXperiments and
Technologies (CoNEXT), Heraklion, Greece. ACM, 2018.

[7] H. Duan, C. Wang, X. Yuan, Y. Zhou, Q. Wang, and K. Ren, “LightBox:
Full-stack Protected Stateful Middlebox at Lightning Speed,” in Confer-
ence on Computer and Communications Security (CCS), London, UK.
ACM, 2019.

[8] J. Medina, N. Paladi, and P. Arlos, “Protecting OpenFlow using Intel
SGX,” in Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), Dallas, TX, USA. IEEE, 2019.

[9] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer,
“ShieldBox: Secure Middleboxes using Shielded Execution,” in Sympo-
sium on SDN Research (SOSR), Los Angeles, CA, USA. ACM, 2018.

[10] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click Modular Router,” ACM Trans. Comput. Syst., vol. 18, no. 3, p.
263–297, Aug. 2000.

[11] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “SafeBricks: Shielding
Network Functions in the Cloud,” in Symposium on Networked Systems
Design and Implementation (NSDI). Renton, WA: USENIX, 2018.

[12] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“NetBricks: Taking the V out of NFV,” in Symposium on Operating
Systems Design and Implementation (OSDI). Savannah, GA: USENIX,
2016.

[13] J. Thalheim, H. Unnibhavi, C. Priebe, P. Bhatotia, and P. Pietzuch, “rkt-
io: A Direct I/O Stack for Shielded Execution,” in European Conference
on Computer Systems (EuroSys). New York, NY, USA: ACM, 2021.

[14] M. Li, S. Srivastava, and M. Yan, “Bridge the Future: High-Performance
Networks in Confidential VMs without Trusted I/O devices,” CoRR, vol.
abs/2403.03360, 2024.

[15] “GitHub: manuel-simon/netsoft-2025,” Last accessed: 2025-04-29.
[Online]. Available: https://github.com/manuel-simon/netsoft25-results

[16] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” in Internet
Measurement Conference, IMC Tokyo, Japan. ACM, 2015.

