
Chair of Network Architectures and Services
School of Computation, Information and Technology
Technical University of Munich

TEE Time at P4—Performance Analysis
of Trusted Execution Environments for Packet Processing

Manuel Simon, Sebastian Warter,
Sebastian Gallenmüller, Georg Carle

Wednesday 25th June, 2025

IEEE NetSoft 2025

Chair of Network Architectures and Services
School of Computation, Information and Technology

Technical University of Munich

Introduction
Motivation

Cloud VM

Source Middlebox Destination
Internet Internet

42 42 43
+1

43

What about confidentiality?

• We don’t trust the Internet → Encrypt message
• We don’t trust the cloud provider → ?
• We don’t trust “ourselves” (privacy laws, customer trust) → ?

M. Simon et al. — P4 in TEE 2

Introduction
Motivation

Cloud VM

Source Middlebox Destination
Internet Internet

42 42 43
+1

43

What about confidentiality?

• We don’t trust the Internet → Encrypt message
• We don’t trust the cloud provider → ?
• We don’t trust “ourselves” (privacy laws, customer trust) → ?

M. Simon et al. — P4 in TEE 2

Introduction
Motivation

Cloud VM

Source Middlebox Destination
Internet Internet

42 42 43
+1

43

What about confidentiality?

• We don’t trust the Internet → Encrypt message
• We don’t trust the cloud provider → ?
• We don’t trust “ourselves” (privacy laws, customer trust) → ?

M. Simon et al. — P4 in TEE 2

Introduction
Motivation

Cloud VM

Source Middlebox Destination
Internet Internet

42 42 43
+1

43

What about confidentiality?

• We don’t trust the Internet → Encrypt message

• We don’t trust the cloud provider → ?
• We don’t trust “ourselves” (privacy laws, customer trust) → ?

M. Simon et al. — P4 in TEE 2

Introduction
Motivation

Cloud VM

Source Middlebox Destination
Internet Internet

42 42 43
+1

43

What about confidentiality?

• We don’t trust the Internet → Encrypt message
• We don’t trust the cloud provider → ?

• We don’t trust “ourselves” (privacy laws, customer trust) → ?

M. Simon et al. — P4 in TEE 2

Introduction
Motivation

Cloud VM

Source Middlebox Destination
Internet Internet

42 42 43
+1

43

What about confidentiality?

• We don’t trust the Internet → Encrypt message
• We don’t trust the cloud provider → ?
• We don’t trust “ourselves” (privacy laws, customer trust) → ?

M. Simon et al. — P4 in TEE 2

Introduction
Trusted Execution Environments (TEE)

Only trust the CPU manufacturer using TEEs:

• CPU encrypts memory with not-accessible key
• CPU can attest that the correct code is running

Implementation of TEEs:

Intel SGX AMD SEV-SNP

Type User space VM
Mem. encryption/integrity ✓/✓ ✓/✓
Overhead Context switches swiotlb
Architecture split (secure enclave) all in secure VM
Requires refactoring ✓ ×

Other implementations (not covered): Intel TDX, ARM TrustZone

M. Simon et al. — P4 in TEE 3

Introduction
Goals

Problem statement:

• We want to use a standardized, high-level language for packet processing
• We want to use TEE for confidential processing
• We want to compare TEE implementations for packet processing

⇒ We integrate TEEs into the P4 pipeline, a high-level language for packet processing

Contribution:

⇒ Two designs/implementations for TEEs on P4 devices

⇒ Common framework/use case to compare TEE implementations

⇒ We use DPDK-based T4P4S for the implementation and analysis

M. Simon et al. — P4 in TEE 4

Introduction
Background

P4 [1]:

• High-level language to program data plane
• Nowadays also targeting the end-hosts with Portable NIC Architecture (PNA)
• So-called externs allow the integration of target-dependent, non-P4 functionality

T4P4S [10]:

• Open-source software P4 target transpiling P4 code to DPDK code

DPDK:

• High-performance packet processing framework
• Runs in user space and bypasses the Linux Networking Stack
• Polls batches of packet from NIC using DMA

M. Simon et al. — P4 in TEE 5

Related Work

• LightBox1: SGX-enabled implementation of secure middleboxes; uses complex setup with custom virtual network
interfaces

• ShieldBox2: creates secure containers leveraging SGX enclaves; built on Click [4] and SCONE
• SafeBricks3: secures NF execution inside SGX enclaves; splits DPDK architecture in trusted and untrusted parts;

shared buffer for communication; built on NetBricks [6]
• rkt-io4: runs customized DPDK inside Intel SGX with direct userpace network I/O stack; provides POSIX socket API
• Bridge the Future5: kernel module allowing hardware access from DPDK inside an AMD-SEV VM

⇒ Our approach integrates TEE execution in the established P4 programming language

⇒ Our solution (i.e., pipeline approach) does not rely on custom solutions and allows replacement with upcoming
technologies

⇒ Our solution provides a framework/use case for performance comparison for TEE technologies

1
Duan et al.: LightBox: Full-stack Protected Stateful Middlebox at Lightning Speed [2]

2
Trach et al.: ShieldBox: Secure Middleboxes using Shielded Execution [9]

3
Poddar et al.: SafeBricks: Shielding Network Functions in the Cloud [7]

4
Thalheim et al.: rkt-io: a direct I/O stack for shielded execution [8]

5
Li et al.: Bridge the Future: High-Performance Networks in Confidential VMs without Trusted I/O devices [5]

M. Simon et al. — P4 in TEE 6

Design & Implementation
TEE as P4 extern

P4 Pipeline

Parser
Match-
Action

Ingress

Match-
Action
Egress

Traffic
Manager

DeparserPacket Packet

TEE
extern

Design:
• Standard, fast packet processing defined in P4
• Hardcoded extern functions inside TEE

+ Well-defined API

+ Extern can be called for selected packets

- Normal packet processing, i.e., routing not protected

Use cases:
• Trusted computation on secret data
• Processing on privacy-concerned (meta-)data
• Trusted application can return required actions, without

leaking private data

M. Simon et al. — P4 in TEE 7

Design & Implementation
P4 Pipeline inside TEE – Secure Pipeline

TEE P4 Pipeline

Parser
Match-
Action

Ingress

Match-
Action
Egress

Traffic
Manager

DeparserPacket Packet

Design:
• Whole P4 pipeline inside TEE

+ Secures entire packet processing, all header ac-
cesses, and control flow

- Reduced isolation

Use cases:
• Trustworthy, secure routing
• Trustworthy packet processing

M. Simon et al. — P4 in TEE 8

Design & Implementation
Extern using Intel SGX

SGX enclave

DPDK/T4P4S

Host OS/HV

Hardware NIC

Direct access

P4 extern
• T4P4S/DPDK runs the typical way on bare-metal hardware
• T4P4S generates code for P4 pipeline
• Pre-defined extern code runs in SGX enclave, written in C
• Input/output fields are copied to/from enclave

M. Simon et al. — P4 in TEE 9

Design & Implementation
P4 Pipeline in AMD SEV-SNP

SEV-SNP VM

DPDK/T4P4S

Guest OS DRV

Host OS/HV

Hardware NIC

Direct access

AF_XDP (copy mode)

• T4P4S/DPDK runs inside Ubuntu SEV-SNP VM
• Bounce buffers (swiotlb) copy packets from unprotected DMA

area
• AF_XDP socket in copy mode to transfer packet from kernel to

user space
⇒ two copies required

• I/O still unprotected
• SEV-TIO would guarantee protected and more performant I/O

M. Simon et al. — P4 in TEE 10

Setup

DuT LoadGen
◀
▶

◀
▶

Configuration
• CPU:

• Intel Xeon Gold 6421N (1.8 GHz)
• Intel Xeon Gold 6312U (2.4 GHz)
• AMD EPYC 9354 (3.25 GHz)
• AMD EPYC 7543 (2.8 GHz)

• NIC: Intel E810 (100 Gbit/s)
• OS: Ubuntu Jammy (with AMD SEV-SNP kernel ex-

tensions)

Scenario
• DuT runs T4P4S with TEE extensions
• XOR to emulate en-/decrypt of 4 Byte header field as

secured operation
• LoadGen runs MoonGen [3] for traffic generation and

measurements
• CBR traffic with 1500 Byte packet size
• Performance model used to calculate I/O shares, more

details in paper

M. Simon et al. — P4 in TEE 11

Evaluation
Baseline — Throughput

Xeon 6421N Xeon 6312U EPYC 9354 EPYC 7543

0

1

2

3

r m
a
x
[M

p
p
s]

AF XDP ICE

Baseline: Simple forwarder without TEE
• Intel CPUs with slightly higher throughput
• AF_XDP reduces throughput by 65 %–

82 %

M. Simon et al. — P4 in TEE 12

Evaluation
Baseline — I/O Overhead

Xeon 6421N Xeon 6312U EPYC 9354 EPYC 7543

0

20

40

60

80

100

B
at
ch

T
im

e
[µ
s]

AF XDP ICE I/O time

Baseline:
• Using performance model and different

packet rates, we calculate I/O shares of
processing times

• Overhead of AF_XDP lays mostly in I/O
operations due to additional copies

• Processing times similar for both drivers
• I/O overhead bigger for Intel CPUs

M. Simon et al. — P4 in TEE 13

Evaluation
TEE implementations — Throughput

Xeon 6421N Xeon 6312U EPYC 9354 EPYC 7543

0

1

2

3

r m
a
x
[M

p
p
s]

AF XDP SNP - AF XDP VM - AF XDP ICE

SGX - ICE I/O time

Extern approach/Intel SGX:
• SGX decreases performance by 90 %

Secure pipeline/AMD SEV-SNP:
• AF_XDP VM offers similar performance to

bare-metal AF_XDP
• SNP reduces performance by 0 %–15 %

compared to bare-metal AF_XDP

Comparison:
• Secure pipeline using SEV-SNP allows for

approx. double the throughput than the ex-
tern approach using SGX (0.44/0.42 Mpps
compared to 0.24/0.22 Mpps)

• However, both solutions perform worse
than bare-metal ICE driver solutions

⇒ SEV-TIO and PCI-TDISP would increase
performance significantly

M. Simon et al. — P4 in TEE 14

Evaluation
TEE implementations — Throughput

Xeon 6421N Xeon 6312U EPYC 9354 EPYC 7543

0

1

2

3

r m
a
x
[M

p
p
s]

AF XDP SNP - AF XDP VM - AF XDP ICE

SGX - ICE I/O time

Extern approach/Intel SGX:
• SGX decreases performance by 90 %

Secure pipeline/AMD SEV-SNP:
• AF_XDP VM offers similar performance to

bare-metal AF_XDP

• SNP reduces performance by 0 %–15 %
compared to bare-metal AF_XDP

Comparison:
• Secure pipeline using SEV-SNP allows for

approx. double the throughput than the ex-
tern approach using SGX (0.44/0.42 Mpps
compared to 0.24/0.22 Mpps)

• However, both solutions perform worse
than bare-metal ICE driver solutions

⇒ SEV-TIO and PCI-TDISP would increase
performance significantly

M. Simon et al. — P4 in TEE 14

Evaluation
TEE implementations — Throughput

Xeon 6421N Xeon 6312U EPYC 9354 EPYC 7543

0

1

2

3

r m
a
x
[M

p
p
s]

AF XDP SNP - AF XDP VM - AF XDP ICE

SGX - ICE I/O time

Extern approach/Intel SGX:
• SGX decreases performance by 90 %

Secure pipeline/AMD SEV-SNP:
• AF_XDP VM offers similar performance to

bare-metal AF_XDP
• SNP reduces performance by 0 %–15 %

compared to bare-metal AF_XDP

Comparison:
• Secure pipeline using SEV-SNP allows for

approx. double the throughput than the ex-
tern approach using SGX (0.44/0.42 Mpps
compared to 0.24/0.22 Mpps)

• However, both solutions perform worse
than bare-metal ICE driver solutions

⇒ SEV-TIO and PCI-TDISP would increase
performance significantly

M. Simon et al. — P4 in TEE 14

Evaluation
TEE implementations — Throughput

Xeon 6421N Xeon 6312U EPYC 9354 EPYC 7543

0

1

2

3

r m
a
x
[M

p
p
s]

AF XDP SNP - AF XDP VM - AF XDP ICE

SGX - ICE I/O time

Extern approach/Intel SGX:
• SGX decreases performance by 90 %

Secure pipeline/AMD SEV-SNP:
• AF_XDP VM offers similar performance to

bare-metal AF_XDP
• SNP reduces performance by 0 %–15 %

compared to bare-metal AF_XDP

Comparison:
• Secure pipeline using SEV-SNP allows for

approx. double the throughput than the ex-
tern approach using SGX (0.44/0.42 Mpps
compared to 0.24/0.22 Mpps)

• However, both solutions perform worse
than bare-metal ICE driver solutions

⇒ SEV-TIO and PCI-TDISP would increase
performance significantly

M. Simon et al. — P4 in TEE 14

Evaluation
TEE implementations — Overhead

Xeon 6421N Xeon 6312U EPYC 9354 EPYC 7543

0

50

100

150

200

B
at
ch

T
im

e
[µ
s]

AF XDP SNP - AF XDP VM - AF XDP ICE

SGX - ICE I/O time

Extern approach/Intel SGX:
• SGX enclave transition produces overhead

(i.e., context switches and copy of data
from/to enclave)

Secure pipeline/AMD SEV-SNP:
• SNP has slightly higher I/O overhead, due

to additional (second) copy of packet

M. Simon et al. — P4 in TEE 15

Conclusion

Contributions:
• Implemented two approaches for TEEs in P4
• Used an architecture which allows for easy exchange with other

technologies (i.e. TDX, SEV-TIO)

Findings:
• AMD-SEV offers better scalability compared to Intel SGX
• However, using AMD-SEV within DPDK without adoptions comes

with the performance penalty of two required copies

Future Work:
• Analyze multi-core performance, influence of packet size, packet

rate, and latency
• Evaluate and integrate Intel TDX, ARM TrustZone, and SEV-TIO

(when available)

TEE Time at P4—Performance Analysis of Trusted
Execution Environments for Packet Processing

Manuel Simon, Sebastian Warter, Sebastian Gallenmüller, and Georg Carle
Chair of Network Architectures and Services, Technical University of Munich, Germany

{simonm|gallenmu|carle}@net.in.tum.de, sebastian.warter@tum.de

Abstract—Modern computer networks, such as 5G/6G net-
works, require high-performance, low-latency, and secure packet
processing while ensuring data confidentiality in cloud environ-
ments. Trusted Execution Environments (TEEs) address these
security requirements and provide encrypted memory areas that
protect sensitive data from untrusted cloud providers. This paper
presents a performance analysis of TEE technologies, specifically
Intel SGX and AMD SEV-SNP, in the context of software-based
user-space packet processing with DPDK and the P4 language.
We evaluate two architectural approaches: (1) integrating TEEs
as external processing modules implemented with SGX and (2)
executing the entire P4 pipeline inside a TEE using AMD-
SEV. Our analysis examines computational and I/O overhead
across different CPU architectures. The results show the trade-
offs between TEE designs, implementations, and performance,
demonstrating that AMD SEV-SNP offers better scalability with
lower performance penalties compared to Intel SGX.

Index Terms—TEE, SGX, SEV-SNP, P4, Packet Processing

I. INTRODUCTION

Modern computer networks, i.e., 5G/6G, aim for high-
performance, low-latency, secure, and highly customizable
end-to-end connections. This trend shifts functionality into the
network using cloud-based network functions (NFs). However,
moving functionality and data to third parties requires trust to
guarantee the desired execution and protect sensitive data. For
instance, monitoring and intrusion detection may involve the
analysis of IP addresses of known entities or even include
analyzing the payload. Sensitive user information must be
protected from the third party. Moreover, administrators want
to ensure that program code and functionality are not modi-
fied (maliciously) by the cloud provider. These problems are
tackled by Trusted Execution Environments (TEE), offering
encrypted memory in which the keys are only accessible by
the underlying hardware itself. Therefore, CPUs offering TEE
abstract the underlying secure execution from users. This way,
the operator only has to trust CPU manufacturers but not
cloud providers. Different implementations of TEEs exist; the
most prominent include Intel’s Software Guard Extensions
(SGX) and AMD’s Secure Encrypted Virtualization with Se-
cure Nested Paging (SEV-SNP).

We analyze the performance of the different approaches and
compare the use cases w.r.t. software packet processing. For
that, we investigate T4P4S [1], a P4 software switch based on
DPDK. P4 [2] is a programming language for data planes of
software-defined networks. It brings the advantage of a high-
level, domain-specific language to build high-performance NFs

in a target-independent way. T4P4S translates the P4 programs
to DPDK code, allowing the execution on commodity, gen-
eral purpose hardware. Its implementation in software makes
T4P4S a suitable choice for execution in the cloud. We will
investigate two different modes: P4 provides the option of
using external, non-P4 functionality, which we can use to
define the API between common packet processing and the
execution of sensitive parts inside the TEE. Alternatively, the
whole packet processing pipeline may lay inside the TEE.

Our contributions are: Implementation of a P4 user-space
software pipeline inside/next to a TEE, comparison of differ-
ent TEE designs and implementations, detailed performance
analysis of TEEs and implementations for user-space packet
processing, and a performance model for I/O overhead.

II. BACKGROUND

a) P4 [2]: is a programming language for data planes.
P4 supports hardware and software targets. So-called “ex-
terns” add non-P4, target-specific functionality. P4 offers a
programmable pipeline to introduce new protocols. Our study
utilizes the open-source P4 software target T4P4S [1] to
investigate packet processing with and without TEEs. T4P4S
is based on DPDK and, therefore, offers high performance.

b) DPDK: is a framework for high-performance packet
processing. Its performance relies on: (1) packet reception via
polling of batches, avoiding costly interrupts; and (2) running
entirely in user space to bypass the kernel network stack.
Direct Memory Access (DMA) for packet I/O causes issues
when used with trusted execution (cf. Sec. II-0e). DPDK offers
drivers that bind the NIC to the kernel while copying every
packet to user space, i.e., XDP sockets (cf. Sec. II-0f); the
copy operations increase processing costs. In return, DPDK
programs can still run without required modifications if the
user space drivers cannot be used.

c) TEEs: guarantee, according to Sabt et al. [3], the
“authenticity of the executed code, the integrity of runtime
states [. . .], and the confidentiality of its code, data and
runtime states [. . .].” Customers running code in a TEE need
only trust the executed code and CPU manufacturer—not
the hardware operator or hypervisor. To ensure the defined
properties, TEEs encrypt the memory, using protected secrets
on the CPU. Examples of TEEs include Intel SGX and AMD
SEV. For packet processing, different use cases are possible:
calculations on encrypted traffic, as secure network gateways,
or as a privacy-preserving monitor of (encrypted) traffic.

M. Simon et al. — P4 in TEE 16

Bibliography

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: Programming Protocol-Independent Packet Processors.
CCR, 44(3):87–95, 2014.

[2] H. Duan, C. Wang, X. Yuan, Y. Zhou, Q. Wang, and K. Ren.
LightBox: Full-stack Protected Stateful Middlebox at Lightning Speed.
In Conference on Computer and Communications Security (CCS), London, UK. ACM, 2019.

[3] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle.
MoonGen: A Scriptable High-Speed Packet Generator.
In Internet Measurement Conference, IMC Tokyo, Japan. ACM, 2015.

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The Click Modular Router.
ACM Trans. Comput. Syst., 18(3):263–297, Aug. 2000.

[5] M. Li, S. Srivastava, and M. Yan.
Bridge the Future: High-Performance Networks in Confidential VMs without Trusted I/O devices.
CoRR, abs/2403.03360, 2024.

[6] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker.
NetBricks: Taking the V out of NFV.
In Symposium on Operating Systems Design and Implementation (OSDI), Savannah, GA, 2016. USENIX.

[7] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy.
SafeBricks: Shielding Network Functions in the Cloud.
In Symposium on Networked Systems Design and Implementation (NSDI), Renton, WA, 2018. USENIX.

M. Simon et al. — P4 in TEE 17

Bibliography

[8] J. Thalheim, H. Unnibhavi, C. Priebe, P. Bhatotia, and P. Pietzuch.
rkt-io: A Direct I/O Stack for Shielded Execution.
In European Conference on Computer Systems (EuroSys), New York, NY, USA, 2021. ACM.

[9] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer.
ShieldBox: Secure Middleboxes using Shielded Execution.
In Symposium on SDN Research (SOSR), Los Angeles, CA, USA. ACM, 2018.

[10] P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel, and S. Laki.
T4P4S: A Target-independent Compiler for Protocol-independent Packet Processors.
In 19th International Conference on High Performance Switching and Routing, HPSR, Bucharest, Romania. IEEE, 2018.

M. Simon et al. — P4 in TEE 18

	Introduction
	Related Work
	Design & Implementation
	Setup
	Evaluation
	Conclusion
	Bibliography

