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Introduction

Motivation

• Modern communication networks have to offer high-performant and reliable connections
• Interrupt-free, dynamic data plane updates increase network resilience

• application migration (e.g., for failovers)
• tenant-specific processing

• Just-in-time (JIT) compiled languages seem to be a promising candidates for on-the-fly function updates

Contribution

• LuaJIT/libmoon-based prototype implementation for dynamic network functions
• Investigation of applicability and performance consequences
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Background

libmoon

• Lua(JIT)-based wrapper for DPDK
• Allow flexible, high-level, but high-performant packet processing

DPDK

• High-performance packet processing framework
• Bypassing Linux networking kernel stack
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Previous and Related Work

Active Networking

• Capsule-based active networking [6]: Capsules/packets carry their "own" program fragments
• Tiny packet programs (TTPs) [4]: active packets with very restricted number of instructions

P4

• Active RMT [1]: Instruction set in P4 allowing changegable functionality
• FlexCore [7]: Runtime partial reprogrammable switch architecture
• In-situ Programmable Data Plane [3]: Switch architecture and reconfigurable P4 (rP4) for runtime updates

P4/eBPF

• Dynamic eBPF in P4 pipeline [5]: Runtime-updatable eBPF processors within P4 pipeline

[6] D. L. Tennenhouse and D. J. Wetherall. Towards an Active Network Architecture, SIGCOMM Comput. Commun. Rev.,
26, apr 1996
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Implementation

Prototype

• Implemented in libmoon using LuaJIT

Flow Table

• Every flow has its own function
• Hashtable mapping flows to the (network) function

Function Update

• Lua’s built-in loadstring() function returns pointer for given source code
• LuaJIT can JIT compile the code
• Several JIT optimization schemes possible (-O0, -O1, -O2, -O3)
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Implementation

Flow Function pointer

Flow 1⃝ forward

Flow 2⃝ forward

· · · · · ·

default forward

DYN 1⃝

local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(54321);

INC 2⃝

payload: 0

INC 1⃝

payload: 0

forward():
local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(12345);

payload: 0

INC 1⃝

M. Simon — Dynamic Network Function 6



Implementation

Flow Function pointer

Flow 1⃝ forward

Flow 2⃝ forward

· · · · · ·

default forward

DYN 1⃝

local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(54321);

INC 2⃝

payload: 0

INC 1⃝

payload: 0

forward():
local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(12345);

payload: 0

INC 1⃝
Flow 1⃝

M. Simon — Dynamic Network Function 6



Implementation

Flow Function pointer

Flow 1⃝ anon_fun1

Flow 2⃝ forward

· · · · · ·

default forward

DYN 1⃝

local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(54321);

INC 2⃝

payload: 0

INC 1⃝

payload: 0

forward():
local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(12345);

anon_fun1():
local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(54321);

payload: 0

INC 1⃝

Flow 1⃝

fun = loadstring()
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Measurement Setup
Setup

DuT LoadGen◀
▶

◀
▶

Timestamper

◀ ◀

DuT
• Intel Xeon D-1518 2.2 GHz, 32 RAM
• libmoon with batch size of one

LoadGen
• MoonGen [2] is used to generate traffic
• Packet size 200 B

Timestamper

• Packet streams duplicated using optical splitter
• Timestamps each packet incoming packet
• Resolution: 12,5 ns
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Measurement Setup
Procedure

Two flows

• For flow 1, the function will be changed during runtime
• For flow 2, the function remains unaffected

Procedure

• First, 50 000 INC packets are sent → default/forwarding function
• Then, one DYN packet updates the code for flow 1
• Afterward, another 200 000 INC packets are sent and processed

Network Function

• Default function: Set a constant in a specific header field
• Changed function: sets another constant

⇒ minimum possible overhead
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Measurement Setup
Methodology

We want to answer the following questions:

1. What is the overhead when changing the network function during runtime?
→ DYN packet

2. How does the change affect other flows and CPU cores (cross-flow and cross-core dependencies)
→ using one or two threads/tasks/cores on the DuT

3. How does JIT compilation influence the performance during and after changing the code?
→ enabling/disable LuaJIT

4. What are the reasons for performance changes?
→ manipulating the default function
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Evaluation
Dynamic program change (one task) (zoomed)
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Evaluation
Dynamic program change (two tasks) (zoomed)
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Evaluation
Dynamic program change (two tasks) (no JIT)
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Dynamic program change (two tasks)
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Evaluation
Latencies before, 5000 packets after the change, and thereafter )
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Conclusion

Results

• It is feasible to perform dynamic changes with uncompiled source code
• Overhead only for flows processed on the same core
• JIT improves long-term performance, adds minimal overhead to the exchange itself
• Function pointer returned by loadstring() adds performance overhead

Future Work

• Investigate different programs (not only baseline overhead)
• Analyze the influence of JIT settings
• Compare to other implementations, e.g., eBPF, XDP
• Investigate the offloading potential such dynamic function to SmartNICs
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