
Chair of Network Architectures and Services
School of Computation, Information and Technology
Technical University of Munich

Dynamic Data Plane Updates using Lua and libmoon

Manuel Simon, Sebastian Gallenmüller, Georg Carle

Thursday 3rd April, 2025

KuVS FG NetSoft 2025

Chair of Network Architectures and Services
School of Computation, Information and Technology

Technical University of Munich



Introduction

Motivation

• Modern communication networks have to offer high-performant and reliable connections
• Interrupt-free, dynamic data plane updates increase network resilience

• application migration (e.g., for failovers)
• tenant-specific processing

• Just-in-time (JIT) compiled languages seem to be a promising candidates for on-the-fly function updates

Contribution

• LuaJIT/libmoon-based prototype implementation for dynamic network functions
• Investigation of applicability and performance consequences

M. Simon — Dynamic Network Function 2



Background

libmoon

• Lua(JIT)-based wrapper for DPDK
• Allow flexible, high-level, but high-performant packet processing

DPDK

• High-performance packet processing framework
• Bypassing Linux networking kernel stack

M. Simon — Dynamic Network Function 3



Previous and Related Work

Active Networking

• Capsule-based active networking [6]: Capsules/packets carry their "own" program fragments
• Tiny packet programs (TTPs) [4]: active packets with very restricted number of instructions

P4

• Active RMT [1]: Instruction set in P4 allowing changegable functionality
• FlexCore [7]: Runtime partial reprogrammable switch architecture
• In-situ Programmable Data Plane [3]: Switch architecture and reconfigurable P4 (rP4) for runtime updates

P4/eBPF

• Dynamic eBPF in P4 pipeline [5]: Runtime-updatable eBPF processors within P4 pipeline

[6] D. L. Tennenhouse and D. J. Wetherall. Towards an Active Network Architecture, SIGCOMM Comput. Commun. Rev.,
26, apr 1996

M. Simon — Dynamic Network Function 4



Previous and Related Work

Active Networking

• Capsule-based active networking [6]: Capsules/packets carry their "own" program fragments
• Tiny packet programs (TTPs) [4]: active packets with very restricted number of instructions

P4

• Active RMT [1]: Instruction set in P4 allowing changegable functionality
• FlexCore [7]: Runtime partial reprogrammable switch architecture
• In-situ Programmable Data Plane [3]: Switch architecture and reconfigurable P4 (rP4) for runtime updates

P4/eBPF

• Dynamic eBPF in P4 pipeline [5]: Runtime-updatable eBPF processors within P4 pipeline

[4] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazières. Millions of Little Minions: Using Packets for Low Latency
Network Programming and Visibility., ACM SIGCOMM 2014

M. Simon — Dynamic Network Function 4



Previous and Related Work

Active Networking

• Capsule-based active networking [6]: Capsules/packets carry their "own" program fragments
• Tiny packet programs (TTPs) [4]: active packets with very restricted number of instructions

P4

• Active RMT [1]: Instruction set in P4 allowing changegable functionality
• FlexCore [7]: Runtime partial reprogrammable switch architecture
• In-situ Programmable Data Plane [3]: Switch architecture and reconfigurable P4 (rP4) for runtime updates

P4/eBPF

• Dynamic eBPF in P4 pipeline [5]: Runtime-updatable eBPF processors within P4 pipeline

[1] R. Das and A. C. Snoeren. Memory management in Active RMT: Towards Runtime-Programmable Switches, ACM
SIGCOMM 2023

M. Simon — Dynamic Network Function 4



Previous and Related Work

Active Networking

• Capsule-based active networking [6]: Capsules/packets carry their "own" program fragments
• Tiny packet programs (TTPs) [4]: active packets with very restricted number of instructions

P4

• Active RMT [1]: Instruction set in P4 allowing changegable functionality
• FlexCore [7]: Runtime partial reprogrammable switch architecture
• In-situ Programmable Data Plane [3]: Switch architecture and reconfigurable P4 (rP4) for runtime updates

P4/eBPF

• Dynamic eBPF in P4 pipeline [5]: Runtime-updatable eBPF processors within P4 pipeline

[7] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy, and A. Chen. Runtime Programmable Switches,
NSDI 2022

M. Simon — Dynamic Network Function 4



Previous and Related Work

Active Networking

• Capsule-based active networking [6]: Capsules/packets carry their "own" program fragments
• Tiny packet programs (TTPs) [4]: active packets with very restricted number of instructions

P4

• Active RMT [1]: Instruction set in P4 allowing changegable functionality
• FlexCore [7]: Runtime partial reprogrammable switch architecture
• In-situ Programmable Data Plane [3]: Switch architecture and reconfigurable P4 (rP4) for runtime updates

P4/eBPF

• Dynamic eBPF in P4 pipeline [5]: Runtime-updatable eBPF processors within P4 pipeline

[3] Y. Feng, Z. Chen, H. Song, W. Xu, J. Li, Z. Zhang, T. Yun, Y. Wan, and B. Liu. Enabling In-situ Programmability in
Network Data Plane: From Architecture to Language, NSDI 2022

M. Simon — Dynamic Network Function 4



Previous and Related Work

Active Networking

• Capsule-based active networking [6]: Capsules/packets carry their "own" program fragments
• Tiny packet programs (TTPs) [4]: active packets with very restricted number of instructions

P4

• Active RMT [1]: Instruction set in P4 allowing changegable functionality
• FlexCore [7]: Runtime partial reprogrammable switch architecture
• In-situ Programmable Data Plane [3]: Switch architecture and reconfigurable P4 (rP4) for runtime updates

P4/eBPF

• Dynamic eBPF in P4 pipeline [5]: Runtime-updatable eBPF processors within P4 pipeline

[5] M. Simon, H. Stubbe, S. Gallenmüller, and G. Carle. Honey for the Ice Bear - Dynamic eBPF in P4, eBPF Workshop
@ SIGCOMM 2024

M. Simon — Dynamic Network Function 4



Implementation

Prototype

• Implemented in libmoon using LuaJIT

Flow Table

• Every flow has its own function
• Hashtable mapping flows to the (network) function

Function Update

• Lua’s built-in loadstring() function returns pointer for given source code
• LuaJIT can JIT compile the code
• Several JIT optimization schemes possible (-O0, -O1, -O2, -O3)

M. Simon — Dynamic Network Function 5



Implementation

Flow Function pointer

Flow 1⃝ forward

Flow 2⃝ forward

· · · · · ·

default forward

DYN 1⃝

local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(54321);

INC 2⃝

payload: 0

INC 1⃝

payload: 0

forward():
local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(12345);

payload: 0

INC 1⃝

M. Simon — Dynamic Network Function 6



Implementation

Flow Function pointer

Flow 1⃝ forward

Flow 2⃝ forward

· · · · · ·

default forward

DYN 1⃝

local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(54321);

INC 2⃝

payload: 0

INC 1⃝

payload: 0

forward():
local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(12345);

payload: 0

INC 1⃝
Flow 1⃝

M. Simon — Dynamic Network Function 6



Implementation

Flow Function pointer

Flow 1⃝ anon_fun1

Flow 2⃝ forward

· · · · · ·

default forward

DYN 1⃝

local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(54321);

INC 2⃝

payload: 0

INC 1⃝

payload: 0

forward():
local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(12345);

anon_fun1():
local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(54321);

payload: 0

INC 1⃝

Flow 1⃝

fun = loadstring()

M. Simon — Dynamic Network Function 6



Implementation

Flow Function pointer

Flow 1⃝ anon_fun1

Flow 2⃝ forward

· · · · · ·

default forward

DYN 1⃝

local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(54321);

INC 2⃝

payload: 0

INC 1⃝

payload: 0

forward():
local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(12345);

anon_fun1():
local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(54321);

payload: 0

INC 1⃝

Flow 2⃝

M. Simon — Dynamic Network Function 6



Implementation

Flow Function pointer

Flow 1⃝ anon_fun1

Flow 2⃝ forward

· · · · · ·

default forward

DYN 1⃝

local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(54321);

INC 2⃝

payload: 0

INC 1⃝

payload: 0

forward():
local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(12345);

anon_fun1():
local pkt = buf:getUDP4IncPacket();

pkt.inc:setPayload(54321);

payload: 0

INC 1⃝

Flow
1⃝

M. Simon — Dynamic Network Function 6



Measurement Setup
Setup

DuT LoadGen◀
▶

◀
▶

Timestamper

◀ ◀

DuT
• Intel Xeon D-1518 2.2 GHz, 32 RAM
• libmoon with batch size of one

LoadGen
• MoonGen [2] is used to generate traffic
• Packet size 200 B

Timestamper

• Packet streams duplicated using optical splitter
• Timestamps each packet incoming packet
• Resolution: 12,5 ns

M. Simon — Dynamic Network Function 7



Measurement Setup
Procedure

Two flows

• For flow 1, the function will be changed during runtime
• For flow 2, the function remains unaffected

Procedure

• First, 50 000 INC packets are sent → default/forwarding function
• Then, one DYN packet updates the code for flow 1
• Afterward, another 200 000 INC packets are sent and processed

Network Function

• Default function: Set a constant in a specific header field
• Changed function: sets another constant

⇒ minimum possible overhead

M. Simon — Dynamic Network Function 8



Measurement Setup
Methodology

We want to answer the following questions:

1. What is the overhead when changing the network function during runtime?
→ DYN packet

2. How does the change affect other flows and CPU cores (cross-flow and cross-core dependencies)
→ using one or two threads/tasks/cores on the DuT

3. How does JIT compilation influence the performance during and after changing the code?
→ enabling/disable LuaJIT

4. What are the reasons for performance changes?
→ manipulating the default function

M. Simon — Dynamic Network Function 9



Measurement Setup
Methodology

We want to answer the following questions:

1. What is the overhead when changing the network function during runtime?
→ DYN packet

2. How does the change affect other flows and CPU cores (cross-flow and cross-core dependencies)
→ using one or two threads/tasks/cores on the DuT

3. How does JIT compilation influence the performance during and after changing the code?
→ enabling/disable LuaJIT

4. What are the reasons for performance changes?
→ manipulating the default function

M. Simon — Dynamic Network Function 9



Measurement Setup
Methodology

We want to answer the following questions:

1. What is the overhead when changing the network function during runtime?
→ DYN packet

2. How does the change affect other flows and CPU cores (cross-flow and cross-core dependencies)
→ using one or two threads/tasks/cores on the DuT

3. How does JIT compilation influence the performance during and after changing the code?
→ enabling/disable LuaJIT

4. What are the reasons for performance changes?
→ manipulating the default function

M. Simon — Dynamic Network Function 9



Measurement Setup
Methodology

We want to answer the following questions:

1. What is the overhead when changing the network function during runtime?
→ DYN packet

2. How does the change affect other flows and CPU cores (cross-flow and cross-core dependencies)
→ using one or two threads/tasks/cores on the DuT

3. How does JIT compilation influence the performance during and after changing the code?
→ enabling/disable LuaJIT

4. What are the reasons for performance changes?
→ manipulating the default function

M. Simon — Dynamic Network Function 9



Evaluation
Dynamic program change (one task) (zoomed)

1,635 1,636 1,637 1,638
0
25
50
75
100
125
150
175
200

Experiment Time [ms]

La
te

nc
y

[µ
s]

before
after
before (other)
after (other)
change

M. Simon — Dynamic Network Function 10



Evaluation
Dynamic program change (two tasks) (zoomed)

1,632 1,633 1,634 1,635
0
20
40
60
80
100
120
140
160

Experiment Time [ms]

La
te

nc
y

[µ
s]

before
after
before (other)
after (other)
change

M. Simon — Dynamic Network Function 11



Evaluation
Dynamic program change (two tasks) (no JIT)

1,625 1,650 1,675 1,700 1,725 1,750 1,775 1,800
0

20

40

60

80

100

120

Experiment Time [ms]

La
te

nc
y

[µ
s]

before
after
before (other)
after (other)
change

M. Simon — Dynamic Network Function 12



Evaluation
Dynamic program change (two tasks)

1,625 1,650 1,675 1,700 1,725 1,750 1,775 1,800
0
20
40
60
80
100
120
140
160

Experiment Time [ms]

La
te

nc
y

[µ
s]

before
after
before (other)
after (other)
change

M. Simon — Dynamic Network Function 13



Evaluation
Latencies before, 5000 packets after the change, and thereafter )

before before
(other)

change change
(other)

after after
(other)

0

2,000

4,000

6,000

8,000

3550 3587

6350

3563

6387

35633550 3562 3725 3562 3737 3562

La
te

nc
y

[n
s]

JIT off
JIT on

M. Simon — Dynamic Network Function 14



Conclusion

Results

• It is feasible to perform dynamic changes with uncompiled source code
• Overhead only for flows processed on the same core
• JIT improves long-term performance, adds minimal overhead to the exchange itself
• Function pointer returned by loadstring() adds performance overhead

Future Work

• Investigate different programs (not only baseline overhead)
• Analyze the influence of JIT settings
• Compare to other implementations, e.g., eBPF, XDP
• Investigate the offloading potential such dynamic function to SmartNICs

M. Simon — Dynamic Network Function 15



Bibliography

[1] R. Das and A. C. Snoeren.
Memory Management in ActiveRMT: Towards Runtime-Programmable Switches.
In ACM SIGCOMM 2023, page 1043–1059.

[2] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle.
MoonGen: A Scriptable High-Speed Packet Generator.
In IMC 2015.

[3] Y. Feng, Z. Chen, H. Song, W. Xu, J. Li, Z. Zhang, T. Yun, Y. Wan, and B. Liu.
Enabling In-situ Programmability in Network Data Plane: From Architecture to Language.
In NSDI 2022, pages 635–649.

[4] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazières.
Millions of Little Minions: Using Packets for Low Latency Network Programming and Visibility.
In ACM SIGCOMM 2014, page 3–14.

[5] M. Simon, H. Stubbe, S. Gallenmüller, and G. Carle.
Honey for the Ice Bear - Dynamic eBPF in P4.
In Proceedings of the ACM SIGCOMM 2024 Workshop on eBPF and Kernel Extensions, eBPF 2024, Sydney, NSW, Australia, August 4-8, 2024. ACM, 2024.

[6] D. L. Tennenhouse and D. J. Wetherall.
Towards an Active Network Architecture.
SIGCOMM Comput. Commun. Rev., 26(2):5–17, apr 1996.

[7] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy, and A. Chen.
Runtime Programmable Switches.
In NSDI 2022, pages 651–665.

M. Simon — Dynamic Network Function 16


	Introduction
	Background
	Previous and Related Work
	Implementation
	Measurement Setup
	Evaluation
	Conclusion
	Bibliography

