
Assessment of OPC UA PubSub at Scale using TSN
Infrastructure and Network Calculus

Filip Rezabek, Max Helm, Nicolas Buchner, Monika Smolarska, Benedikt Jaeger, and Georg Carle
Department of Computer Engineering, TUM School of CIT, Technical University of Munich, Germany

Email: {rezabek|helm|buchner|smolarsk|jaeger|carle}@net.in.tum.de

Abstract—OPC UA PubSub is a recent addition to the OPC
UA industry standard used for machine-type communication in
the Industrial Internet of Things. It can be combined with Time
Sensitive Networking to offer deterministic latency and bounded
jitter. In this work, we model the network interactions between
Credit-Based Shaper (CBS) and PubSub using Network Calculus.
We derive worst-case delay bounds for various numbers of hops,
payload sizes, and competing flows. The derived bounds are con-
firmed using deployments on commercial-of-the-shelf hardware
and open-source solutions relying on a low-latency Linux kernel.
Based on the results, we observe that the derived bounds are
satisfied in all scenarios of seven hops with a round-trip-time
(RTT) varying between 1 to 2.5 ms for respective payload sizes
of 59 to 1481 B. Similarly, for jitter we observe fluctuations of
±250 µs. Complementing the CBS results, we evaluate time-
aware shaping, where we observe lower RTTs for average payload
sizes of around 800 µs. Our contributions show that OPC UA
PubSub applications can co-exist with TSN.

Index Terms—COTS, TSN, OPC UA, Network Calculus

I. INTRODUCTION

Time Sensitive Networking (TSN) and the Open Platform
Communications (OPC) Unified Architecture (UA) in its Pub-
lish–Subscribe (PubSub) variant aim to offer deterministic la-
tency guarantees to machine-type communication for industrial
automation. OPC UA is developed by the OPC Foundation [1]
and brings a platform-independent design, which offers an
efficient and secure framework for interoperability between
different systems and devices. Its ability to integrate with
different hardware and software, along with support for client-
server and PubSub communication models, makes OPC UA a
key enabler for the Industrial Internet of Things (IIoT).

Relying on Ethernet enables higher link rates and a combi-
nation of high and low traffic priority on the same medium [2].
However, by default, Ethernet does not provide any time guar-
antees required for real-time scenarios. Therefore, the TSN
family of IEEE standards1 brings reliability and determinism
to Ethernet networks. It allows precise timing across a network,
ensuring deterministic latency and jitter for exchanged packets.
By integrating TSN, OPC UA PubSub can fulfill industrial
application requirements, ensuring synchronized and timely
communication between devices.

Despite the key role of real-time communication in OPC
UA [2], there needs to be more research that explores the

All links are valid as of 21 April 2024.
1https://www.ieee802.org/1/pages/tsn.html

capabilities of open-source OPC UA on Commercial off-the-
Shelf (COTS) hardware (HW). The current studies primarily
rely on specialized HW and proprietary software (SW) or do
not evaluate the deployments at scale.

To determine the performance of OPC UA irrespective of
the HW setup, we utilize and extend a Network Calculus
(NC) model to determine upper delay bounds. We model the
behavior of the Credit-Based Shaper (CBS) queuing discipline
(qdisc) [3] and the open62541 project2. The open62541 project
is selected as it is one of the most widely established open-
source implementations of OPC UA stack, including the
PubSub variant. We also assess the Time-Aware Shaper (TAS)
and its Linux Time Aware Priority Shaper (TAPRIO) qdisc
implementation. For TAPRIO, we do not provide a theoretical
model. To evaluate the real-time performance of OPC UA
over TSN and the fulfillment of the theoretical upper delay
bounds for CBS, we conduct several experiment campaigns to
measure Round Trip Time (RTT) and jitter, which are crucial
metrics as outlined in the TSN experimentation methodology
[4]. We focus on the usage of Stream Reservation (SR) classes,
with requirements of 2 ms delay and 125 µs jitter over seven
hops. We extend the open-source3 Environment for Generic In-
vehicular Networking Experiments (EnGINE) [5], [6] frame-
work with open62541 project PubSub implementation to con-
duct our experiments. Building on top of EnGINE, we rely on
open-source solutions using Linux deployed on COTS HW.
Compared to previous works [7]–[11], we aim to determine
the OPC UA performance at scale with a higher number of
peers (up to seven hops one way), varying message sizes,
and competing traffic. This provides insights into various use
cases, such as tactile interaction, safety monitoring and control
alarms, automated guide vehicles, smart grid protection, and
motion control.

In this paper, we present the following contributions:

C1 Model OPC UA PubSub over CBS using NC
C2 Evaluate the model in a HW deployment, validating

delay bounds
C3 Assess the performance of OPC UA PubSub with vari-

ous qdiscs at scale

2https://github.com/open62541/open62541
3https://github.com/rezabfil-sec/engine-framework

II. BACKGROUND

In the following, we introduce TSN, OPC UA PubSub,
and NC. For TSN, we focus on the Precision Time Protocol
(PTP) [12], IEEE 802.1Qav [3], and IEEE 802.1Qbv [13] and
their corresponding Linux implementations.

A. Time Sensitive Networking

To support TSN experiments with COTS HW and open
source solutions, we introduced the EnGINE framework [6].
It is extended by a methodology [4] for TSN experiments
and enabled its integration with the Objective Modular Net-
work Testbed in C++ (OMNeT++) simulator [14]. Previous
experiments focus on achieving the latency, jitter, and packet
loss requirements outlined by [15] and [16] for Intra-Vehicular
Networks (IVNs), which we also consider in our evaluations.
We utilize Linux qdisc implementations for TAPRIO and
Earliest Time First (ETF), as well as CBS. PTP provides
accurate time synchronization in the network.

1) Precision Time Protocol: In a TSN system, precise time
synchronization can be achieved through the use of the PTP,
defined by the IEEE 802.1AS standard [17]. System clocks
are individually synchronized via PTP instances, organized in
a master-slave hierarchy. The exchange of timing messages
between the master and slave occurs over the network (either
at the Link Layer or Transport Layer), synchronizing the slave
clock to the master clock. The Grandmaster Clock (GM)
establishes the reference time for the entire system clock,
situated at the top of the hierarchy.

For time synchronization on Linux, we rely on the linuxptp
project [18]. It includes the ptp4l, phc2sys, and pmc tools4. The
ptp4l tool implements the PTP standard IEEE 1588 [12]. If the
used Network Interface Card (NIC) supports IEEE 802.1AS, it
achieves nanosecond precision using hardware timestamping.
We use COTS Intel® I210 NIC, which supports the IEEE
802.1AS standard. The ptp4l daemon must run on all interfaces
to synchronize and find the PTP GM. The synchronization of
clocks on one system is handled by phc2sys. It can run in
automatic mode, using the information of ptp4l to synchronize
clocks.

2) Credit-Based Shaper: CBS, as defined in the IEEE
802.1Q-2022 [19] family of standards, allows for bandwidth
allocation to SR classes and regulates and secures the specific
traffic class load. It is implemented as a child qdisc and is
combined with root Multiqueue Priority Qdisc (MQPRIO),
which performs traffic classification. The bandwidth allocation
is achieved by a scheduler defining which frames shall be
dequeued next using a credit system. Figure 1 shows the
credit lifecycle policed by four CBS parameters - highCredit,
lowCredit, idleSlope, and sendSlope. The first two parameters
limit the maximum and minimum credit. idleSlope marks the
credit replenishment rate, and sendSlope the credit spending
rate. After a frame arrives in a queue the credit starts to build
up 1⃝. After highCredit is reached 2⃝, the frame is sent after

4https://linux.die.net/man/8/ptp4l, https://linux.die.net/man/8/phc2sys, https:
//linux.die.net/man/8/pmc

highCreditx

lowCreditx

0

credit

time

sendSlope
idle

Slo
pe

idle
Slo

pe

positive
credit

negative
credit

Credit built Send

Send

sendSlope

Credit
 rebuilt

Frame 1Frame 1

Frame 2
Queued
frames

1 2 3 4

Fig. 1: Behavior of CBS, based on [3], [4]

non-policed frames are transmitted, following the sendSlope
parameter. In case no additional frames are in the queue, the
credit drops to 0, 3⃝. The next frame gets sent out directly in
case credit is ≥ 0. The credit must be rebuilt if it is below
0, 4⃝. With an addition of priority enforcement mechanisms,
and proper configuration, CBS offers soft guarantees for delay,
jitter, and packet loss.

3) Time-Aware Shaper: The TAS or TAPRIO qdisc belongs
to the family of synchronous TSN standards requiring precise
clock synchronization. Like the MQPRIO qdisc, packets are
initially mapped to traffic classes and transmit queues. This
allows various SR class traffic to have a dedicated transmission
window within a configurable cycle time length. During this
window, the gate of the given class is open, and packets are
sent only when there is enough time for the transmission until
the gate closes. This separates various SR class traffic in the
time domain with pre-defined transmission windows. The ETF
qdisc accompanies the TAPRIO qdisc and is used to dequeue
packets at a specific TxTime.

B. OPC UA PubSub

OPC UA offers a secure and efficient framework for in-
teroperability between various devices and systems. It sup-
ports different communication patterns, originally focusing
on client-server. In 2018, the OPC foundation introduced the
PubSub extension [1]. This model is crucial for factory plans
and machine-type communication. We rely on the open62541
project5 which supports the PubSub protocol [20]. OPC UA
PubSub encompasses three communication parties. A pub-
lisher sends messages to subscribers through a middleware.
While the PubSub protocol does not specify the middleware
itself, it relies on underlying protocols for its operation. We
map the OPC UA PubSub messages binary Unified Architec-
ture Datagram Protocol (UADP). UADP can operate on top of
Ethernet or UDP. Due to the support of TSN, we focus only
on brokerless OPC UA over Ethernet. To transfer the priorities
of the traffic, we use the VLAN headers and store the priority
in Priority Code Point (PCP) field. Overall, we utilize UADP
over Ethernet. Figure 2 depicts the frame structure with the
option to increase the payload in multiples of 9 B.

5https://github.com/open62541/open62541

Ethernet
MAC and VLAN Headers

Physical Layer
Preamble, CRC, IFG

UADP Payload

14B+4B8B+4B+12B 32B n•9B

Fig. 2: Frame structure used in the experiments

User Thread Publisher ThreadSubscriber Thread

0.3c 0.6c0.0c c
Cycle time c

Offset o TxTime

Fig. 3: open62541 implementation behavior

The open62541 project implements the IEEE 802.1Qbv
standard in software, as it was not present in the Linux
kernel during its creation. The PubSub setup requires two
hosts: the publisher Pub and loopback Loop. The OPC UA
server periodically retrieves and increments data variables
using an application thread. Additionally, two supplementary
threads are responsible for publishing and subscribing. Fig-
ure 3 presents the behavior of the open62541 implementation.
A cycle time c defines the duration of a cycle (emulating the
TAPRIO cycle time). At 0.4c before the start of the next cycle
time, the publisher thread is activated and initiates publication.
The transmission time is set to the start of the next cycle time
plus a configurable offset o. The subscriber thread is executed
at the start of the cycle (0.0c). At 0.3c, the user thread stores
the values the subscriber receives in the OPC UA address
space of the loopback host or increments the variables in the
publisher host. At 0.6c, the publisher thread is again activated,
and the execution follows as described above.

C. Network Calculus

NC is a mathematical framework for calculating worst-case
performance bounds in communication networks [21]–[23].
We can derive worst-case upper bounds on delay and backlog
(queue sizes) using arrival- and service curves. An arrival
curve is an envelope on the cumulative arrival of traffic.
The service curve is a characterization of data processing
by a node in the network. The upper bounds on delay and
backlog at a single network node are the maximum horizontal
and vertical distances between the two curves, as shown
in Figure 4. In multi-node networks, an additional network
analysis method is required to combine all arrival- and service
curves into a single performance bound. The most versatile
(albeit pessimistic) network analysis method is the Total Flow
Analysis (TFA) [22].

Different network technologies, e.g., CBS, are modeled
using different service curves in NC. A physical node with
a CBS on each interface is divided into a server for each
interface with one or more service curves that match the CBS
configuration parameters of this interface [24]. Service curves
can be further divided into minimum- and maximum service

Server Rate (R)

Server Proc. Delay (T)

Flow Rate (r)

Flow Burst (b)

α(t) = r · t + b

β
(t)

=
R

(t
−

T)+

Time

D
at

a

Service Curve (β)
Arrival Curve (α)
Delay Bound
Backlog Bound

Fig. 4: Basic NC components and bounds

curves, modeling the minimum and maximum service offered
by a node [23].

III. RELATED WORK

This section provides an overview of related work rele-
vant to OPC UA evaluations in combinations with TSN. We
summarize the works and outline our unique contributions in
Table I. Most of the works focus on TAS, and two touch on
CBS. Authors in [9], [10] employ OPC UA PubSub to establish
communication between Peer-to-Peer (P2P) connected devices,
using the Intel® I210 NIC and the open-source open62541
stack. In [10], the TAS window cycle time is set to 100 µs,
while in [9], it is configured to 200 µs. We stick to 100 µs as
it corresponds to our HW requirements. Eckhardt et al. utilize
specialized embedded hardware for TSN instead of COTS HW
without specifying the SW stack [25]. TAS is selected without
providing any information regarding the implementation and
uses the same window cycle time as our work. For the col-
lection of RTT results, they rely on SW timestamps. Farzaneh
et al. conduct experiments using a larger cycle time of 500 µs.
The setup relies on switches with a TAS implementation in
Field Programmable Gate Arrays (FPGAs). Unlike our work,
the traffic is unidirectional, with the first switch acting as
the source and the second as the sink without the option to
measure RTT. Using two proprietary TSN switches, authors in
[26] investigate bridged TAS and TSN proprietary hardware
modules on end devices. Like [27], the TSN traffic is only
sent in one direction and relies on OPC UA with server/client
communication. Only the client is open-source SW. For their
results, they achieve bounded latency of 900 µs, which is
significantly higher than previous and our works. Arestova et
al. focus on the TAPRIO framework and experiments on a two-
node network, analyzing one-way data flow from sender to
receiver [11]. The sender utilizes a specialized TSN NIC from
Kontron, while the receiver employs an Intel® I210 NIC for
hardware timestamp capture. Our work also utilizes the OPC
UA PubSub implementation open62541, but we use 100 µs
for priority traffic window, which differs to 1 ms used in [11].
Grüner et al. [28] evaluate OPC UA PubSub over TSN on
COTS hardware, relying on the open62541 stack, similar to
[10]. Their assessment is limited to a P2P topology with Intel®

I350 NIC and employs a real-time kernel. While the NIC
lacks advanced TSN features, the focus remains on TAPRIO

TABLE I: Our contributions extended from [7]

Works [10]
[9] [25] [27] [26] [8]

[30] [11] [28] [29] Our
work

PubSub‡ ✓ ✓ × × × ✓ ✓ ✓ ✓
P2P ✓ ✓ × × × ✓ ✓ ✓ ✓
Bridge × × ✓ ✓ ✓ × × ✓ ✓
ETF ✓ × × × × × × × ✓
CBS × × × × ✓ × × × ✓
TAPRIO × ◦ ✓ ✓ ✓ ✓ ✓ ✓ ✓
COTS HW ✓ × × × × × ✓ × ✓
Open-source ✓ ?⃝ × client × ✓ ✓ ✓ ✓
Modeling × × × × × × × × ✓
Scale† × × × × × × × × ✓
‡ OPC UA PubSub,†Scale in topology size, payload sizes, and number of flows
✓ full, ◦ partial, × no, ?⃝ unknown satisfaction

in the OPC UA application, enhanced with eXpress Data
Path for loopback performance. In contrast, [29] extends the
open62541 OPC UA PubSub stack with 802.1Q VLAN tag for
IEEE 802.1Qbv scheduling. Their study on time-predictable
T-CREST platforms explores end-to-end latency and worst-
case execution time analyses with varied payloads. Unlike
[29], our work focuses on COTS hardware for timing analyses,
encompassing all Linux TSN queuing disciplines beyond IEEE
802.1Qbv, broadening the comparative scope. Gogolev et
al. evaluate proprietary software-based TAS switches using
specialized hardware, employing OPC UA server and client
for requests [8]. However, it only focuses on average RTT.
As the only study, in subsequent work, the authors combine
TAS with CBS to limit bandwidth for Best Effort (BE) traffic,
revealing that TAS’ impact is more significant than CBS [30].

As outlined in Table I, we provide a detailed overview of
relevant Linux qdiscs using the OPC UA PubSub software and
COTS hardware in scale. Besides, we verify the theoretical
bounds presented by the NC model we introduce specifically
for the PubSub application and corresponding traffic flows.

IV. DESIGN

This section provides an overview of the theoretical bounds
calculation for PubSub over CBS, the experiment design to
verify those, TAPRIO considerations, and the evaluation setup.

A. Theoretical Bounds

We model the complete behavior of OPC UA over CBS
using network calculus. We base our CBS implementation on
Boyer and Azua [24]. We derive, to the best of our knowledge,
a novel—albeit simple and possibly pessimistic—service curve
description for an OPC UA PubSub service.

OPC UA PubSub Service Curve The OPC UA PubSub
service has an internal processing delay before publishing
information. We assume that the publishing process after the
delay is instantaneous and does not happen with a rate—
other effects, such as the service rate of the network interface
card, can be considered using an additional rate-latency service
curve. Therefore, the PubSub service can be modeled using a
burst-delay service curve as shown in Equation (1).

δ(t) =

{
∞, if t ≥ T

0, otherwise
(1)

The only parameter needed to define this equation is the
processing delay T . It is the maximum delay this system
induces on data without any queueing or serialization effects.
Based on Figure 3, the maximum processing delay occurs
when a packet arrives just after the last point in time where
it can be included in the publishing process. Let t0 be the
time at which the packet arrives. This corresponds to the
time when the subscriber thread changes to the user thread
(t0 = 0.3 · c). The first point in time where the packet is
considered eligible for publishing is the beginning of the next
subscriber thread in the next cycle time (t1 = t0+0.7 ·c). The
packet will be published at the offset after the next publisher
thread (t2 = t0 + 0.7 · c + 1.0 · c + o). Therefore, a packet’s
maximum time before publication is T = 1.7 · c+ o.

Theorem 1. The worst-case delay induced by an OPC UA
PubSub service with cycle time c and offset o on any arriving
packet is 1.7 · c+ o.

Proof. Assume the packet arrives at t′0 = t0 − ϵ,∀ϵ : 0 <
ϵ ≤ 0.3 · c. Then the packet is eligible for publishing at t′1 =
t0+0.3 · c. It would then be published at t′2 = t0+0.7 · c+ o.
This gives a processing delay of T ′ = 0.7 · c + o + ϵ. In the
worst-case for ϵ = 0.3 · c this leads to T ′ = 1.0 · c+ o.

Assume the packet arrives at t′′0 = t0+ϵ′,∀ϵ′ : 0 < ϵ′ ≤ 0.7·
c. Then the packet is eligible for publishing at t′′1 = t0+0.7 ·c.
It would then be published at t′′2 = t0 + 0.7 · c + 1.0 · c + o.
This gives a processing delay of T ′′ = 1.7 · c+ o+ ϵ′. In the
worst-case for ϵ′ = 0 this leads to T ′′ = 1.7 · c+ o.

Since max(ϵ)+max(ϵ′) = 1.0 · c is equal to one full cycle
time, the worst-case processing delay is T = T ′′ = 1.7 · c+ o.

Theorem 2. The best-case delay induced by an OPC UA
PubSub service on any arriving packet is 0.7 · c+ o.

Proof. Assume the packet arrives at t′0 = 0.3 · c. Then the
packet is eligible for publishing at t′1 = t′0 + 0.3 · c. It would
then be published at t′3 = t′0 + 0.3 · c+ 0.4 · c+ o. This gives
a processing delay of T ′ = 0.7 · c+ o. It is best case because
∀t′′0 < t′0 the processing delay would increase by t′0 − t′′0 .
Similarly, ∀t′′0 > t′0 the processing delay would increase by at
least c.

We derive minimum- and maximum burst-delay service
curves based on Theorem 1 and Theorem 2 as shown in Equa-
tion (2) and Equation (3).

δmin(t) =

{
∞, if t ≥ 1.7c+ o

0, otherwise
(2)

δmax(t) =

{
∞, if t ≥ 0.7c+ o

0, otherwise
(3)

TABLE II: Payload and frame sizes in Bytes and their relation
to repeated node counts (RNC). PHY - Physical layer

RNC 2 4 8 16 32 64 128 160

Payload 59 77 113 185 329 617 1193 1481
Total (w/o PHY) 77 95 131 203 347 635 1211 1499
Total (w/ PHY) 101 119 155 227 371 659 1235 1523

CBS We utilize arrival curves for periodic traffic and service
curves for the CBS derived by Boyer and Azua [24].

NC Bound Implementation The implementation of the
network analysis is a TFA [22] realized in Nancy [31]. The
TFA CBS network analysis is available online6.

B. Experiment Design

Our experiments focus on CBS and TAPRIO qdiscs at
scale. For CBS, we verify the theoretical bounds by increas-
ing the number of hops, modifying the bitrate for the CBS
configurations (under- or over-provisioning), and increasing
payload size. Also, we assess the impact of competing flows
considering one flow, two flows (higher priority for OPC UA
PubSub and lower priority for 100 Mbit/s synthetic traffic), and
three flows (same as two flows with an additional 100 Mbit/s
best effort flow). We do not consider competing flows for
TAPRIO, as we expect less interaction between the flows due
to the time separation.

Table II shows the increase of the frame size by modifying
the REPEATED_NODECOUNTS (RNC or N in short) in the
open62541 project. Considering Figure 2, we can compute a
total frame size for RNC = 2. The n is computed as n = 1+
RNC = 3, adding the headers results in a total size of 101 B
on the physical layer. Physical layer sizes are crucial for correct
CBS configuration. We choose a maximal RNC as 160 to
roughly correspond to the MTU of 1518 B. We measure several
metrics including RTT, one-way delays, jitter, throughput, and
packet loss. For all experiments, we generate 200 000 packets
and trim the first and last 20 000 packets to avoid noise caused
by the ramping up- and closing period.

C. Experiment Setup

For our evaluations, we pick 11 identical nodes equipped
with Intel® Xeon® E3-1265L V2 CPU and 16 GB RAM. All
setups are interconnected with Intel® I210 NIC supporting
1GbE Ethernet and complying with IEEE 802.1AS, IEEE
802.1Qav, and IEEE 802.1Qbv. We rely on 11 nodes instead
of eight nodes required for the seven hops due to the PTP and
TAPRIO coexistence challenge [32]. This challenge does not
allow for PTP timing messages to be exchanged as non-policed
traffic and must be used as priority traffic. To avoid that, we
use additional wiring and connections among the nodes. All
selected components are easily accessible and belong to the
COTS HW segment.

6https://github.com/Moni5656/npba/tree/main/ComputationMethods/
NancyComputations/CBS

OPC UA trafic flow

Node-1 Node-8Node-2

1-hop 7-hops

tcpdump - egress
tcpdump - ingress

Node-3 ...

2-hops

Intel I210
Qdisc configured

Pub
Thread

Sub
Thread

Pub
Thread

Sub
Thread

Fig. 5: Simplified line topology of the setup with varying
number of hops and tcpdump collection points

We focus on a line topology, as shown in Figure 5, where
we can add nodes to increase the total number of hops. This
results in seven hops in one direction or 14 hops for RTT
measurements. To collect the data, we rely on tcpdump using
the HW timestamping in ingress and SW timestamping in
the egress direction. The RTT is measured using the packet
capture data on the same node. The data is correlated using the
sequence numbers stored inside the payload. Corresponding
qdisc configurations are applied on all used NIC ports. The
configuration is the same in both directions for CBS, but for
TAPRIO, it is mirrored to account for processing offset on each
node. We use Linux traffic control to apply the configuration.

All experiments and configurations are deployed using the
EnGINE framework [6]. We plan to update the repository
with the experiment artifacts, integrated source code, and
experiment campaigns for the published version. For the scope
of this work, we had to modify the processing pipeline
to accommodate for RTT measurements and integrate the
open62541 project. We rely on low-latency Linux Ubuntu
Focal for all our experiments. The low latency kernel enables
CPU affinity and isolation. This is useful as we can isolate
and pin the OPC UA PubSub and the Linux networking stack
to specific cores. Instead of relying on the Linux bridge on
the intermediary nodes, EnGINE uses Open vSwitch (OvS)
to forward the traffic. To visualize the results the measured
latencies are plotted as boxplots. For each box we show the
minimum, maximum, mean, and median (as orange line),
along with the quartiles Q1 and Q3 as box and 1.5 times the
inter-quartile range as whiskers.

V. EVALUATION

This section covers the evaluation of our theoretical model
for CBS and the general assessment of TAPRIO. We highlight
some of the default parameters selected for our experiments.

A. Default Parameters

For our work, we rely on several qdiscs and OPC UA
PubSub applications, which bring their own set of optimal
parameters that are system-dependent. For TAPRIO and ETF
qdiscs, we need to define the values δ and txtime-delay
and shift to accommodate for processing delay on each hop.
Similarly, for the OPC UA PubSub, we talk about the cycle
time c and offset o. Fortunately, we identified ideal values
from previous works in our systems that can be reused [4],
[7]. Similar values must be found for other setups using the

TABLE III: Selected key parameters for CBS | TAPRIO

cycle time c offset o δ txtime-delay Shift per hop

250 µs | 200 µs 150 µs | 100 µs 150 µs 180 µs 20 µs

TABLE IV: Upper bounds in ms calculated by NC for various
hop counts and message sizes. Default CBS values.

Hops Message size

59 B 77 B 113 B 185 B 329 B 617 B 1193 B 1481 B

1 0.954 0.972 0.995 1.018 1.037 1.046 1.045 1.043
2 1.334 1.370 1.415 1.462 1.499 1.518 1.516 1.511
3 1.714 1.767 1.836 1.906 1.961 1.989 1.987 1.979
4 2.094 2.165 2.256 2.350 2.423 2.461 2.458 2.447
5 2.474 2.563 2.677 2.794 2.885 2.933 2.929 2.915
6 2.854 2.960 3.097 3.238 3.347 3.404 3.400 3.383
7 3.234 3.358 3.518 3.682 3.809 3.876 3.871 3.851

approaches outlined in [4], [7]. A summary of the selected
values is in Table III. For TAPRIO experiments we modify
the cycle time c to 200 µs and offset of 100 µs. This way,
it matches the TAPRIO window cycle of 100 µs with 40 µs
allocated for the highest priority traffic. For other TSN related
values, we follow the gPTP profile for PTP operating in P2P
mode and on L2.

For a proper configuration of CBS, we require information
on packet spacing and physical layer frame sizes generated by
the application. Considering Table II, we get the frame sizes
and the cycle time c of 250 µs (corresponding to the packet
spacing), resulting in the generation of 4000 packet/s. For the
under- and overprovisioning, we modify the calculated bitrate
by the negative (underprovisioning) or positive (overprovision-
ing) percentage, which is then reflected in the CBS parameters
calculation. Such behavior might better accommodate the
imperfections of the application cycle time c. When evaluating
multiple flows for CBS, we generate additional 100 Mbit/s
flows. We consider 1180 B payload sizes (resulting in 1250 B
on the wire) and packet spacing of 100 µs using iperf3. For
2 flows, we police both flows - higher for PubSub traffic and
lower priority for iperf3 traffic. For 3 flows, we add BE
traffic flow.

B. Assessment of CBS Bounds

For the evaluation, we first define the theoretical bounds for
various message sizes and number of hops following the NC
approach presented in the Section IV-A. Table IV summarizes
the values for the expected payload sizes and packet spacing
of 250 µs corresponding to the cycle time c. With each hop,
we model an increase of roughly 400 µs accommodating also
for the delay introduced by the loopback OPC UA PubSub
application.

Figure 6 shows the calculated end-to-end delay bounds
of a baseline, as well as over- and underprovisioning. We
can observe that overprovisioning leads to marginal decreases
in delay bound while underprovisioning leads to a more
significant increase in delay bounds. Underprovisioning can
additionally lead to infinite delay bounds for larger packet

0 1000 2000 3000 4000 ∞
Delay Bound [µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F → d =∞

Default(0)

Under 3

Under 5

Over 3

Over 5

Fig. 6: RTT NC bounds, including the PubSub processing, in-
cluding CBS configuration with over- and under-provisioning
of 3 and 5 %.

0 100 200 300 400 500

Time [µs]

0

2000

4000

D
at

a
[B

] βCBS
αSub

(a) First CBS server

0 100 200 300 400 500

Time [µs]

0

2000

4000

D
at

a
[B

] βCBS
αSub

(b) Second CBS server

Fig. 7: NC arrival curve of OPC UA subscriber traffic (αSub)
and CBS service curve (βCBS) at different network positions

sizes. More underprovisioning consistently leads to a higher
share of infinite delay bounds.

Figure 7 shows arrival- and service curves, i.e., the NC
model of PubSub traffic and CBS processing, at the first and
second hop of the network. We can observe the periodic nature
of the OPC UA traffic in Figure 7a. This effect is mainly
negated by the smoothing effect of CBS on the arrival curve
as shown in Figure 7b.

First, we assess RTT for a single flow for 1-7 hops and
the smallest (XS) and the largest (L) message sizes along
with the calculated upper bounds. As shown in Figure 8a,
we can observe an increase in delay with each additional
hop for L. The increased latency is expected, considering
the RTT is over 14 hops. This leads to 50 to 150 µs delay
per hop, depending on the message size. For CBS, especially
with larger payload sizes, the algorithm sacrifices latency over
determinism. However, for XS we observe rather less delay
caused by each hop and sometimes even better performance
for more hops. The improved performance corresponds to the

(a) RTT Delay, 1 flow, 1-7 hops, red lines are NC bounds

(b) RTT Jitter, 1 flow,1-7 hops

Fig. 8: Comparison of CBS Delay and Jitter for various hops
and payload sizes. XS: 59 B, L: 1481 B

artifact caused by the PubSub application and matches the
model presented in Theorem 1 and Theorem 2. Even though
we have fewer hops, the packet arrives too late to reach
the subscribe thread and must wait for an additional cycle,
whereas for the seven hops the packet arrives right on time to
be processed. Figure 8b follows the spread seen in boxplots,
where depending on the number of hops, at least some packets
miss the cycle on the PubSub application, which corresponds
to the spread of roughly ±250 µs matching the cycle time c.

To possibly improve the performance, we experiment
with under- (under) and overprovisioning (over) values and
compare them to default CBS and baseline (base) values.
From Figure 9a, we cannot collect conclusive results, as
we observe in some situations higher or lower values of
under- or overprovisioning yielding better jitter for the 59 B
payloads. However, with a larger payload size of 329 B, shown
in Figure 9b, we clearly see that underprovisioning performs
worse than overprovisioning. To narrow down the impact of
overprovisioning values, we continue evaluating larger pay-
load sizes Figure 10. In Figure 10a we observe comparable
performance for payload S (617 B), which was selected based
on its stability as shown in Figure 6. For L (1481 B), a
smaller spread is present for latency of 1 % overprovisioning.
As a result of this latency measurement and jitter values, as
shown in Figure 10b, made us decide to continue with 1 %
overprovisioning value and the default CBS.

The last family of experiments for CBS assess multi-flow
scenarios covering 1 to 3 flows comparing default and 1 %

95 96 97 98 99 100
Percentile

0

200

400

600

800

1000

R
TT

Jit
te
r
[μ
s]

Default(0)
Under 1
Under 3
Under 5

Over 1
Over 3
Over 5
Base

(a) 95th percentile for payload size of 59 B, 7 hops

95 96 97 98 99 100
Percentile

0

200

400

600

800

1000

R
TT

Jit
te
r
[μ
s]

Default(0)
Under 1
Under 3
Under 5

Over 1
Over 3
Over 5
Base

(b) 95th percentile for payload size of 329 B, 7 hops

Fig. 9: 7 hops jitter CBS with a default value, baseline (no
CBS), and under- and over-provisioning of 1%, 3%, and 5%.

(a) RTT delay with delay bounds

−400 −200 0 200 400
RTT Jitter [μs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Default(0) S
Over 1 S
Over 3 S
Over 5 S

Default(0) L
Over 1 L
Over 3 L
Over 5 L

(b) CDF of jitter for various payloads and mode

Fig. 10: Comparison of CBS Delay and Jitter for 7 hops,
payload sizes and overprovisioning of 1%, 3%, and 5%. S:
617 B, L: 1481 B.

(a) RTT delay with delay bounds

95 96 97 98 99 100
Percentile

0

200

400

600

800

1000

R
TT

Jit
te
r
[μ
s]

Default(0) 2F S
Over 1 2F S
Default(0) 3F S
Over 1 3F S

Default(0) 2F L
Over 1 2F L
Default(0) 3F L
Over 1 3F L

(b) 95th percentile of jitter for various flows and payloads

Fig. 11: Comparison of multiflow CBS Delay and Jitter for 7
hops and payload sizes. S: 617 B, L: 1481 B. Compares CBS
default value and over-provisioning of 1%

overprovisioning. Comparing the delays in Figure 11a, we
observe that the single-flow experiments outperform the multi-
flow setups for both payload sizes. For all experiments, we
satisfy the upper bounds (in red). Overprovisioning generally
does not bring much improvement for the latencies, and in
some cases, even worsens the outcomes for delays. However,
when comparing the jitters in Figure 11b, we observe that
overprovisioning performs better than the default CBS value.
Overall, the network modeling using NC is satisfied irrespec-
tive of the scenario. When continuing with deeper evaluations,
we observe that overprovisioning has slight improvement for
jitter and, in some scenarios, latencies.

C. Evaluation of TAPRIO

For TAPRIO, we focus mainly on the impact of large
payload sizes and the number of hops. Starting with the impact
of varying payload sizes and fixed seven hops, we observe
a stable performance for values below 1193 B. Figure 12a
presents boxplot RTT with values around 600 µs for the lower
payload sizes. These results are confirmed by the jitter exper-
iments in Figure 12b. Nevertheless, the performance is not as
good for the larger payloads. The performance is within 2 ms
for latency and 500 µs jitter for 98 % of packets. Depending
on the use case, such values might be sufficient or require
further analysis. Even though the window size for the PubSub

(a) RTT for seven hops, various payload sizes of N

0 20 40 60 80 100
Percentile

−600

−400

−200

0

200

400

600

800

R
TT

Jit
te
r
[μ
s]

59B
77B
113B
185B

329B
617B
1193B
1481B

(b) Percentile jitter for seven hops, various payload sizes of N

Fig. 12: Comparison of seven hops TAPRIO Delay and Jitter
for payload sizes N .

application is wide enough to accommodate larger payloads,
it is possible that Linux resolutions cannot cope with it.

After identifying relevant payloads, we continue with fixing
the values of payloads to the largest stable payload (S) and
1481 B for L. Starting with RTT shown in Figure 13b, we
can observe that less hops may yield worse results, as we
saw for CBS. Overall, smaller payloads perform better and
are more stable than larger ones. This might hint at the
fact that unlike CBS, TAPRIO is more sensitive to selecting
specific parameters based on the payload size, and finding one
configuration for various scenarios is more challenging. This
is confirmed also with jitter results in Figure 13a, in which a
higher payload yields worse results. The fluctuation confirms
that not only the cycle time of the PubSub is missed, but also
the TAPRIO windows.

VI. CONCLUSION

We evaluated OPC UA PubSub using NC and evaluation
on COTS HW. Overall, we see that COTS HW and open
source solutions can bring stable performance to OPC UA
PubSub applications. The NC bounds were met for all of
the experiments, including for large numbers of hops and
increased payload sizes. Our NC calculations included var-
ious CBS behavior, such as under- and overprovisioning,
and competing flows, in addition to the PubSub application
traffic. Focusing mainly on the CBS qdisc, we observed stable
performance for the default values with a slight improvement
for overprovisioning by 1 %. These findings hold for single-

(a) RTT delay

95 96 97 98 99 100
Percentile

0

100

200

300

400

500

R
TT

Jit
te
r
[μ
s]

1 hop S
2 hops S
3 hops S
4 hops S

5 hops S
6 hops S
7 hops S

(b) 95th percentile of jitter for various numbers of hops

Fig. 13: Comparison of TAPRIO Delay and Jitter for 1-7 hops
and payload sizes. S: 617 B.

and multi-flow scenarios, where we observed a slight but
negligible increase in RTT, considering the CPU isolation
and affinity of individual applications in the system. TAPRIO
performs better, especially for smaller payload sizes.

In future work, we plan to investigate network modeling for
TAPRIO and consider the security of OPC UA PubSub and
its implications on the TSN performance.

REFERENCES

[1] I. E. Commission, “Opc unified architecture,” International Elec-
trotechnical Commission, Tech. Rep., 2020.

[2] D. Bruckner et al., “An Introduction to OPC UA TSN for Industrial
Communication Systems,” Proceedings of the IEEE, vol. 107, 2019.

[3] “Ieee standard for local and metropolitan area networks - virtual
bridged local area networks amendment 12: Forwarding and queuing
enhancements for time-sensitive streams,” IEEE Std 802.1Qav-2009
(Amendment to IEEE Std 802.1Q-2005), pp. C1–72, 2010.

[4] M. Bosk et al., “Methodology and infrastructure for tsn-based repro-
ducible network experiments,” IEEE Access, vol. 10, 2022.

[5] F. Rezabek et al., “EnGINE: Developing a Flexible Research Infras-
tructure for Reliable and Scalable Intra-Vehicular TSN Networks,”
in 2021 17th International Conference on Network and Service
Management (CNSM), Izmir, Turkey, 2021.

[6] F. Rezabek et al., “Engine: Flexible research infrastructure for reliable
and scalable time sensitive networks,” Journal of Network and Systems
Management, vol. 30, no. 4, 2022.

[7] E. Kirdan et al., Real-time performance of opc ua, 2023. arXiv: 2310.
17052 [cs.NI].

[8] A. Gogolev, F. Mendoza, and R. Braun, “Tsn-enabled opc ua in field
devices,” in 2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1, 2018.

[9] C. Eymüller et al., “Real-time capable opc-ua programs over tsn for
distributed industrial control,” in 2020 25th IEEE ETFA, vol. 1, 2020.

[10] J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran, “Open
source opc ua pubsub over tsn for realtime industrial communication,”
in 2018 IEEE 23rd International Conference on Emerging Technolo-
gies and Factory Automation (ETFA), vol. 1, 2018, pp. 1087–1090.

[11] A. Arestova, M. Martin, K.-S. J. Hielscher, and R. German, “A
service-oriented real-time communication scheme for autosar adaptive
using opc ua and time-sensitive networking,” Sensors, vol. 21, 2021.

[12] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-2019,

[13] “Ieee standard for local and metropolitan area networks – bridges
and bridged networks - amendment 25: Enhancements for scheduled
traffic,” IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-
2014 as amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-
2015, and IEEE Std 802.1Q-2014/Cor 1-2015), pp. 1–57, 2016.

[14] M. Bosk et al., “Simulation and Practice: A Hybrid Experimentation
Platform for TSN,” in 22nd International Federation for Information
Processing (IFIP) Networking Conference, Spain, Jun. 2023.

[15] “ISO/IEC/IEEE International Standard - Information technology –
Telecommunications and Information Exchange between Systems –
Local and Metropolitan Area Networks – Specific Requirements – Part
1BA: Audio video bridging (AVB) Systems,” ISO/IEC/IEEE 8802-
1BA First edition 2016-10-15, pp. 1–52, 2016.

[16] “IEEE Standard for a Transport Protocol for Time-Sensitive Ap-
plications in Bridged Local Area Networks,” IEEE Std 1722-2016
(Revision of IEEE Std 1722-2011), pp. 1–233, 2016.

[17] “Ieee standard for local and metropolitan area networks–timing and
synchronization for time-sensitive applications,” IEEE Std 802.1AS-
2020 (Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020.

[18] R. Cochran, linuxptp, Last accessed on 2022-11-26. [Online]. Avail-
able: https://sourceforge.net/projects/linuxptp/.

[19] “Ieee standard for local and metropolitan area networks–bridges and
bridged networks,” IEEE Std 802.1Q-2022 (Revision of IEEE Std
802.1Q-2018), pp. 1–2163, 2022.

[20] N. Mühlbauer, E. Kirdan, M.-O. Pahl, and K. Waedt, “Feature-based
comparison of open source opc-ua implementations,” 2021.

[21] R. L. Cruz, “A calculus for network delay. I. Network elements in
isolation,” IEEE Transactions on information theory, 1991.

[22] R. L. Cruz, “A calculus for network delay. II. Network analysis,”
IEEE Transactions on information theory, 1991.

[23] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of
deterministic queuing systems for the internet. Springer, 2001.

[24] J. A. R. De Azua and M. Boyer, “Complete modelling of AVB in net-
work calculus framework,” in Proceedings of the 22nd International
Conference on Real-Time Networks and Systems, 2014.

[25] A. Eckhardt and S. Müller, “Analysis of the round trip time of opc
ua and tsn based peer-to-peer communication,” in 2019 24th IEEE
International Conference on Emerging Technologies and Factory
Automation (ETFA), 2019, pp. 161–167.

[26] Y. Li, J. Jiang, C. Lee, and S. H. Hong, “Practical implementation
of an opc ua tsn communication architecture for a manufacturing
system,” IEEE Access, vol. 8, pp. 200 100–200 111, 2020.

[27] M. H. Farzaneh and A. Knoll, “Time-sensitive networking (tsn): An
experimental setup,” in 2017 IEEE VNC, 2017, pp. 23–26.

[28] S. Grüner, A. E. Gogolev, and J. Heuschkel, “Towards performance
benchmarking of cyclic opc ua pubsub over tsn,” in 2022 IEEE
27th International Conference on Emerging Technologies and Factory
Automation (ETFA), 2022.

[29] P. Denzler et al., “Timing analysis of tsn-enabled opc ua pubsub,” in
2022 IEEE 18th International Conference on Factory Communication
Systems, 2022.

[30] A. Gogolev, R. Braun, and P. Bauer, “Tsn traffic shaping for opc
ua field devices,” in 2019 IEEE 17th International Conference on
Industrial Informatics (INDIN), vol. 1, 2019.

[31] R. Zippo and G. Stea, “Nancy: An efficient parallel network calculus
library,” SoftwareX, vol. 19, 2022.

[32] F. Rezabek, M. Bosk, G. Carle, and J. Ott, “TSN Experiments Using
COTS Hardware and Open-Source Solutions: Lessons Learned,” in
IEEE PerCom Workshops, Atlanta, USA, Mar. 2023.

