
Chair of Network Architectures and Services
School of Computation, Information and Technology
Technical University of Munich

Never Miss Twice – Add-on-Miss Table Updates in Software Data Planes

Manuel Simon, Sebastian Gallenmüller, Georg Carle

Thursday 29th June, 2023

WueWoWas’23

Chair of Network Architectures and Services
School of Computation, Information and Technology

Technical University of Munich



Introduction

State Keeping in Data Planes

• State keeping is essential for many applications
• Registers (arrays) are unstructured memory areas accessible by indices

• may be fragmented in memory
• no matching support
• limited functionality

• In tables, structured state can be accessed by sophisticated key matching
• State is often kept by the control plane which decreases performance for state-heavy applications
• We implemented state keeping via tables directly in the data plane

M. Simon et al. — Add-On-Miss 2



Introduction
Background

P4

• P4 [2] is a domain-specific language for SDN data planes
• In P4, registers are changeable within the data plane, tables only by the control plane

→ Updatable table entries would increase performance
→ In previous work implemented them for the P4 software target T4P4S using an @__ref annotation [5]

→ For this publication, we implemented add-on-miss insertions to tables

T4P4S

• T4P4S [6] is a hardware-independent transpiler from P4 to C code linked with DPDK developed by ELTE
• The Data Plane Development Kit (DPDK) is an open-source framework enabling fast packet processing in user space
• DPDK performs Receive Side Scaling (RSS) to split traffic among several lcores/threads

M. Simon et al. — Add-On-Miss 3



Introduction
Background

P4

• P4 [2] is a domain-specific language for SDN data planes
• In P4, registers are changeable within the data plane, tables only by the control plane

→ Updatable table entries would increase performance
→ In previous work implemented them for the P4 software target T4P4S using an @__ref annotation [5]
→ For this publication, we implemented add-on-miss insertions to tables

T4P4S

• T4P4S [6] is a hardware-independent transpiler from P4 to C code linked with DPDK developed by ELTE
• The Data Plane Development Kit (DPDK) is an open-source framework enabling fast packet processing in user space
• DPDK performs Receive Side Scaling (RSS) to split traffic among several lcores/threads

M. Simon et al. — Add-On-Miss 3



Introduction
Background

P4

• P4 [2] is a domain-specific language for SDN data planes
• In P4, registers are changeable within the data plane, tables only by the control plane

→ Updatable table entries would increase performance
→ In previous work implemented them for the P4 software target T4P4S using an @__ref annotation [5]
→ For this publication, we implemented add-on-miss insertions to tables

T4P4S

• T4P4S [6] is a hardware-independent transpiler from P4 to C code linked with DPDK developed by ELTE
• The Data Plane Development Kit (DPDK) is an open-source framework enabling fast packet processing in user space
• DPDK performs Receive Side Scaling (RSS) to split traffic among several lcores/threads

M. Simon et al. — Add-On-Miss 3



Table Updates
Digest - Current P4 Way

Data Plane Control Plane

Match-Action

Parser

Deparser Tables

lookup

change

digest

Current State
• For changes in match-action tables, the data plane

has to send a digest to the control plane
• in T4P4S: the controller is a separate process, com-

munication via a socket (low round-trip time (RTT))

• Controller requests data plane to update the table

→ Digest-based approach introduces overhead

Approaches
• Digest: introduces a sleep of 1 second or 1 RTT

⇒ impractical for frequent updates

• Add-On-Miss: direct update in the data plane
⇒ avoids the detour over the controller
⇒ improves performance

M. Simon et al. — Add-On-Miss 4



Related Work

• The upcoming Portable NIC Architecture (PNA) [1] will allow adding entries on lookup misses
• FlowBlaze [4] allows state updates in programmable data planes relying on registers
• SwiSh [7] implements a distributed state layer to programmable switches

M. Simon et al. — Add-On-Miss 5



Previous Work – Changeable Table Entries

• In previous work1, we implemented updatable table entries
• @__ref annotation to declare parameters as references

• Replaced table architecture for synchronization
• Analyzed different synchronization and storage designs

⇒ Table entry updates possible at line-rate

0 50 90 99 99.9 99.99 99.999
100
101
102
103

Percentile [%] (log)

L
at
en
cy

[µ
s]

(l
o
g) read write (pointer)

1M. Simon, H. Stubbe, D. Scholz, S. Gallenmüller, and G. Carle: High-Performance Match-Action Table Updates from within Programmable
Software Data Planes, EuroP4 ’21 [5]

M. Simon et al. — Add-On-Miss 6



Add-On-Miss – Implementation

• Upcoming P4 Portable NIC Architecture (PNA) defines new table property: add_on_miss and new extern for exact
matches

table forward {
actions= {forward, add}
key = {hdr.eth.srcAddr: exact;}

add_on_miss = true;
default_action=add;

}

action forward(bit<48> dstMac) {
...

}

action add() {
bit<48> dstMac = 0xffffffffffff;

add_entry<forward_params_t>

("forward", {dstMac});

}

• For the implementation of them in T4P4S, we profit from the adaptions to the synchronization mechanism of the
tables done in previous work

M. Simon et al. — Add-On-Miss 7



Add-On-Miss – Implementation

• Upcoming P4 Portable NIC Architecture (PNA) defines new table property: add_on_miss and new extern for exact
matches

table forward {
actions= {forward, add}
key = {hdr.eth.srcAddr: exact;}

add_on_miss = true;
default_action=add;

}

action forward(bit<48> dstMac) {
...

}

action add() {
bit<48> dstMac = 0xffffffffffff;

add_entry<forward_params_t>

("forward", {dstMac});

}

• For the implementation of them in T4P4S, we profit from the adaptions to the synchronization mechanism of the
tables done in previous work

M. Simon et al. — Add-On-Miss 7



Add-On-Miss – Implementation

• Upcoming P4 Portable NIC Architecture (PNA) defines new table property: add_on_miss and new extern for exact
matches

table forward {
actions= {forward, add}
key = {hdr.eth.srcAddr: exact;}

add_on_miss = true;
default_action=add;

}

action forward(bit<48> dstMac) {
...

}

action add() {
bit<48> dstMac = 0xffffffffffff;

add_entry<forward_params_t>

("forward", {dstMac});

}

• For the implementation of them in T4P4S, we profit from the adaptions to the synchronization mechanism of the
tables done in previous work

M. Simon et al. — Add-On-Miss 7



Evaluation
Setup

DuT LoadGen
◀
▶

◀
▶

Timestamper

◀ ◀

DuT
• Intel Xeon D-1518 2.2 GHz, 32 RAM
• Latency optimized T4P4S → batch size of one
• add_on_miss activated

LoadGen
• MoonGen [3] is used to generate traffic
• Contains key and value of new entry
• Packet size 84 B

Timestamper

• Packet streams duplicated using optical splitter
• Timestamps each packet incoming packet
• Resolution: 12,5 ns

M. Simon et al. — Add-On-Miss 8



Evaluation
Approach

P4 program

• Each packet contains key and value for a new table entry
• P4 programs contains lookup to this one table
• Forward all packets back

Two phases

• Key cycle pseudo-randomly through [0, 220] several times
• First phase: only insertions are performed
• Second phase: mainly lookups are performed; some insertions are done with different rates

M. Simon et al. — Add-On-Miss 9



Evaluation

• First phase: 220 packets triggering an insertion
• Second phase: ≈ 4M packets trigger lookup of previously inserted packets

0 1 2 3 4 5

·106
0

2 000

4 000

6 000

Measured Packet [#]

La
te

nc
y

[n
s]

(Add-on-)Miss
Lookup (Hit)

M. Simon et al. — Add-On-Miss 10



Evaluation

• First phase: 220 packets triggering an insertion
• Second phase: ≈ 4M packets trigger lookup of previously inserted packets

• But every 10 000-th packet triggers additional insertion

0 1 2 3 4 5

·106
0

2 000

4 000

6 000

Measured Packet [#]

La
te

nc
y

[n
s]

(Add-on-)Miss
Lookup (Hit)

M. Simon et al. — Add-On-Miss 11



Evaluation

• Different rate of insertions during second phase

⇒ Median mixed (i.e. insertions & lookups) latency decreases with increasing rate

10 100 1000 10 000 100 000 inf
0

1,000

2,000

3,000

4,000

5,000

4175
3963 3937 3938 3962 3950

L
a
te
n
cy

[n
s]

M. Simon et al. — Add-On-Miss 12



Evaluation

⇒ Insertion latency increases with increasing rate (up to 47 %)

⇒ Worse branch prediction

10 100 1000 10 000 100 000
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

4375 4400
4649

5013

6437

L
at
en

cy
[n
s]

M. Simon et al. — Add-On-Miss 13



Conclusion

• Adding state to the P4 data plane increases number of possible low-latency applications
• Updatable Table Entries
• Add-On-Miss Insertions

• Add-on-Miss insertions enable cheap insertions w.r.t. latency

• Is this a step backwards in SDN ?
⇒ No, local and global state may work hand-in-hand
⇒ PNA proposal comes from the P4 community
⇒ PNA brings P4 to the NIC of the end-host where state is required anyways

M. Simon et al. — Add-On-Miss 14



Conclusion

• Adding state to the P4 data plane increases number of possible low-latency applications
• Updatable Table Entries
• Add-On-Miss Insertions

• Add-on-Miss insertions enable cheap insertions w.r.t. latency

• Is this a step backwards in SDN ?

⇒ No, local and global state may work hand-in-hand
⇒ PNA proposal comes from the P4 community
⇒ PNA brings P4 to the NIC of the end-host where state is required anyways

M. Simon et al. — Add-On-Miss 14



Conclusion

• Adding state to the P4 data plane increases number of possible low-latency applications
• Updatable Table Entries
• Add-On-Miss Insertions

• Add-on-Miss insertions enable cheap insertions w.r.t. latency

• Is this a step backwards in SDN ?
⇒ No, local and global state may work hand-in-hand
⇒ PNA proposal comes from the P4 community
⇒ PNA brings P4 to the NIC of the end-host where state is required anyways

M. Simon et al. — Add-On-Miss 14



Bibliography

[1] P4 portable nic architecture (pna), version 0.5.
accessed: 2023-03-10.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: programming protocol-independent packet processors.
Comput. Commun. Rev., 44(3):87–95, 2014.

[3] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle.
Moongen: A scriptable high-speed packet generator.
In Proceedings of the 2015 Internet Measurement Conference, IMC ’15, page 275–287, New York, NY, USA, 2015. Association for Computing Machinery.

[4] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Bruschi, D. Sanvito, G. Siracusano, A. Capone, M. Honda, et al.
Flowblaze: Stateful packet processing in hardware.
In 16th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 19), pages 531–548, 2019.

[5] M. Simon, H. Stubbe, D. Scholz, S. Gallenmüller, and G. Carle.
High-performance match-action table updates from within programmable software data planes.
In ANCS ’21: Symposium on Architectures for Networking and Communications Systems, Layfette, IN, USA, December 13 - 16, 2021, pages 102–108. ACM,
2021.

[6] P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel, and S. Laki.
T4p4s: A target-independent compiler for protocol-independent packet processors.
In 2018 IEEE 19th International Conference on High Performance Switching and Routing (HPSR), pages 1–8. IEEE, 2018.

[7] L. Zeno, D. R. Ports, J. Nelson, D. Kim, S. Landau-Feibish, I. Keidar, A. Rinberg, A. Rashelbach, I. De-Paula, and M. Silberstein.
{SwiSh}: Distributed shared state abstractions for programmable switches.
In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), pages 171–191, 2022.

M. Simon et al. — Add-On-Miss 15


	Introduction
	Introduction
	Table Updates
	Related Work
	Previous Work – Changeable Table Entries
	Add-On-Miss – Implementation
	Evaluation
	Evaluation
	Conclusion
	Bibliography

