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Introduction

State Keeping in Data Planes

• State keeping is essential for many applications
• Registers (arrays) are unstructured memory areas accessible by indices

• may be fragmented in memory
• no matching support
• limited functionality

• In tables, structured state can be accessed by sophisticated key matching
• State is often kept by the control plane which decreases performance for state-heavy applications
• We implemented state keeping via tables directly in the data plane
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Introduction
Background

P4

• P4 [2] is a domain-specific language for SDN data planes
• In P4, registers are changeable within the data plane, tables only by the control plane

→ Updatable table entries would increase performance
→ In previous work implemented them for the P4 software target T4P4S using an @__ref annotation [5]

→ For this publication, we implemented add-on-miss insertions to tables

T4P4S

• T4P4S [6] is a hardware-independent transpiler from P4 to C code linked with DPDK developed by ELTE
• The Data Plane Development Kit (DPDK) is an open-source framework enabling fast packet processing in user space
• DPDK performs Receive Side Scaling (RSS) to split traffic among several lcores/threads
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Table Updates
Digest - Current P4 Way

Data Plane Control Plane

Match-Action

Parser

Deparser Tables

lookup

change

digest

Current State
• For changes in match-action tables, the data plane

has to send a digest to the control plane
• in T4P4S: the controller is a separate process, com-

munication via a socket (low round-trip time (RTT))

• Controller requests data plane to update the table

→ Digest-based approach introduces overhead

Approaches
• Digest: introduces a sleep of 1 second or 1 RTT

⇒ impractical for frequent updates

• Add-On-Miss: direct update in the data plane
⇒ avoids the detour over the controller
⇒ improves performance
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Related Work

• The upcoming Portable NIC Architecture (PNA) [1] will allow adding entries on lookup misses
• FlowBlaze [4] allows state updates in programmable data planes relying on registers
• SwiSh [7] implements a distributed state layer to programmable switches
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Previous Work – Changeable Table Entries

• In previous work1, we implemented updatable table entries
• @__ref annotation to declare parameters as references

• Replaced table architecture for synchronization
• Analyzed different synchronization and storage designs

⇒ Table entry updates possible at line-rate
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1M. Simon, H. Stubbe, D. Scholz, S. Gallenmüller, and G. Carle: High-Performance Match-Action Table Updates from within Programmable
Software Data Planes, EuroP4 ’21 [5]
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Add-On-Miss – Implementation

• Upcoming P4 Portable NIC Architecture (PNA) defines new table property: add_on_miss and new extern for exact
matches

table forward {
actions= {forward, add}
key = {hdr.eth.srcAddr: exact;}

add_on_miss = true;
default_action=add;

}

action forward(bit<48> dstMac) {
...

}

action add() {
bit<48> dstMac = 0xffffffffffff;

add_entry<forward_params_t>

("forward", {dstMac});

}

• For the implementation of them in T4P4S, we profit from the adaptions to the synchronization mechanism of the
tables done in previous work
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Evaluation
Setup

DuT LoadGen
◀
▶

◀
▶

Timestamper

◀ ◀

DuT
• Intel Xeon D-1518 2.2 GHz, 32 RAM
• Latency optimized T4P4S → batch size of one
• add_on_miss activated

LoadGen
• MoonGen [3] is used to generate traffic
• Contains key and value of new entry
• Packet size 84 B

Timestamper

• Packet streams duplicated using optical splitter
• Timestamps each packet incoming packet
• Resolution: 12,5 ns
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Evaluation
Approach

P4 program

• Each packet contains key and value for a new table entry
• P4 programs contains lookup to this one table
• Forward all packets back

Two phases

• Key cycle pseudo-randomly through [0, 220] several times
• First phase: only insertions are performed
• Second phase: mainly lookups are performed; some insertions are done with different rates
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Evaluation

• First phase: 220 packets triggering an insertion
• Second phase: ≈ 4M packets trigger lookup of previously inserted packets
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Evaluation

• First phase: 220 packets triggering an insertion
• Second phase: ≈ 4M packets trigger lookup of previously inserted packets

• But every 10 000-th packet triggers additional insertion
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Evaluation

• Different rate of insertions during second phase

⇒ Median mixed (i.e. insertions & lookups) latency decreases with increasing rate
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Evaluation

⇒ Insertion latency increases with increasing rate (up to 47 %)

⇒ Worse branch prediction
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Conclusion

• Adding state to the P4 data plane increases number of possible low-latency applications
• Updatable Table Entries
• Add-On-Miss Insertions

• Add-on-Miss insertions enable cheap insertions w.r.t. latency

• Is this a step backwards in SDN ?
⇒ No, local and global state may work hand-in-hand
⇒ PNA proposal comes from the P4 community
⇒ PNA brings P4 to the NIC of the end-host where state is required anyways

M. Simon et al. — Add-On-Miss 14



Conclusion

• Adding state to the P4 data plane increases number of possible low-latency applications
• Updatable Table Entries
• Add-On-Miss Insertions

• Add-on-Miss insertions enable cheap insertions w.r.t. latency

• Is this a step backwards in SDN ?

⇒ No, local and global state may work hand-in-hand
⇒ PNA proposal comes from the P4 community
⇒ PNA brings P4 to the NIC of the end-host where state is required anyways

M. Simon et al. — Add-On-Miss 14



Conclusion

• Adding state to the P4 data plane increases number of possible low-latency applications
• Updatable Table Entries
• Add-On-Miss Insertions

• Add-on-Miss insertions enable cheap insertions w.r.t. latency

• Is this a step backwards in SDN ?
⇒ No, local and global state may work hand-in-hand
⇒ PNA proposal comes from the P4 community
⇒ PNA brings P4 to the NIC of the end-host where state is required anyways

M. Simon et al. — Add-On-Miss 14



Bibliography

[1] P4 portable nic architecture (pna), version 0.5.
accessed: 2023-03-10.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: programming protocol-independent packet processors.
Comput. Commun. Rev., 44(3):87–95, 2014.

[3] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle.
Moongen: A scriptable high-speed packet generator.
In Proceedings of the 2015 Internet Measurement Conference, IMC ’15, page 275–287, New York, NY, USA, 2015. Association for Computing Machinery.

[4] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Bruschi, D. Sanvito, G. Siracusano, A. Capone, M. Honda, et al.
Flowblaze: Stateful packet processing in hardware.
In 16th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 19), pages 531–548, 2019.

[5] M. Simon, H. Stubbe, D. Scholz, S. Gallenmüller, and G. Carle.
High-performance match-action table updates from within programmable software data planes.
In ANCS ’21: Symposium on Architectures for Networking and Communications Systems, Layfette, IN, USA, December 13 - 16, 2021, pages 102–108. ACM,
2021.

[6] P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel, and S. Laki.
T4p4s: A target-independent compiler for protocol-independent packet processors.
In 2018 IEEE 19th International Conference on High Performance Switching and Routing (HPSR), pages 1–8. IEEE, 2018.

[7] L. Zeno, D. R. Ports, J. Nelson, D. Kim, S. Landau-Feibish, I. Keidar, A. Rinberg, A. Rashelbach, I. De-Paula, and M. Silberstein.
{SwiSh}: Distributed shared state abstractions for programmable switches.
In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), pages 171–191, 2022.

M. Simon et al. — Add-On-Miss 15


	Introduction
	Introduction
	Table Updates
	Related Work
	Previous Work – Changeable Table Entries
	Add-On-Miss – Implementation
	Evaluation
	Evaluation
	Conclusion
	Bibliography

