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Abstract. Analyzing network environments for security flaws and
assessing new service and infrastructure configurations in general are
dangerous and error-prone when done in operational networks. There-
fore, cloning such networks into a dedicated test environment is beneficial
for comprehensive testing and analysis without impacting the operational
network. To automate this reproduction of a network environment in a
physical or virtualized testbed, several key features are required: (a) a
suitable network model to describe network environments, (b) an auto-
mated acquisition process to instantiate this model for the respective
network environment, and (c) an automated setup process to deploy the
instance to the testbed.

With this work, we present INSALATA, an automated and exten-
sible framework to reproduce physical or virtualized network environ-
ments in network testbeds. INSALATA employs a modular approach for
data acquisition and deployment, resolves interdependencies in the setup
process, and supports just-in-time reproduction of network environ-
ments. INSALATA is open source and available on Github. To highlight
its applicability, we present a real world case study utilizing INSALATA.

Keywords: Infrastructure Information Collection · Automated Testbed
Setup and Configuration · Testbed Management

1 Introduction

The increasing number of attack vectors and the growing complexity of attacks
on computer networks force operators to continuously assess and improve their
networks, services, and configurations. Analyzing, testing, and deploying new
security features and configuration improvements is time-consuming, challeng-
ing, and error-prone. The same holds for general software upgrades or network
infrastructure changes. Performing this on an operational network is often not
suitable, as service continuity has to be ensured and outages cannot be tolerated.

Therefore, reproducing a network environment into a self-contained test envi-
ronment is beneficial as the operational network is not influenced. Testing and
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analyzing different options to improve the network and its security can be evalu-
ated and tested sufficiently before deployment. With large and complex network
environments, reproducing such network environments cannot be done manually
as information about the environment and its elements may be unknown, incom-
plete, or not available in a formal description. Hence, an automated process to
reproduce network environments in a physical or virtualized testbed is required.

In this work, we present INSALATA, the IT NetworkS AnaLysis And deploy-
menT Application. INSALATA enables network operators and researchers to
automate reproduction of arbitrary network environments in physical or vir-
tualized testbeds. To represent network environments, we provide a network
model comprising layer-2 network segments, IP networks, connectivity informa-
tion (routing and firewalling), network nodes (routers, hosts), network services
(DNS, DHCP), and host information (network interfaces, memory, disks, oper-
ating system). INSALATA can analyze network environments to obtain a formal
description of the network to track the state continuously or in discrete intervals.
Here, INSALATA uses information fusing to provide a comprehensive view on
the network by aggregating information from multiple collector modules. Using
descriptions decouples analysis and deployment and enables re-using, archiving,
and distributing these descriptions. INSALATA can instantiate descriptions on
physical or virtualized testbeds employing a PDDL planner to structure the
setup process and resolve inter-dependencies between setup steps. To minimize
setup steps and reuse existing testbed setups, we support incremental setups by
determining the delta between current and target testbed state.

The key contributions of our work are (a) INSALATA, a fully automated,
modular, and extensible framework to reproduce network environments on test-
beds, (b) the open source implementation of INSALATA available on GitHub,
and (c) a case study showing INSALATA’s applicability to real world scenarios
using exemplary module implementations.

The remainder of this paper is structured as follows: First, we describe
our goals and requirements for INSALATA in Sect. 2. Afterwards, we analyze
if related work can fulfill these in Sect. 3. In Sect. 4, we present INSALATA’s
design and introduce its components. Next, we present the main components of
INSALATA in detail, in particular the underlying information model in Sect. 5,
the Collector Component in Sect. 6, and the Deployment Component in Sect. 7.
In Sect. 8, we summarize important implementation details. In Sect. 9, we present
a case study to show the applicability of our proposed system. Finally, we give
a conclusion and present future work in Sect. 10.

2 Goals and Requirements

The overall goal is to reproduce arbitrary network environments into physical or
virtualized testbeds. Therefore, we need (a) a suitable information model reflect-
ing required information, (b) an automated information acquisition process, and
(c) an automated deployment process.
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(a) Information Model: The information model abstracts from the network envi-
ronment. The goal is to reflect network environments up to application layer
of the TCP/IP reference model. The information model has to be extensible
to allow to add use case specific services and additional information elements.
Therefore, we require the following information to be present: (a) basic network
nodes, like hosts and routers, (b) networks on layer 2 and 3, including appropri-
ate addressing schemes, (c) connectivity information like routing and firewalling,
(d) basic network services like DNS and DHCP, and (e) host information, includ-
ing network interfaces, disks, memory, CPUs, or operating system.

(b) Information Acquisition: The goal is to provide information acquisition that
supports different types of information collection techniques, supports continu-
ous monitoring of the network environment, and is fully automated. We iden-
tified that the following information collection techniques, differing in terms of
intrusiveness and quality of information they provide, have to be supported:

Manually specified information is not intrusive, but rarely up-to-date.
Including such information is required if other techniques are not applicable.
Passive scanning has no direct impact on networks, but collected information
is limited and access to all network segments is required.
Active scanning creates load in a network and on components, but provides
more detailed information about entities and services in the network.
Network management protocols need to be available on investigated nodes,
but reduce system’s load and information requests are standardized.
Direct access to components, e.g. with SSH, delivers rich information, but
requires appropriate access, to invoke applications, and interpret the output.
Agent-based information collection collects information just-in-time, but
agents need to be deployed and run on the components.

(c) Deployment Process: The deployment process has to be incremental, so that
the delta between the current and the target state is computed during setup and
only required configuration steps are executed. Additionally, the deployment
process has to be modular and extensible in order to cope with use case specific
requirements. Therefore, the setup process has to be divided into small, self-
contained steps. To be able to use the deployment process on different testbed
architectures, the process itself needs to be independent from the underlying
architecture as much as possible.

3 Related Work

To the best of our knowledge, no application to reproduce network environ-
ments exists. Therefore, we examine the two main components of INSALATA,
namely information acquisition and testbed setup for deployment, separately.
Next, we investigate network description languages as we need a suitable net-
work model for INSALATA. Finally, we discuss network management protocols
and frameworks to investigate appropriate implementation mechanisms to deploy
the description of the network environment on the testbed.
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Data Acquisition Applications are needed to obtain information about the net-
work environment. Here, continuous monitoring is required and information from
different sources needs to be fused. Additionally, tracking changes is a require-
ment. IO-Framework [6,19] does not support continuous monitoring and only
supports intrusive collection methods. The common Network Information Ser-
vice (cNIS) [1] utilizes static information and higher level services (SSH or
SNMP) but does not include less invasive information collection techniques.
MonALISA [7,11] and PerfSONAR [29] are not capable of continuously mon-
itoring the network and detect changes. OpenVAS [23] is used to identify vul-
nerabilities within an infrastructure but has limited scanning capabilities. Single
purpose tools like Nmap [20], Traceroute [2], or xprobe2 [35] can be used to col-
lect single aspects of the network environment but do not provide a holistic view.
Dedicated network management protocols, like SNMP [8,21] or Netconf [27] can
only be used to retrieve dedicated information from single network components,
but do also not provide a complete view on the network.

Testbed Management Frameworks are used to orchestrate and control test-
beds. All presented frameworks do not provide incremental setups but rebuild
the designated network from scratch leading to higher effort within the setup
process and manually configured changes get lost. Additionally, testbed orches-
tration and experiment execution are often tightly coupled. vBET [18] and Laas-
NetExp [24] are both closed source, preventing to extend those frameworks.
VNEXT [25] and NEPTUNE [5] do not provide the automated setup of basic
network services, like DNS or DHCP. Emulab [34] or DETER [4] tightly couple
the infrastructure setup and the experiment execution. This requires to rebuild
the network after each experiment.

Network Description Languages and Ontologies can be used as information
model. The related work within this field lacks in providing the information
elements needed for a proper mirroring of network environments, especially in
terms of reflecting the connectivity due to routing and the usage of firewalls. IF-
MAP [3,30,31] is not capable of reflecting interfaces or routing information. The
target-centric ontology for intrusion detection [32] does not provide a sufficient
addressing scheme for elements nor reflect routing or firewalls. The Network
Markup Language (NML) [14,15] provides a schema for exchanging network
descriptions on a generic level, but does not provide concepts like network rout-
ing. The Infrastructure and Network Description Language (INDL) [13,17,28]
extends NML, but is not capable of reflecting routes or firewall rules. Tcl-based
format in Emulab and ns-2 [34] is not capable of modeling networks explicitly
resulting in verbose definitions for large networks.

Network Management Protocols and Frameworks can be used to setup and con-
figure the descriptions in testbeds. To do so, the virtualized testbed has to be
setup, e.g. router and hosts as virtual machines, and those components need
to be configured appropriately afterwards, e.g. using adequate routing tables.
Dedicated network management protocols, like SNMP [8,21] or Netconf [27]
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can be used to configure components and request dedicated information in a
standardized way. Both protocols do not provide built-in mechanisms to man-
age larger infrastructures as a whole. Ansible [9] is a push-based framework to
configure larger infrastructures using so-called playbooks. Those playbooks need
to be written or adapted for each configuration. Ansible can not be used directly
for our approach, but is suitable as an important building block. Puppet [26]
is a pull-based framework for infrastructure configurations. As the testbed is
reconfigured in irregular intervals, a pull-based mechanism is not suitable.

4 Approach and System Design

INSALATA consists of the Collector and the Deployment Component as its two
main components:

The Collector Component is responsible for collecting and fusing informa-
tion of the network environment and the current state of the testbed into a
descriptions (see Sect. 6).
The Deployment Component manages configuration changes and the auto-
mated setup process on the testbed (see Sect. 7).

Both components utilize the same information model to structure the infor-
mation about the network environment (see Sect. 5) and are managed and orches-
trated by a central controller, the Management Unit. The system architecture
of INSALATA showing these basic components and their interaction is depicted
in Fig. 1.

Management Unit

Pre-
processor

upload

User

virtual

physical

Collector Deployment

Database

loadstore

scan deploy/change

Fig. 1. System overview of INSALATA showing basic components
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The Collector acquires information about the network environment and is
used to generate a description for the testbed. It maintains the current state of
the monitored network. Here, the collection process can be done continuously
whereas configuration changes can be tracked and stored with a timestamp in a
database. This approach allows to rebuild a network at each point in time.

The Deployment Component utilizes a description that is either obtained by
the Collector or provided by the user. Based on this, the Deployment Component
configures the testbed to reproduce a network environment. To ease writing
descriptions, a Preprocessor is utilized, replacing missing but calculable values
in the description and checking the it for its validity.

5 Description of the Information Model

To be able to reflect a network environment in a testbed, a formal description
of this network is required. This description needs to contain information ele-
ments discussed in Sect. 2. Each information element needs to be leviable from
the network environment in an automated manner and has a unique identifier.
The proposed information model is shown in Fig. 2. An information element is
represented as box, the identifier of each element is underlined and additional
attributes describing the information element are listed. For FirewalRules and
Routes a combination of attributes is used as identifier. Relations between infor-
mation elements are denoted as arrows in between and additionally denote their
cardinality.

The main information element is the Network Component representing a node
in the network environment, e.g. hosts, routers or switches, and are further spec-
ified by the Template attribute. A Network Component is equipped with certain
Disks and Interfaces. Interfaces are needed to interconnect Network Components
in different kinds of networks, e.g. Layer 2 Networks or Layer 3 Networks.

Depending on its functionality, a Network Component can maintain Routes
or Firewall Rules. Those express the connectivity between Network Components.
The latter can be represented as raw dumps (Firewall Raw) or in a simplified
format (Firewall Rule) to ease transformation between different firewall applica-
tions as proposed in [10]. As a simplification is not free of information loss, the
raw information is stored additionally.

To support large-scale test environments consisting of multiple servers, a
Network Element is associated with a Location specifying the testbed server
the Network Component is emulated on. In case of a description reflecting the
network environment, the Location is set to physical.

Another important concept of the information model is the Service element.
This information element is used to reflect basic network services, like DNS or
DHCP. A Service can be further specified by adding a Product and a Version
to allow a high accuracy. Additionally needed services can be added to the
information model using inheritance, allowing use case specific applications.
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Fig. 2. Information model of INSALATA

6 Information Collector Component

The Collector Component is capable of managing multiple Environments
describing multiple networks to be monitored. The overview of INSALATA’s
information Collector Component is depicted in Fig. 3.

For each Environment, multiple Collector Modules, employing a particular
information collection technique as described in Sect. 2, can be configured to
collect the required information. A Collector Module obtains information about
at least one information element and possible relations between information ele-
ments. Therefore, modules have to obtain the unique identifier of an information
element. The collected information elements are handed over to the Environment
fusing all obtained information into a comprehensive graph describing the net-
work. Here, we assume that a module delivers no false, but potentially incomplete
information. This modular approach has the advantage that different, specialized
information collection techniques can be combined resulting in a more detailed
and more precise view on the network environment.

To fuse information, the Collector utilizes the identifier of each object and
the type of the information element. Objects with the same identifier and of
the same type are treated as the same object. Each Collector Module passes
discovered objects to the Collector. Attributes and relations are fused together
in case multiple modules report the same objects.
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Fig. 3. Information Collector Component of INSALATA

Another challenge is to manage existing information elements in the model
becoming obsolete. Therefore, a deletion scheme needs to be implemented within
an Environment. Each information element in an Environment is equipped with
timers for each Collector module. Each time, an information element is delivered
by a module, the module specific timer is updated. If all timers in the list expire,
the information element and its relations are deleted from the Environment. In
addition, each module can actively set its own timer to zero, if it is capable to
determine the non-existence of an element.

To be able to recreate an environment at any (observed) point in time, we
track the network environment’s state over time. Whenever an information ele-
ment or relation is modified, i.e., is added, deleted, or updated, we save this
delta as an event to the database. Such events contain the type of change, the
information element and its properties. Within an Environment, only the current
state of the network description is maintained.

7 Infrastructure Deployment Component

The Deployment Component executes the following steps: (a) determine required
configuration steps using the current testbed state and the given description,
(b) determine a correct execution plan how to achieve the given description, and
(c) deploy the changes on the testbed following the computed execution plan.
The overview of the execution flow of INSALATA’s Deployment Component is
depicted in Fig. 4.

First, the Deployment Component has to determine what needs to be
changed. Therefore, we need the current state of the testbed in the form a
description as Description D2 that can be determined using the Collector
Component. Additionally, we need the target state in the form a description
as Description D1 provided from the Collector or the user. The Deployment
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Fig. 4. Execution flow of INSALATA’s Deployment Component

Component uses a Change Detection Module to detect added, removed, and
updated information elements in the delta between these states.

To determine how to change the testbed, we use automated planning and
scheduling from the domain of artificial intelligence [16]. A planning problem is
described using a dedicated planning language such as the Planning Domain Def-
inition Language (PDDL). PDDL separates the planning problem into a domain
description, describing the problem domain, and a problem description, describ-
ing an instance of the problem [12]. A PDDL domain description describes the
objects’ types, predicates (i.e., properties), and actions. Each action has a defin-
ition of objects it is applicable to, preconditions that have to be fulfilled, and an
effect altering the predicates of objects. With INSALATA, we provide a domain
description for our information model and steps as PDDL actions necessary to
setup a testbed. A detailed overview on the steps we defined and their inter-
dependencies can be found in the domain description provided with the imple-
mentation. The PDDL problem description describes all objects, their type and
their initial state. The problem specifies the goal state of all objects by giving
their desired predicates [22] inside a goal section. While the domain file is static,
the problem file depends on the current and target state and is computed each
time a description is deployed on the testbed.

The computed changes, the current testbed state, and the target state are
given to the Problem Parser Module computing a PDDL problem description.
This description is given to the Planner Module, an automated planning and
scheduling solver computing an execution plan containing the correct order of
actions that will bring the testbed from the current into the target state. The
execution plan is passed to the Builder to execute the steps on the designated
testbed. Implementations of these steps are provided by architecture-specific
Builder Modules since the implementation of such steps is different for different
testbed architectures and objects. The Builder uses meta-data associated with
the Builder Modules and the objects to identify the correct implementation.
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This allows us to dynamically add new implementations, e.g. for new operating
systems or services, without changing the Deployment Component.

8 Implementation

INSALATA is written in Python 3 and is available in INSALATA’s GitHub
repository1. A detailed code documentation is available on2.

The Management Unit can be controlled using a XML-RPC client commu-
nicating with INSALATA. The presented information model is reflected using
object-oriented Python classes.

Besides the Collector Component itself, we provide the following Collector
Modules: (1) a XEN module using to collect information from environments
using XEN virtualization, (2) an XML module for manually provided informa-
tion, (3) a Tcpdump module for passive network scanning using Tcpdump, (4) an
Nmap module for active network scanning using Nmap, (5) an SNMP module
to retrieve information from nodes using SNMP, (6) an SSH module to retrieve
information from nodes via SSH, and (7) a Zabbix module for agent-based infor-
mation collection with the Zabbix network monitoring system. Some modules
have limited functionality, meaning that not all information possible to collect is
implemented, e.g. the SSH module does not collect firewall rules. New collector
modules can be added to INSALATA to cover the desired scanning environment.

We integrate fast-forward3 as a planner into INSALATA’s Deployment Com-
ponent. The domain file describing the setup process of a testbed we provide, is
given in PDDL. The required problem files are generated for each setup individ-
ually in an automated manner. We provide a framework allowing to add new
Builder Modules in an easy way. Here, we utilize Python annotations to deter-
mine the most suitable Builder Module for a given step within the determined
plan and the configured object. Besides provided Builder Modules to setup the
basic topology on XEN (hosts, routers, layer 2 networks), we utilize Ansible for
additional configurations (routing, firewalling, DNS, and DHCP).

9 Case Study: Chair’s Teaching Infrastructure – iLab

To show INSALATA’s applicability in practical scenarios, we assesed INSALATA
in a case study. For this case study, we use a setup adapted from the lab course
iLab4 offered by the TUM’s Chair of Network Architectures and Services. The
iLab is a course to teach student’s practical skills in administering network setups
and configurations for different scenarios using real hardware. A typical setup
students have to work with during an iLab course is shown in Fig. 5. This setup
consists of two Cisco and a Linux router, and four host residing in different
private networks. In our case study, our goal is to reproduce this network envi-
ronment in a network testbed using XEN virtualization.
1 https://github.com/tumi8/INSALATA.
2 https://insalata.readthedocs.io/en/latest/index.html.
3 http://www.fast-downward.org/ObtainingAndRunningFastDownward.
4 https://ilab.net.in.tum.de.

https://github.com/tumi8/INSALATA
https://insalata.readthedocs.io/en/latest/index.html
http://www.fast-downward.org/ObtainingAndRunningFastDownward
https://ilab.net.in.tum.de
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Fig. 5. Typical infrastructure setup within the iLab course

We provide the IP addresses of all routers to the INSALATA system as a
starting point using manual input in form of XML files. All routers and hosts
are configured to allow INSALATA to access the systems using SSH and SNMP.

In the first phase, we obtain the required description of the network environ-
ment using our Collector Component. To expand our infrastructure information
using our passive Tcpdump Collector Module, we generate traffic on the involved
hosts. Using the SNMP and SSH Collector Modules, missing interfaces, MAC
addresses, and routing information is obtained from routers and hosts. Using
theses Modules, we are able to reflect the network environment shown in Fig. 5
as description.

In the second phase, we use our Deployment Component to reproduce the
obtained description into our virtualized testbed using XEN with the xapi tool-
stack. INSALATA computes an execution plan to setup the testbed from scratch
in 0.252 s. The resulting execution plan consists of 92 steps, including setting
up virtual machines and networks, configuring interfaces and deploying routes.
Each step is executed in sequence and no parallelization is done. The total time
required to setup the testbed and configure it is 42 min 32 s. Figure 6 visualizes
the setup and configuration process in regard to its execution time.

The most time-consuming tasks during the setup process are the creation of
new virtual machines, which happens at the beginning. The reason for this is
that here new virtual machines have to be cloned from the respective template,
including copying hard disk images and required reboot operations. Configura-
tion steps like creation of virtual networks and interfaces are done nearly instan-
taneously. After the setup of our description, we validated the correctness of our
setup using manual inspection, Ping and Traceroute.
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10 Conclusions and Future Work

In this work we present INSALATA, a system capable of reproducing network
environments in network testbeds. INSALATA enables network operators and
researchers to test and analyze new security features and general configuration
changes in a separated test environment before deployment in operational net-
works. To be able to formalize network environments, INSALATA utilizes an
information model particularly crafted for representing network topologies, enti-
ties, and services in descriptions. To obtain the required information from net-
work environments, we support a modular Collector Component automatically
assessing networks and fusing information from different Collector Modules. The
Deployment Component provides automated planning and scheduling to instan-
tiate descriptions onto a physical or virtualized testbeds. Within our case study,
we show the applicability of our approach reproducing a real world network
environment with several routers and hosts onto a virtualized testbed.

To further improve INSALATA, we will continue our work in this field and
on INSALATA and highly appreciate feedback, improvements, and extensions
from the community. To extended INSALATA’s capabilities, additional Collector
and Builder Modules can help to obtain additional properties from the network
environment, such as user information or generic service configurations from
hosts. Existing Collector Modules can be extended to obtain more information
using existing assessment techniques, such as firewall information using SSH. To
reproduce network environments more realistically, Builder Modules to support
Microsoft Windows and additional network services, like mail or ftp are bene-
ficial. One of our main goals is to make the deployment process more efficient
by parallelizing the execution of the setup plan. Since INSALATA only pro-
vides mechanisms to setup and orchestrate a testbed, we aim to integrate our
experiment execution framework GPLMT [33] into the INSALATA system.
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