Public Key Infrastructures

Ralph Holz

Network Architectures and Services
Technische Universität München

November 2014
Part 2: Recent results – or: the sorry state of X.509
PKI weaknesses in 2008

- Early December 2008:
 - ‘Error’ in Comodo CA: no identity check
 - Reported by Eddy Nigg of StartSSL (a CA)
 - A regional sub-seller just took the credit card number and gave you a certificate
 - No real reaction by Mozilla

- Late December 2008: whitehat hacks StartSSL CA
 - Technical report: simple flaw in Web front-end
 - Certificate for mozilla.com issued
 - Caught by 2nd line of defence: human checks for high-value domains
PKI weaknesses in 2008

Early December 2008:
- ‘Error’ in Comodo CA: no identity check
- Reported by Eddy Nigg of StartSSL (a CA)
- A regional sub-seller just took the credit card number and gave you a certificate
- No real reaction by Mozilla

Late December 2008: whitehat hacks StartSSL CA
- Technical report: simple flaw in Web front-end
- Certificate for mozilla.com issued
- Caught by 2nd line of defence: human checks for high-value domains
PKI weaknesses in 2008

- Early December 2008:
 - ‘Error’ in Comodo CA: no identity check
 - Reported by Eddy Nigg of StartSSL (a CA)
 - A regional sub-seller just took the credit card number and gave you a certificate
 - No real reaction by Mozilla

- Late December 2008: whitehat hacks StartSSL CA
 - Technical report: simple flaw in Web front-end
 - Certificate for mozilla.com issued
 - Caught by 2nd line of defence: human checks for high-value domains
PKI weaknesses in 2009

- February 2009
 - New ‘easy’ attack on MD5 (‘MD5 considered harmful today’)
 - Demonstrated by issuing valid but fake CA certificate
 - ‘Fast’ reaction by vendors: MD5 to be disabled for signatures by 2012

- Spring 2009
 - J. Nightingale of Mozilla writes crawler to traverse HTTPS sites
 - Goal: determine number of MD5-signed certificates (11%)
 - This piece of software was made public, it’s our starting point
PKI weaknesses in 2009

- February 2009
 - New ‘easy’ attack on MD5 (‘MD5 considered harmful today’)
 - Demonstrated by issuing valid but fake CA certificate
 - ‘Fast’ reaction by vendors: MD5 to be disabled for signatures by 2012

- Spring 2009
 - J. Nightingale of Mozilla writes crawler to traverse HTTPS sites
 - Goal: determine number of MD5-signed certificates (11%)
 - This piece of software was made public, it’s our starting point
PKI weaknesses in 2009

■ February 2009
 ■ New ‘easy’ attack on MD5 (‘MD5 considered harmful today’)
 ■ Demonstrated by issuing valid but fake CA certificate
 ■ ‘Fast’ reaction by vendors: MD5 to be disabled for signatures by 2012

■ Spring 2009
 ■ J. Nightingale of Mozilla writes crawler to traverse HTTPS sites
 ■ Goal: determine number of MD5-signed certificates (11%)
 ■ This piece of software was made public, it’s our starting point
State of Mozilla Root Store

- Mozilla 2009: “Does anyone know who owns this root cert?”
- It turned out there were root certs that no-one could remember
- No-one could remember when they were accepted, or on which grounds
Kurt Seifried vs. RapidSSL

How to hijack a Web mailer in 3 easy steps

- Step 1: register e-mail address: ssladministrator@portugalmail.pt
- Step 2: ask RapidSSL for certificate for portugalmail.pt, giving this address as your contact
- Step 3: Watch ‘Domain Validation by e-mail probe’ fail

Kurt succeeded. It cost him < 100 USD.

Main failure here:

- Web mailers and CAs have not agreed on ‘protected’ addresses
- This issue is now in Mozilla’s ‘Problematic practices’
How This Got Our Interest (4)

In 2011, the foundations of X.509 were rocked.

- March 2011: Comodo CA hacked (a sub-seller, again)
 - Attacker claims to come from Iran
 - \(\approx 10 \) certificates for high-value domains issued
 - Browser reaction: blacklisting of those certificates *in code*
 - Neither CRLs nor OCSP trusted enough to work for victims
- July 2011: DigiNotar CA hacked
 - Attacker claims to be the same one as in March
 - 531 fake certificates, high-value domains
 - E.g., Google, Facebook, Mozilla, CIA, Mossad, Skype
 - Some hints pointed at Man-in-the-middle attack in Iran
 - The Netherlands’ PKI was operated by DigiNotar...
 - For the first time, a Root CA is removed from a browser for being compromised
How This Got Our Interest (4)

In 2011, the foundations of X.509 were rocked.

- March 2011: Comodo CA hacked (a sub-seller, again)
 - Attacker claims to come from Iran
 - ≈ 10 certificates for high-value domains issued
 - Browser reaction: blacklisting of those certificates in code
 - Neither CRLs nor OCSP trusted enough to work for victims

- July 2011: DigiNotar CA hacked
 - Attacker claims to be the same one as in March
 - 531 fake certificates, high-value domains
 - E.g., Google, Facebook, Mozilla, CIA, Mossad, Skype
 - Some hints pointed at Man-in-the-middle attack in Iran
 - The Netherlands’ PKI was operated by DigiNotar...
 - For the first time, a Root CA is removed from a browser for being compromised
How This Got Our Interest (4)

In 2011, the foundations of X.509 were rocked.

- March 2011: Comodo CA hacked (a sub-seller, again)
 - Attacker claims to come from Iran
 - \(\approx 10\) certificates for high-value domains issued
 - Browser reaction: blacklisting of those certificates *in code*
 - Neither CRLs nor OCSP trusted enough to work for victims

- July 2011: DigiNotar CA hacked
 - Attacker claims to be the same one as in March
 - 531 fake certificates, high-value domains
 - E.g., Google, Facebook, Mozilla, CIA, Mossad, Skype
 - Some hints pointed at Man-in-the-middle attack in Iran
 - The Netherlands’ PKI was operated by DigiNotar...
 - For the first time, a Root CA is removed from a browser for being compromised
DigiNotar vs. Iran?

Invalid Server Certificate

You attempted to reach www.google.com, but the server presented an invalid certificate.

Help me understand

When you connect to a secure website, the server hosting that site presents your browser with something called a “server certificate.” This certificate contains identity information, such as the address of the website, which is verified by a third-party certificate authority known as a CA. When checking that the address in the certificate matches the address of the website, it is possible to verify that the website you intended, and not a third party (such as an attacker on your network).

In this case, the server certificate or an intermediate CA certificate presented to your browser is invalid. The certificate is either malformed, contains invalid fields, or is not supported.
Can We Assess the Quality of this PKI?

A good PKI should

- ... allow HTTPs on all WWW hosts
- ... contain only valid certificates
- ... offer good cryptographic security
 - Long keys, only strong hash algorithms, ...
- ... have a sensible setup
 - Short validity periods (1 year)
 - Short certificate chains (but use intermediate certificates)
 - Number of issuers should be reasonable (weakest link!)
Acquiring Our Data Sets

Active scans to measure *deployed* PKI

- Scan hosts on Alexa Top 1 million Web sites
- Nov 2009 – Apr 2011: scanned 8 times from Germany
- March 2011: scans from 8 hosts around the globe

Passive monitoring to measure *user-encountered* PKI

- Munich Research Network, monitored all SSL/TLS traffic
- Two 2-week runs in Sep 2010 and Apr 2011

EFF scan of IPv4 space in 2010

- Scan of 2-3 months, no *domain* information
EFF scan presented at 27C3

- Focuses on CA certification structure
- Scan of IP addresses: does not allow to check match of host names
- No temporal distribution
- EFF project: SSL Observatory

Ivan Ristic of Qualys presents similar scan

- Smaller data basis
- Data set not published as raw data
- No temporal distribution
- Could not include it in our analysis
Our Data Sets

Active Scans

<table>
<thead>
<tr>
<th>Location</th>
<th>Time (run)</th>
<th>Type</th>
<th>Certificates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuebingen, DE</td>
<td>November 2009</td>
<td>Active scan</td>
<td>833,661</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>December 2009</td>
<td>Active scan</td>
<td>819,488</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>January 2010</td>
<td>Active scan</td>
<td>816,517</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>April 2010</td>
<td>Active scan</td>
<td>816,605</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Active scan</td>
<td>829,232</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>November 2010</td>
<td>Active scan</td>
<td>827,366</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan</td>
<td>829,707</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan with SNI</td>
<td>826,098</td>
</tr>
<tr>
<td>Shanghai, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>798,976</td>
</tr>
<tr>
<td>Beijing, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>797,046</td>
</tr>
<tr>
<td>Melbourne, AU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,571</td>
</tr>
<tr>
<td>İzmir, TR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>825,555</td>
</tr>
<tr>
<td>São Paulo, BR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,246</td>
</tr>
<tr>
<td>Moscow, RU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>830,765</td>
</tr>
<tr>
<td>Santa Barbara, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,173</td>
</tr>
<tr>
<td>Boston, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,054</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Passive monitoring</td>
<td>183,208</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Passive monitoring</td>
<td>989,040</td>
</tr>
<tr>
<td>EFF servers</td>
<td>March–June 2010</td>
<td>Active IPv4 scan</td>
<td>11,349,678</td>
</tr>
</tbody>
</table>

25 million certificates to evaluate.
Our Data Sets

Active Scans

<table>
<thead>
<tr>
<th>Location</th>
<th>Time (run)</th>
<th>Type</th>
<th>Certificates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuebingen, DE</td>
<td>November 2009</td>
<td>Active scan</td>
<td>833,661</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>December 2009</td>
<td>Active scan</td>
<td>819,488</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>January 2010</td>
<td>Active scan</td>
<td>816,517</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>April 2010</td>
<td>Active scan</td>
<td>816,605</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Active scan</td>
<td>829,232</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>November 2010</td>
<td>Active scan</td>
<td>827,366</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan</td>
<td>829,707</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan with SNI</td>
<td>826,098</td>
</tr>
<tr>
<td>Shanghai, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>798,976</td>
</tr>
<tr>
<td>Beijing, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>797,046</td>
</tr>
<tr>
<td>Melbourne, AU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,571</td>
</tr>
<tr>
<td>İzmir, TR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>825,555</td>
</tr>
<tr>
<td>São Paulo, BR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,246</td>
</tr>
<tr>
<td>Moscow, RU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>830,765</td>
</tr>
<tr>
<td>Santa Barbara, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,173</td>
</tr>
<tr>
<td>Boston, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,054</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Passive monitoring</td>
<td>183,208</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Passive monitoring</td>
<td>989,040</td>
</tr>
<tr>
<td>EFF servers</td>
<td>March–June 2010</td>
<td>Active IPv4 scan</td>
<td>11,349,678</td>
</tr>
</tbody>
</table>

25 million certificates to evaluate.
Our Data Sets

Active Scans — Passive Monitoring — EFF IPv4 scan

<table>
<thead>
<tr>
<th>Location</th>
<th>Time (run)</th>
<th>Type</th>
<th>Certificates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuebingen, DE</td>
<td>November 2009</td>
<td>Active scan</td>
<td>833,661</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>December 2009</td>
<td>Active scan</td>
<td>819,488</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>January 2010</td>
<td>Active scan</td>
<td>816,517</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>April 2010</td>
<td>Active scan</td>
<td>816,605</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Active scan</td>
<td>829,232</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>November 2010</td>
<td>Active scan</td>
<td>827,366</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan</td>
<td>829,707</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan with SNI</td>
<td>826,098</td>
</tr>
<tr>
<td>Shanghai, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>798,976</td>
</tr>
<tr>
<td>Beijing, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>797,046</td>
</tr>
<tr>
<td>Melbourne, AU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,571</td>
</tr>
<tr>
<td>İzmir, TR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>825,555</td>
</tr>
<tr>
<td>São Paulo, BR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,246</td>
</tr>
<tr>
<td>Moscow, RU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>830,765</td>
</tr>
<tr>
<td>Santa Barbara, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,173</td>
</tr>
<tr>
<td>Boston, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,054</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Passive monitoring</td>
<td>183,208</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Passive monitoring</td>
<td>989,040</td>
</tr>
</tbody>
</table>

EFF servers March–June 2010: 11,349,678

25 million certificates to evaluate.
Our Data Sets

Active Scans — Passive Monitoring — EFF IPv4 scan

<table>
<thead>
<tr>
<th>Location</th>
<th>Time (run)</th>
<th>Type</th>
<th>Certificates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuebingen, DE</td>
<td>November 2009</td>
<td>Active scan</td>
<td>833,661</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>December 2009</td>
<td>Active scan</td>
<td>819,488</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>January 2010</td>
<td>Active scan</td>
<td>816,517</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>April 2010</td>
<td>Active scan</td>
<td>816,605</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Active scan</td>
<td>829,232</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>November 2010</td>
<td>Active scan</td>
<td>827,366</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan</td>
<td>829,707</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan with SNI</td>
<td>826,098</td>
</tr>
<tr>
<td>Shanghai, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>798,976</td>
</tr>
<tr>
<td>Beijing, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>797,046</td>
</tr>
<tr>
<td>Melbourne, AU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,571</td>
</tr>
<tr>
<td>İzmir, TR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>825,555</td>
</tr>
<tr>
<td>São Paulo, BR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,246</td>
</tr>
<tr>
<td>Moscow, RU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>830,765</td>
</tr>
<tr>
<td>Santa Barbara, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,173</td>
</tr>
<tr>
<td>Boston, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,054</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Passive monitoring</td>
<td>183,208</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Passive monitoring</td>
<td>989,040</td>
</tr>
<tr>
<td>EFF servers</td>
<td>March–June 2010</td>
<td>Active IPv4 scan</td>
<td>11,349,678</td>
</tr>
</tbody>
</table>

25 million certificates to evaluate.
Our Data Sets

Active Scans — Passive Monitoring — EFF IPv4 scan

<table>
<thead>
<tr>
<th>Location</th>
<th>Time (run)</th>
<th>Type</th>
<th>Certificates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuebingen, DE</td>
<td>November 2009</td>
<td>Active scan</td>
<td>833,661</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>December 2009</td>
<td>Active scan</td>
<td>819,488</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>January 2010</td>
<td>Active scan</td>
<td>816,517</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>April 2010</td>
<td>Active scan</td>
<td>816,605</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Active scan</td>
<td>829,232</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>November 2010</td>
<td>Active scan</td>
<td>827,366</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan</td>
<td>829,707</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan with SNI</td>
<td>826,098</td>
</tr>
<tr>
<td>Shanghai, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>798,976</td>
</tr>
<tr>
<td>Beijing, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>797,046</td>
</tr>
<tr>
<td>Melbourne, AU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,571</td>
</tr>
<tr>
<td>İzmir, TR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>825,555</td>
</tr>
<tr>
<td>São Paulo, BR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,246</td>
</tr>
<tr>
<td>Moscow, RU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>830,765</td>
</tr>
<tr>
<td>Santa Barbara, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,173</td>
</tr>
<tr>
<td>Boston, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,054</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Passive monitoring</td>
<td>183,208</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Passive monitoring</td>
<td>989,040</td>
</tr>
<tr>
<td>EFF servers</td>
<td>March–June 2010</td>
<td>Active IPv4 scan</td>
<td>11,349,678</td>
</tr>
</tbody>
</table>

25 million certificates to evaluate.
Errors in TLS Connection Setup

Scans from Germany, Nov 2009 and Apr 2011

- Apr 2011 Top 1k
- Nov 2009 Top 1k
- Aug 2011 Top 10k
- Nov 2009 Top 10k
- Apr 2011 Top 100k
- Nov 2009 Top 100k
- Apr 2011 Top 1m
- Nov 2009 Top 1m

% of all connections

- Other failure
- Unknown protocol
- Success

Ralph Holz: Public Key Infrastructures
UNKNOWN PROTOCOL

- Rescanned those hosts and manual sampling
- Always plain HTTP...
- ... and always an index.html with HTML 2 ...
- Hypothesis: old servers, old configurations
- More likely to happen in the lower ranks
Validity of End-Hosts Certificates

Root Store

CA₁

I₁

E₁

E₂

I₄

I₂

I₅

I₆

E₃

E₄

E₅

E₆

E₇

CA₂

CA₃

Host Certificates
Validation of Certificate Chains

Just check chains, not host names

- Chain valid
- Expired
- Self-signed end host certificate
- Root certificate not in root store
- No root certificate found

% of all certificates

- Germany.Nov09
- Germany.Apr11
- China.Apr11
- EFF
- MON1.Sep10
- MON2.Apr11

Ralph Holz: Public Key Infrastructures
Correct Domain Name in Certificate

Now also check host names

- Look in Common Name (CN) and Subject Alternative Name (SAN)
- Munich, April 2011, only valid chains:
 - 12.2% correct CN
 - 5.9% correct SAN

Only 18% of certificates are fully verifiable

- Positive ‘trend’: from 14.9% in 2009 to 18% in 2011
Unusual Host Names

CN=plesk or similar
- Found in 7.3% of certificates
- Verified: Plesk/Parallels panels

CN=localhost
- 4.7% of certificates
- Very common: redirection to HTTP after HTTPs
Host Names in Self-signed Certificates

Self-signed means:

- Issuer the same as subject of certificate
- Requires out-of-band distribution of certificate

Active scan

- 2.2% correct Common Name (CN)
- 0.5% correct Subject Alternative Name

Top 3 most frequent CNs account for > 50%

- plesk or similar in 27.3%
- localhost or similar in 25.4% – standard installations?
Certificate Occurrences

Many certificates valid for more than one domain

- Domains served by same IP
- Some certificates issued for dozens of domains
- Certificate reuse on multiple machines increases options for attacker

Often found on hosters

- E.g. *.blogger.com, *.wordpress.com
How often does a certificate occur on X hosts?

![Graph showing the probability of hosts per certificate exceeding X for different values of X. The graph compares all certificates with only valid certificates.]

- X values: 1, 10, 100, 1000, 10000
- Probability labels: $1e^{-5}$, $1e^{-4}$, 0.001, 0.01, 0.1
- Graph legend: triangles for all certificates, square for only valid certificates.
Certificate Chains

Intermediates Certificates
Finding more positive than negative:

- Trend to use intermediate certificates more often
- Allows to keep Root Certificates offline
- But chains still reasonably short
Validity Periods

CDF of validity periods, active scans

Pr[X < validity]

Nov2009
Apr2011

Validity (years)
Validity Periods

CDF of validity periods, scans and monitoring

Pr[X < validity]

Validity (years)

Nov2009
Apr2011
MON2, Apr2011

Ralph Holz: Public Key Infrastructures
Public Key Properties

Key types

- RSA: 99.98% (rest is DSA)
- About 50% have length 1,024 bit
- About 45% have length 2,048 bit
- Clear trend from 1,024 to 2,048 bit

Weird encounters

- 1,504 distinct certificates that share another certificate’s key
- Many traced to a handful of hosting companies
- Nadiah Henninger’s work: Embedded devices, poor entropy!
- www.factorable.net
Bug of 2008

- Generation of random numbers weak (bad initialisation)
- Only 2^{16} public/private key-pairs generated
- Allows pre-computation of private keys
- Debian ships blacklist of keys
Weak randomness in key generation – serious bug of 2008

![Graph showing the decrease in share of weak keys from 2010 to 2011](image)
CDF for RSA key lengths – double-log Y axis

Key length (bits)

Pr[X < length]

0.99999
0.9999
0.999
0.999
0.99
0.9
0.5
0.1
0.01
0.001
1e−04
1e−05
256 512 1024 2048 4096 8192

Key length (bits)

Tue–Nov2009
TUM–Sep2010
TUM–April2011
Symmetric Ciphers

Results from monitoring

- RSA_WITH_RC4_128_MD5 (!)
- RSA_WITH_AES_128_CBC_SHA
- DHE_RSA_WITH_AES_256_CBC_SHA
- RSA_WITH_AES_256_CBC_SHA
- RSA_WITH_RC4_128_SHA
- RSA_WITH_3DES_EDE_CBC_SHA (!)
- RSA_WITH_NULL_SHA
- DHE_RSA_WITH_CAMELLIA_256_CBC_SHA
- RSA_WITH_NULL_MD5 (!)
- DHE_RSA_WITH_AES_128_CBC_SHA
- others

(Mostly) in line with results from 2007 by Lee et al.

- Order of AES and RC4 has shifted, RC4-128 most popular
MD5 is being phased out

![Graph showing the prevalence of signature algorithms over time. The graph indicates a decrease in the use of MD5 and an increase in RSA/SHA1 and RSA/MD5 over the period from 1/1/2010 to 1/1/2011. The legend indicates different symbols for active scans from Germany, Monitoring, and active scans from China.]
Certificate Issuers

Very few CAs account for $> 50\%$ of certificates

- GoDaddy
- Equifax (several root certificates)
- Verisign (several roots)
- ‘plesk’
- Thawte (several roots)
- ‘localhost’ or similar
- GeoTrust (several roots)
- USERTRUST
- Comodo
- GlobalSign

But there are 150+ Root Certificates in Mozilla.
Certificate Quality

We defined 3 categories

- ‘Good’:
 - Correct chains, correct host name
 - Chain ≤ 2
 - No MD5, strong key of > 1024 bit
 - Validity ≤ 13 months

- ‘Acceptable’
 - Chain ≤ 3, validity ≤ 25 months
 - Rest as above

- ‘Poor’: the remainder
Validity correlates with rank

- Share of ‘poor’ certificates higher among high-ranking sites
Conclusion

In great part, the X.509 PKI is in a sorry state

- Only 18% of the Top 1 Million Web sites show fully valid certificates
- Invalid chains
 - Expired certificates are common
 - Often no recognisable Root Certificate
 - Lack of correct domain information information
- Frequent sharing of certificates between hosts is problematic
- Much carelessness
Certification practices are very poor. But crypto OK.

Some positive developments

- Very slight trend for fully valid certificates
- Chains short, intermediate certificates used
- Key lengths OK
- Weak MD5 algorithm is being phased out