

 Chair for Network Architectures and Services

Department of Informatics

TU München – Prof. Carle

Network Security

 Chapter 8

Application Layer Security

with friendly support by

P. Laskov, Ph.D.,

University of Tübingen

Network Security, WS 2014/15, Chapter 8 2

Application Layer Security

 WWW Security

 Identity Federation

Network Security, WS 2014/15, Chapter 8 3

Recap: Internet Protocol Suite

 TCP/IP stack has no specific representation for OSI layers 5, 6, 7

(„session“, „representation“, „application“):

the Application Layer is responsible for all three

Application Layer

Transport Layer

Network Layer

Data Link Layer
Interface to physical media

Routing between networks

End-to-end connectivity between

processes (port concept)

Application protocols:

e. g. HTTP, SIP, Instant Messengers, …

Physical Layer

Network Security, WS 2014/15, Chapter 8 4

Why Application Layer Security?

 So far, we were concerned with layers below the application layer:

 Cryptography (mathematics)

 Link Layer security

 Crypto protocols: IPSec, SSL, Kerberos…

 Firewalls

 Intrusion Detection

 There are attacks where these defenses do not work:

 Cross-Site Scripting, Buffer Overflows, …

 Possible because

 These attacks are not detectable on lower layers

( cf. WWW Security), or

 The mechanisms do not secure the correct communication end-points

( cf. Web Service Security, next lecture)

 In general, many applications need to provide their own security

mechanisms

 E. g. authentication, authorization

Network Security, WS 2014/15, Chapter 8 5

Part I: Introduction to the WWW

 Part I: Introduction to the WWW and

 Security Aspects

 Part II: Internet Crime

 Part III: Vulnerabilities and Attacks

Network Security, WS 2014/15, Chapter 8 6

Most important Web technologies

Name Used for Comment

HTML Document structure …

CSS Document rendering …

HTTP Carrier protocol …

Cookies Session state keeping …

URL/URI Document location …

JavaScript Client-side computation and

interaction

…

Flash Client-side code execution …

… … …

Network Security, WS 2014/15, Chapter 8 7

Introduction to the World Wide Web

 You all know it – but what is it exactly?

 Conceived in 1989/90 by Tim Berners-Lee at CERN

 Hypermedia-based extension to the Internet on the

Application Layer

 Any information (chunk) or data item can be referenced by a

Uniform Resource Identifier (URI)

 URI syntax (defined in RFCs) :
<scheme>://<authority><path>?<query>#<fragment>

 Special case: URL (“Locator”)
http://www.net.in.tum.de/de/startseite/

 Special case: URN (“Name”)
urn:oasis:names:specification:docbook:dtd:xml:4.1.2

 Probably the best-known application of the Internet

 Currently, most vulnerabilities are found in Web applications

Network Security, WS 2014/15, Chapter 8 8

HTML and Content Generation

 HTML is the lingua franca of the Web

 Content representation: structured hypertext documents

 HTML documents – i. e. Web pages – may include:

• JavaScript: script that is executed in browser

• Java Applets: Java program, executed by Java VM

• Flash: multimedia application, executed (played) by Flash player

 Today, much (if not most) content is created dynamically by
server-side programs

 (Fast-)CGI: interface between Web server and
such a server-side program

 Possible: include programs directly as modules in Web server
(e.g. Apache)

 Often, dynamic Web pages also interact with the user

 Examples: searches, input forms  think of online banking

 Examples of server-side technology/languages:

 PHP, Python, Perl, Ruby, …

 Java (several technologies), ASP.NET

 Possible, but rare: C++ based programs

Network Security, WS 2014/15, Chapter 8 9

HTTP

 HTTP is the carrier protocol for HTML

 Conceived to be state-less: server does not keep state information about

connection to client

 Mostly simple GET/POST semantics (PUT is possible)

 HTML-specific encoding options

 OK for the beginnings – but the Web became the most important

medium for all kinds of purposes (e. g. e-commerce, forums, etc.)

 today: real work flows implemented with HTTP/HTML

 need to keep state between different pages

 sessions

Network Security, WS 2014/15, Chapter 8 10

Sessions Over HTTP

 Sessions: many work-arounds around the state-less property

 Cookies (later)

 Session-IDs (passed in HTTP header)

 Parameters in URL

 Hidden variables in input forms (HTML-only solution)

 Session information is a valuable target

 E. g., online banking: credit card or account information

 Session IDs in the URL can also be a weakness

 Can be guessed or involuntarily compromised (e. g. sending a link)

 “session hijacking”

 GET command may encode parameters in the URL

 Can be a weakness

 Some URLs are used to trigger an action, e.g.
http://www.example.org/update.php?insert=user

 Attacker can craft certain URLs ( Cross-Site Request Forgery)

Network Security, WS 2014/15, Chapter 8 11

HTTP Authentication

 HTTP Authentication

 Basic Authentication: not intended for security

• Server requests username + password

• Browser answers in plain text  relies on underlying SSL for security

• No logout! Browser keeps username and password in cache

 Digest Authentication: protects username + password

• Server also sends a nonce

• Browser reply is MD5 hash: md5(username,password,nonce)

• No mutual authentication – only client authentication

• More secure and avoids replay attacks, but MD5 is known

to have weaknesses

• SIP uses a similar method

 HTTP authentication often replaced with other methods

 Requires session management

 Complex task

Network Security, WS 2014/15, Chapter 8 12

Cookies

 Small text files that the server asks the browser store

 Client authenticates to server, receives cookie with a secret value

 Uses this value to keep the session alive when transmitting HTTP(s)

 Problematic: which cookies is a site allowed to access?

 abc.com must not access cookies for xyz.com

 Cookies come with a security policy implemented in the browser

 Problematic:

 Cookie scope can be set via domain parameter, but need for care

 Some browsers allow to restrict scope to a host name;

others only to a domain

 Example: cookie set at foo.example.com

 value of domain Non-IE Internet Explorer

(omitted) foo.example.com *.foo.example.com

bar.example.com not set, domain mismatch not set, domain mismatch

example.com *.example.com *.example.com

Network Security, WS 2014/15, Chapter 8 13

Cookies: a few more aspects

 Cookies can be exploited to work against privacy

 User tracking: identify user and store information about browsing habits

 3rd party cookies: cookies that are not downloaded from the site you are

visiting, but from another one

• Can be used to track users across sites

 Cookies can be set without the user knowing

(there are reasonably safe standard settings)

 Security trade-off: many Web pages require cookies to work,

disabling them completely may not be an option

 Cookies may also contain confidential session information

 Attacker may try to get at such information ( Cross-Site Scripting)

Network Security, WS 2014/15, Chapter 8 14

JavaScript

 Script language that is executed on client-side (not only in browsers!)

 Originally developed by Netscape; today more or less a standard

 Object-oriented with C-like syntax, but multi-paradigm

 Allows dynamic content for the WWW  AJAX etc.

 Allows a Web site to execute programs in the browser

 The Web is less attractive without JavaScript – but anything that is

downloaded and executed by a client may be a security risk

Network Security, WS 2014/15, Chapter 8 15

JavaScript

 Security Issues:

 Allows authors to write malicious code

 Allows cross-site attacks (we look at these a bit later in this lecture)

 Defenses:

 Sandboxing of JavaScript execution

• Difficult to implement

 Same-origin policy (SOP)

Network Security, WS 2014/15, Chapter 8 16

Same-Origin Policy (SOP)

 One of the stronger defences for JavaScript

 One JavaScript context should not be able to modify the context of another

 Such access is otherwise possible with the Document Object Model API

 All browsers have a SOP – with OK consistency (IE is a bit different)

 Original idea (Netscape, 1995!):

 Two JavaScript contexts are allowed access to each other if and only if

protocols, host names and ports associated with the documents in

question match exactly

 Originating doc Accessed doc Non-IE Internet Explorer

http://abc.com/a/ http://abc.com/b/ Access OK Access OK

http://ab.com/ http://www.abc.com Host mismatch Host mismatch

http://abc.com/ https://abc.com/ Protocol mismatch Protocol mismatch

http://abc.com:81/ http://abc.com/ Port mismatch Access OK (!)

Network Security, WS 2014/15, Chapter 8 17

Same-Origin Policy (SOP)

 Critique of SOP:

 Sometimes too restrictive: two co-operating Web sites abc.com and

xyz.com cannot exchange information

 Sometimes too broad: SOP can be violated

 Trying to make the SOP less restrictive is dangerous:

 Common way: use JS property document.domain

 Two sites sharing the same top-level-domain can agree to share context

 Symmetric: both sites must opt-in and define the property

 Critique: too broad

• Assume login.abc.com wants to share with payments.abc.com and set

document.domain to abc.com – suddenly all sub-domains are included,

even mallory.abc.com

 Better method: use postMessage() as defined for HTML 5

 Based on notion of JavaScript handle – allows to send to another window

for which senders holds a handle

Network Security, WS 2014/15, Chapter 8 18

Same-Origin Policy

 The SOP only refers to JavaScript interactions

 It does not cover any other interactions and credentials, like:

 State of SSL connection – good authentication or not

 IP connectivity – SOP matches via host names

 Information in cookies (they have their own kind of SOP)

 Example:

 Assume two windows A and B in a browser, co-operating within SOP

 A is a site with login, and user is logged in as „Alice“

 A and B will now remain same-origin even if the user logs out as Alice and

logs in again as Bob

 Here, SOP provides no notion at all of „identity in a session“

 Interesting fact:

 The XMLHttpRequest mechanism used in AJAX (Web 2.0) has a

tweaked SOP

 document.domain does not work

 And IE supports ports, too

Network Security, WS 2014/15, Chapter 8 19

Most important Web technologies

Name Used for Comment

HTML Document structure Often abused for representation;

theoretically XML/SGML-based;

requires diligent parsing

CSS Document rendering Some parts in the standard can be

exploited

HTTP Carrier protocol Several versions; stateless

Cookies Session state keeping Need to prevent cross-domain

interactions

URL/URI Document location Inconsistent interpretation of RFCs;

requires diligent parsing

JavaScript Client-side computation and

interaction

Requires safe execution environment

Flash Client-side code execution Requires safe execution environment

… … … there‘s much more …

Network Security, WS 2014/15, Chapter 8 20

Part II: Internet Crime

 Part I: Introduction to the WWW and

 Security Aspects

 Part II: Internet Crime

 Part III: Vulnerabilities and Attacks

Network Security, WS 2014/15, Chapter 8 21

Vulnerabilities: some numbers

 3,462 vs 2,029 web/non-web application vulnerabilities were

discovered by Symantec in 2008

 Average exposure time: 60 days

 12,885 site-specific XSS vulnerabilities submitted to XSSed

in 2008 alone

 Only 3% of site-specific vulnerabilities were fixed by the end of 2008

 The bad guys are not some hackers who “want to know how it works”

 These days, it’s a business!

 “Symantec Underground Economy Report 2008”:

“Moreover, considerable evidence exists that organized crime is

involved in many cases …“

[ed.: referring to cooperation between groups]

Network Security, WS 2014/15, Chapter 8 22

From the Symantec Report 2011

Network Security, WS 2014/15, Chapter 8 23

From the Symantec Report 2011

Network Security, WS 2014/15, Chapter 8 24

From the Symantec Report 2011

Network Security, WS 2014/15, Chapter 8 25

From the Symantec Report 2011

Network Security, WS 2014/15, Chapter 8 26

Just FYI: from the Symantec Report 2008

Network Security, WS 2014/15, Chapter 8 27

Just FYI: from the Symantec Report 2008

Network Security, WS 2014/15, Chapter 8 28

Just FYI: from the Symantec Report 2008

Network Security, WS 2014/15, Chapter 8 29

Just FYI: from the Symantec Report 2008

Network Security, WS 2014/15, Chapter 8 30

Part III: Vulnerabilities and Attacks

 Part I: Introduction to the WWW and

 Security Aspects

 Part II: Internet Crime

 Part III: Vulnerabilities and Attacks

Network Security, WS 2014/15, Chapter 8 31

Comparison: two classic vulnerabilities

Source: MITRE CVE trends

Network Security, WS 2014/15, Chapter 8 32

Classification of Attacks (incomplete)

Client-side Server-side

Common

implementation

languages

 C++ (e. g. Firefox)

 XULRunner

 Java

 Web Server:

 C++, Java

 Script languages

Common attack

types

 Drive-by downloads

 Buffer overflows

 Cross-Site scripting

 Code Injection

 SQL Injection

 (DoS and the like)

Result of attack  Malware installation

 Computer

 manipulation

 Loss of private data

 Defacement

 Loss of private data

 Loss of corporate

 secrets

Network Security, WS 2014/15, Chapter 8 33

One Step Back: why is the WWW so vulnerable?

 Many important business transactions take place

 Much functionality, much complexity in software

 many attack vectors, huge attack surface

 Even though we may implement protocols like TCP/IP really well, any (Web)

application that interacts with the outside world must be open by definition and

reachable even across a firewall

Network Security, WS 2014/15, Chapter 8 34

Application (Browser)

Informal Definition: Contexts

 Context (in general): collection of information that belongs to a particular session or process

 Useful abstraction that helps us to classify the target of an attack

 Here: not a formal definition, nor a model of actual implementation

 User Context (in a browser):

 Collection of all information that “belongs” to a given session

 Cookies, session state variables, plugin-specific information…

 JavaScripts: downloaded and executed  obey same-origin policy!

 Information from session A should not be accessible from Session B

 Client and server must remain synchronized w.r.t. state information

User Context A User Context B User Context C

Cookies

Scripts

Plugin info

Etc…

Cookies

Scripts

Plugin info

Etc…

Cookies

Scripts

Plugin info

Etc…

Network Security, WS 2014/15, Chapter 8 35

Attack 1: Session Variables

 Target of attack:

Synchronization of state information between client and server

(in other words: the session management is attacked)

 Typical scenario:

Exchange between client and server that takes

several steps to complete

 Typical approach of attack:

Swap state information during one step

 Cause of vulnerability:

Server (or client) relies on information sent by the other party

instead of storing it itself

 Best explained by example. Here:

Server: a CA that can issue X.509 certificates

Client: a Web browser that wants to acquire such a certificate

Network Security, WS 2014/15, Chapter 8 36

Attack 1: How the Work-Flow Should Be

A: Request cert for domain xyz.de

2) Background:

Ownership verification

State:

ACA

xyz.de

Offer

for

xyz.de

by CA

Has

cert

State:

ACA

xyz.de

A owns

xyz.de

(A pays

for

xyz.de)

CA: Offer cert for domain xyz.de

A: Acknowledge request: cert for domain xyz.de

CA: Issue cert for domain xyz.de

Question: where do you keep the session information?

If your answer is “in the cookie”: serious mistake.

In fact, the CA must NOT trust information by the browser. We show you why now.

Browser = client CA = server

Network Security, WS 2014/15, Chapter 8 37

Attack 1:

How to Attack the Synchronization of State Information

A: Request cert for domain xyz.de

2) Background:

Ownership verification

State:

ACA

xyz.de

Offer

for

xyz.de

by CA

Has

cert!!!

State:

ACA

xyz.de

A owns

xyz.de

(A pays

for

xyz.de)

CA: Offer cert for domain xyz.de

A: Acknowledge request: cert for domain mozilla.com

CA: Issue cert for domain
mozilla.com

Browser = client CA = server

Swap variables on the fly

In this example, all state information is stored on client-side and retransmitted in

each step (e. g. by reading from a cookie). The server does not store state.

Network Security, WS 2014/15, Chapter 8 38

Why Was the Attack Possible?

 In our example, all state information was kept on client-side in a cookie

 All the attacker did was to swap mozilla.com for xyz.de in the

second HTTP request

 The server issued a cert for the wrong domain because it failed to notice that

the domain name in the first request was not the same as the name in the

second request.

 That was possible because the relevant information was not stored

on server-side

 Do you think this is too easy and will not happen “in the real world”?

 In fact, something like this may have happened in the

beginning of 2009 to a CA that is included in Firefox’s root store.

 Background info:

• The attack did not succeed – because there was a second line of defense:

all “high-value” domain names are double-checked by human personnel.

 The CA publicly acknowledged there was an intrusion.

• The CA described an attack pattern that hinted at what we have just seen.

• The CA contacted the attacker – it was a White Hat

Network Security, WS 2014/15, Chapter 8 39

Defense / Mitigation

 Guideline 1: For each entity in the protocol:

 Everything that is relevant for the correct outcome must be stored locally

 It can be difficult to identify this information if you have

complex work-flows…

 Guideline 2: All Input Is Evil

 Always treat all input as untrusted

 Never use it without verification

 Nota bene: what if the server uses Javascript/Java to “force” browser

to behave correctly?  just use a HTTP proxy  NOT a defense!

 This was just a simple attack because an entity failed to obey these

rules.

 In particular, Guideline 1 was violated.

 However, in the following, we show you that attacks are possible even

if state is stored correctly and only Guideline 2 is violated.

Network Security, WS 2014/15, Chapter 8 40

Cross-Site Scripting (XSS)

 Target of attack:

Attempt to access user context from outside the session

Goal is to obtain confidential information from the user context

 Typical scenario:

User surfing the Web and accessing a Web site

while having (Java)script enabled

 Typical approach to attack:

Attacker plants a malicious script on a Web page;

the script is then executed by the user’s browser

 Cause of vulnerability: two-fold

1) Attacker is able to plant malicious script on a Web page

 flaw in Web software needed

2) User browser executes script from a Web page

 user’s “trust” in Web site is exploited

 XSS is one of the most common attacks today

Network Security, WS 2014/15, Chapter 8 41

Cross-Site Scripting: Typical Attack

 Stage 1: Attacker injects malicious script

 Here: in a Web forum where you can

post messages

 In addition to normal text, the attacker writes:
<script>[malicious function]</script>

 The server accepts and stores this input

 Stage 2: Unaware user accesses Web forum

 Here: reads poisoned message from attacker

 User receives:
<p>Hello, this is a harmless message

<script>[malicious function]</script>

</p>

 Everything within <script> is executed by

browser in the user’s context

 Possible Consequences:

 Script reads information from cookies etc.

and sends it to attacker’s server

 Script redirects to other site

 download trojan etc.

.js

Network Security, WS 2014/15, Chapter 8 42

Cross-Site Scripting: Why Does it Work?

 Why was the attack possible?

 Reason 1: The Web application did not sanitize input it received

 Remember: all input is evil; and the attacker can choose his input

 If the Web app had just dropped all HTML input, there would be no script uploaded

 and none executed in the browser

 Unfortunately, many Web sites allow users to post at least some HTML

 a nice feature, but dangerous

 Reason 2:

The user had trusted the Web site and did not assume

malicious content could be downloaded and executed

 abuse of trust

 Nota bene: none of the mechanisms you know so far is a defense!

 Crypto protocols: encrypting/signing does not help here

 Firewalls: work on TCP/IP level

 XSS is a particularly useful example to show why there is a need

for application layer security

Network Security, WS 2014/15, Chapter 8 43

Cross-Site Request Forgery (XSRF)

 Target of attack:

User-Server context: session of client A with a server B

 Typical scenario:

Authenticated user on a Web page on B which is OK and trusted;

then the user surfs to server M which is malicious

 Typical approach to attack:

 Attacker knows that user is logged in

 crafts a URL to server B that executes an action

 Attacker causes victim to call that URL

 Cause of vulnerability:

 Attacker URL is called by user; within his user context

 abuse of server’s trust into requests from client

 Browser cannot recognise that request to the URL is malicious

 it seems to be in the correct context

 instance of “Confused Deputy” problem (browser is deputy):

 authority of deputy (login to B) is abused

Network Security, WS 2014/15, Chapter 8 44

Cross-Site Request Forgery (XSRF)

 Stage 1: user logs into Web site

 Authenticated user

 Session with server B

 User keeps this session open

 Stage 2: attacker tricks user to surf

 to his own site, server M. Methods:

 Phishing

 XSS

 Stage 3: user surfs to malicious server M

 In the HTML he receives, a malicious

link is embedded

<p>harmless text</p>

<img

src=“https://www.serverb.com/

myApp?cmd=sell&item=f450&

price=1eur” />

<p>more harmless text</p>

Server B

Server M

 undesired action executed

Network Security, WS 2014/15, Chapter 8 45

Defence against XSRF

 Particularly good defence against XSRF: Secret Tokens

 I.e. a Web site requires that the client (browser) proves

knowledge of a secret value before acting on a URL

 Requires: server needs to transmit this value first, can be done

via hidden field in input form etc.

 Advantage:

 Reliable if secret values cannot be guessed

 Disadvantage:

 State-keeping on server-side necessary

Network Security, WS 2014/15, Chapter 8 46

SQL Injection

 Target of attack:

Server context

 Typical scenario:

Web server runs with an SQL database in the background;

attacker wants to extract or inject information to/from the database

 Typical approach to attack:

Attacker writes SQL code into an input form, which is then passed to

the SQL database; evaluated and output returned

 Cause of vulnerability:

Web server does not sanitize the input and accepts SQL code

 SQL Injection is a real classic attack

Network Security, WS 2014/15, Chapter 8 47

SQL Injection

 Attacker injects SQL into search form:

 The author of the Web page may have intended to execute:
SELECT author,book FROM books WHERE book = ‘$title’;

 Through the SQL injection, this has become something like:
SELECT author,book FROM books

WHERE book = ‘’; SELECT * FROM CUSTOMERS; DROP TABLE

books;

 You just lost your catalogue and compromised your customers data

 Amazon, of course, is too clever not too sanitize their input – but it is

amazing how many other Web sites fail to do so!

 Fortunately, this exact example won’t work anymore

Network Security, WS 2014/15, Chapter 8 48

Sanitize or Be Sorry

Network Security, WS 2014/15, Chapter 8 49

General defences for XSS, XSRF, SQL Injection

 Some options on client-side against XSS/XSRF:

 JavaScript is often a must for many “good” Web pages

 turning it off is not an option

 better sandboxing?  very complex

 Turning on some security settings can provide some security

 unfortunately, these are often not activated by default

 Better protection can be achieved on server-side:

 Treat all input as untrusted

 Sanitize your input and output: proper escaping

• Escape (certain) HTML tags and JavaScript

• Exceedingly difficult and complex task!

• Whitelisting is better than blacklisting – the black list may grow

 Do not write your own escaping routines

 Modern script languages offer this functionality

Network Security, WS 2014/15, Chapter 8 50

Buffer Overflows

 Target of attack:

Running process on a server (process has a context!)

 Typical scenario:

An application that is accessible on the Internet and

has a certain built-in flaw

Vulnerable C(++)-based application on the Internet

 Typical approach to attack:

 Attacker sends byte stream to vulnerable application;

either causing it to crash or to execute attacker code in the

process context of the application

 Cause of vulnerability: two-fold

 Buffer overflow in application  serious programming mistake

(root cause: von Neumann machine)

 Application does not check its input

Network Security, WS 2014/15, Chapter 8 51

Buffer Overflows

 von Neumann machine:

program and data share memory

 Applies to all kinds of software

 Memory segments:

 text – program code

 data – initialized static data

 bss – unitialized static data

 heap – dynamically allocated memory

 stack – program call stack

 The vulnerability is in the code:

 Programmer creates buffer on the stack and does not

check its size when writing to it
char* buffer; readFromInput(buffer);

 Exploit:

 Because of the way the stack is handled, you can

overwrite the return address

Network Security, WS 2014/15, Chapter 8 52

Buffer Overflows

 Stack is composed of frames

 Pushed on the stack during function invocation, and

popped back after returning

 Each frame comprises

 functions arguments

 return address

 frame pointer to start address of previous frame

 local variables

 Stack grows to bottom; local variables are written

towards top

 Without proper boundary checking, a buffer content

can overspill into adjacent area

 Attacker:

 Find out the offset to the return address

 Write data to the buffer: overwrite return address,

add your own code

 Application continues to run from the new address,

executing the new code

Network Security, WS 2014/15, Chapter 8 53

Simple Code Example

#include <stdio.h>

#include <string.h>

int vulnerable(char* param)

{

 char buffer[100];

 strcpy(buffer, param);

}

int main(int argc, char* argv[])

{

 vulnerable(argv[1]);

 printf(“Everything's fine\n”);

}

(from [ISec2010])

Network Security, WS 2014/15, Chapter 8 54

Buffer Overflows

 Buffer overflows are mostly a problem for applications written in

languages with direct control over memory (like C/C++)

 These are becoming less frequent on Web servers, and checks have

become better: correspondingly, we observe a switch to other attacks

 Mitigation of this kind of exploit:

 Data execution protection:

mark certain areas in memory as non-executable

 Address space layout randomization: choose stack memory

allocation at random (“hardened kernels” do this)

 Support by operating system helps

 The latter two are very effective together

 Canaries: preceed the return value with a special value:

before following the return value, check if is still the same

 Be careful when writing in C/C++, use up-to-date compilers, use the

defences the hardware and OS offers

Network Security, WS 2014/15, Chapter 8 55

Summary

 Web applications have a natural attack surface:

they must accept input from outside

 Very complex interactions between protocols, client+server:

 Difficult to find all weaknesses in advance

 In part due to the many mechanisms for session management

 Typical attacks:

 Cross-Site Scripting (XSS): violation of user context, abuse of user trust

 Cross-Site Request Forgery: confused deputy

 SQL injection

 Buffer overflows

 Defenses:

 Most important defense is to sanitize and validate input data

 All input is evil

 Also, be aware of your {user,server,process} contexts

 Conventional defenses like cryptography or firewalls are no protection

Network Security, WS 2014/15, Chapter 8 56

Application Layer Security

 10.1: WWW Security

 10.2: Identity Federation

Network Security, WS 2014/15, Chapter 8 57

Rental Cars Inc.

Identity Federation As Shared Authentication

 Entity Bob wishes to do business:

 Bob wants to reserve a flight from Flights Inc.

 Bob also wants to rent a car from Rental Cars Inc.

 On booking the flight, Bob consents to federate an identity

 A pseudonym for use with Rental Cars Inc. is generated

 Bob is redirected to Rental Cars Inc. with a security token that proves his membership with Flights Inc. (with the
pseudonym!)
Assertion: “pseudo_bob is a member of domain Flights Inc.“

 Identity Federation: propagation of trust / authentication across organizational boundaries

Flights Inc. Trust

relationship

Network Security, WS 2014/15, Chapter 8 58

Identity Provider

 Example may be extended by having a third party acting as the Identity Provider

 for Bob

 Bob authenticates with credential from Identity Provider

Rental Cars Inc. Flights Inc.

Trust relationships:

“Circle of Trust”

Network Security, WS 2014/15, Chapter 8 59

Identity Federation: Concepts

 Concept is not new: sharing of Identities between organisations

 Portability of an identity

 You know similar concepts, e. g. Kerberos

 Use-cases:

 Allows users (or Web Services) to access services

outside their own administrative domain

 Most common example: Single Sign-On

 Several standards implement Identity Federation,

also with Web Service technology, esp. SAML:

 WS Federation (OASIS), part of the Web Services suite

 ID-FF by Liberty Alliance

 Shibboleth (Internet2)

 OpenID: decentralized, more “community-oriented” and

simpler standard

Network Security, WS 2014/15, Chapter 8 60

Identity Federation: Concepts

 The basic schema is always the same
 An entity has an Identity Provider (IdP) vouching for its identity

 In order to access a service, the entity requests a credential from IdP
• May be explicitly for the service or generic

 Entity presents this credential to the Service Provider

 Participants in an Identity Federation form a “Circle of Trust”
 Within this circle of trust, an entity may use its federated identity to

authenticate, access services etc.

 Any organisation may act as an Identity Provider
(if it is trusted by reyling participants)

 Nota bene: concepts like Identity Management that (may) build on Identity Federation require
much more than the pure security concepts we present here

 Validity between domains

 Expiry

 Secure administration

 Roles & Access Control

 Etc.

Network Security, WS 2014/15, Chapter 8 61

Identity Federation: Relationships 1

 Simple model: direct trust between organisations
 Each organisation has an Identity Provider

 Requester asks for a credential from his Identity Provider and presents it to the STS of the Service Provider
he wishes to access

 That STS may then grant access to the service

 Each participant may follow his own policies in this process

Note:

STS = Security

Token Service

Network Security, WS 2014/15, Chapter 8 62

Identity Federation: Relationships 2

 Extended model: trust between organisations is mediated

by a Trusted Third Party

Note:

STS = Security

Token Service

Network Security, WS 2014/15, Chapter 8 63

Identity Federation: Relationships 3

 Extended model with delegation:

 In order to fulfill a request, a resource accesses another (third-party) resource first

 First resource acts “on behalf” of requestor

Note:

STS = Security

Token Service

Network Security, WS 2014/15, Chapter 8 64

References WWW Security

[RFC3986] Uniform Resource Identifier (URI): Generic Syntax.

 RFC 3986. http://tools.ietf.org/html/rfc3986

[RFC2965] HTTP State Management Mechanism. RFC 2965.

 http://tools.ietf.org/html/rfc2965

[ECMA262] ECMAScript Language Specification.

 http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf

[Sym2009] Symantec. Symantec Report on the Underground Economy. Symantec. 2009.

 http://www.symantec.com

[HoEnFr2008] T. Holz, M. Engelberth, F. Freiling. Learning More About the Underground

 Economy: a Case Study of Keyloggers and Dropzones. Technical Report TR-

 2008-006. Universität Mannheim. 2008.

[Za2011] M. Zalewski. The Tangled Web – a guide to securing modern Web applications.

 No Starch Press. 2011.

[HoLe2002] M. Howard, D. LeBlanc. Writing Secure Code. Microsoft Press. 2002.

[Wil2009] T. Wilhelm. Professional Penetration Testing. Syngress Media. 2009.

[ISec2010] International Secure Systems Lab. http://www.iseclab.org. 2010.

[Mo2010] Timothy D. Morgan. Weaning the Web off of Session Cookies: Making Digest

 Authentication Viable.

 http://www.vsecurity.com/download/papers/WeaningTheWebOffOfSessionCookies.pdf

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc2965
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.symantec.com/
http://www.iseclab.org/
http://www.vsecurity.com/download/papers/WeaningTheWebOffOfSessionCookies.pdf

Network Security, WS 2014/15, Chapter 8 65

References Web Service Security

[XMLEnc] W3C. XML Encryption.
 http://www.w3.org/standards/techs/xmlenc.

[XMLDSig] W3C. XML Signature.
 http://www.w3.org/standards/techs/xmlsig

[Gu2004] P. Gutmann. Why XML Security is Broken.
 http://www.cs.auckland.ac.nz/~pgut001/pubs/xmlsec.txt. 2004.

[RoRe2004] J. Rosenberg, D. Remy. Securing Web Services with
 WS-Security. SAMS Publishing. 2004.
[XMPPSig] RFC 3923. End-to-End Signing and Object Encryption for the
 Extensible Messaging and Presence Protocol (XMPP).
[iSecAttack] iSEC Partners. Attacking XML Security.
 http://www.isecpartners.com/files/iSEC_HILL_AttackingXMLSecurity_bh07.pdf

[SAML2010] OASIS. OASIS Security Services (SAML) TC.
 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

[OWASP] Open Web Application Security Project. 2010.
 http://www.owasp.org

[WSI] Web Services Interoperability Organization. Basic Security
 Profile Version 1.0. 2010.

 http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

[OpenID] OpenID Foundation Web Site. http://openid.net/

[iSec2010] iSEC Partners. Attacking XML Security.
 http://www.isecpartners.com/files/iSEC_HILL_AttackingXMLSecurity_bh07.pdf

http://www.w3.org/standards/techs/xmlenc
http://www.w3.org/standards/techs/xmlsig
http://www.cs.auckland.ac.nz/~pgut001/pubs/xmlsec.txt. 2004
http://www.isecpartners.com/files/iSEC_HILL_AttackingXMLSecurity_bh07.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.owasp.org/
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://openid.net/
http://www.isecpartners.com/files/iSEC_HILL_AttackingXMLSecurity_bh07.pdf

