Network Security

Chapter 8

System Vulnerabilities and Denial of Service Attacks
Introduction and Threat Overview
- Denial of Service Threats
- DoS Attacks: Classification
- System Vulnerabilities
- Honeypots
- Upcoming Challenges
A High Level Model for Internet-Based IT Infrastructure

- **Private Networks**
- **Public Internet**
- **Mobile Communication Networks**
 - Access Network
 - Web-Servers etc.

- **Support Infrastructure**
 - Network Management
 - DNS Server

- **Sensor Networks**
- **ISP Networks**
Introduction and Threat Overview
Denial of Service Threats
DoS Attacks: Classification
System Vulnerabilities
Honeypots
Upcoming Challenges
Denial of Service

What is Denial of Service?

- Denial of Service (DoS) attacks aim at denying or degrading legitimate users’ access to a service or network resource, or at bringing down the servers offering such services.

Motivations for launching DoS attacks:

- Hacking (just for fun, by “script kiddies”, ...)
- Gaining information leap (→ 1997 attack on bureau of labor statistics server; was possibly launched as unemployment information has implications to the stock market)
- Discrediting an organization operating a system (i.e. web server)
- Revenge (personal, against a company, ...)
- Political reasons ("information warfare")
- ...

Network Security, WS 2011/12, Chapter 8
Denial of Service Attacking Techniques

- **Resource destruction** (disabling services):
 - Hacking into systems
 - Making use of implementation weaknesses as buffer overflow
 - Deviation from proper protocol execution

- **Resource depletion** by causing:
 - Storage of (useless) state information
 - High traffic load (requires high overall bandwidth from attacker)
 - Expensive computations (“expensive cryptography”!)
 - Resource reservations that are never used (e.g. bandwidth)

- **Origin of malicious traffic**:
 - Genuineness of source addresses: either genuine or forged
 - Number of sources:
 - single source, or
 - multiple sources (*Distributed DoS, DDoS*)
Examples: Resource Destruction

- **Ping-of-Death:**
 - Maximum size of TCP/IP packet is 65536 bytes
 - Oversized packet may crash, freeze, reboot system

- **Teardrop:**
 - Fragmented packets are reassembled using the Offset field.
 - Overlapping Offset fields might cause system to crash.
Resource Depletion Example 1: Abusing ICMP

- Two main reasons make ICMP particularly interesting for attackers:
 - It may be addressed to broadcast addresses
 - Routers respond to it

- The Smurf attack - ICMP echo request to broadcast:
 - An attacker sends an ICMP echo request to a broadcast address with the source address forged to refer to the victim
 - local broadcast: 255.255.255.255;
 - directed broadcast: (191.128.0.0/24) 191.128.0.255
 - Routers (often) allow ICMP echo requests to broadcast addresses
 - All devices in the addressed network respond to the packet
 - The victim is flooded with replies to the echo request
 - With this technique, the network being abused as an (unaware) attack amplifier is also called a reflector network:
Resource Depletion Example 2: TCP-SYN Flood

- **Category Storage of useless state information:**
 - Here: TCP-SYN flood attack

TCP SYN packets with forged source addresses ("SYN Flood")

TCP SYN ACK packet to assumed initiator ("Backscatter")
Resource Depletion with Distributed DoS (1)

- Category *Overwhelming the victim with traffic*
- Attacker intrudes multiple systems by exploiting known flaws
- Attacker installs DoS-software:
 - „Root Kits“ are used to hide the existence of this software
- DoS-software is used for:
 - Exchange of control commands
 - Launching an attack
 - Coordinating the attack
The attacker classifies the compromised systems in:

- Master systems
- Slave systems

Master systems:
- Receive command data from attacker
- Control the slaves

Slave systems:
- Launch the proper attack against the victim

During the attack there is no traffic from the attacker
Different Attack Network Topologies

a.) Master-Slave-Victim

b.) Master-Slave-Reflector-Victim
Resource Depletion with CPU Exhaustion

- Category *CPU exhaustion by causing expensive computations*:
 - Here: attacking with bogus authentication attempts

 Attacker

 attacker requests for connection with server

 server asks ‘client’ for authentication

 attacker sends false digital signature, server wastes resources verifying false signature

 Victim

- The attacker usually either needs to receive or guess some values of the second message, that have to be included in the third message for the attack to be successful
- Also, the attacker, must trick the victim *repeatedly* to perform the expensive computation in order to cause significant damage

Be aware of DoS-Risks when introducing security functions into protocols!!!
System Vulnerabilities and Denial of Service Attacks

- Introduction and Threat Overview
- Denial of Service Threats
- DoS Attacks: Classification
- System Vulnerabilities
- Honeypots
- Upcoming Challenges
DoS Attacks: Classification

- Classification by exploited vulnerability
 - Software vulnerability attacks
 - Protocol attacks
 - Brute-Force / flooding attacks

- Classification by attack rate dynamics:
 - Continues rate
 - Variable rate:
 - Increasing
 - Fluctuating

- Classification by impact:
 - Disruptive
 - Degrading
Classification of DoS Attacks by Exploited Vulnerability (1)

- Based on the vulnerability that is targeted during an attack, DoS attacks can be classified into:
 - Software vulnerability attacks
 - Protocol attacks
 - Brute-Force / flooding attacks

- Some attacks can be classified into more than one of these categories. (see below)

- Software vulnerability attacks:
 - Here, software bugs are exploited.
 - Examples:
 - Cisco 7xx attack: Some Cisco 7xx routers were crashed by connecting with “Telnet” and typing a very long password
 ⇒ a password buffer overflow.
 - Ping-of-Death
 - Teardrop
Classification of DoS Attacks by Exploited Vulnerability (2)

- **Protocol Attacks**
 - Exploits a specific feature or implementation bug of the protocol.
 - Examples include:
 - TCP SYN flood attacks
 - Authentication server attacks
 - Ping-of-death
 - Teardrop

- **Brute-force Attacks / Flooding attacks:**
 - The victim is overwhelmed with a vast amount of seemingly legitimate transactions.
 - Brute-force attacks are further classified into two sub-categories:
 (see also next slide for more details)
 - Filterable attacks
 - Non-filterable attacks
Classification of DoS Attacks by Exploited Vulnerability (3)

- **Filterable attacks:**
 - The flood packets are not critical for the service offered by the victim, and therefore can be filtered.
 - Example: UDP flood or ICMP request flood on a web server.

- **Non-filterable attacks:**
 - The flood packets request legitimate services from the victim.
 - Examples include:
 - HTTP request flood targeting a Web server
 - CGI request flood
 - DNS request flood targeting a name server
 - Filtering all the packets would be an immediate DoS attack to both attackers and legitimate users.

- The victim might mitigate the effect of protocol attacks, by modifying the deployed protocol.

- However, the victim is helpless against brute-force attacks if they use legitimate services.
Classification of DoS Attacks by Attack Rate Dynamics

- Based on the attack rate dynamics that is targeted during an attack, DoS attacks can be classified into:
 - Continuous Rate Attacks
 - Variable Rate Attacks

- Continuous Rate Attacks:
 - The most frequent kind of attack
 - When the attack is launched, agent machines generate attack packets with a large constant rate.
 - The sudden packet flood disrupts the victim’s services quickly.
 - The attack may be noticed quickly.

- Variable Rate Attacks:
 - Vary the attack rate to avoid detection
 - The attack rate might be increasing over a long time or even fluctuating, which makes detection even harder.
Classification by Impact

- **Disruptive:**
 - The goal is to fully deny the victim’s service to its clients
 - The most common category of attacks

- **Degrading:**
 - A portion of the victim’s resources (e.g. 30%) are occupied by the attackers.
 - Can remain undetected for a significant time period
 - Customers experience slow response times or now service during high load periods.
 - Customers go to another Service Provider.
System Vulnerabilities: Basic Attacking Styles

- **Origin of attacks:**
 - Remote attacks: attacker breaks into a machine connected to same network, usually through flaw in software
 - Local attacks: malicious user gains additional privileges on a machine (usually administrative)

- **Main attacking techniques:**
 - *Buffer overflow:*
 - Intentional manipulation of program state by causing an area of memory to be written beyond its allocated limits
 - *Race condition:*
 - Exploiting non-atomic execution of a series of commands by inserting actions that were “unforeseen” by the programmer
 - *Exploiting trust in program input / environment:*
 - It is often possible to maliciously craft input / environment variables to have deleterious side effects
 - Programmers are often unaware of this
Identifying Vulnerable Systems with Port Scans (1)

- **Background**
 - Identification of vulnerable systems / applications in order to identify systems to compromise
 - Automated distribution of worms

- **Scan types**
 - **Vertical scan**: sequential or random scan of multiple (5 or more) ports of a single IP address from the same source during a one hour period
 - **Horizontal scan**: scan of several machines (5 or more) in a subnet at the same target port from the same source during a one hour period
 - **Coordinated scan**: scans from multiple sources (5 or more) aimed at a particular port of destinations in the same /24 subnet within a one hour window; also called distributed scan
 - **Stealth scan**: horizontal or vertical scans initiated with a very low frequency to avoid detection
System Vulnerabilities and Denial of Service Attacks

- Introduction and Threat Overview
- Denial of Service Threats
- DoS Attacks: Classification
- System Vulnerabilities
- Honeypots
- Upcoming Challenges
Honeypots (1)

- **A Honeypot** is a resource, which pretends to be an attacked or compromised real target, but is a redundant or isolated resource where the attacker can not do any real damage.

- **Motivation**
 - *Get to know the “enemy”!!*

- **Low-Interaction Honeypots:**
 - Emulated services (e.g. FTP) and emulated operations systems
 - Easier to deploy and maintain
 - Can log only limited information
 - Limited capture of activities

- **High-Interaction Honeypots**
 - Involves real operation systems and real applications
 - Can capture extensive amount of information
 - Problem: Attackers can use this real operating system to attack non-honeypot systems.
Honeypots (2)

- Honeypots can capture unknown attacks.
- Honeypots can slow down or even stop the spread of worms.
 - Worms scan for vulnerabilities, and take over the system.
 - A honeypot can slow the scanning capabilities of the worm and eventually stop it.
 - scan unused IP spaces
 - TCP window size is zero.

- Real systems cannot be taken offline for analysis.
 - They are often too critical.
 - They contain too much data pollution involved such as it is difficult to determine what the attacker actually did.

- Honeypots can quickly and easily be taken offline for a full forensic analysis.
- High-interaction honeypots are a very effective solution to prevent intrusion.
- They provide in-depth knowledge about the behavior of attackers.
System Vulnerabilities and Denial of Service Attacks

- Introduction and Threat Overview
- Denial of Service Threats
- DoS Attacks: Classification
- System Vulnerabilities
- Honeypots
- Upcoming Challenges
Some Upcoming Challenges

- The introduction of Internet protocols in classical and mobile telecommunication networks also introduces the Internet’s DoS vulnerabilities to these networks.
- Programmable end-devices (PDAs, smart phones) may constitute a large base of possible slave nodes for DDoS attacks on mobile networks.
- Software defined radio implementation may even allow new attacking techniques:
 - Hacked smart phones answer to arbitrary paging requests
 - Unfair / malicious MAC protocol behavior
 - ...
- The ongoing integration of communications and automation (sensor/actuator networks) may enable completely new DoS threats.