Motivation

- It is crucial to security that cryptographic keys are generated with a truly random or at least a pseudo-random generation process (see subsequently)
- Otherwise, an attacker might reproduce the key generation process and easily find the key used to secure a specific communication
- Generation of pseudo-random numbers is required in cryptographic protocols for the generation of
 - Cryptographic keys
 - Nonces (Numbers Used Once)
- Example usages
 - Key generation and peer authentication in IPSec and SSL
 - Authentication with challenge-response-mechanism, e.g. GSM and UMTS authentication
Random Number Generators

- **Definition:**
 A *random bit generator* is a device or algorithm which outputs a sequence of statistically independent and unbiased binary digits.

- **Remark:**
 - A random bit generator can be used to generate uniformly distributed random numbers
 - e.g. a random integer in the interval [0, n] can be obtained by generating a random bit sequence of length \(\lceil \log_2 n \rceil + 1 \) and converting it into a number.
 - If the resulting integer exceeds n it can be discarded and the process is repeated until an integer in the desired range has been generated.
Entropy

(c.f. Niels Ferguson, Bruce Schneier: Practical Cryptography, pp. 155ff)

- The measure for „randomness“ is called „entropy“
- Let X a random variable which outputs a sequence of n bits
- The Shannon information entropy is defined by:

$$H(X) = -\sum_x P(X=x) \ln_2(P(X=x))$$

- E.g. if all possible outputs are equally probable, then

$$H(X) = -\sum_{i=0}^{2^n-1} \left(\frac{1}{2^n} \right) \ln_2 \left(\frac{1}{2^n} \right) = -2^n \cdot \frac{1}{2^n} \cdot (-n) = n$$

- A secure cryptographic key of length n bits should have n bits of entropy.
- If k from the n bits become known to an attacker and the attacker has no information about the remaining $(n-k)$ bits, then the key has an entropy of $(n-k)$ bits
- A bits sequence of arbitrary large length that takes only 4 different values has only 2 bits of entropy
- Passwords that can be remembered by human beings have usually a much lower entropy than their length.
- Entropy can be understood as the average number of bits required to specify a bit-sequence if an ideal compression algorithm is used.
Pseudo-Random Number Generators (1)

- **Definition:**
 - A *pseudo-random bit generator (PRBG)* is a deterministic algorithm which, given a truly random binary sequence of length \(k \) (“seed”), outputs a binary sequence of length \(m \gg k \) which “appears” to be random.
 - The input to the PRBG is called the *seed* and the output is called a *pseudo-random bit sequence*.

- **Remarks:**
 - The output of a PRBG is not random, in fact the number of possible output sequences of length \(m \) with \(2^k \) sequences is at most a small fraction of \(2^m \), as the PRBG produces always the same output sequence for one (fixed) seed.
 - The motivation for using a PRBG is that it is generally too expensive to produce true random numbers of length \(m \), e.g. by coin flipping, so just a smaller amount of random bits is produced and then a pseudo-random bit sequence is produced out of the \(k \) truly random bits.
 - In order to gain confidence in the “randomness” of a pseudo-random sequence, statistical tests are conducted on the produced sequences.
Example:

A linear congruential generator produces a pseudo-random sequence of numbers y_1, y_2, \ldots. According to the linear recurrence

$$y_i = a \times y_{i-1} + b \mod q$$

with a, b, q being parameters characterizing the PRBG.

Unfortunately, this generator is predictable even when a, b and q are unknown, and should, therefore, not be used for cryptographic purposes.
Random and Pseudo-Random Number Generation (3)

- Security requirements of PRBGs for use in cryptography:
 - As a minimum security requirement the length k of the seed to a PRBG should be large enough to make brute-force search over all seeds infeasible for an attacker.
 - The output of a PRBG should be statistically indistinguishable from truly random sequences.
 - The output bits should be unpredictable for an attacker with limited resources, if he does not know the seed.

- **Definition:**
 A PRBG is said to pass all polynomial-time statistical tests, if no polynomial-time algorithm can correctly distinguish between an output sequence of the generator and a truly random sequence of the same length with probability significantly greater than 0.5.
 - *Polynomial-time algorithm* means, that the running time of the algorithm is bound by a polynomial in the length m of the sequence.
Random and Pseudo-Random Number Generation (4)

- **Definition:**
 - A PRBG is said *to pass the next-bit test*, if there is no polynomial-time algorithm which, on input of the first \(m \) bits of an output sequence \(s \), can predict the \((m + 1)\)st bit \(s_{m+1} \) of the output sequence with probability significantly greater than 0.5.

- **Theorem (universality of the next-bit test):**
 - A PRBG passes the next-bit test \(\iff \) it passes all polynomial-time statistical tests.
 - For the proof, please see section 12.2 in [Sti95a].

- **Definition:**
 - A PRBG that passes the next-bit test – possibly under some plausible but unproved mathematical assumption such as the intractability of the factoring problem for large integers – is called a *cryptographically secure pseudo-random bit generator (CSPRBG)*.
Hardware-Based Random Number Generation

- Hardware-based random bit generators are based on physical phenomena, as:
 - elapsed time between emission of particles during radioactive decay,
 - thermal noise from a semiconductor diode or resistor,
 - frequency instability of a free running oscillator,
 - the amount a metal insulator semiconductor capacitor is charged during a fixed period of time,
 - air turbulence within a sealed disk drive which causes random fluctuations in disk drive sector read latencies, and
 - sound from a microphone or video input from a camera

- A hardware-based random bit generator should ideally be enclosed in some tamper-resistant device and thus shielded from possible attackers
Software-based random bit generators, may be based upon processes as:
- the system clock,
- elapsed time between keystrokes or mouse movement,
- content of input-/output buffers
- user input, and
- operating system values such as system load and network statistics

Ideally, multiple sources of randomness should be “mixed”, e.g. by concatenating their values and computing a cryptographic hash value for the combined value, in order to avoid that an attacker might guess the random value
- If, for example, only the system clock is used as a random source, than an attacker might guess random-numbers obtained from that source of randomness if he knows about when they were generated

- Usually, such generators are used to initialize PRNGs, i.e. to set their seed.
De-skewing

- Consider a random generator that produces biased but uncorrelated bits, e.g. it produces 1’s with probability \(p \neq 0.5 \) and 0’s with probability \(1 - p \), where \(p \) is unknown but fixed.
- The following technique can be used to obtain a random sequence that is uncorrelated and unbiased:
 - The output sequence of the generator is grouped into pairs of bits.
 - All pairs 00 and 11 are discarded.
 - For each pair 10 the unbiased generator produces a 1 and for each pair 01 it produces a 0.

- Another practical (although not provable) de-skewing technique is to pass sequences whose bits are correlated or biased through a cryptographic hash function such as MD-5 or SHA-1.
The following tests allow to check if a generated random or pseudo-random sequence inhibits certain statistical properties:

- **Monobit Test:** Are there equally many 1’s as 0’s?
- **Serial Test (Two-Bit Test):** Are there equally many 00-, 01-, 10-, 11-pairs?
- **Runs Test:** Are the numbers of runs (sequences containing only either 0’s or 1’s) of various lengths as expected for random numbers?
- **Autocorrelation Test:** Are there correlations between the sequence and (non-cyclic) shifted versions of it?
- **Maurer’s Universal Test:** Can the sequence be compressed?

The above descriptions just give the basic ideas of the tests. For a more detailed and mathematical treatment, please refer to sections 5.4.4 and 5.4.5 in [Men97a]
Examples for PRNGs

- Linear Congruential Generator
 - \[X_{n+1} = (a \cdot X_n + b) \mod m \]
 - Very fast, but not suitable for cryptography!

- Suitable for cryptography
 - Blum Blum Shub

- On the basis of symmetric encryption
 - Output of block cipher in OFB or CTR mode
 - Output of a stream cipher (e.g. RC4)
 - Stream cipher = symmetric cipher that produces a random bitstream to be XORed with the plaintext

- On the basis of a cryptographic hash function
 - Iterate using hash function and seed, e.g.
 - \[X_0 = \text{seed} \]
 - \[X_{i+1} = H(X_i | \text{seed}) \]
Additional References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>