
On the Feasibility of a Censorship Resistant
Decentralized Name System

Matthias Wachs Martin Schanzenbach Christian Grothoff
Email: {wachs,schanzen,grothoff}@in.tum.de

Technische Universität München

Abstract. A central problem on the Internet today is that key infras-
tructure for security is concentrated in a few places. This is particularly
true in the areas of naming and public key infrastructure. Secret services
and other government organizations can use this fact to block access to
information or monitor communications. One of the most popular and
easy to perform techniques is to make information on the Web inaccessi-
ble by censoring or manipulating the Domain Name System (DNS). With
the introduction of DNSSEC, the DNS is furthermore posed to become
an alternative PKI to the failing X.509 CA system, further cementing
the power of those in charge of operating DNS.
This paper maps the design space and gives design requirements for
censorship resistant name systems. We survey the existing range of ideas
for the realization of such a system and discuss the challenges these
systems have to overcome in practice. Finally, we present the results
from a survey on browser usage, which supports the idea that delegation
should be a key ingredient in any censorship resistant name system.

1 Introduction

“The Domain Name System is the Achilles heel of the Web. The important thing is
that it is managed responsibly.” – Tim Berners-Lee

Recent global news [1] on extensive espionage and cyberwar efforts by
the US government and its “second class” allies, in particular the UK,
have been met by some with calls to “encrypt everything” [2]. While
this is hardly a solution for governments monitoring communication pat-
terns (meta-data) and accessing data stored in plaintext at major service
providers, encryption is clearly the baseline defense against government
intrusions and industrial espionage [3]. However, encryption is useless
without a secure public key infrastructure, and existing PKIs (DNSSEC,
X.509 or the German ePa) are easily controlled and bypassed by major
intelligence agencies. To realize the vision of an Internet where dissent
is possible, we thus need to create an alternative, decentralized method
for secure name resolution. Given a secure decentralized name system,



we can then begin to build secure decentralized solutions for communi-
cation (e-mail, voice) and social networking applications and liberate the
network from comprehensive government surveillance.

Today, the Domain Name System (DNS) is a key service for the In-
ternet. DNS is primarily used to map names to IP addresses. Names
are easier to remember for humans than IP addresses, which are used
for routing but generally not meaningful for humans. DNS thus plays a
central rôle for access to information on the Web; consequently, various
institutions are using their power — including legal means — to censor
or modify DNS information. These attacks on the DNS are sufficient to
threaten the availability and integrity of information on the Web [4]. Fur-
thermore, tampering with the DNS can have dramatic side effects, as a
recent study about the worldwide effects of China’s DNS censorship in
China shows [5]: Chinese censorship of DNS can result in invalid results
for parties that are far away from China. Many institutions like the Eu-
ropean Parliament [6] or the OpenNet initiative [7] realize the dangers
arising from DNS censorship, especially with respect to the importance
that obtaining free information on the Web had in in recent events as the
Arab Spring or the Green Revolution in Iran.

Significant efforts have been made to harden DNS against attacks with
DNSSEC providing data integrity and authenticity. These efforts are lim-
ited in their effect against institutional attackers performing censorship
using their oppressive or legal powers to modify the results of an DNS re-
quest; even if end-to-end security between authoritative DNS servers and
DNS clients were deployed, legal attacks coercing DNS authorities to hand
over control of names would still be possible. A hypothetical mandatory
DNSSEC deployment with end-to-end security providing integrity and
authenticity cannot prevent or even detect such attacks, as the censored
results would still be signed by a valid (albeit coerced) authority.

To prevent such attacks, we need a censorship resistant name sys-
tem ensuring availability and resilience of names. For such a censorship
resistant name systems, this paper advocates a solution in line with the
ideas of the GNU project. Richard Stallman, founder of the GNU project,
writes [8]: “When a program has an owner, the users lose freedom to con-
trol part of their own lives.” Similarly, ownership of a name implies the
existence of some authority to exercise control over the property, and thus
implies the possibility of coercion of that authority. Cryptographic iden-
tifiers can be created without the need for an authority; similarly, when
users locally assign values to private labels, as done in petname systems,
such personal labels also cannot be owned or confiscated.



Based on these two central concepts, this paper discusses the design
space and requirements for the “GNU Name System”, which would be a
fully-decentralized, ownership-less name system that provides censorship-
resistance, privacy and security against a wide range of attacks by strong
adversaries. We also discuss challenges alternative name systems face in
practice and present the results of a survey characterizing common usage
patterns of name systems on the Web.

2 Requirements Analysis

To analyze the requirements a censorship resistant name system has to
fulfill, we start with a practical adversary model and the attacks a system
has to withstand. Based on these, we then develop functional requirements
for a censorship resistant name system.

2.1 Adversary Model

The adversary used in this paper is modeled after nation state trying to
limit access to information on the Internet. Our adversary can participate
in any role in the system and can also assume multiple identities (Sybils)
without an upper bound in relation to the total number of participants.
The adversary can take over control of names using judicial or executive
powers and is allowed to have more computational power then all benign
users. This model excludes the use of a trusted third party.

On the other hand, the adversary cannot break cryptographic primi-
tives and not prevent the usage of cryptography or encrypted communi-
cation. The adversary is also not able to take direct control of the systems
of individual users, or at least if he does so, the system does not have to
protect the users that are directly affected by such actions. As far as net-
work communication is concerned, we assume that the adversary cannot
generally prevent communication between benign participants.

Our adversary’s goal is to prevent access to information on the Web
by affecting the name resolution process, either by making it fail or by
changing the value associated with an existing name. He can do so by
influencing or controlling parties participating in the name system.

Some name systems were designed with a weaker adversary model
in mind; in particular, the assumption that the adversary does not con-
trol the majority of the nodes or the majority of the computing power
is a popular model in computer security in general. However, censorship
resistance is typically an issue for activists, and thus hardly a topic for



the majority of Internet users. As a result, it is unlikely that any censor-
ship resistant name system is going to be used widely enough to compete
with the computational power available to major governments. Thus, we
advocate using the assumption that the adversary might have more com-
putational power than all other participants combined.

2.2 Functional Requirements

The basic functionality of a name system for the Internet is to map mem-
orable names to correct values. After all, name resolution provides names
for systems such that human beings can easily remember them, instead
of having to remember the more complicated (and possibly frequently
changing) address values used by the network.

One of the most important Internet services is the Web, and a funda-
mental building block for Web services is the ability to link to information
hosted on different systems; as humans often manually create these links,
links are specified using names. Thus, a name system should be designed
to support link resolution: a service provider must be able to link to a
foreign resource, and the users of the service must then be able to resolve
the name to an address for the intended destination.

3 Design Space for Name Systems

This section explores the theoretical design space for name systems; we
will structure our discussion on how a name system can be realized using
Zooko’s triangle [9], an insightful conjecture on the design space for name
systems (Figure 1).

Definition 1 (Memorable). A name is memorable if it is feasible for
an attacker in our adversary model to obtain it by enumerating names (bit
strings). In other words, the number of bits of entropy in a memorable
name is insufficient against enumeration attacks.

Definition 2 (Secure). A secure name system must enable benign par-
ticipants to register and retrieve correct name-value mappings while expe-
riencing active, malicious participants (which are assumed to follow the
adversary model described in Section 2.1).

Definition 3 (Global). The system supports an unlimited number of
participants without prior coordination or certification of participants. All
benign participants receive the same (global) values for the same names.



Secure

Global MemorableHierarchical Registration

C
ry

pt
og

ra
ph

ic
 Id

en
tifi

er
s

Petnam
e System

s

 mnemonic 
URLs

ce
rt

ifi
ca

te
s

SDSI

Fig. 1. Illustration of Zooko’s triangle and key approaches to name systems.

Theorem 1 (Zooko’s triangle). It is impossible to have a name system
that achieves memorable, secure and global names at the same time.

We confirmed with Zooko Wilcox-O’Hearn that these definitions rep-
resent the intended interpretation of his formulation. We show now that
Zooko’s triangle is a valid conjecture in our adversary model :

Proof. All participants, including the adversary, are supposed to be able
to register names under the “secure” property of the name system. As
names are memorable, an adversary can enumerate all possible names.
Thus, the adversary can perform a squatting attack by (if necessary)
assuming the identities of name system components that restrict regis-
tration and performing the necessary computations (we assumed he is
able to do those faster than the rest of the network combined). The ad-
versary can use this attack to register all memorable names. As names
are global, once the adversary has registered a name, that name can no
longer be registered by anyone else.

Thus, the squatting attack can prevent the registration of memorable
names by normal participants. Thus, in our security model, it is impos-
sible to create a secure, global name system where memorable names are
guaranteed to be available for registration by normal users.

A trusted authority in control of name assignments would easily pre-
vent such an attacker from being successful; however, the existence of



such an authority is outside of our security model. We would like to point
out that the proof given above is controversial in the research community.
We have had comments from reviewers ranging from assertions that the
theorem is a trivial (or at least well-known) fact that does not require
proof, to those questioning its veracity. We believe that this is the first
formalization of Zooko’s hypothesis and that the theorem holds in our
security model — and that it is false under weaker assumptions. Thus,
any name system in our security model must deemphasize one of the
properties from Definitions 1–3. Figure 1 describes the three major de-
sign approaches in this context. The edges of the triangle represent the
three simple designs, and the arrows towards the middle represent the
three main designs which move toward satisfying all three properties.

3.1 Hierarchical Registration

In Zooko’s triangle, a name system using hierarchical registration is a
name system providing global and memorable names; however, in the
hierarchical structure names are owned by organizations. These organi-
zations receive the power to manage a subspace of the namespace by
delegation from an organization ranked higher in the tree, which enables
censorship. The well-known DNS is a distributed database realizing access
to a name system with such a hierarchical structure.

In the original DNS, globally unique memorable names are managed
by a handful of organizations with no security guarantees [10]. DNSSEC
improves security by providing authenticity and integrity protection us-
ing cryptographic certificates; however, DNSSEC still requires trusted
authorities and is thus open to certain types of attacks in our adversary
model, as governments can typically easily compel a limited number of
easily identified service providers. In particular, given the delegation hi-
erarchy, an adversary can put pressure on organization to obtain control
over all subdomains. As a result, top-level domain providers are both ex-
tremely powerful and extremely high-value targets, as is the control over
the root zone itself.

3.2 Cryptographic IDs and Mnemonics

A name system that can securely map globally unique identifiers to val-
ues can be achieved using cryptographic identifiers as names. In such a
system security is achieved by certifying values using the private key asso-
ciated with the cryptographic identifier. Names are with high probability
globally unique. However, as cryptographic identifiers are long random



bitstrings, they are not memorable. An example for a deployed name
system with cryptographic identifiers is Tor’s “.onion” namespace [11].

The proposed Tor mnemonic URL system [12] aims to make the
“.onion” names more memorable by encoding the hashes names into
“human-meaningful” sentences. However, the resulting names will not
be memorable by our Definition 1 as the high entropy of the original
cryptographic identifiers remains. As (assuming sufficiently strong cryp-
tographic primitives are used) an adversary would not be able to enumer-
ate all cryptographic identifiers, Tor’s mnemonic URL system would not
result in memorable names as those names correspond to cryptographic
identifiers and thus could also not be enumerated. Finally, it is important
to note that Tor’s mnemonic URLs are still work in progress; it is thus
difficult to assess the usability of this approach.

3.3 Petnames and SDSI

A secure name system with memorable names can be created using so
called petnames. In a petname system, each user establishes names of his
choice for other entities [13]. Each user or service would be identified us-
ing a cryptographic identifier based on a public key; the service provider
can then sign mapping information to certify integrity and authenticity
of the data. Memorable names are achieved by mapping petnames to
cryptographic identifiers. While such a system can provide security and
memorability, the mappings are only local and petnames are meaningless
(or have a different meaning) for other users. A simple example of a pet-
name system is the /etc/hosts file that allows administrators to create
a mapping from hostnames to addresses for the local system.

Extending petname systems with ideas from Rivest’s Simple Dis-
tributed Security Infrastructure (SDSI) [14] adds the possibility of (se-
cure) delegation, allowing users to reference the petnames of other users.
SDSI based delegation enables users to resolve other participant’s names
and thus enables linking to external resources. Delegation essentially adds
another user’s namespace in a subtree under a specific name. This creates
an hierarchical namespace from the point of view of each user; globally, the
resulting structure is simply a directed graph. While delegation broadens
the accessibility of mappings, it does not achieve global names.

3.4 Timeline-based Name Systems

Timeline-based name systems, such as the Namecoin system [15], man-
age to combine global names, memorable names and security. In these



systems, a global timeline with the domain registrations is secured by
users performing proof-of-work computations, which in turn are used as
“payment” for name registration.

Their existence does not contradict Zooko’s triangle as their security
depends on the adversary not having more computational power than the
honest nodes; an adversary with sufficient computational power can create
an alternative timeline with different domain registrations and a stronger
proof-of-work, which would ultimately result in the system switching to
the adversarial timeline. Thus, timeline-based systems do not fit the re-
alistic adversary model we assumed for this paper (Section 2.1).

4 Practical Considerations

The previous section has outlined the design space for censorship resistant
name systems. However, implementations of these alternatives will have to
address a range of technical and practical concerns which be will discussed
here.

4.1 Interoperability with DNS

To be accepted by users, a censorship resistant name system should re-
spect user’s usage patterns and integrate with existing technologies. Users
should not have to manually switch between alternative name systems and
DNS. Syntax and semantics of the different name systems should also be
similar to not confuse the user about the meaning of names.

Thus a central requirement for any alternative name system will be
interoperability with DNS. Users are used to DNS names and virtually
all network applications today use DNS for name resolution. Thus, being
interoperable with DNS will allow censorship-resistant alternatives to be
used with a large body of legacy applications and facilitate adoption by
end users.

Interoperability with DNS largely implies that alternative name sys-
tems should follow DNS restrictions on names, such as limiting names
to 253 ASCII characters, limiting labels to 63 characters and using In-
ternationalizing Domain Names in Applications (IDNA) [16] for interna-
tionalization. Furthermore, the name system should be prepared to return
standard DNS records (such as “A” and “AAAA”) to typical applications.

Interoperability with DNS should also include accessing the infor-
mation of DNS from within the namespace of the censorship resistant
name system. For example, it is conceivable that a censor might block



access to www.example.com by removing the nameserver information for
example.com in the .com TLD, without blocking access to the name-
server of example.com. In this case, a censorship resistant name system
only needs to provide an alternative way to learn the nameserver for
example.com — the lookup of www can then still be transmitted directly
to the authoritative nameserver. In an alternative name system support-
ing delegation, this simply requires support for delegating subdomains
back to DNS. This allows users to bypass censorship closer to the root of
the DNS hierarchy even if the operators of the censored service do not
explicitly support the censorship resistant name system.

Finally, for good interoperability users must not be required to ex-
clusively use an alternative domain name system — alternating between
accessing DNS for domain names that are not censored and using the cen-
sorship resistant name system should not require the user to reconfigure
his system each time!

Interoperability and using multiple name systems with the same con-
figuration can be easily achieved using pseudo-TLDs. A pseudo-TLD is a
top level domain that is not actually participating in the official DNS. For
example, using the pseudo-TLD “.key”, a user might specify “ID.key” to
access a name system based on cryptographic identifiers, or “NICK.pet”
to access a pseudo-TLD “.pet” for petnames. Naturally, this only works
as long as the names chosen for the pseudo-TLDs are not used by the
global DNS.

Once pseudo-TLDs have been selected, the local DNS stub resolver
can be configured (for example, using the Name Service Switch [17]) to
apply special resolution logic for names in the pseudo-TLDs. The special
logic can then use alternative means to obtain and validate mappings,
which will work as long as the final results returned can be again expressed
as a DNS response.

4.2 End-to-End Security and Errors

Today, client systems typically only include a DNS stub resolver, dele-
gating the name resolution process to a DNS resolver operated by their
Internet Service Provider (ISP). As ISPs might be involved in censor-
ship, they cannot be trusted to perform proper name resolution. Thus,
secure name systems (including DNSSEC) must be deployed end-to-end
to achieve the desired security.

This may not only require updating operating system resolvers. Exist-
ing applications sometimes implement their own DNS clients, and typical
DNS APIs (such as POSIX’s name resolution functions) do not include



error reporting that incorporates security attributes. Browsers will thus
be unable to benefit from TLSA records [18] until they either imple-
ment full DNSSEC resolver functions, or until operating system APIs
are enhanced to allow returning additional information. A particularly
critical example is the possibility to return unsigned records even within
a DNSSEC deployment. As a result, DNSSEC protections can easily be
disabled by replacing signed valid records with a set of invalid records
without signature information.

4.3 Petnames and Legacy Applications

In addition to integration with existing systems an alternative name sys-
tem also has to consider assumptions made by applications in higher lay-
ers, for example existing applications assuming globally unique names.
Existing support for virtual hosting of websites in HTTP-based applica-
tions and TLS/SSL certificate validation both assume that the names
given by the client match exactly the (DNS) name of the respective
server. Links to external websites are typically specified using (globally
unique) DNS names; as a result, relative names involving delegation from
a SDSI-based name system would not be properly understood by today’s
browsers.

In lieu of directly modifying legacy applications, it might be possible to
perform the necessary adaptations using proxies. Proxies might be used to
translate hostnames from websites using delegation, and to perform SSL
certificate validation (for example, by looking at TLSA [18] records from
the secure name system instead of hostnames). Reverse proxies could be
used to generate the virtual host names expected by the server, and to
translate links with absolute links to those using the delegation chains
provided by a SDSI-based name system. Additional records in the name
system might be used to aid the conversion between relative names and
legacy names by the proxies. In order to achieve end-to-end security, these
proxies would naturally have to be operated within the trusted zone of
the respective endpoints in the system.

4.4 Censorship-Resistant Lookup

Censorship resistant distributed name systems need to consult name in-
formation from other participants and thus require a network protocol
to perform censorship resistant lookups. The most common method for
implementing key-based searches in decentralized overlay networks is the
use of a distributed hash table (DHT).



Typical attacks on DHTs include poisoning and eclipse attacks. In
a poisoning attack, the adversary attempts to make interesting map-
pings hard to find by placing many invalid mappings into the DHT. A
censorship-resistant DHT for a name system that uses public keys to
lookup values signed by the respective private key can easily defeat this
type of attack by checking signatures. In an eclipse attack, the adver-
sary tries to isolate particular key-value mappings from the rest of the
network. Modern DHTs defend against this type of attack by replicating
values at multiple locations [19].

Some censorship resistant DHTs such as X-Vine [20] and R5N [21]
additionally accept limited connectivity between the peers in the DHT,
making it harder for the adversary to disrupt DHT operations in the
IP layer. Furthermore, this also allows peers to restrict connections to
known friends, making the DHTs more robust against Sybil attacks [22]
by building the overlay topology using existing social relationships.

One important property in this context will be query privacy. In exist-
ing centralized name systems, infrastructure providers can easily observe
which names are used by which users. When the database is decentralized
in a DHT, these central observation points are eliminated; however, now
ordinary users can observe other user’s queries, which maybe even more
problematic for some applications. Thus, it is desirable to have encryp-
tion for queries and responses in the DHT. The encryption could be based
on secrets only known to the user performing the resolution (such as the
label and the zone); as a result, other users could only decrypt the resolu-
tion traffic with a confirmation attack where they would have to guess the
label and zone of a query (or response). This would strengthen censorship-
resistance as participants would typically not know which requests they
are routing. Additional query privacy might be achieved by anonymiz-
ing the source of the request, for example by using onion routing [11].
Naturally, using such anonymization techniques increases latency.

4.5 Case study: Usability

Unlike DNS, the user’s experience when using a name system based on
SDSI depends on high-level user behavior: following a link corresponds to
traversing the delegation graph and resolution is fully automatic. How-
ever, when users want to visit a fresh domain that is not discovered via a
link, SDSI requires a trust anchor to be supplied via a registrar or out-of-
band mechanisms, such as QR codes. This raises the question: how often
are these inconvenient methods needed in practice?



To answer this question, we did a survey on surfing behavior. Specif-
ically, we wanted to find out how often users would typically type in a
new domain name for a site. A domain name is “new” if the user has
never visited it before, and if the user is typing it in the name is also not
easily available via some link. Typed in new domain names are thus the
case where a SDSI-based name system (or PKI) would need to use some
external mechanism to obtain the public key of the zone.

Based on a limited and most likely biased survey where users volun-
teered the output of a simple shell script that inspected their browsers
history database, we determined that given current Internet behavior,
approximately 8% of domain names would require introduction via some
out-of-band exchange. A key limitation of the survey’s methodology was
that we did not attempt to control who submitted results; we simply
used the data of anyone who was willing and able to download and run
the shell script that performed the analysis. This limited the sample to
somewhat more technologically sophisticated users. The complete results
from our survey and details on the methodology can be found in [23].
Our conclusion is that a name system based on petnames and SDSI-style
delegation stands a chance of being an acceptable choice if communica-
tion is hindered by censorship or strong security assurances (beyond those
offered by the X.509 PKI or DNSSEC) are required.

5 Censorship in Other Layers

Censorship does not stop with the name system. For example, censors
can also attempt to block information by destination IP address. Block-
ing IP addresses is actually easier than censoring DNS; however, there is
an increased chance of collateral damage as with virtual hosting, a sin-
gle IP address can host many sites and services. Tools that help users
circumvent IP-level censorship can also benefit from censorship resistant
name systems.

For example, the Tor network [11] is an anonymizing public virtual
network for tunneling TCP connections over the P2P overlay network.
While Tor is often associated with the goal of providing anonymity for
HTTP clients, it can also be used to circumvent censorship by tunneling
(the Tor overlay) traffic in other protocols, such as TLS. Tor also of-
fers the possibility of hosting services within the Tor network, here with
the primary goal of providing anonymity to the operators of the servers.
Accessing these “hidden services” using cryptographic identifiers is not
particularly user-friendly.



Given a decentralized censorship resistant name system, it should be
easy to provide names for services offered within such P2P overlays. The
name system would map names to a new record type that identifies the
respective service and peer (instead of using “A” or “AAAA” records to
reference a host on the Internet). Such service endpoint addresses can
then again be translated to IP addresses in the entry node’s private ad-
dress range to enable communication of legacy applications with the P2P
service. The result would be still close to hidden services in Tor, though
it would not necessarily have to also provide support for anonymity.

6 Conclusion

We have outlined the limitations of censorship resistant name systems
and shown that it is not possible to achieve memorable, secure and global
names in a unified name system. However, it is possible to use pseudo-
TLDs to allow users to cherry-pick between multiple name systems, of-
fering combinations of two of the three desirable properties. Among the
theoretical ideas, the SDSI-design using delegation is the only which has
so far not been attempted in practice. Here, the lack of globally unique
names creates additional issues for legacy applications that need to be
mitigated. Focusing on Web applications, we have performed a survey
which shows that a delegation-based name system would offer signifi-
cant benefits over simpler petname systems, as most name resolutions
in practice arise from users following links. As each design offers unique
advantages, developers of censorship circumvention tools should consider
the integration or interoperability of their systems with multiple secure
name systems via pseudo-TLDs, including DNS/DNSSEC, cryptographic
identifiers and petnames with delegation.

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG)
under ENP GR 3688/1-1. We thank everyone who submitted information
about their browser history for our study of surfing behavior. We thank
Jacob Appelbaum, Daniel Bernstein, Ludovic Courtès, Ralph Holz, Luke
Leighton, Simon Josefsson, Nikos Mavrogiannopoulos, Ondrej Mikle, Ste-
fan Monnier, Niels Möller, Chris Palmer, Martin Pool, Richard Stallman,
Neal Walfield and Zooko Wilcox-O’Hearn and the anonymous reviewers
for FPS’2013 for insightful comments and discussions on an earlier draft
of the paper. We thank Krista Grothoff for editing the paper.



References

1. Greenwald, G., MacAskill, E.: NSA Prism program taps in to user data of Apple,
Google and others. The Guardian (June 2013)

2. Times, R.: Post PRISM: Encrypted communications boom after NSA leaks. http:
//www.youtube.com/watch?v=JJY3EXVdyiM (June 2013)

3. Schmid, G.: Report on the existence of a global system for the interception of pri-
vate and commercial communications (ECHELON interception system). European
Parliament Session Document 2001/2098(INI) (July 2001)

4. http://politi.dk/: Fejl blokerede internetsider kortvarigt. http://goo.gl/beQFm
(March 2012)

5. Anonymous: The collateral damage of internet censorship by dns injection. ACM
SIGCOMM Comp. Comm. Review 42(3) (July 2012) 22–27

6. European Parliament: Resolution on the EU-US Summit of 28 November 2011
(November 2011) P7-RC-2011-0577.

7. http://opennet.net/: The OpenNet Initiative (January 2013)
8. Stallman, R.: Why software should not have owners. http://www.gnu.org/

philosophy/why-free.html (2012)
9. Wilcox-O’Hearn, Z.: Names: Decentralized, secure, human-meaningful: Choose

two. http://zooko.com/distnames.html (Jan 2006)
10. Mockapetris, P.: Rfc 1035: Domain names - implementation and specification.

Technical report, Network Working Group (November 1987)
11. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion

router. In: Proc. 13th USENIX Security Symposium. (August 2004)
12. Sai, A.F.: Mnemonic .onion urls. http://goo.gl/aOpKo (February 2012)
13. Stiegler, M.: An introduction to petname systems. http://www.skyhunter.com/

marcs/petnames/IntroPetNames.html (February 2005)
14. Rivest, R.L., Lampson, B.: SDSI – a simple distributed security infrastructure.

http://groups.csail.mit.edu/cis/sdsi.html (1996)
15. http://dot-bit.org/: The Dot-BIT project, A decentralized, open DNS system

based on the bitcoin technology. http://dot-bit.org/ (April 2013)
16. Faltstrom, P., Hoffman, P., Costello, A.: RFC 3490: Internationalizing Domain

Names in Applications (IDNA). Technical report, Network Working Group (March
2003)

17. Foundation, F.S.: The GNU C Library - System Databases and Name Service
Switch. http://goo.gl/gQY0w

18. Hoffman, P., Schlyter, J.: The DNS-Based Authentication of Named Entities
(DANE) Transport Layer Security (TLS) Protocol: TLSA. IETF RFC 6698 (Aug.
2012)

19. Polot, B.: Adapting blackhat approaches to increase the resilience of whitehat
application scenarios. Master’s thesis, Technische Universität München (2010)

20. Mittal, P., Caesar, M., Borisov, N.: X-vine: Secure and pseudonymous routing
using social networks. CoRR abs/1109.0971 (2011)

21. Evans, N., Grothoff, C.: R5N : Randomized Recursive Routing for Restricted-Route
Networks. In: 5th Int. Conf. on Network and System Security. (2011) 316–321

22. Douceur, J.R.: The Sybil Attack. In Druschel, P., Kaashoek, M.F., Rowstron,
A.I.T., eds.: IPTPS. Volume 2429 of Lecture Notes in Computer Science., Springer
(2002) 251–260

23. Schanzenbach, M.: A Censorship Resistant and Fully Decentralized Replacement
for DNS. Master’s thesis, Technische Universität München (2012)


