
Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

NET 2025-11-3Network Architectures and Services

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Summer Semester 2025

March 6, 2025 – August 24, 2025

Munich, Germany

Georg Carle, Marcel Kempf, Daniel Petri, Stefan GenchevEditors

Chair of Network Architectures and ServicesPublisher

Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Summer Semester 2025

Munich, March 6, 2025 – August 24, 2025

Editors: Georg Carle, Marcel Kempf, Daniel Petri, Stefan Genchev

Network Architectures
and Services
NET 2025-11-3

Proceedings of the Seminar
Innovative Internet Technologies and Mobile Communications (IITM)
Summer Semester 2025

Editors:

Georg Carle
Chair of Network Architectures and Services (I8)
Technical University of Munich
Boltzmannstraße 3, 85748 Garching b. München, Germany
E-mail: carle@net.in.tum.de
Internet: https://net.in.tum.de/~carle/

Marcel Kempf
Chair of Network Architectures and Services (I8)
E-mail: kempfm@net.in.tum.de
Internet: https://net.in.tum.de/~kempfm/

Daniel Petri
Chair of Network Architectures and Services (I8)
E-mail: petriroc@net.in.tum.de
Internet: https://net.in.tum.de/~petri/

Stefan Genchev
Chair of Network Architectures and Services (I8)
E-mail: genchev@net.in.tum.de
Internet: https://net.in.tum.de/~genchev/

Cataloging-in-Publication Data

Seminar IITM SS 25
Proceedings of the Seminar Innovative Internet Technologies and Mobile Communications (IITM)
Munich, Germany, March 6, 2025 – August 24, 2025
ISBN: 978-3-937201-85-6

ISSN: 1868-2634 (print)
ISSN: 1868-2642 (electronic)
DOI: 10.2313/NET-2025-11-3
Innovative Internet Technologies and Mobile Communications (IITM) NET 2025-11-3
Series Editor: Georg Carle, Technical University of Munich, Germany
© 2025, Technical University of Munich, Germany

II

https://net.in.tum.de/~carle/
https://net.in.tum.de/~kempfm/
https://net.in.tum.de/~petri/
https://net.in.tum.de/~genchev/

Preface

We are pleased to present to you the proceedings of the Seminar Innovative Internet Technologies and Mobile
Communications (IITM) during the Summer Semester 2025. Each semester, the seminar takes place in two
different ways: once as a block seminar during the semester break and once in the course of the semester.
Both seminars share the same contents and differ only in their duration.

In the context of the seminar, each student individually works on a relevant topic in the domain of computer
networks, supervised by one or more advisors. Advisors are staff members working at the Chair of Network
Architectures and Services at the Technical University of Munich. As part of the seminar, the students
write a scientific paper about their topic and afterward present the results to the other course participants.
To improve the quality of the papers, we conduct a peer review process in which each paper is reviewed by
at least two other seminar participants and the advisors.

Among all participants of each seminar, we award one with the Best Paper Award. For this semester, the
awards were given to Julian Forster with the paper Energy Consumption Reports Using Jupyter Notebooks
and Leonard Auer with the paper QWACs in Automated Environments .

We hope that you appreciate the contributions of these seminars. If you are interested in further information
about our work, please visit our homepage https://net.in.tum.de.

Munich, November 2025

Georg Carle Marcel Kempf Daniel Petri Stefan Genchev

III

https://net.in.tum.de

Seminar Organization

Chair Holder

Georg Carle, Technical University of Munich, Germany

Technical Program Committee

Marcel Kempf, Technical University of Munich, Germany
Daniel Petri, Technical University of Munich, Germany
Stefan Genchev, Technical University of Munich, Germany

Advisors

Tim Betzer (betzer@net.in.tum.de)
Technical University of Munich

Christian Dietze (diec@net.in.tum.de)
Technical University of Munich

Sebastian Gallenmüller (gallenmu@net.in.tum.de)
Technical University of Munich

Stefan Genchev (genchev@net.in.tum.de)
Technical University of Munich

Max Helm (helm@net.in.tum.de)
Technical University of Munich

Kilian Holzinger (holzinger@net.in.tum.de)
Technical University of Munich

Marcel Kempf (kempfm@net.in.tum.de)
Technical University of Munich

Holger Kinkelin (kinkelin@net.in.tum.de)
Technical University of Munich

Stefan Lachnit (lachnit@net.in.tum.de)
Technical University of Munich

Michael Oberrauch (oberrauc@net.in.tum.de)
Technical University of Munich

Daniel Petri (petriroc@net.in.tum.de)
Technical University of Munich

Manuel Simon (simonm@net.in.tum.de)
Technical University of Munich

Johannes Späth (spaethj@net.in.tum.de)
Technical University of Munich

Lion Steger (stegerl@net.in.tum.de)
Technical University of Munich

Florian Wiedner (wiedner@net.in.tum.de)
Technical University of Munich

Seminar Homepage
https://net.in.tum.de/teaching/ss25/seminars/

V

https://net.in.tum.de/teaching/ss25/seminars/

Contents

Blockseminar

Energy efficiency of DPDK . 1
Konstantin Fedorov (Advisor: Stefan Lachnit)

Overview of Network Telescopes . 5
Niklas Feurstein (Advisor: Tim Betzer)

Energy Consumption Reports Using Jupyter Notebooks . 11
Julian Forster (Advisor: Kilian Holzinger, Sebastian Gallenmüller)

Firewalling with eBPF: A Performance Comparison of XDP-based Solutions 15
Sebastian Fritsch (Advisor: Manuel Simon, Sebastian Gallenmüller)

Congestion Control Schemes for Multipath QUIC . 21
Julian Gassner (Advisor: Daniel Petri)

Credit-Based Shaping As Defense Against DoS Attacks . 27
Leonard Nolting (Advisor: Florian Wiedner)

Governance of a Distributed Autonomous Organization . 33
Keihan Pakseresht (Advisor: Holger Kinkelin)

Adding data visualization to pos-testbeds . 37
Daniel Tarassenko (Advisor: Kilian Holzinger, Sebastian Gallenmüller)

Timeline of Host Monitoring Tools . 45
Zeynep Öztürk (Advisor: Tim Betzer)

Seminar

QWACs in Automated Environments . 51
Leonard Auer (Advisor: Stefan Genchev)

Market Models in the European Digital Identity Wallet Ecosystem 55
Timm Bauer (Advisor: Stefan Genchev)

MASQUE-based Performance Enhancing Proxies . 61
Patrick Bokelmann (Advisor: Daniel Petri)

Time-Sensitive Networking on virtualized network components . 67
Simon Burger (Advisor: Florian Wiedner)

Applications of MASQUE-proxies in TEE Environments . 73
Martin Halfen (Advisor: Lion Steger, Daniel Petri)

Evaluation of sources for IPv6 Hitlists . 77
Finn Johannes Hartmann (Advisor: Lion Steger)

Modeling the Architecture of QUIC Implementations with rustviz 81
Leopold Jofer (Advisor: Daniel Petri, Marcel Kempf)

Autoencoder-Based Anomaly Detection in Networks . 87
Yavuzalp Kaplan (Advisor: Johannes Späth, Max Helm)

Blockchain Governance and Tokenomics . 93
Vadym Khyzhniak (Advisor: Holger Kinkelin)

Securing BGP - Mechanisms to Prevent Routing Leaks . 97
Leon Spörl (Advisor: Michael Oberrauch)

Demonstrating Encrypted Client Hello (ECH) Privacy Benefits . 103
Jasper Stritzke (Advisor: Tim Betzer, Christian Dietze)

VII

Energy efficiency of DPDK

Konstantin Fedorov, Stefan Lachnit∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: fedo@cit.tum.de, lachnit@net.in.tum.de

Abstract—This paper discusses methods for improving the
energy efficiency of the Data Plane Development Kit (DPDK),
a high-performance software developed by Intel for acceler-
ated processing of network packets. The problems with its
energy efficiency and approaches to their solution are also
considered. Using DPDK makes it possible to achieve low
latency, but the constant polling mechanism uses the CPU
completely, which leads to inefficient use of resources. To
reduce the load, we looked at various power management
methods, as well as the associated implementation difficulties.
We have reviewed dynamic voltage and frequency scaling
(DVFS), low-power idle states (LPI), adaptive polling, and
the application-level thread sleep method. The concept of in-
creasing the flexibility of service cores, which allows for more
efficient allocation of tasks, was also considered. In addition,
this document discusses energy efficiency issues in the field
of network function virtualization (NFV) as well as in 5G
networks, where a mechanism such as hardware offload was
also considered, which, together with the use of micro-sleep
methods, can significantly reduce energy consumption.

Index Terms—user-mode sleep states, NFV, PMD, EAL,
DVFS, LPI, adaptive polling

1. Introduction

The Data Plane Development Kit (DPDK) is a soft-
ware product originally developed by Intel designed to
speed up network packet processing. DPDK was initially
created for telecommunications infrastructure, but today
it is used in almost all areas, because it can provide high
throughput and low latency for data transmission. DPDK
is widely used in data centers, cloud systems, 5G networks
and other areas where high-speed processing is required.
The special feature of DPDK is that it operates in user-
space, so it can directly interact with network equipment
bypassing the kernel. Instead of the traditional method
of processing packets through interrupts, DPDK uses an
active polling mechanism called busy polling, in which
processor cores constantly check for new data. However,
busy polling always keeps threads active, even when there
is little or no incoming data. Therefore, even under low
network activity, the processor cores remain fully utilized,
which leads to overheating of the CPU and reduces its
lifespan. In data centers, network traffic usually has the
characteristics of a ”tidal effect ”, meaning the amount
of data fluctuates, with periods of high traffic, then low
traffic. This behavior causes DPDK usage to result in
significant energy losses. [1]

1.1. Important components of DPDK

1.1.1. Environment Abstraction Layer(EAL). EAL is
an abstraction layer that provide a universal interface This
enables to hide the differences between hardware plat-
forms and OS from applications. [2] EAL is responsible
for the DPDK initialization and startup process, allocation
and management of low-level resources (memory, timers,
etc.). In addition, DPDK provides mechanisms for binding
cores to applications. [3]

1.1.2. Poll Mode Driver(PMD). PMD is a network inter-
face driver that runs in user space. It can directly access
the Network Interface Card’s(NIC’s) RX/TX queues. Stan-
dard driver implementations use an interrupt mechanism
to process packets. This is inefficient because the system
is forced to suspend the task at the time of interruption
and switch the context, which spends system resources
on interrupt maintenance and scheduling instead of com-
pleting the task itself. In addition, the system may be
overloaded, thus the number of packets that it can process
will be limited. By using the polling mode driver, the
disadvantages of the interrupt method can be minimized.
PMD runs in user space, but it has direct read and write
access to the NIC port. This makes it possible to read
packets from the network card without interrupting other
processes. PMD constantly checks the network interface
for incoming data, regardless of whether any packets have
actually been received. This way much more packets can
be processed, however packet processing applications will
always use the CPU resources at full capacity, even if this
is not necessary. [3]

1.2. Approaches To Speed Up Data Packet Pro-
cessing

1.2.1. Zero copy. Many applications are intermediaries
through which data is copied. Zero copy is a method
that allows you to transfer data bypassing the application,
copying data from a file on disk directly to a socket. This
way it is possible to reduce the number of context switches
between user space and the kernel. Using this method, the
kernel copies data from a file on disk to a socket, avoiding
copying through the application’s memory. Zero copying
allows you to transfer data about 65% faster than with the
traditional approach. [4]

1.2.2. Busy polling. Busy polling is a feature designed
for cases where low latency is necessary. Instead of an
interrupt mechanism in which the processor waits for a

Seminar IITM SS 25 1 doi: 10.2313/NET-2025-11-3_01

signal from the network card, DPDK uses this feature to
continuously poll for new data. One of the main advan-
tages of this approach is to avoid the overhead of system
calls between user space and the kernel.

This allows DPDK to eliminate delays associated with
interrupt processing, however, CPU cores will always be
fully utilized regardless of the amount of work, which
leads to excessive power consumption and reduced pro-
cessor lifespan. [5]

1.2.3. Batch processing. The batch processing method
allows processing multiple packets in one polling cycle,
optimizing resource usage. It increases throughput and
improves routing efficiency. [6] It could amortize the over-
head of memory management, improve cache locality and
prediction accuracy, which together significantly improves
data processing rates and reduces CPU waiting time. [1] It
also improves processor utilization by applying the same
operations to a group of packets. [6]

2. Evaluation

This section will explore approaches to improve the
Energy efficiency of DPDK. DPDK-based systems use
various power management techniques that reduce energy
consumption and increase energy efficiency. Some of these
approaches will be explored below.

2.1. Dynamic Voltage and Frequency Scaling
(DVFS)

DVFS is a technology that can be used to adjust
the frequency and voltage of the processor depending on
the current workload. This helps reduce temperature and
power consumption. DVFS prevents system overheating,
which avoids hardware damage. Decreasing the frequency
increases energy efficiency but also limits the number
of instructions executed per unit of time, accordingly
reducing performance. [7] Simultaneously reducing both
voltage and frequency can be applied for energy savings
but also decreases the overall power with which the system
operates. [8]

2.2. Low-Power Idle (LPI)

LPI reduces power consumption by disabling CPU
subcomponents when there are no active tasks to process.
When the system receives new data or requires actions,
LPI reactivates previously disabled subcomponents. Be-
cause of LPI the CPU can switch to power-saving states
(C-states) [9] during idle, thereby significantly reducing
power consumption. [7] The use of standard implementa-
tions of such methods as LPI and DVFS has the following
disadvantages:

1) CPU usage is always at its maximum, so it is
impossible to adjust the frequency correctly de-
pending on the load. [1]

2) It has been found that changing the processor
frequency affects the packet transmission delay,
but the optimal frequency that provides a balance
between minimizing latency and power consump-
tion is unknown. [1]

3) Switching to low-power states can take from tens
to more than 100 microseconds, and besides, the
CPU’s exit from this state requires an interrupt,
which leads to additional delays. [1]

4) Decreasing the CPU frequency may negatively
affect the performance of other applications. [7]

2.2.1. C-states. Modern processors have the ability to
transition into power-saving C-states. In the C0 state, the
processor executes instructions, while in all other states,
it switches to idle mode. The higher the C-state number,
the more processor subcomponents will be disabled to
save power. Intel processors provide special instructions
for entering power-saving states. These commands help to
reduce energy consumption by transitioning into deeper C-
states. Standard instructions such as MONITOR/MWAIT
and PAUSE [10] allow the core to switch to C1 and C6
states, and UMONITOR/UMWAIT and TPAUSE instruc-
tions [10] enable the core to enter C0 substates: C0.1
and C0.2. [11] Similarly, AMD processors provide similar
MONITORX and MWAITX instructions for entering and
exiting these low-power states. [12] The advantage of
the C0.1 and C0.2 states is that their exit latency is
significantly lower compared to, for example, the C1 state:
C1 requires 2.2 more time to exit than C0.1 and about
1.8 more time than C0.2. Another advantage of these new
instructions is that they do not require the intervention
of the operating system and can be executed at the user-
space level. In addition, the energy consumption in these
substates is lower compared to the C0 state. Both substates
consume about 30% of polling power, and C0.2 state
is approximately 15% more power-efficient than C0.1.
TPAUSE provides even faster exit delay compared to
UMWAIT. TPAUSE is well suited for scenarios in which
data arrives at fixed intervals, whereas UMWAIT will
be better for situations in which a change in memory
location is expected. Tests of the DPDK application with
16 cores showed that without traffic, the system consumes
approximately the same amount of power when using C1
or C0.1/C0.2 and it was possible to save about 22% of
energy. In a scenario that simulated real conditions at the
lowest traffic rate, energy consumption was reduced by
4%. [11]

2.3. Adaptive Polling

Adaptive Polling is a method that allows applications
to dynamically adjust the polling frequency of a network
interface depending on the current network activity. Its
main goal is to minimize the load on the processor during
low network activity and maintain high performance dur-
ing peak load periods. An increase in the polling interval
leads to a decrease in the number of CPU cycles used to
process a network packet. This increases the efficiency
of applications by up to 60% and reduces the power
consumption of the cores responsible for data transmis-
sion, and also reduces system power consumption by 6.5
watts with a low network load. Experimental data shows,
that with a load of 10 Gbit/s, processor cores spend only
50% of the time processing packets, which indicates high
optimization. In addition, energy savings reach 20 kWh
per year due to lower energy consumption. Using dynamic
polling frequency allows you to significantly reduce the

Seminar IITM SS 25 2 doi: 10.2313/NET-2025-11-3_01

frequency of surveys. At 1 Gbit/s, the polling frequency
is reduced by 34–87 million polls per second, which
corresponds to a 97–99.94% reduction. At 10 Gbit/s,
the reduction reaches 12–65 million polls per second,
which is 90.82–99.28% lower than the standard values.
When testing IMIX (Internet MIX) traffic, it was found
that processing efficiency is increased by 50%, and the
processor load is reduced to 16% of the total operating
time. [13]

2.4. Application-Level Thread Sleep Method

The application-level thread sleep method allows a
thread to enter a short waiting state if no packet is
received after polling. This way, during periods of low
activity, processor cycles can be freed up. Functions such
as usleep and nanosleep in Linux, or special functions in
DPDK (e.g., rte_pause() or rte_delay_us_block()) allow
precise control of thread pausing, reducing the waiting
time. However, the difficulty of this method lies in the
fact that it is hard to determine the optimal ”sleep”
duration. This is due to the fact, that the duration of
the sleep depends on various factors, such as packet size,
frequency and overall traffic load. To solve this problem,
a dynamic algorithm was developed that evaluates the
packet size and transmission rate in real time and also
determines the appropriate sleep duration. A modified
Kalman filter prediction algorithm was applied to estimate
the packet size and transmission rate. This allows for
accurate prediction of idle time and reduces the number
of empty polling cycles. Experimental results show that
using this approach reduces CPU load by more than 80%
with a slight decrease in transmission performance. For
example, with a packet size of 512 bytes, the transmission
speed drops by about 4.3%, and with 768 bytes by about
4.7%. Thus, this model can be applied to various network
devices, such as 5G network packet processors, which will
significantly reduce power consumption. [1]

2.5. Service Cores

DPDK provides a service cores mechanism that en-
ables dynamic task distribution among CPU cores. This
functionality is integrated into EAL, which provides an
API that allows applications to manage service cores
during runtime.

The DPDK Service core library is a software ab-
straction that allows you to hide the features of specific
hardware or software. An important advantage of service
core is that applications can distribute tasks between cores
depending on the platform and environment. This way,
you can compensate for the differences between the ca-
pabilities of different platforms. [14]

The developer can assign a task to a service core,
and it will be able to independently determine whether
the required hardware is present. If there is no such
hardware, then the task will be executed via software.
Each service runs on a dedicated service core, although
the same core can serve multiple services. They are sched-
uled in a simple round-robin run-to-completion. If there
are too many services on a single core, the processing
latency of some services will significantly increase. In
the standard DPDK implementation, the distribution of

new services across service cores is done manually by
the developer. This is a difficult task, and incorrect service
assignment can reduce the throughput of individual cores
and decrease their efficiency. For example, it is critical for
packet processing services to maintain reliable throughput
during packet transmission and reception. This creates the
need for a way to migrate services between cores so that
each can get enough CPU cycles without compromising
other services. Using a load balancer allows each service
core to theoretically run at about 100% of the CPU load,
excluding the overhead incurred when switching between
services. There are two strategies for implementing a
load balancer: a static load balancer and a dynamic load
balancer. [3]

• Static load balancing. assumes that the assign-
ment services to cores is predefined (at the com-
pilation stage or earlier). In the current DPDK
implementation, developers themselves determine
which cores will be used for service tasks and
manually distribute services between them. There
is a way to automate this process: When running,
the DPDK application can scan which services
are available and distribute them evenly across the
cores.

• Dynamic load balancing. offers dynamic assign-
ment of services to cores based on a continuous
assessment of which core is best suited to execute
a service. If there is a more suitable core, the
service should be migrated there. Dynamic load
balancing is more appropriate for DPDK, as CPU
resource usage is constantly varying. When the
load of the CPU decreases, the load balancer can
migrate all services to fewer number of cores, and
the remaining cores can either be disabled or put
into idle state to save energy. A predefined activa-
tion threshold of the load balancer (for example,
70% of CPU load) ensures that the cores operate
efficiently, preventing excessive peak frequency
usage and freeing resources when load decreases.
When fewer cores are active, the processor can
redistribute energy and increase their clock fre-
quency, which speeds up the performance for tasks
requiring high performance in a single thread. [3]

3. Scopes of application

3.1. Energy Efficiency in Virtualized Network
Functions (NFV)

Network Function Virtualization (NFV) allows the
replacement of specialized hardware with virtual network
functions (VNF) running on standard servers. This ap-
proach significantly reduces capital and operating costs,
simplifying the scaling and maintenance of network in-
frastructure.

However, with all the advantages of NFV, energy
efficiency remains an important issue, especially when
using resource-intensive accelerators like DPDK, which
often lead to energy overruns.

As part of NFV’s energy efficiency research, various
software platforms for high-speed network traffic pro-
cessing compared, such as DPDK-OVS (Open vSwitch

Seminar IITM SS 25 3 doi: 10.2313/NET-2025-11-3_01

with DPDK support), Click Modular Router, and Netmap
VALE. DPDK demonstrates consistently high power con-
sumption (about 138 watts) regardless of the load level, as
it uses PMD, which makes processor cores work at 100%
even in the absence of traffic. When processing virtual
I/O (for example, when transferring packets via QEMU
to virtual machines), DPDK-OVS turns out to be less
efficient than other solutions. In addition, when running
virtual network functions such as IDS/IPS Snort or Bro,
the platform demonstrates lower energy efficiency com-
pared to alternatives, especially when working with large
packets and low or variable load. Although DPDK-OVS
provides the highest performance and minimal latency,
Netmap VALE shows greater potential in environments
where power consumption is critical. [15]

3.2. 5G Energy Efficiency and User-plane Func-
tions (UPF)

A network packet is the main component of a net-
work. Micro-sleeps can be applied to all types of packet
processing, but they are especially useful in the User
Plane Function (UPF). UPF is one of the functions of
the network, and it is a separate VNF function. Its main
role is to forward packets to and from the Internet. Packets
are usually processed by the kernel, but this approach has
many disadvantages. System calls and copying packets to
and from the kernel space lead to high overhead, which
makes it difficult to scale and increase the packet transfer
rate. Therefore, the DPDK network interface is used to
process packets bypassing the kernel.

However, DPDK has the above-described problems
that need to be solved: busy waiting consumes more
energy than necessary and always loads the core at 100%,
regardless of the load. In addition, DPDK doesn’t pro-
vide information to make a decision on reducing power
consumption. Several improvements have been made to
resolve these issues. One of the methods is to switch to
an idle state using the UMONITOR or UMWAIT instruc-
tions described earlier. This allows server processors to
enter these states while waiting for network events. These
instructions allow you to reduce power consumption even
during very short idle periods than before, and can also be
more efficient at higher data transfer speeds. When using
user-mode sleep states, you can see the CPU thread load
using the measurement functionality.

There is also a Hardware offload method that allows
you to transfer processing of processor threads to the NIC.
Accordingly, the processor core will be freed up and more
CPU cores will have the opportunity to switch to micro-
sleep. HW offload also offers other potential benefits with
improved throughput and latency. Laboratory experiments
have shown that the processor’s power consumption has
decreased from 190W to 61W and at maximum load
from 190W to 145W. Even under the worst conditions,
power-saving methods remain effective. The utilization
of the technologies described above has reduced energy
consumption by 68%. And with the maximum traffic load,
power consumption was reduced by 24%. [12]

4. Conclusion

In this article, various approaches to improving DPDK
efficiency were discussed, and special attention was paid
to methods for reducing DPDK energy consumption. In
particular, mechanisms such as zero copy, busy polling
and batch processing were considered, which can signif-
icantly increase the speed of packet processing. We have
considered methods such as DVFS, LPI and specifically
C-states, adaptive polling, as well as the thread sleep
method. We have proven that all these methods have
had a significant effect on reducing energy consumption.
For example, adaptive polling can increase application
efficiency by up to 60% and reduce power consumption
by up to 6.5 watts, while data processing efficiency can be
increased by up to 50%. LPI provides energy savings of
15-30% using special C-states. It was also experimentally
found out that the thread sleep method can reduce the load
by more than 80% while slightly losing performance. In
addition, the service cores method was considered, which
allows you to redistribute the load and thereby reduce
energy consumption. Also, we reviewed the application
of DPDK in various fields such as 5G networks and
NFV, and approaches for efficient energy consumption
in these areas. The main contribution of this work is
a detailed overview of the mechanisms for improving
DPDK efficiency.

References

[1] Q. C. Mingjie Wu and J. Wang, “Toward low CPU usage and
efficient DPDK communication in a cluster,” 2021.

[2] Improving the flexibility of DPDK Service Cores, https://doc.dpdk.
org/guides/prog_guide/env_abstraction_layer.html.

[3] M. J. Denis Blazevic, “Improving the flexibility of dpdk service
cores,” 2019.

[4] S. K. Palaniappan and P. B. Nagaraja, “Efficient data transfer
through zero copy,” 2008.

[5] power-man, https://doc.dpdk.org/guides-19.02/prog_guide/power_
man.html.

[6] P. Okelmann, F. G. Leonardo Linguaglossa, and G. C. Paul Em-
merich, “Adaptive batching for fast packet processing in software
routers using machine learning,” 2021.

[7] X. Li, T. Z. Wenxue Cheng, and B. Y. Fengyuan Ren, “Towards
power efficient high performance packet i/o,” 2020.

[8] R. B. Dongsheng Ma, “Enabling power-efficient dvfs operations
on silicon,” 2010.

[9] “Low-power idle states,” https://edc.intel.com/content/
www/us/en/design/ipla/software-development-platforms/
client/platforms/alder-lake-desktop/
12th-generation-intel-core-processors-datasheet-volume-1-of-2/
009/low-power-idle-states/.

[10] Intel® 64 and IA-32 Architectures Software Developer’s Manual,
https://cdrdv2.intel.com/v1/dl/getContent/671110.

[11] D. Hunt, R. Pattan, P. Shah, R. Sexton, and C. MacNamara, “Power
Management – User Wait Instructions Power Saving for DPDK
PMD Polling Workloads,” 2023.

[12] P. H. Leif Johansson and R. Skog, “Energy-efficient packet pro-
cessing in 5g mobile systems,” 2022.

[13] H. G. Trifonov, “Traffic-aware adaptive polling mechanism for high
performance packet processing,” 2017.

[14] Service cores, https://doc.dpdk.org/guides/prog_guide/service_
cores.html.

[15] Z. Xu, F. Liu, T. Wang, and H. Xu, “Demystifying the Energy
Efficiency of Network Function Virtualization,” 2016.

Seminar IITM SS 25 4 doi: 10.2313/NET-2025-11-3_01

Overview of Network Telescopes

Niklas Feurstein, Tim Betzer∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: niklas.feurstein@tum.de, betzer@net.in.tum.de

Abstract—Network telescopes, also known as darknets, are
tools that aid in identifying and characterizing events that
happen on the Internet. Without a clear-cut classification of
the different network telescopes, it is difficult to keep track
of them. Therefore, we present an overview of the different
telescopes. In this paper, we classify those tools into two
main groups. In addition to highlighting the main differences
between passive and reactive network telescopes, we list the
largest active telescopes and describe their properties.

Index Terms—Network telescopes, Darknets, UCSD, Orion,
NICTER

1. Introduction

Internet security is becoming more and more impor-
tant. Every day, thousands of machines are infected with
malware. Malicious actors continuously try to discover
unpatched vulnerabilities in online hosts. This not only
puts companies and governments at risk of cybersecurity
incidents but also endangers ordinary citizens. One thing
is certain: The damages victims of hacking attacks suffer
are not to be underestimated.

1.1. Tools for Security

To achieve their goals, hackers rely on a variety of
programs and strategies. One of the first steps for cyber
criminals is identifying a suitable victim. Instead of doing
this manually, many hackers make use of automated pro-
grams called scanners. After a potential victim has been
found, its computer can be attacked. [1]

In order to adequately defend against cybercrime, at-
tacks should be detected as early as possible. Therefore,
it is crucial that security researchers stay on top of the
latest developments in the cybersecurity sphere.

To identify ongoing attacks, researchers and analysts
need lots of data. Network telescopes provide this data
by monitoring a part of the unused IP address space [2].
Packages sent to those regions are frequently related to
malicious activities [3].

By leveraging this data, the latest exploits can be
discovered and mitigated. Depending on their goals and
objectives, researchers and companies make use of net-
work telescopes. To make better use of those tools, or-
ganizations like IBM developed their own darknet. This
allows them to have a tailor-made network telescope for
their use case. [4]

1.2. Telescope Categorization

A categorization scheme is required to keep track of
the multitude of telescopes.

One main difference between telescopes is how they
react to incoming packets. Based on this characteristic,
they have been grouped into two categories.

Passive telescopes store the data of the incoming
package, but they do not send a response. They simply
ignore the sender. Reactive telescopes, on the other hand,
actively respond to incoming packages in real-time. This
allows them to gain insight into more types of attacks. [5]

Chapter 2 presents the background information needed
to understand network telescopes and their benefits. Chap-
ter 3 explains how the telescopes work in general. In
Chapter 4 and 5, we showcase the two main types of
telescopes and list what we think are the largest projects
in this field.

2. Background

To fully understand how network telescopes work, we
need to look at the basics of networking using IPv4 and
IPv6. Recognizing the benefit of darknets also requires us
to examine the different types of attacks that cybercrimi-
nals use.

2.1. IPv4 Networking

Devices require an Internet Protocol version 4 (IPv4)
address to communicate over the Internet. An IPv4 address
identifies computers. It is 32 bits long. Therefore, the
address space is limited to 232 = 4294 967 296 addresses.
The 32 bits of an IP address are made up of a network
identifier and a host identifier. [6]

One popular way of writing IPv4 addresses is the
CIDR notation. In CIDR notation, the "/" character in-
dicates how many bits are used for the network identifier.
/x indicates that x bits are used to encode the network part
of the address. The remaining 32-x bits identify the host.
Such a network contains 232−x hosts. Using the CIDR
notation is especially useful when it comes to network
telescopes.

Assume a host sends a packet to a random IP address.
We want to calculate the probability that the randomly
chosen IP address is within a specific targeted address
range. This probability is described by the ratio of targeted
IP addresses to all the available IP addresses [2]. Using
the CIDR notation, we can quickly compute this with the

Seminar IITM SS 25 5 doi: 10.2313/NET-2025-11-3_02

following formula: px = 1
2x So for a /10 network the

probability is p10 = 1
210 = 1

1024 .
As mentioned, the number of IPv4 addresses is lim-

ited. Yet more and more people own a digital device and
use it to connect to the Internet. The growing demand for
IPv4 addresses can only be met using workarounds like
Network Address Translation and dynamic IPv4 address
assignment. [6]

Besides the very limited number of available ad-
dresses, there are other problems with IPv4. One of those
problems is that IPv4 packages are not authenticated when
they are transmitted. [6]

2.2. IPv6 Networking

The Internet Protocol version 6 (IPv6) is the successor
to IPv4. In contrast to the previous version, the address
length in IPv6 is much larger and totals 128 bits. So the
available address space of 2128 addresses is 296 times
larger than IPv4. This larger address space prevents IP
address exhaustion and ensures that hosts benefit from
better network performance. [6]

The shift from IPv4 to IPv6 has already begun [6].
According to Fachkha and Debbabi [4], this far-reaching
change impacts the attack and defense capabilities of
hackers and security analysts. The larger address space
and sparse distribution of addresses make it infeasible to
scan all possible addresses [7]. This makes it harder for
attackers to find victims. This is due to the fact that the
number of devices with IP addresses assigned is only a
fraction of the total IPv6 addresses. Fachkha and Debbabi
[4] conclude that hackers need to scan more addresses to
find one that is currently in use. In this case, the attackers
also need to expend more computational and financial
resources.

On the flip side, network telescopes will have trouble
monitoring huge segments of the unused IP address space,
as this would require more computation power. They are
only able to monitor a fraction of the available data be-
cause packets from denial-of-service attacks, worms, and
network scans are distributed among the entire IP address
range. The smaller share of packets they can inspect is
due to the lower percentage of addresses that they can
monitor. [4]

2.3. Scanners

Scanners serve a variety of purposes. Amongst other
reasons, they can be used by researchers to check if
an IP address is currently in use or which services are
running on a device. Those scanners can also be utilized
by network administrators or security analysts for network
maintenance or to provide a security assessment. [8]

However, they can also be used by malicious actors.
In this case, scanners are often used to check the ports
of a system for vulnerable applications. They not only
focus on specific operating system exploits but also scan
for vulnerable services such as SSL, SMTPS, and so on.
[5]

Bakar and Kijsirikul [9] state that traditional scan-
ners establish TCP connections to various ports of an IP
address. They describe that using a particular payload,

traditional scanners can check for vulnerabilities. Yet ac-
cording to Li et al. [8], this type of scanner does not scale
well. He and his team found that lots of processing power
needs to be used upfront, without the scanner knowing if
there is a machine behind the targeted IP address.

RAW Socket

Two-Phase Scanner

Internet

Phase 1
TCP SYN [TTL > 200
OR No TCP Options]

TCP SYN, ACK

TCP Stack

Phase 2 TCP SYN

TCP SYN, ACK

e.g. HTTP GET ...

msc Two-Phase Scanning

Figure 1: Two-phase scanning adapted from [5].

In order to prevent this waste of resources, the scan-
ning process is split into two phases, as depicted in
Figure 1. In the first phase, the scanner enumerates targets
that need to be checked in more detail. This is achieved
by sending an initial request to a host and waiting for a
reply. If the host reacts to the original message, it is alive.
[5]

In the second phase, the scanner will conduct a more
in-depth scan of the targets that it has discovered. This
approach reduces the scanning complexity and addresses
the scalability issues. Two-phase scanners do not need to
maintain a state, as they can make use of SYN cookies to
encode information. [5]

Stateless scanners often use handcrafted packets to in-
crease their scan speed. These irregular packages typically
have larger TTL values, no TCP Options, or both. [5]

2.4. Malicious Activities

Hackers use a variety of strategies and actions to
achieve their goals. They make use of network recon-
naissance, spread malware, and try to disable computer
systems. In this chapter, we only cover the activities that
are related to network telescopes.

2.4.1. Denial-of-Service. A denial-of-service (DoS) at-
tack describes an act by which an attacker sends a mul-
titude of requests to a computer to make it unavailable
to its normal users. One single device can hardly send
enough requests to achieve this. Therefore, attackers rely
on a large set of hosts to launch a coordinated attack on
a victim. [4] [10]

In order to prevent the target from easily blocking
such requests, the malicious actors spoof (forge) their IP

Seminar IITM SS 25 6 doi: 10.2313/NET-2025-11-3_02

address. The spoofed IP address is typically chosen at
random and included in the TCP package as the source
address. When the victim receives a request, it sends a
reply to the faked source address. As the attacker used
a random IP address, the victim’s response will be ran-
domly distributed across the entire IP address space. Some
of those packages will be directed to random addresses
monitored by a network telescope. The addresses moni-
tored by the telescope are globally routed but unutilized.
This means that besides the telescope, no active hosts
or services are assigned to them. For this reason, those
unsolicited responses can indicate that the sender is a
victim of a DoS attack. In order to classify such traffic
as a denial-of-service attack, the number of packets, the
attack duration, and the packets received per second need
to be taken into account. [10]

2.4.2. Internet Worms. One more use case for network
telescopes is detecting computer worms [4]. Viruses and
trojans require human interaction to spread. According to
Li et al. [11], worms can automatically infect other devices
in a network. The researchers identified two classes of
computer worms. Classical worms do not take measures to
evade worm detectors. The more advanced evasive worms
continuously evolve. Li et al. outline that this allows the
evasive worms to bypass existing detectors.

Network telescopes make it possible to collect large
amounts of data so that the characteristics and spread of
computer worms can be better understood [12].

2.4.3. Network Scans. One of the most important steps
in carrying out an attack on a network is reconnaissance
[4]. Using network scans, malicious actors can identify
vulnerable machines. If such attacks are detected early,
security experts can effectively mitigate them. [3]

Network scanning accounts for most of the data re-
ceived by the telescopes. TCP packets comprise most of
the network telescope traffic. This is because the TCP
protocol allows for a variety of scanning techniques. [4]

3. How do Network Telescopes work?

Network telescopes are one of the many tools in the
arsenal of researchers and security analysts. In contrast
to defending and protecting a particular company or set
of devices, network telescopes are used to monitor large-
scale events occurring across the Internet [3]. The intel-
ligence gained from network telescopes can help protect
all Internet users [4].

To accomplish their task, the darknets monitor globally
routed and unutilized IP address space that has been
assigned to them [2]. An address is unutilized if there
are no devices assigned or services running on it besides
the network telescope. As none of those IP addresses are
allocated to a normal host, there is no legitimate traffic
to those address ranges. The unrequested packages are
typically referred to as Internet Background Radiation
(IBR) [3].

This data can be analyzed to gain insight into various
types of malicious events, which have been described
in Section 2.4. Network telescopes have proven to be
an invaluable tool for gaining information on the spread
of malware, network reconnaissance, denial-of-service,

misconfigured devices, and software bugs [2] [12] [13]
[14] [15]. Security analysts and researchers can leverage
this data to mitigate the damage of attacks currently in
progress and to prevent similar future attacks [3].

Depending on the number of IP addresses a network
telescope is monitoring, it can also detect rare network
events and provide more context. Like astronomical tele-
scopes that provide a better resolution, the larger its
aperture, the resolution of a network telescope increases
the more unutilized addresses it is monitoring. [2]

In practice, a network telescope is only useful if its
resolution is large enough to witness the type of events
we want to detect with high enough probability. Small
telescopes with very few monitored addresses will only
rarely detect important events. Therefore, analyzing them
by classifying the events and counting them becomes
unreliable. To get meaningful results, we require a lot of
data. [2]

4. Types Of Telescopes

In order to better understand network telescopes, it is
essential to classify them. Broadly speaking, there are two
main categories of network telescopes.

4.1. Passive Telescopes

As the name indicates, passive telescopes simply cap-
ture the packages that have been directed to one of
their monitored IP addresses. This rather simple approach
allows them to surveil large blocks of the IP address
space using minimal resources and processing power.
They can be utilized to gain information on malware
spread, DoS attacks, and misconfigured devices. Passive
telescopes are also suited for detecting and identifying
network reconnaissance. They can be used to monitor
traditional scanners and also provide basic insight into
the initial phase of stateless two-phase scanners. However,
since passive telescopes do not respond to any of the
received packages, they are not able to see the second
phase of such a scanning effort. [5]

4.2. Reactive Telescopes

Most network telescopes are passive measurement in-
struments. Due to this, they can not fully detect all types
of attacks. Reactive telescopes were invented to address
the shortcomings of this approach. Reactive network tele-
scopes respond to TCP SYN packages in real-time. By
answering the original packages, a reactive network tele-
scope continues the interaction and gains more insight as
it receives more packages from the adversary. Therefore,
this telescope category offers the additional benefit of fully
detecting two-phase scanners. One example of a reactive
network telescope is Spoki. [5]

5. Network Telescope Projects

Over the years, many network telescopes have been
created. They were used for very specific purposes, and
many of them have changed over the years. The aim
of this section is to present a selection of large and
influential network telescopes. The findings of this section
are summarized in Table 1.

Seminar IITM SS 25 7 doi: 10.2313/NET-2025-11-3_02

TABLE 1: Comparison of different telescopes

Telescope

Property Spoki UCSD Orion NICTER

Type Reactive Passive Passive Passive

Size not actively deployed
could handle /8 IPv4 prefixes ∼12,500,000 ∼500,000 ∼300,000

Use-Cases Monitor two-phase scanners Monitor DoS attacks, Internet
worms and networks scans

Track botnets, monitor DoS
attacks and network scans Analyze network attacks

5.1. Spoki

Spoki is a reactive network telescope developed by the
researchers Hiesgen et al. [5]. One of the aims of their
newly developed telescope is to gain more insight into
two-phase scanners. To achieve this, they deployed Spoki
to four /24 IP prefixes. The research team demonstrated
that their newly developed scanner can handle one million
packages per second.

Spoki replies to the SYN packages that are sent to the
unutilized IP space it monitors. If the original request is
sent by a regular scanner, a host infected by a worm,
or a misconfigured device, we do not gain any more
information than from a passive telescope. In case the
originator of the SYN package is a two-phase scanner, the
scanner ignores the telescope’s response at first. However,
after a short delay, the scanner sends a regular SYN
package, thereby starting phase two. Spoki also completes
the second handshake, resulting in the stateless scanner
sending its payload. The reactive telescope then stores the
payload that the scanner sent and resets the connection.
[5]

5.2. UCSD Telescope

This passive telescope is run and maintained by the
University of California, San Diego (UCSD). Currently,
the project makes use of a globally routed /9 and /10
network [15]. Those IP ranges have been allocated to
"Amateur Radio Digital Communications" (ARDC) and
are typically referred to as 44Net [16].

Before 2019, the network spanned more than 16 mil-
lion routable IPs and made up 1

256 of all IPv4 addresses.
Nowadays, the network telescope contains approximately
12.5 million addresses and makes up roughly 1

340 of all
IPv4 addresses. [17]

A very small fraction of the IPs within this range are
utilized by ARDC to educate their members on digital
radio communication and to conduct experiments [15].
The UCSD telescope simply filters out legitimate traffic
to the utilized addresses and focuses on those that are
not assigned to an active host [15]. In 2018, the UCSD
telescope received an average of 3.6 TB of network data
per day [18].

The UCSD telescope has already been used in the past
to detect events like DoS attacks, Internet worms, and
network scans [15].

On July 19, 2001, a computer worm called Code-Red
infected multiple hundred thousand machines. It caused
economic damage exceeding $2.6 billion. Normally, an-
alyzing the spread of such worms is very challenging.
Using the UCSD network telescope, Moore et al. managed

to detect more than 359,000 hosts infected with Code-
RedI v2. To conclusively identify a machine as infected
by the worm, it had to send two probes to IP addresses
monitored by the network telescope. [12]

The UCSD telescope was also used by Dainotti et al.
[19] to analyze the network scans conducted by the Sality
botnet.

The researchers Gao et al. [14] developed the ana-
lytical framework DarkSim. DarkSim makes use of the
UCSD telescope data to identify traffic patterns that need
to be investigated further. The project was used to detect
a change in scanning behavior after the disclosure of
vulnerabilities related to Microsoft products. They also
managed to gain insight into the systems conducting those
scans.

5.3. Orion Network Telescope

The Orion Network Telescope is operated by the
Merit Network, an independent nonprofit corporation run
by universities in Michigan. The telescope is accessible
to researchers. Like the UCSD telescope, it is entirely
passive. One difference between those two darknets is
that the Orion telescope makes use of /24 networks. By
combining 1856 of those /24 networks, they created a
network telescope that can monitor roughly 500,000 IP
addresses. [20]

By aggregating all those networks, this telescope ef-
fectively tracks a /13 address block. On a typical day,
the telescope run by Merit Network captures ∼100GB of
compressed network data consisting of roughly 3 billion
packages. [21]

All the traffic that reaches the Orion Network Tele-
scope is saved in the PCAP file format [20]. The stored
data includes the origin IP, targeted port, timestamp, and
other information. In the past, the Orion Network tele-
scope had coverage of roughly 75% of a /8 address block
[22].

The Orion Network Telescope is used for tracking
botnets, detecting scanners, and gaining insight into DoS
attacks [20]. Near the end of 2016, the Mirai malware
popped up. This malware infected IoT devices, which
it then used to conduct DDoS attacks. Antonakakis et
al. [23] made use of the Orion Network Telescope to
retrospectively analyze how the botnet emerged. They
also managed to provide a history of the botnet’s DDoS
victims. They found that during the 7-month timeframe
starting from July 18, 2016, the Orion Network Telescope
received roughly 1.6 billion packages per day.

Seminar IITM SS 25 8 doi: 10.2313/NET-2025-11-3_02

5.4. NICTER

The Network Incident Analysis Center for Tactical
Emergency Response (NICTER) project aims to analyze
and understand ongoing network attacks [24]. This large-
scale passive network telescope is run by the Japanese
Research Institute NICT [24]. The project was launched
in 2005 and monitored approximately 16,000 addresses.
In the following years, the number of captured IP ranges
constantly increased. Currently, the size of the network
telescope hovers around 300,000 IP addresses. Using the
captured data, NICTER publishes a detailed report every
year. According to NICTER’s yearly report, they observed
roughly 1.9 billion packets per day in the year 2024. [25]

NICTER’s darknet observations have been used to
gain insight into botnets like Mirai and Hajime [26] [27].

6. Conclusion

In this paper, we examined multiple different network
telescopes. All the telescopes were either classified as
passive or as reactive. Chapter 4 also highlighted the key
differences between those two categories. The main dif-
ference is how the telescope reacts to incoming packages.
This behavior decides how well the network telescope can
monitor tools used for network reconnaissance.

References

[1] W. Mazurczyk and L. Caviglione, “Cyber reconnaissance
techniques,” Commun. ACM, vol. 64, no. 3, pp. 86–95, Feb. 2021.
[Online]. Available: https://doi.org/10.1145/3418293

[2] D. Moore, C. Shannon, G. Voelker, and S. Savage, “Network Tele-
scopes: Technical Report,” Cooperative Association for Internet
Data Analysis (CAIDA), Tech. Rep., July 2004.

[3] M. Kallitsis, R. Prajapati, V. Honavar, D. Wu, and J. Yen, “De-
tecting and interpreting changes in scanning behavior in large
network telescopes,” IEEE Transactions on Information Forensics
and Security, vol. 17, pp. 3611–3625, 2022.

[4] C. Fachkha and M. Debbabi, “Darknet as a Source of Cyber
Intelligence: Survey, Taxonomy, and Characterization,” IEEE Com-
munications Surveys & Tutorials, vol. 18, no. 2, pp. 1197–1227,
2016.

[5] R. Hiesgen, M. Nawrocki, A. King, A. Dainotti, T. C. Schmidt,
and M. Wählisch, “Spoki: Unveiling a new wave of scanners
through a reactive network telescope,” in 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 431–448. [Online]. Available: https://
www.usenix.org/conference/usenixsecurity22/presentation/hiesgen

[6] O. Babatunde and O. Al-Debagy, “A comparative review of internet
protocol version 4 (ipv4) and internet protocol version 6 (ipv6),”
International Journal of Computer Trends and Technology (IJCTT),
vol. 13, no. 1, 2014.

[7] Y. Fang, L. Zhang, L. Li, C. Sun, Y. Guo, H. Zhang, B. Lin,
J. Wang, and W. Xia, “An ipv6 address fast scanning method based
on local domain name association,” Scientific Reports, vol. 15, no.
11524, Apr 2025.

[8] G. Li, M. Zhang, C. Guo, H. Bao, M. Xu, H. Hu, and F. Li,
“IMap: Fast and scalable In-Network scanning with programmable
switches,” in 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22). Renton, WA: USENIX
Association, Apr. 2022, pp. 667–681. [Online]. Available:
https://www.usenix.org/conference/nsdi22/presentation/li-guanyu

[9] R. Abu Bakar and B. Kijsirikul, “Enhancing network visibility
and security with advanced port scanning techniques,” Sensors,
vol. 23, no. 17, 2023. [Online]. Available: https://www.mdpi.com/
1424-8220/23/17/7541

[10] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage,
“Inferring internet denial-of-service activity,” ACM Transactions
on Computer Systems, vol. 24, no. 2, pp. 115–139, May 2006.
[Online]. Available: https://doi.org/10.1145/1132026.1132027

[11] J. Li, D. Sisodia, and S. Stafford, “On the detection of smart, self-
propagating internet worms,” IEEE Transactions on Dependable
and Secure Computing, vol. 20, no. 4, pp. 3051–3063, 2023.

[12] D. Moore, C. Shannon, and J. Brown, “Code-Red: a case study
on the spread and victims of an Internet worm,” in Internet
Measurement Workshop (IMW), November 2002, pp. 273–284.

[13] K. Benson, A. Dainotti, k. claffy, A. Snoeren, and M. Kallitsis,
“Leveraging Internet Background Radiation for Opportunistic Net-
work Analysis,” in ACM Internet Measurement Conference (IMC),
October 2015.

[14] M. Gao, R. Mok, E. Carisimo, k. claffy, E. Li, and S. Kulkarni,
“DarkSim: A Similarity-Based Time Series Analytic Framework
for Darknet Traffic,” in Proceedings of the 2024 ACM on Internet
Measurement Conference, November 2024.

[15] C. for Applied Internet Data Analysis, “The UCSD Network Tele-
scope,” https://www.caida.org/projects/network_telescope/, 2025,
[Online; accessed 25-May-2025].

[16] A. R. D. Communications, “AMPRNet Wiki,” https://wiki.ampr.
org/wiki/Main_Page, 2024, [Online; accessed 25-May-2025].

[17] A. Camargo, L. Bertholdo, and L. Granville, “Less is more?
exploring the impact of scaled-down network telescopes on
security and research,” in Anais do XLII Simpósio Brasileiro de
Redes de Computadores e Sistemas Distribuídos. Porto Alegre,
RS, Brasil: SBC, 2024, pp. 1050–1063. [Online]. Available:
https://sol.sbc.org.br/index.php/sbrc/article/view/29854

[18] A. Mangino, M. S. Pour, and E. Bou-Harb, “Internet-
scale insecurity of consumer internet of things: An
empirical measurements perspective,” ACM Trans. Manage.
Inf. Syst., vol. 11, no. 4, Oct. 2020. [Online]. Available:
https://doi.org/10.1145/3394504

[19] A. Dainotti, A. King, K. Claffy, F. Papale, and A. Pescapé, “Analy-
sis of a “/0” Stealth Scan From a Botnet,” IEEE/ACM Transactions
on Networking, vol. 23, no. 2, pp. 341–354, 2015.

[20] M. Network, “Orion Network Telescope,” https://www.merit.edu/
research/projects/orion-network-telescope/, [Online; accessed 25-
May-2025].

[21] R. Prajapati, V. Honavar, D. Wu, J. Yen, and M. Kallitsis,
“Shedding light into the darknet: scanning characterization and
detection of temporal changes,” in Proceedings of the 17th
International Conference on Emerging Networking EXperiments
and Technologies, ser. CoNEXT ’21. New York, NY, USA:
Association for Computing Machinery, 2021, pp. 469–470.
[Online]. Available: https://doi.org/10.1145/3485983.3493347

[22] J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. Bailey,
and M. Karir, “Taming the 800 pound gorilla: The rise and
decline of ntp ddos attacks,” in Proceedings of the 2014 Internet
Measurement Conference, ser. IMC ’14, 2014, pp. 435–448.
[Online]. Available: https://doi.org/10.1145/2663716.2663717

[23] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi,
M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher,
C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou, “Understanding
the mirai botnet,” in 26th USENIX Security Symposium.
Vancouver, BC: USENIX Association, Aug. 2017, pp. 1093–
1110. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis

[24] NICTERWEB, “What is the NICTER Project?” https://www.nicter.
jp/en/project, [Online; accessed 25-May-2025].

[25] N. I. of Information and C. Technology, “NICTER Observation Re-
port 2024,” National Institute of Information and Communications
Technology (NICT), Tech. Rep., February 2025.

[26] S. Pham Anh and Y. Nakamura, “A baseline investigation into the
evolution and prevalence of mirai and hajime utilizing a network
telescope,” IEEE Access, vol. 12, pp. 103 789–103 809, 2024.

[27] T. Kasama, “Long-term darknet analysis in nicter,” Journal of the
National Institute of Information and Communications Technology,
vol. 63, no. 2, pp. 25–31, 2016.

Seminar IITM SS 25 9 doi: 10.2313/NET-2025-11-3_02

Seminar IITM SS 25 10

Energy Consumption Reports Using Jupyter Notebooks

Julian Forster, Kilian Holzinger∗, Sebastian Gallenmüller∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: j.forster@tum.de, holzinger@net.in.tum.de

Abstract—Reproducibility is a key aspect of scientific re-
search, ensuring that experimental results can be indepen-
dently verified. However, achieving reproducibility remains
a challenge due to the additional effort required for docu-
mentation and automation. The plain orchestration service
(pos) was developed to address these issues by enforcing
reproducibility in network experiments. This paper presents
an approach to enhance pos with an automated energy
consumption reporting system based on Jupyter Notebooks.
By integrating energy data collection through Prometheus
and Grafana, we enable detailed insights into power usage
during experiments. The proposed solution focuses on flexi-
bility and adaptability, allowing it to be used across different
environments. We discuss the architecture, implementation,
and a case study demonstrating the practical application of
the system.

Index Terms—plain orchestration service (pos), Network
Experiment, Energy consumption, automated reports

1. Introduction

Having independent reproducible experimental results
is crucial for any scientific research [1]. It makes results
more trustworthy because it allows other researchers to
recreate and verify the results. However, it is not that
widespread to create reproducible experiments in the sci-
ence community. The main problem is the increased effort
researchers have to put into their experiments to make
them reproducible, and it comes with some technical
limitations [2] like privacy reasons or custom-built lab
equipment resources.

To achieve that, the whole experiment process has to
be automated (to prevent human errors) and documented.
The documentation includes the hardware and environ-
ment, scripts and parameters used, and the actual results
from the experiment. Depending on the experiment, more
insights into the actual behavior of the hardware can be
beneficial. This includes, for example, the energy con-
sumption of a node during the experiment.

To encourage the creation of reproducible experi-
ments, the ACM, which is the world’s largest scientific
and educational computing society, dedicated to advancing
computing as a science and profession, introduced badges,
which are awards for papers that make their experiments
reproducible [3].

pos was created to assist researchers in achieving
reproducibility with almost no additional effort, it is a
methodology and a testbed where network experiments

can be tested on [4]. The main advantage of pos is,
that reproducibility was a main design consideration and,
therefore, is enforced to run the experiments. At the end
of an experiment, all the scripts, parameters, and results
are saved and optionally published.

To gain deeper insights into the experiments, we want
to create a dashboard that can collect the information
from an experiment and give valuable insights into the
energy consumption during the different runs. Although
the dashboard is already created and works with pos [5],
the goal is to make it flexible and adaptable to work in
different environments and backends.

There are already some projects and tools supporting
the creation of reproducible experiments. Some of them
are OMF [6], which is a testbed controller, or SNDZoo [7]
or WalT [8]. However, all of them only allow the creation
of reproducible experiments but do not enforce them,
which means that an experiment can be run without the
proper documentation for other researchers. In the project
[9], they tested the capability to do reproducible network
experiments using container-based emulation. Adding a
layer of abstraction always interferes with the results of
an experiment, especially on low latency network experi-
ments. These are the reasons why we want to focus on a
solution, which works especially for pos, which is built for
direct hardware access, but makes it adaptable for other
projects and tools as well.

The remainder of this paper is structured as follows:
Sec. 2 gives more background on the project, Sec. 3
talks about the approach, Sec. 4 describes a short case
study, Sec. 5 talks about the future work, and Sec. 6
concludes the paper. Appendix 1 shows the output of
the jupyter energy evaluation dashboard (all the required
dependencies and code can be found in the repository
[10]).

2. Background

This section focuses on the architecture and technol-
ogy stack the testbed uses to run and evaluate reproducible
experiments. First, we discuss pos and how it is built, and
then the other technologies used to retrieve the energy
data required for the jupyter-based experiment energy
assessment dashboard.

2.1. Architecture of pos

pos was created with the following requirements for
reproducible experiments in mind [4]:

Seminar IITM SS 25 11 doi: 10.2313/NET-2025-11-3_03

Figure 1: Architecture of pos [4]

• Heterogeneity (R1) support for wide range of dif-
ferent devices

• Isolation (R2) the experiment nodes from non-
experiment related devices

• Recoverability (R3) reverts devices into working
mode even after a crash

• Automation (R4) avoids errors of misconfiguration
• Publishability (R5) document everything automat-

ically

With these requirements in mind, pos architecture is
built to enforce these with as little effort as possible.
To achieve this, pos offers a flexible and well-defined
workflow as shown in Fig. 1.

In the setup phase of the experiment, one or more
nodes are allocated and booted with a predefined live
image to ensure that, per each run, the experiment starts
from the same point. After the boot, a basic setup script
runs to make some configuration like installing network
measurment software etc. After the setup phase, the actual
measurement phase begins, where the nodes are mon-
itored, and the results are stored. One experiment can
involve multiple different runs with different parameters.
pos separates the scripts and the according parameters
into two files to ensure easy adaptation to different en-
vironments without needing to change the script. After
all runs, the evaluation phase starts. Custom scripts can
aggregate and further process the results and optionally
publish them. It is currently used, for example, for TSN-
based network experiments [11].

2.2. Energy Data Collection & Visualization

In the following, we discuss how the energy data is
collected from the testbed and later evaluated and visual-
ized in the current form.

As shown in Fig. 2, each node of the testbed gets its
power through a power distribution unit (PDU), which can
log the power consumption of each power outlet. In the
current testbed of the chair, we have 4 PDUs connected
to the nodes. A local instance of Prometheus, an open-
source monitoring and alerting toolkit [12], collects and
stores power consumption data via the SNMP interface.
The stored metrics are then visualized using Grafana, a
widely-used open-source platform for monitoring and ob-
servability [13]. This setup enables detailed visualization

Figure 2: Architecture and Data Collection of the Testbed
(diagram selfmade)

Figure 3: Per-Host Power Consumption in Grafana [14]

of per-node power consumption statistics, as illustrated in
Fig. 3.

During each run, pos also save the energy consumption
data and all the other experiment-related data in an RO-
Crate format. So it is possible to retrieve the data through
experiment results (only the used nodes and only for the
specific time range) and through Grafana.

2.3. Jupyer Based Experiment Energy Assess-
ment

In the current jupyter notebook [5], the output folder,
which is in RO-Crate format, displays important data
about the experiment and plots energy data for different

Seminar IITM SS 25 12 doi: 10.2313/NET-2025-11-3_03

runs. These include current, voltage, power consumption,
and aggregated power consumption. In specific, the note-
book shows the following information:

• Creator information extracted from the RO-Crate
metadata

• Node information & topology visualization ex-
tracted from the RO-Crate as well.

• Power consumption over time shows the power
consumption each node has per run

• Cumulative energy consumption
• Current and voltage trends
• Energy Consumption Rate Over Time the rate at

which energy is consumed over time (mW/s)

The dashboard currently uses two data sources to
create the tables and plots: the RO-Crate metadata file
and the energy data folder in which the data is stored in
CSV format per each node and run with the following
structure: current_mA, voltage_V, power_active_W, and
energy_counter_Wh.

3. Approach

With our approach we want to make the dashboard
more universally adaptable, as currently the dashboard can
only work with the RO-Crate format. To do so, we made
it possible for the dashboard to work with the Grafana
API to get the required information.

3.1. Design

Grafana has no information about the experiments
and related runs or used nodes. This is why in the first
prototype, we used the pos python API to retrieve the
reserved nodes as well as the date and time slots for
each experiment. However, pos currently does not support
querying entries from the past, which is why this is not
a feasible solution. So for the calendar data, we used an
exported CSV dump from the pos database. This is just a
temporary solution until the pos API is further developed
to get the data through the API directly.

We had multiple choices on how to implement the
flexibility for the dashboard. One option was to utilize an
object-oriented approach to make the dashboard extensible
and open for multiple different interfaces and data sources.
An alternative approach was to create different scripts that
work as preprocessors, which collect the data from the
sources and store them in a similar CSV energy format
which then can be read by the dashboard.

The Grafana API currently only supports power con-
sumption data. As already written, the pos API is currently
too limited for practical use, which is why we had to
switch to the CSV dump of the pos database. This shows
that every testbed environment is unique, which makes
it quite difficult with an object-oriented approach as this
requires some similar processes to work correctly. So we
decided to go with the preprocessor approach.

3.2. Implementation

For that, we created a new script, which queries the 4
PDUs of the pos testbed via the Grafana API, aggregates

Figure 4: Energy Consumption Dashboard Architecture
Before & After

them together, and cleans up the data. Next, we take the
information from the pos calendar CSV database dump
and choose one experiment. The data is then exported to
CSV file(s), which then can be read by the main energy
consumption dashboard notebook as shown in Fig. 4. The
"other data sources" in Fig. 4 show, that we can add any
other data sources later, which work with the dashboard
as well.

Because only the RO-Crate Metadata file contains
creator and node information, we can not show this data,
when we use grafana and pos as the datasource. So we
changed the dashboard script to be able to visualize the
information with and without the RO-Crate Metadata file
and with the CSV energy files.

Because we only get the power consumption data from
Grafana, we also had to adjust the dashboard to be able
to work with more or less data, depending on what is
provided in the CSV file.

4. Case Study

In this section, we do a short example go through the
project to show how the process works. First, we have to
choose one experiment run. Because the web portal does
not show any IDs for one experiment, we have to look
that up in the CSV. For this example, we chose the entry
with the id 7807, which uses in total three nodes (bitcoin,
bitcoincash, bitcoingold) and it ran on 07.03.2025 between
12 am and 6 pm. Next, we query the data from Grafana
in this time range. When we plot that data, we get the
energy consumption of all the nodes. After some cleanup,
we get the following diagram as shown in Fig. 5.

Now, we only have to filter for the nodes we are
interested in and export that data to a CSV file. After
we run the process, we can check the results by running

Seminar IITM SS 25 13 doi: 10.2313/NET-2025-11-3_03

Figure 5: Power Consumption over Time for all Nodes

Figure 6: Example Power Consumption over Time for
Three Nodes [5]

the dashboard script. We then get the energy consumption
over time for the nodes as shown in Fig. 6. A full output
of the energy consumption dashboard can be found in
Appendix 1.

Because Grafana currently only supports power con-
sumption, we had to set all the other columns to 0.
Therefore the other diagrams are currently not working.
As soon as we have the option to query more data, we
can use all the other diagrams in the dashboard.

5. Conclusion
In this paper, we introduced an approach to improve

the monitoring of energy consumption for network ex-
periments conducted with pos [4]. Using Prometheus,
Grafana, and Jupyter Notebooks, we developed a system
that enables automated and reproducible power usage
reporting. The implemented solution provides valuable
information on trends in energy consumption and can be
extended to other testbeds by adapting data sources.

References
[1] C. S. Collberg and T. A. Proebsting, “Repeatability in computer

systems research,” Communications of the ACM, vol. 59, no. 3, pp.
62–69, 2016.

[2] N. Zilberman, “An artifact evaluation of ndp,” Computer Commu-
nication Review, vol. 50, no. 2, pp. 32–36, 2020.

[3] ACM. (2020) Artifact review and badging version 1.1. Last
accessed: 2022-05-06. [Online]. Available: https://www.acm.org/
publications/policies/artifact-review-and-badging-current

[4] S. Gallenmüller*, D. Scholz*, H. Stubbe, and G. Carle, “The
pos Framework: A Methodology and Toolchain for Reproducible
Network Experiments,” in The 17th International Conference on
emerging Networking EXperiments and Technologies (CoNEXT
’21), Munich, Germany (Virtual Event), Dec. 2021.

[5] K. Warmuth. (2025) Greendigit evaluation repository. Chair of
Network Architectures and Services, School of Computation,
Information and Technology, Technical University of Munich,
Germany. GitLab repository, last accessed: January 7, 2026.
[Online]. Available: https://gitlab.lrz.de/GreenDIGIT/evaluation

[6] T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar, “Omf: A
control and management framework for networking testbeds,” ACM
SIGOPS Operating Systems Review, vol. 43, no. 4, 2010.

[7] M. Peuster, S. Schneider, and H. Karl, “The softwarised network
data zoo,” in 15th International Conference on Network and Ser-
vice Management, CNSM 2019. Halifax, NS, Canada: IEEE, Oct.
21-25 2019, pp. 1–5.

[8] P. Brunisholz, E. Dublé, F. Rousseau, and A. Duda, “Walt: A
reproducible testbed for reproducible network experiments,” in
2016 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2016, pp. 146–151.

[9] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McK-
eown, “Reproducible network experiments using container-based
emulation,” in Proceedings of the 8th international conference
on Emerging networking experiments and technologies, 2012, pp.
253–264.

[10] J. Forster. (2025) Seminar: Energy consumption reports using
jupyter notebook. Chair of Network Architectures and Services,
School of Computation, Information and Technology, Technical
University of Munich, Germany. GitLab repository, last accessed:
January 7, 2026. [Online]. Available: https://gitlab.lrz.de/netintum/
teaching/iitm/repos/2025ss-bs/u112

[11] M. Bosk, F. Rezabek, K. Holzinger, A. G. Marino, A. A. Kane,
F. Fons, J. Ott, and G. Carle, “Methodology and infrastructure
for tsn-based reproducible network experiments,” IEEE Access,
vol. 10, pp. 109 203–109 239, 2022.

[12] Prometheus Authors, “Prometheus: Monitoring system & time
series database,” https://prometheus.io, 2024, accessed: 2025-05-
11.

[13] Grafana Labs, “Grafana: The open observability platform,” https:
//grafana.com, 2024, accessed: 2025-05-11.

[14] Gude Dashboard, “Grafana dashboard of energy consumption
per node,” https://catalepsy.net.in.tum.de/d/8cJTjb1nk/gude?orgId=
1&from=now-24h&to=now&timezone=browser, 2025, accessed:
2025-04-05.

Appendix 1: Output of the Jupyter Energy
Evaluation Dashboard From The Run

EDITOR NOTE: The appendix is omitted in the pro-
ceedings. The full version including appendix is avail-
able at: https://www.net.in.tum.de/fileadmin/TUM/NET/
NET-2025-11-3/NET-2025-11-3_03.pdf

Seminar IITM SS 25 14 doi: 10.2313/NET-2025-11-3_03

Firewalling with eBPF: A Performance Comparison of XDP-based Solutions

Sebastian Fritsch, Manuel Simon∗, Sebastian Gallenmüller∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: s.fritsch@tum.de, gallenmnu@net.in.tum.de, simonm@net.in.tum.de

Abstract—Firewall capabilities on Linux are traditionally
provided by the Netfilter framework. With the introduction
of eBPF in kernel version 3.18 and XDP in kernel version 4.8,
new ways of implementing firewalls on Linux have emerged.

This paper compares three eBPF-based firewall imple-
mentations (pcn-iptables, XDP-Firewall, and xdp-filter),
highlighting their architecture, capabilities and use cases.
Those firewalls are evaluated in terms of latency and
throughput within themselves and against a traditional fire-
wall implementation. Our measurements show, that eBPF
and XDP can be used to build firewall systems, that signifi-
cantly outperform traditional firewalls, especially with large
rulesets. However, we show that the performance of eBPF-
based firewalls is not per se superior to traditional solutions,
but is strongly dependent on how effectively eBPF features
like hash tables are used.

Index Terms—XDP, eBPF, DDoS, Firewall

1. Introduction

Web services have become central to everyday Internet
usage, making their availability crucial for users and busi-
nesses. This increased dependence makes them attractive
targets for various cyberattacks, which aim to overwhelm
services, causing downtime and disruptions.

Traditionally, firewalls have been used as a primary de-
fense mechanism to filter and block such harmful network
traffic. Common firewall technologies, such as iptables
and nftables in Linux, operate effectively but can become
performance bottlenecks on large rule sets caused by
complex attacks or high traffice volume. This limitation
motivates the search for more efficient solutions.

In recent years, the introduction of technologies like
the extended Berkeley Packet Filter (eBPF) framework
and the eXpress Data Path (XDP) in the Linux kernel
has opened new possibilities for firewall implementations.
These technologies enable network packets to be pro-
cessed much earlier and more efficiently within the kernel,
significantly enhancing performance.

In this paper, we explore and compare these newer
eBPF-based firewall solutions and evaluate their latency,
throughput and overall performance within themselves and
against traditional firewall implementations.

2. Background

To fully understand these modern firewall technolo-
gies, it is helpful to revisit traditional firewall concepts
and the current Linux networking stack.

2.1. Network Firewalls

Firewalls can be categorized according to their posi-
tion within the ISO/OSI model into three main types:

• Packet-filtering firewalls operate at the network
layer and filter packets based on header informa-
tion such as source and destination IP addresses,
ports, protocols and flags. They can be imple-
mented in hardware or software and are commonly
used to control network access [1].

• Circuit-gateway firewalls function at the session
layer. They verify whether a session, like a TCP
connection, is permitted based on defined security
policies [1].

• Application-layer firewalls operate at the applica-
tion layer, inspecting the actual content of packets
to detect and block malicious traffic. They are of-
ten used to protect web applications, email servers,
and similar services from attacks [1].

Packet-filtering firewalls are further categorized as
either stateless or stateful. Stateless firewalls filter each
packet individually according to predefined rules without
tracking the state of network connections. Stateful fire-
walls, on the other hand, maintain a state table that records
active connections, allowing them to make more informed
filtering decisions based on connection states [1].

Linux firewall implementations like iptables or nfta-
bles can support both stateless and stateful firewall con-
figurations.

Firewalls can also be categorized by their deployment
method:

• Network-based firewalls are positioned at the
perimeter of the network, protecting the entire
network from external threats. They are usually
hardware-based and control network-wide access
for multiple devices [2].

• Host-based firewalls run on individual devices,
protecting them from both internal and external
threats. They can are usually software-based and
only control access to the individual device it-
self [2].

2.2. eBPF and Networking

The Berkeley Packet Filter (BPF) was first introduced
in 1992 as a way to filter network packets directly in
the kernel of Unix BSD systems. It used a simple virtual
machine that executed filtering instructions [3].

Seminar IITM SS 25 15 doi: 10.2313/NET-2025-11-3_04

However, the original BPF had some significant limita-
tions—especially its inability to execute unbounded loops
or function calls. These issues were addressed with the
introduction of extended BPF (eBPF) in 2014. Designed
as a universal in-kernel virtual machine, eBPF enables
the execution of more sophisticated programs and extends
its applicability beyond packet filtering into other kernel
domains [3].

A particularly useful feature of eBPF for firewall
implementations is the ability to create hash tables and
arrays in the kernel using the BPF_MAP_TYPE_HASH and
BPF_MAP_TYPE_ARRAY map types. These maps can be
updated dynamically from user space, enabling efficient
lookups and flexible firewall rules [4].

In the Linux network stack, eBPF programs can hook
into different points to process packets. The following
subsections describe the most relevant hooks.

2.2.1. Netfilter. Netfilter is a Linux kernel framework
providing hooks for packet filtering and manipulation. The
original BPF could be used by Netfilter, allowing users
to attach BPF programs to Netfilter hooks through the
xt_bpf iptables module [5].

Starting with Linux kernel version 6.4 in 2023, direct
support for eBPF was added to Netfilter. Now, eBPF
programs of type BPF_PROG_TYPE_NETFILTER can be at-
tached directly to Netfilter hooks [4].

2.2.2. XDP. The eXpress Data Path (XDP) enables run-
ning eBPF programs as early as possible in the Linux
networking stack—before packets undergo extensive pro-
cessing or memory allocation (such as constructing the
sk_buff structure for representing a packet and its meta-
data) [6].

XDP currently works only on the receiving (RX)
side. An XDP program can instruct the kernel to handle
incoming packets with one of five actions: XDP_DROP,
XDP_PASS, XDP_TX, XDP_REDIRECT, or XDP_ABORTED. In
firewall scenarios, the most important actions are typically
XDP_DROP (drop the packet), XDP_PASS (accept the packet)
and XDP_TX (return the packet on the same interface) [6].

Because XDP programs are compiled directly into
native machine code using Just-In-Time (JIT) compilation,
they can achieve a high performance by handling up to
24 million packets per second on a single CPU core [6].
XDP supports three modes of operation:

• XDP Generic: The XDP program runs within
the kernel networking stack, similar to the
ingress hook of Traffic Control (TC) (see Section
2.2.3) [3].

• XDP Native: The XDP program runs di-
rectly within the network driver, improving effi-
ciency [3].

• XDP Offload: The XDP program runs directly on
a compatible programmable network interface card
(NIC) [3].

2.2.3. TC. Traffic Control (TC) is another kernel frame-
work for managing network traffic through shaping,
scheduling, and policing. Unlike XDP, TC allows attach-
ing eBPF programs to the incoming (RX) and outgoing
(TX) paths, giving it more flexibility for network manage-
ment and firewall applications [7].

However, since packets must first be processed and
allocated memory by the kernel, TC generally has a lower
performance compared to XDP.

There are two main types of eBPF programs that can
attach to TC:

• BPF_PROG_TYPE_SCHED_CLS: Classifies packets
based on specified criteria [8].

• BPF_PROG_TYPE_SCHED_ACT: Specifies what ac-
tion to take on packets after classification [8].

3. Overview of XDP-based Firewalls

Since eBPF was introduced into the Linux kernel,
several projects have started using it at different points
in the networking stack to build firewalls and protect
against Distributed Denial of Service (DDoS) attacks.
The currently available projects can be used both as a
host-based or network-based firewall. Because eBPF runs
directly in the kernel, most eBPF-based firewalls operate
on layers 3 and 4 of the OSI/ISO model. They additionally
can be combined with an application-layer firewall that
runs in userspace.

In this section, we look at some of the more notable
eBPF-based firewall projects, comparing their architecture
and key features. A summary of our findings can be found
in Table 1.

3.1. pcn-iptables

Polycube1 is an eBPF and XDP-based framework
providing tools for creating network services like fire-
walls, bridges, and routers. One of its components,
pcn-iptables, is designed as a drop-in replacement for
Linux iptables, offering the same syntax and behavior but
using eBPF internally [9].

Architecturally, pcn-iptables uses the XDP hook to
filter incoming traffic and the TC hook to filter outgoing
traffic. Because these hooks run earlier in the kernel com-
pared to traditional Netfilter hooks, pcn-iptables needs
to reimplement some Netfilter features like connection
tracking, forwarding, and NAT [9].

Despite the added complexity, pcn-iptables per-
forms similarily or better than traditional iptables, es-
pecially when handling large rule sets. Its performance
remains more stable under heavy workloads, experiencing
a lower slowdown as the number of rules increases [9].

3.2. XDP-Firewall

XDP-Firewall2 is an open-source firewall built entirely
using eBPF and XDP. Unlike pcn-iptables, it only filters
incoming packets (on the RX path) using XDP. Users can
dynamically update firewall rules at runtime by editing a
configuration file, which the program parses and loads into
an eBPF map. The eBPF program iterates over these rules
sequentially to determine if packets should be dropped or
allowed.

During compilation, users can choose which network
protocols (such as TCP, UDP, or ICMP) the firewall should

1. https://github.com/polycube-network/polycube
2. https://github.com/gamemann/XDP-Firewall

Seminar IITM SS 25 16 doi: 10.2313/NET-2025-11-3_04

support. Limiting protocol support helps improve perfor-
mance, as the program only parses the relevant headers.

XDP-Firewall provides basic packet filtering for IPv4
and IPv6 but does not support stateful filtering or connec-
tion tracking.

3.3. xdp-filter

xdp-filter3 is a lightweight packet-filtering tool
maintained by the official XDP project. It can filter packets
based on MAC addresses, IPv4 and IPv6 addresses, and
TCP or UDP ports. For TCP and UDP port rules, it uses
an efficient eBPF array map with 65,536 entries (one per
port), where each entry specifies a XDP_DROP or XDP_PASS
action. MAC and IP address filtering uses an eBPF hash
map for quick lookups. Similar to XDP-Firewall, it also
is a stateless firewall.

3.4. Proprietary Solutions

Besides open-source projects, several proprietary so-
lutions also use eBPF to provide firewall functionality,
DDoS protection, and load balancing in enterprise envi-
ronments.

Cloudflare, for example, initially relied on iptables to
mitigate DDoS attacks. However, due to poor performance
when dealing with high traffic volumes and complex rule-
sets, they transitioned to an eBPF-based solution. Their
current system, named L4Drop, provides XDP-based fil-
tering for incoming traffic. Abstract rules generated by
their DDoS detection system, Gatebot, are dynamically
compiled into eBPF programs and deployed directly onto
their edge servers [5].

Another notable example is Meta, which utilizes
XDP for high-performance packet processing. They open-
sourced an XDP-based load balancer called Katran4,
which forwards packets directly to backend servers us-
ing the XDP_TX action. Additionally, Meta has published
research describing their own XDP-based firewall, which
processes packets before they reach the load balancer.
This approach reduces unnecessary load balancing by
filtering out packets that would eventually be dropped
anyway [10].

4. Comparison of XDP-based Firewalls

Several studies have compared the performance of
eBPF-based firewalls with traditional solutions like ipt-
ables and nftables. In terms of latency, simple XDP
firewalls typically outperform Netfilter-based firewalls by
around four times, although they increase the probability
of latency outliers [11]. JIT compilation further improves
performance, doubling the speed but again increasing the

3. https://github.com/xdp-project/xdp-tools/tree/main/xdp-filter
4. https://github.com/facebookincubator/katran

probability of outliers [11]. Regarding throughput, XDP
firewalls running in native mode are particularly effective
when handling a large number of rules, because eBPF
allows for optimized rule matching using hash tables [9].

In this section, we compare the latency and through-
put of the previously described XDP/TC-based firewalls:
pcn-iptables, xdp-filter, and XDP-Firewall.

4.1. Measurement Setup

For our measurements, we connected two hosts using a
10 Gigabit Ethernet (GbE) link. One host acted as the load
generator, while the second host functioned as the Device
under Test (DuT), running the firewall being evaluated.

Both hosts had the following hardware specifications:

• CPU: AMD Ryzen 7 7700X (8 cores, 3.5 GHz)
• Memory: 64 GB DDR5 RAM
• NIC: Intel 82599ES 10-Gigabit Ethernet

We used iperf35 on the load generator running Ubuntu
24.04 (Linux kernel version 6.8) to generate traffic. The
DuT ran iperf3 in server mode with the firewall under test.
For compatibility reasons, pcn-iptables required Ubuntu
20.04, while the other firewalls were tested using Ubuntu
24.04.

To measure the average CPU cycles consumed by
each XDP firewall, we used bpftool6. Specifically, we
executed the command bpftool prog profile, which
inserts performance counters via the fentry and fexit
probes in eBPF programs, allowing us to measure the
exact CPU cycles and instructions per program invocation.
As iptables cannot be measured by bpftool, the latency
was only measured for the XDP-based firewalls.

4.2. Latency

To evaluate latency differences between the firewall
implementations, we measured the average CPU cycles
per invocation of the XDP programs under varying num-
bers of firewall rules. For simplicity, we used basic TCP
port-blocking rules equivalent to the following iptables
rule:

iptables -A INPUT -p tcp --dport 80 -j DROP

The results of these measurements are shown in
Figure 1. Overall, xdp-filter had the lowest latency
in this test scenario, followed by pcn-iptables and
XDP-Firewall.

An interesting observation is that the latencies of
pcn-iptables and xdp-filter remain relatively stable
as the number of firewall rules increases. However, the
latency of XDP-Firewall increases almost linearly. This

5. https://iperf.fr/
6. https://github.com/libbpf/bpftool

Kernel Hook Open-Source Egress Stateful IPv4 L4 Protocols IPv6 L4 Protocols
XDP-Firewall XDP Yes No No TCP, UDP, ICMP -
xdp-filter XDP Yes No No TCP, UDP TCP, UDP
pcn-iptables XDP & TC Yes Yes Yes All All

TABLE 1: Feature comparison of eBPF-based firewalls

Seminar IITM SS 25 17 doi: 10.2313/NET-2025-11-3_04

0 10 100 1000
0

2

4

6

·104

#Rules

C
PU

cy
cl

es
pe

r
in

vo
ca

tio
n

XDP-Firewall xdp-filter pcn-iptables

Figure 1: Latency of XDP-based firewalls

happens because XDP-Firewall checks each rule sequen-
tially in a loop until it finds a match or reaches the end.7 In
contrast, the other two implementations use an eBPF hash
table, allowing them to quickly look up the appropriate
rule after parsing the packet headers.

Since pcn-iptables is designed to handle more com-
plex rulesets than xdp-filter, it employs the Linear Bit
Vector Search (LBVS) algorithm to efficiently identify
matching rules. This algorithm takes advantage of the fact
that firewall rule sets are usually sparse, enabling it to
significantly narrow down the search using a divide-and-
conquer approach [12].

4.3. Throughput

Besides latency, we also measured the throughput of
the different firewall implementations. Throughput tests
were performed using iperf3 in UDP mode with a data-
gram size of 64 bytes, unlimited bandwidth, and a test
duration of 30 seconds. The rules, that were employed
on the firewalls were basic UDP port blocking rules
equivalent to the following iptables rule:

iptables -A INPUT -p udp --dport 80 -j DROP

Figure 2 shows the results of these measurements. The
throughput of pcn-iptables and xdp-filter remains
relatively stable as the number of firewall rules increases,
while the throughput of XDP-Firewall drops significantly.

Additionally, we measured the throughput of tradi-
tional iptables with the same ruleset and experimental
setup. The throughput of iptables behaves similarly to
XDP-Firewall, showing a linear decrease as more rules
are added. This clearly illustrates the important relation-
ship between the latency of individual XDP invocations
and the overall throughput performance of firewall imple-
mentations.

7. https://github.com/gamemann/XDP-Firewall/blob/
7dc351f3528ce00590ac16f6401f5a5be4c998d0/src/xdp/prog.c\
#L363-L369

0 10 100 1000
0

0.2

0.4

0.6

0.8

1

#Rules

Pa
ck

et
s

pe
r

se
co

nd
(M

pp
s)

XDP-Firewall xdp-filter pcn-iptables
iptables

Figure 2: Throughput of XDP-based firewalls

5. Conclusion and future work

In this paper, we have surveyed the current state of the
art of eBPF-based firewalls, focusing specifically on XDP-
based solutions. Our findings indicate that XDP-based
firewalls are not inherently superior to traditional firewall
approaches such as Netfilter. Instead, their effectiveness
heavily depends on the specific implementation. How-
ever, when implemented efficiently and leveraging built-in
eBPF features such as hash maps and JIT compilation,
eBPF-based firewalls can clearly outperform traditional
firewalls in terms of latency and throughput—particularly
when handling large rulesets.

Despite the potential of eBPF-based firewalls, their
adoption remains limited. This is likely due to the maturity
and sufficient performance of traditional firewall tools like
iptables, which already meet the requirements of many
typical scenarios. Although projects like pcn-iptables
aim to provide drop-in replacements for iptables using
eBPF, they have yet to achieve widespread adoption and
active maintenance.

Future work could involve developing more advanced
XDP-based firewalls that support complex, stateful rule-
sets. Another promising direction could be exploring the
implementation of a whole Layer 5 or even Layer 7
firewall capabilities entirely within eBPF.

References

[1] M. Mihalos, S. Nalmpantis, and K. Ovaliadis, “Design and imple-
mentation of firewall security policies using linux iptables,” Journal
of Engineering Science & Technology Review, vol. 12, no. 1, 2019.

[2] R. Alsaqour, A. Motmi, and M. Abdelhaq, “A systematic study
of network firewall and its implementation,” International Journal
of Computer Science & Network Security, vol. 21, no. 4, pp.
199–208, 2021. [Online]. Available: https://koreascience.kr/article/
JAKO202121055727021.pdf

[3] M. A. M. Vieira, M. S. Castanho, R. D. G. Pacífico, E. R. S.
Santos, E. P. M. C. Júnior, and L. F. M. Vieira, “Fast packet
processing with ebpf and xdp: Concepts, code, challenges, and
applications,” ACM Comput. Surv., vol. 53, no. 1, Feb. 2020.
[Online]. Available: https://doi.org/10.1145/3371038

Seminar IITM SS 25 18 doi: 10.2313/NET-2025-11-3_04

[4] Reimerink, Dylan and Chen, Ian, “eBPF Docs -
BPF_PROG_TYPE_NETFILTER,” https://docs.ebpf.io/linux/
program-type/BPF_PROG_TYPE_NETFILTER/, 2024, [Online;
accessed 20-March-2025].

[5] G. Bertin, “Xdp in practice: integrating xdp into our ddos mit-
igation pipeline,” in Technical Conference on Linux Networking,
Netdev, vol. 2. The NetDev Society, 2017, pp. 1–5.

[6] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, “The express data path:
Fast programmable packet processing in the operating system
kernel,” in Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies, ser.
CoNEXT ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 54–66. [Online]. Available: https://doi.org/10.
1145/3281411.3281443

[7] M. Bertrone, S. Miano, F. Risso, and M. Tumolo, “Accelerating
linux security with ebpf iptables,” in Proceedings of the
ACM SIGCOMM 2018 Conference on Posters and Demos,
ser. SIGCOMM ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 108–110. [Online]. Available:
https://doi.org/10.1145/3234200.3234228

[8] Reimerink, Dylan and Chen, Ian, “eBPF Docs -
BPF_PROG_TYPE_SCHED_CLS,” https://docs.ebpf.io/linux/
program-type/BPF_PROG_TYPE_SCHED_CLS/, 2024, [Online;
accessed 20-March-2025].

[9] S. Miano, M. Bertrone, F. Risso, M. V. Bernal, Y. Lu, and J. Pi,
“Securing linux with a faster and scalable iptables,” SIGCOMM
Comput. Commun. Rev., vol. 49, no. 3, p. 2–17, Nov. 2019.
[Online]. Available: https://doi.org/10.1145/3371927.3371929

[10] A. Deepak, R. Huang, and P. Mehra, “ebpf/xdp based firewall
and packet filtering,” in Proceedings of the Linux Plumbers
Conference, 2018, pp. 1–5. [Online]. Available: http://oldvger.
kernel.org/lpc_net2018_talks/ebpf-firewall-paper-LPC.pdf

[11] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and
G. Carle, “Performance implications of packet filtering with linux
ebpf,” in 2018 30th International Teletraffic Congress (ITC 30),
vol. 01, 2018, pp. 209–217.

[12] M. Tumolo, “Towards a faster iptables in ebpf,” Master’s
thesis, Politecnico di Torino, 2018. [Online]. Available: https:
//webthesis.biblio.polito.it/secure/8475/1/tesi.pdf

Seminar IITM SS 25 19 doi: 10.2313/NET-2025-11-3_04

Seminar IITM SS 25 20

Congestion Control Schemes for Multipath QUIC

Julian Gassner, Daniel Petri∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: julian.gassner@tum.de, petriroc@net.in.tum.de

Abstract—The current IETF draft for MPQUIC employs
a per path instance of QUIC’s default congestion control
algorithm for calculating path congestion windows. The lack
of fairness between paths and the negative performance im-
pact of competing standard single-path protocols are notable
problems. Building upon the lessons learned from MPTCP,
two novel approaches to MPQUIC congestion control called
CC-OLIA and S2B2C mitigate these issues.

Index Terms—MPQUIC, MPTCP, congestion control algo-
rithm, OLIA, CC-OLIA, S2B2C

1. Introduction

The Multipath Extension for QUIC (MPQUIC) [1]
started development in October 2017 and is currently in
its 13th IETF [2] draft iteration [1]. It seeks to standardize
the use of multiple QUIC paths simultaneously within
a connection to improve throughput and reliability [1].
However, to date, the draft still recommends the use of one
instance per path of the standard QUIC congestion control
algorithm as defined in RFC 9002 [3]. This causes several
problems, most notably the lack of fairness between paths
[1] and the negative performance impact on competing
standard single-path protocols [4]. This paper looks at
how TCP’s Multipath Extension (MPTCP) [5] works and
how it handles congestion control (CC). We discuss the
basics of MPQUIC and analyze its default CC algorithm,
and show two novel approaches to MPQUIC CC proposed
by H. Wang et al. and Deng et al. named CC-OLIA and
S2B2C that mitigate these issues.

2. Background

In this Chapter, we look at TCP’s Multipath Extension
[5] and its main CC algorithms LIA [6] and OLIA [7].
In addition, we analyze the functionality of the QUIC
Multipath Extension [1]. We contextualize this to lay the
groundwork for discussion of the multipath QUIC CC
algorithms.

2.1. TCP’s Multipath Extension

According to RFC 8684 [5], Multipath TCP (MPTCP)
allows multiple paths to be used simultaneously between
peers. This behavior contrasts standard TCP connections
where only one path is used at a time. In this context,
a path is defined by TCP’s 4-tuple containing the source
address, the source port, the destination address, and the

destination port of the connection. Using multiple TCP
paths has the advantage of making better use of available
network resources. It also results in higher throughput and
improved resilience to network failures. The connection
multiplexing takes place entirely within the TCP layer,
and MPTCP connections provide the same interfaces to
the other layers as standard TCP connections. This makes
it possible to utilize the benefits of MPTCP without the
need to change intermediaries and the applications that
work upon it. [5]

2.1.1. MPTCP Functionality. The multiple path connec-
tions are established using distinct network interfaces with
different IP addresses on both hosts. From an external per-
spective, a MPTCP connection behaves and operates like
any other TCP connection, the network layer is divided
into multiple subflows. A sub-flow represents a stream of
segments over a single path from a given TCP connection.
The MPTCP extension creates, manages, and deletes these
subflows, which all operate on a path identified by the 4-
tuple. The number of currently active subflows can vary
throughout the connection. [5]

Each sub-flow is an instance of a classic TCP flow
with the addition of a new TCP option type. This option
type has various subtypes used during the different states
of a connection. The initial connection establishment for
a MPTCP connection follows the same flow as normal
TCP connections (SYN, SYN/ACK, ACK) and utilizes
only a single path. However, each packet contains a
MP_CAPABLE subtype option to declare that the sender
of that packet wants to utilize MPTCP for the given
connection, which MPTCP version (v0 or v1) the sender
is capable of running, and various flags that define the
connection’s used features. It also exchanges the keys of
the connection partners used to authenticate later-created
subflows. [5]

After the connection is established, hosts can create
any number of new subflows using currently unused IP
address pairs. Hosts can indicate available IP addresses on
their side of the connection using the ADD_ADDR option
subtype. As with the master connection, each new subflow
starts with the standard TCP connection establishment
procedure. However the subflows’ packets do not contain
the MP_CAPABLE subtype option but the MP_JOIN
subtype option. It enables the flow establisher to inform
the receiver which connection this subflow belongs to
by sending a token generated from the receiver’s key
exchanged during the master connection establishment,
which identifies the master connection. This happens in
the SYN segment. The SYN, SYN/ACK, and ACK seg-

Seminar IITM SS 25 21 doi: 10.2313/NET-2025-11-3_05

ments all contain the MP_JOIN option subtype and use
this option subtype, besides the already mentioned pur-
pose, for replay attack and integrity protection. Once the
connection setup is finished, MPTCP is ready to transfer
data. Data transfers over the different subflows happen
by splitting the data to be sent and reassembling it on
the receivers’ side. This is done by using the DSS option
subtype. It carries a Data Sequence Number (DSN), which
enumerates the separated data used to indicate how to
reassemble it. The DSS also contains a Data ACK field
used to acknowledge given data parts by their DSN in
their given subflow. This ACK is one of two available
ACKs in MPTCP, with the other one being the standard
TCP ACK used to acknowledge the segments in general
and not a specific DSN. [5]

2.1.2. Congestion Control Algorithms for MPTCP.
Several types of CC algorithms are used for MPTCP. RFC
8684 [5] suggests using the Coupled CC algorithm, also
known as the Linked Increases Algorithm (LIA), which
is defined in RFC 6356 [6]. The idea of LIA is to keep
most of the original TCP CC algorithms, such as the
slow start, fast recovery, and fast retransmit algorithms
defined in RFC 5281 [8], and only change the congestion
avoidance algorithm [6]. For this RFC 6356 [6] defines
several variables similar to the variables defined in RFC
5281 [8] for single path connections:

• cwndi: Congestion windows of the ith subflow in
bytes.

• cwndtotal: Sum of all congestion windows across
all subflows in bytes.

• pi: Loss rate of a subflow i.
• rtti: Round trip time of a subflow i.
• MSSi: Maximum segment size of a subflow i in

bytes.

Each time a segment ACK is received in a subflow during
the congestion avoidance phase as defined in RFC 5281
[8], the variable cwndi is updated using Formula 1, where
b is the number of bytes acknowledged in the ACK and
the aggressiveness α is defined in Formula 2 [6].

∆cwndi = min

(
α · b ·MSSi

cwndtotal
,
b ·MSSi

cwndi

)
(1)

α = cwndtotal ·
maxi

(
cwndi

rtt2i

)

(∑
i
cwndi

rtti

)2 (2)

Using this approach, LIA achieves two goals for multipath
CC algorithms. The first goal, called "Improve Through-
put" [6] states that the multipath approach performs at
least as well as a single path approach does on its best
path. This is done by introducing α in Formula 2 to ensure
that the combined throughput of all subflows aligns with
what one single TCP flow would achieve. Secondly, the
multipath approach can only put the same load on any
given resource, for example, an intermediate router, on
any given path as a single path approach would ("Do
no harm" [6]). LIA implements this in the calculation
of the cwndi increase in Formula 1 to ensure that the
increase never exceeds a standard TCP flow congestion
window increase. However, the RFC also points out a third

desirable goal for multipath CC algorithms, which cannot
be achieved by using LIA. It states that a multipath CC al-
gorithm must be able to offload as much traffic as possible
from congested paths with respect to goals one and two
("Balance congestion" [6]). Furthermore, LIA shows so-
called flappiness, meaning that when all subflows exhibit
the same congestion behavior, LIA tends to assign the
entire total congestion window to one subflow while all
other subflows have a congestion window of 0. [6]

To mitigate these issues, the Opportunistic Linked-
Increases CC algorithm for MPTCP (OLIA) [7] is de-
veloped [7]. OLIA introduces 4 new relevant variables,
alongside the already known variables from LIA [7]:

• lr: max{l1r, l2r}, where l1r denotes the amount of
acknowledged bytes between the last two packet
loss events, and l2r denotes the amount of ac-
knowledged bytes since the last loss event.

• best_paths: Set of paths that maximize the ratio
l2r

RTTr
.

• max_cwnd_paths: Subset of paths with the biggest
cwndi out of best_paths.

• collected_paths: All paths out of best paths which
are not in max_cwnd_paths.

• all_paths: Set of all available paths.

Using this variables OLIA calculates the congestion win-
dow per flow during the congestion avoidance phase.
Similar to LIA, the other TCP congestion algorithms
remain untouched and αr defines the aggressiveness in
the cwndi increases, however OLIA uses different αr
formulas depending on whether the path is in best_path,
max_cwnd_paths or collected_paths as can be seen in
Formula 4 [7]. The Formula used to calculate the increase
of cwndi can be seen in Formula 3 [7] where b is the
number of acknowledged bytes. [7]

∆cwndi =


cwndi

rtt2i

/
 ∑

p∈all_paths

cwndi
rtti




2

+
αr

wr




·MSSi · b (3)

αr =





1
|collected_paths| if r ∈ collected_paths,
− 1

|max_w_paths| if r ∈ max_w_paths
∧ |collected_paths| > 0,

0 otherwise.

(4)

Using this methodology, OLIA can achieve the two goals
already achieved by LIA, as well as goals 3, making this
algorithm superior to LIA [7]. Furthermore, it fixes the
flappiness of LIA [7]. However, as Walid et al. [9] find,
OLIA sometimes does not react adequately when it comes
to condition changes along the network paths under certain
conditions.

2.2. Multipath Extension for QUIC

The Multipath Extension for QUIC [1] defines how the
QUIC transport protocol can use multiple paths similar to
MPTCP [1].

Seminar IITM SS 25 22 doi: 10.2313/NET-2025-11-3_05

2.2.1. Functionality of MPQUIC. The Multipath Exten-
sion for QUIC follows the same idea as TCP’s Multipath
Extension. It takes an existing transport layer protocol and
extends it to use multiple network paths simultaneously by
adapting and extending already existing QUIC function-
alities. Although QUIC already supports path migration,
it does not have the capability to use multiple paths si-
multaneously. MPQUIC extends this capability to support
concurrent path usage. [1]

In MPQUIC, paths are identified by a path ID. Similar
to MPTCP, MPQUIC uses a new transport parameter
to negotiate the use of MPQUIC in the initial client-
server handshake. This transport parameter is called ini-
tial_max_path_id, and its presence signals that an end-
point is capable of using MPQUIC. The value of the
parameter defines the maximum number of paths. The
initiator sends it in the initial client crypto frame and
the server also appends it to its initial crypto frame if it
supports it. If the multipath handshake is successful, the
endpoints start using PATH_ACK frames instead of ACK
frames. [1]

PATH_ACK frames are an extension of QUIC’s
standard ACK frames, which are used to acknowl-
edge packets in the context of a given path using
the path IDs. The creation of a new path works by
sending a PATH_NEW_CONNECTION_ID frame to a
connection peer. It must contain a new connection
ID and a linked new path ID used to identify the
new path. The connection peer responds with its own
PATH_NEW_CONNECTION_ID frame containing the
same path ID and its own connection ID. [1]

After the path initiation, a path is validated with a
PATH_CHALLENGE and PATH_RESPONSE frame sent
by both connection partners to make sure that the path
can be used. During the following transmission of data
packets, the connection IDs are used to identify the path.
Reassembling based on the stream offsets remains func-
tionally the same as in normal QUIC operation, regardless
of the paths used, as one stream can take multiple paths
simultaneously. [1]

3. Congestion Control for MPQUIC

This Chapter discusses the default CC algorithm
used by MPQUIC and present two novel approaches to
MPQUIC CC proposed by H. Wang et al. [4] and Deng et
al. [10] named CC-OLIA and S2B2C that improve various
aspects of the default CC algorithm.

3.1. Default Congestion Control Algorithm

The Multipath Extension for QUIC specification draft
[1] suggests utilizing a per-path instance of the CC algo-
rithm used by the QUIC Transport protocol.

3.1.1. Functionality. MPQUIC maintains a congestion
window per path, which limits how much data can be in
flight at any given time. The slow start threshold known
from TCP is initially set to infinity [11]. This threshold
defines up to which congestion window size the slow
start phase is used. As the slow start threshold is set
to infinity, QUIC initially operates in a slow start phase.
During the slow start phase, the congestion window, which

is recommended to be set to 10 times the maximum data-
gram size, is increased by the bytes acknowledged in the
PATH_ACK frames. This makes the congestion window
grow exponentially. This behavior equals the behavior of
TCP’s slow start phase [11]. Once a loss occurs, MPQUIC
enters a recovery phase. A loss is detected either by a
missing acknowledgment or when a probe timeout (PTO)
occurs. The PTO is started when a segment is sent on
a specific path and is calculated as defined in Formula 5,
where smoothed_rtt is the estimated RTT on the network
path as defined in the MPQUIC specification, 4 ·rttvar is
the variation of srtt, gran specifies the time granularity
and maxdel is the maximum delay that can occur on the
receiver side before sending the acknowledgment. [1] [3]
[12]

PTO = srtt +max (4 · var, gran) + max_del (5)

After the recovery phase is entered the slow start threshold
is set to the congestion window divided by 2. The conges-
tion window must then be abruptly or slowly reduced to
the threshold during the recovery phase. If further losses
occur during the recovery phase no further reduction of
the congestion window is performed. Once an acknowl-
edgment from a packet sent during the recovery phase is
received, the recovery phase is left, and the congestion
avoidance phase is entered. During the congestion avoid-
ance phase, an Additive Increase Multiplicative Decrease
is used to increase the congestion window similar to TCP’s
congestion avoidance phase [11]. Should a packet loss,
as defined before, occur during the congestion avoidance
phase, the algorithm again enters the recovery phase. If
only packet loss occurs during an implementation-specific
timeframe, persistent congestion is assumed, and the con-
gestion window is reset. [1] [3] [12]

3.1.2. Discussion. Referring back to the goals of multi-
path transport protocols defined in RFC 6356 by Raiciu et
al. [6] and discussed by us in Section 2.1.2, one finds that
this algorithm does not achieve the "Do no harm" goal
as it actively competes with other paths for overlapping
resources [4]. Wang et al. [4] find that this can signifi-
cantly harm single-path applications. According to RFC
6356 [6] the issue can be fixed by adapting the principles
of LIA to MPQUIC, however no concrete implementation
is specified.

3.2. Modified Congestion Control Algorithms

Due to the reasons mentioned in Section 3.1.2, there
is a need to modify the default MPQUIC CC mechanisms
such that they fulfill the desirable goals for multipath CC
algorithms.

3.2.1. Modified Congestion Control Algorithms using
OLIA. H. Wang et al. [4] present a modified algorithm
that adapts the ideas of OLIA to MPQUIC in the context
of mobile networks called CC-OLIA. CC-OLIA is quite
similar to OLIA [7], but instead of only modifying the
congestion avoidance phase, they also modify the slow
start phase according to a coupled slow start algorithm
initially proposed by Y. Wang et al. [13] for MPTCP.

This slow start algorithm introduces an aggressiveness
factor similar to what LIA and OLIA use to limit the total

Seminar IITM SS 25 23 doi: 10.2313/NET-2025-11-3_05

congestion window of an entire MPTCP connection for
MPTCP. This makes sure that the slow start phase, with
its initial exponential growth across the paths, does not
instantly congest shared parts of the network resulting in
faster communication speeds for MPTCP. [13]

H. Wang et al. [4] adapt this slow start algorithm to
work with the similar slow start mechanisms of each path
of MPQUIC and use it as long as no packet loss occurs
during the slow start phase. If packet loss occurs during
the slow start phase, a multiplicative decrease mechanism
to reduce the congestion window. This principle is also
used by TCP in its slow start phase [11]. Afterward, the al-
gorithm switches to the congestion avoidance phase where
the congestion window of each path i is incremented
according to ∆cwndi of OLIA as described in Section
2.1.2. Should a packet loss occur during the congestion
avoidance phase CC-OLIA switches into the Packet Loss
Classification algorithm. [4]

This algorithm tries to determine if the packet loss
occurred randomly or was part of a congestion by check-
ing how many events occurred in a defined interval. The
last_cutback variable defines this interval. It stores the
latest packet number used when the last decrease of the
congestion window occurred. Should packet loss occur,
the algorithm checks if the packet number of the lost
packet is greater than last_cutback, indicating whether
the loss occurred randomly or was the start of a larger
network degradation. If the former applies, the algorithm
classifies the loss as Random Packet Loss (RPL) and
leaves the congestion window unchanged but updates
last_cutback to the current packet number used for new
packets. [4]

Furthermore, the slowstart threshold is updated to the
current congestion window. Should the packet number be
smaller or equal to last_cutback, the algorithm assumes
continuous congestion, reduces the congestion window
across all paths, and classifies the loss as Congestion
Packet Loss (CPL). This behavior can also be seen in
Formula 10 [4] where n denotes the amount of paths
currently used and d represents the multiplicative decrease
factor. All other variables are defined in Section 2.1.2. [4]

cwndi =

{
cwndi, if RPL,
cwndi

(
n−1+d

n

)
, if CPL.

(10)

When evaluating CC-OLIA H. Wang et al. [4] find
that they can reduce the transfer times of a 5 MB, 25 MB,
and 35 MB file by 6.3%, 14.9%, and 16.2% respectively
compared to an OLIA MPTCP implementation in the case
of a shared bottleneck scenario. In the case of a non-shared
bottleneck scenario they could reduce the transfer times
for the same files by 18.7%, 29.8%, and 36.3%.

3.2.2. BBR based congestion control for MPQUIC. The
Bottleneck Bandwidth and Round-trip propagation time
algorithm (BBR) is a CC algorithm implemented for TCP
and QUIC, which relies on measuring connection speed,
round trip time, and packet loss to avoid congestions. It
works by estimating a bandwidth-delay product (BDP)
through probing to estimate the optimal throughput along
the used network path, which does not overwhelm the
bottleneck of that given path. [14]

BBR has four algorithmic phases: Startup, Drain,
ProbeBW, and ProbeRTT. During the first phase, the
Startup phase, BBR quickly increases the used network
bandwidth until the bottleneck buffer on the network path
fills up and packet loss or the delivery rate plateaus.
This is used to find the maximum bandwidth bw and the
minimum RTT RTTmin. The BDP is estimated by multi-
plying RTTmin with bw. The algorithm then moves on to
the drain phase, where it quickly drains the intermediate
buffers by ramping down the throughput until the data in
flight equals the estimated BDP. BBR then periodically
probes for more bandwidth and minimum RTT in order
to adapt the BDP and the data in flight. [14]

While we could theoretically apply the principles of
BBR to each individual path in MPQUIC, we would
face the same problems as one would when using the
default CC algorithm as defined in the MPQUIC draft
[10]. Therefore, Deng et al. [10] developed a novel BBR-
based CC algorithm called S2B2C, which utilizes the
principles of BBR but ensures fairness. They do so by
identifying MPQUIC paths that share a bottleneck and
fairly adapt their pacing gain G during the ProbeBW
phase. The pacing gain alongside other variables influ-
ences the rate at which data is sent and, therefore, the
amount of data in flight [15]. Every time BBR tries to
estimate the available bandwidth, it sets the pacing gain
G to G ∈ [1.25, 0.75, 1, 1, 1, 1, 1, 1] in an 8-step process
during the ProbeBW phase [10].

During the first step, the sending rate is set to 1.25
multiplied by bw. As this is done per path, Deng et al.
assume that all paths S1 where the RTT increases after this
first step must share at least one bottleneck. The same goes
for all paths S2 during the second step of ProbeBW, where
the pacing gain is set to 0.75. Therefore, S1 ∩S2 denotes
all paths that share a bottleneck. Deng et al. then repeat
this procedure for three entire 8-step runs to ensure that
any other network noise does not influence the groupings.
[10]

Afterwards, they do the same again for ProbeRTT as
during ProbeRTT, the maximum amount of in-flight data
is limited to 4 maximum segment sizes resulting in a
significant increase in round trip times in other paths that
share the same bottleneck. The set of these paths is called
S3. Calculating S1 ∩ S2 ∩ S3 per path now yields a very
probable set of paths that share the same bottleneck. For
all paths r ∈ ξ that share the same bottleneck Gr is set to

Gr ∈ [1.25, 0.75, αr, αr, αr, αr, αr, αr]

where αr is calculated according to Formula 6 [10] where
S denotes the set of all available paths. During perfor-
mance testing, Deng et al. find that this strategy ensures
bottleneck fairness and balanced congestion. [10]

αr = 4

(
bwr ×maxr∈S{bwr}∑

r∈ξ bwr
− 1

)
/3 (6)

4. Conclusion and Future Work

Over the course of this paper, we first looked into
how MPTCP works and analyzed a non-exhaustive list
of common CC algorithms used alongside MPTCP. After
that, we dived into the core functionality of MPQUIC

Seminar IITM SS 25 24 doi: 10.2313/NET-2025-11-3_05

and explained how its default CC mechanism works.
We then discussed its shortcomings and introduced the
novel adaptation CC-OLIA, which is based on MPTCP’s
OLIA CC algorithm, but has been adapted to work with
MPQUIC. We also introduced S2B2C, a CC algorithm
based on BBR, which uses an entirely different method
to handle congestion compared to OLIA’s more traditional
approach.

Both algorithms show promising initial results and
can overcome the shortcomings of MPQUIC’s default
CC algorithm. While this is a non-exhaustive list of CC
algorithms for MPQUIC, we find that it represents the two
most prominent groups of either BDP or LIA-based CC
algorithms. An example of another implementation of a
BDP-based MPQUIC CC algorithm is MACO [16], which
was developed to provide congestion control for fast-
moving MPQUIC-based satellite networks [16]. Regard-
ing future work, S2B2C needs to be updated to support
BBRv2 [17]. Furthermore, we find that there is a research
gap when it comes to a CC algorithm for MPQUIC based
on the Balanced Linked Adaptation CC Algorithm for
MPTCP (BALIA) [9], a further development of OLIA,
which overcomes its mentioned weaknesses [9].

References

[1] Y. Liu, Y. Ma, Q. D. Coninck, O. Bonaventure, C. Huitema,
and M. Kühlewind, “Multipath Extension for QUIC,” Internet
Engineering Task Force, Internet Draft draft-ietf-quic-multipath-
13, Mar. 2025, num Pages: 40. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-ietf-quic-multipath/13

[2] “IETF,” Mar. 2025. [Online]. Available: https://www.ietf.org/

[3] J. Iyengar and I. Swett, “QUIC Loss Detection and Congestion
Control,” RFC 9002, May 2021. [Online]. Available: https:
//www.rfc-editor.org/info/rfc9002

[4] H. Wang, Y. Liu, Z. Li, Y. Zhang, W. Gong, T. Jiang,
T. Bi, and J. Zhou, “Cc-olia: A dynamic congestion control
algorithm for multipath quic in mobile networks,” Digital
Communications and Networks, 2024. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2352864824001640

[5] A. Ford, C. Raiciu, M. J. Handley, O. Bonaventure, and
C. Paasch, “TCP Extensions for Multipath Operation with
Multiple Addresses,” Internet Engineering Task Force, Request
for Comments RFC 8684, Mar. 2020, num Pages: 68. [Online].
Available: https://datatracker.ietf.org/doc/rfc8684

[6] C. Raiciu, M. J. Handley, and D. Wischik, “Coupled Congestion
Control for Multipath Transport Protocols,” Internet Engineering
Task Force, Request for Comments RFC 6356, Oct. 2011,

num Pages: 12. [Online]. Available: https://datatracker.ietf.org/
doc/rfc6356

[7] R. Khalili, N. Gast, M. Popovic, and J.-Y. L. Boudec,
“Opportunistic Linked-Increases Congestion Control Algorithm
for MPTCP,” Internet Engineering Task Force, Internet
Draft draft-khalili-mptcp-congestion-control-05, Jul. 2014, num
Pages: 11. [Online]. Available: https://datatracker.ietf.org/doc/
draft-khalili-mptcp-congestion-control-05

[8] E. Blanton, V. Paxson, and M. Allman, “TCP Congestion
Control,” Internet Engineering Task Force, Request for Comments
RFC 5681, Sep. 2009, num Pages: 18. [Online]. Available:
https://datatracker.ietf.org/doc/rfc5681

[9] A. Walid, Q. Peng, J. Hwang, and S. H. Low,
“Balanced Linked Adaptation Congestion Control Algorithm
for MPTCP,” Internet Engineering Task Force, Internet
Draft draft-walid-mptcp-congestion-control-04, Jan. 2016, num
Pages: 11. [Online]. Available: https://datatracker.ietf.org/doc/
draft-walid-mptcp-congestion-control-04

[10] Z. Deng, Y. Liu, J. Liu, A. Argyriou, and D. Liu, “Bbr-based and
fairness-guaranteed congestion control and packet scheduling for
mpquic over heterogeneous networks,” Computer Communications,
vol. 224, pp. 213–224, 2024. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0140366424002160

[11] E. Blanton, D. V. Paxson, and M. Allman, “TCP Congestion
Control,” RFC 5681, Sep. 2009. [Online]. Available: https:
//www.rfc-editor.org/info/rfc5681

[12] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

[13] Y. Wang, K. Xue, H. Yue, J. Han, Q. Xu, and P. Hong, “Coupled
slow-start: Improving the efficiency and friendliness of mptcp’s
slow-start,” in GLOBECOM 2017 - 2017 IEEE Global Communi-
cations Conference, 2017, pp. 1–6.

[14] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson, “Bbr: congestion-based congestion control,” Commun.
ACM, vol. 60, no. 2, p. 58–66, Jan. 2017. [Online]. Available:
https://doi.org/10.1145/3009824

[15] N. Cardwell, Y. Cheng, S. H. Yeganeh, and V. Jacobson,
“BBR Congestion Control,” Internet Engineering Task Force,
Internet-Draft draft-cardwell-iccrg-bbr-congestion-control-00, Jul.
2017, work in Progress. [Online]. Available: https://datatracker.
ietf.org/doc/draft-cardwell-iccrg-bbr-congestion-control/00/

[16] W. Yang, L. Cai, S. Shu, and J. Pan, “Mobility-aware congestion
control for multipath quic in integrated terrestrial satellite net-
works,” IEEE Transactions on Mobile Computing, vol. 23, no. 12,
pp. 11 620–11 634, 2024.

[17] N. Cardwell, I. Swett, and J. Beshay, “BBR Congestion Control,”
Internet Engineering Task Force, Internet-Draft draft-ietf-ccwg-
bbr-02, Feb. 2025, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-ccwg-bbr/02/

Seminar IITM SS 25 25 doi: 10.2313/NET-2025-11-3_05

Seminar IITM SS 25 26

Credit-Based Shaping As Defense Against DoS Attacks

Leonard Nolting, Florian Wiedner∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: leonard.nolting@tum.de, wiedner@net.in.tum.de

Abstract—Time-Sensitive Networking (TSN) is a frequently
researched alternative for real-time Ethernet networks using
time-synchronization, shaping, scheduling and more tech-
niques to accommodate streams with different latency and
bandwidth requirements on one network. The Credit-Based
Shaper (CBS) awards credits to queues at a linear rate,
limiting their bandwidth and controlling the burstiness of
traffic.

As Denial-of-Service (DoS) attacks remain relevant and
TSN networks often are used in critical cyber-physical sys-
tems, the defense capabilities of TSN networks against DoS
attacks need to be evaluated.

We explore how well CBS can protect TSN networks
from DoS attacks by assessing the possible scenarios and
categorizing attacks with a DoS taxonomy. We will find that
CBS can by no means replace proper security mechanisms,
but in certain scenarios can protect large parts of a TSN
network from an attack, especially when the attacker can
only send in the best-effort traffic class.

Index Terms—denial-of-service, time-sensitive networking,
credit-based shaper, security

1. Introduction

Best-effort traffic delivers “most packets, most of the
time, mostly in order” [1]. It lacks determinism. Appli-
cations that require tighter guarantees by their network,
such as industrial control, electrical grids or in-vehicle
networks, traditionally created domain-specific solutions,
for example EtherCAT, PROFINET or CAN [1]–[4].

Time-Sensitive Networking (TSN) is a set of standards
that enable such guarantees for standard Ethernet by pro-
viding upper bounds on latency and decreasing packet
loss. They are maintained by the IEEE 802.1 working
group. Among others, TSN is “promising to replace ex-
isting protocols in mission-critical domains” [5], where
correct timing not only affects performance but also safety
and security.

The growing adoption of TSN, combined with its
extreme susceptibility to traffic disruptions and the vulner-
ability of the domains it is employed in, raises questions
about the protocol’s security. The European Union Agency
for Cybersecurity finds Denial-of-Service (DoS) attacks
“ranked at the top during the reporting period for another
year” [6], especially “on the critical infrastructures of
countries” [7].

As TSN is still young and in the standardization phase,
its security aspect has been researched significantly less

than more established systems like Ethernet, IP or alterna-
tive real-time protocols. Several papers look specifically
at IEEE 802.1Qci “Per-Stream Filtering and Policing” [8],
[9]. The security of TSN in general is considered by Er-
genç et al. [5], others focus on specific domains [2], [10]–
[12]. Furthermore, building upon the Credit-Based Shaper
(CBS), Meyer et al. propose Credit-Based Metering [13].

IEEE 802.1Q describes the Credit-Based Shaper
(CBS), which limits the bandwidth of a traffic class by
only awarding it a certain amount of credit over time.
Using CBS shaping can potentially mitigate DoS attacks
on TSN networks, but this has not yet been evaluated.

In this paper, we explore the strengths and limitations
of using CBS without modifications to defend against
varying types of DoS attacks.

We will first cover the underlying technological as-
pects, as well as DoS attack vectors on TSN networks.
This will be followed by an evaluation and a clear compi-
lation of the results, including suggestions for follow-up
research.

2. Background

The paper combines several topics, which will be
briefly summarized in the following subsections.

Time-Sensitive Networking

TSN is a feature offered by a network that simultane-
ously hosts regular best-effort traffic.

All TSN nodes synchronize their clocks on the net-
work. TSN flows represent a contract between the network
and the end hosts about bandwidth, latency, jitter and
packet loss, and can be created and ended flexibly. It aims
to eliminate congestion loss completely by controlling the
traffic shape and schedule. Shaping limits bandwidth and
smooths out traffic, whereas scheduling determines when
packets are sent from a queue. TSN provides several algo-
rithms for that. See [1] for a good in-depth introduction.
In this paper, we will inspect the CBS.

Credit-Based Shaper

Traffic shaping creates gaps between packets [3]. This
may seem counterintuitive to latency goals, but it gives
other flows a chance to find a gap in a burst of packets,
essentially skipping the queue which is full from the burst.
For a minimal illustrative example, see [3].

One switch can have multiple CBS shaped queues per
egress port. For each, a credit value is stored, starting at

Seminar IITM SS 25 27 doi: 10.2313/NET-2025-11-3_06

zero. When a packet from that queue is sent, the credit
value is reduced by the length of the packet. Now, credit
replenishes at a set rate called idleSlope until it reaches
zero. Only once it is back to zero, the queue may be
eligible again, meaning it is ready to send.

If the queue is eligible but cannot send because the
transmitter is currently occupied by another queue, this is
the first time credits accumulate over zero. The queue can
now send packets as long as its credit stays greater than
or equal to zero, and it is nonempty. Once it empties but
still has credit left, it is reset to zero.

Helpful visualizations and more detailed explanations
can be found in [3].

Types of DoS attacks

A DoS attack is “an attempt to make a computer
resource unavailable to its intended users.” [14]. This
general goal can be achieved in many ways, e.g. a physical
attack on a facility. In order to limit the scope of this paper,
we will only look at attacks performed through means of
a network connection.

Over time, many attack and prevention mechanism
categorizations for such DoS attacks have been pub-
lished, such as by Karig and Lee [15], Fadlallah and
Serhrouchni [16], Specht and Lee [17], Douligeris and
Mitrokotsa [18] and Mirkovic and Reiher [19], some of
which are more detailed than others. This paper is based
on a later taxonomy by Ramanauskaite and Cenys [14]
that reviews and combines the previous mentions into one.

DoS attacks vary significantly in nature and can be
classified in multiple dimensions. Understanding this tax-
onomy is important for analyzing the effectiveness of CBS
as a defense mechanism in TSN, which will be done in
Section 4.

One main classification is based on the number of
sources involved in the attack:

• Single Source Attack: DoS attack launched from
a single machine

• Distributed Denial-of-Service (DDoS) Attack:
coordinated DoS attack launched from multiple
systems

Another dimension considers the vulnerability ex-
ploited:

• Bug Exploitation Attack: exploits software or
hardware vulnerabilities in the victim’s system to
cause a denial-of-service

• Resource Depletion Attack: consumes a system’s
resources, making them unavailable for legitimate
requests:

– Memory Depletion Attack: fills up the
system’s memory

– CPU Work Depletion Attack: overloads
the system’s CPU by requiring it to perform
excessive processing

– Semantic Resource Depletion Attack: ex-
ploits modified incoming packets to con-
sume more resources

• Bandwidth Exhaustion Attack: floods the target
with a large amount of data, consuming all avail-
able network bandwidth and preventing legitimate
traffic from reaching the victim

These dimensions, along with a dimension distin-
guishing single nodes or the network being affected, are
visualized in Figure 1.

In the context of Time-Sensitive Networks, the most
relevant types of DoS attacks are resource depletion at-
tacks and bandwidth exhaustion attacks. These attacks
can directly impact the network’s ability to deliver time-
sensitive data, which can cause missed deadlines in real-
time applications.

In the following sections of this paper, we will explore
whether Credit-Based Shaping can be employed to coun-
teract these attacks in Time-Sensitive Networks. First, we
will look at the methodology used to analyze this topic.

3. Context

The purpose of this paper is to find out when CBS
can be used to mitigate DoS attacks.

It is critical to understand why and how DoS attacks
affect TSN networks, first. For that, we will now evaluate
the relevance of DoS attacks for TSN networks and which
scenarios that would affect. After that, we will cover ex-
isting security mechanisms in TSN. Finally, the evaluation
and conclusion will follow in Sections 4 and 5.

Understanding DoS Applicability in TSN net-
works

TSN often operates in isolated networks and security
benefits from that, as attackers need to gain access to the
network first before they can start a DoS attack [1], [20].
One might wonder how DoS attacks are relevant to the
typical network that employs TSN at all.

First, a device within the network could be infected
over other means than a network connection, for example
through a bad update. The infected node could then cause
a DoS attack. This shows that isolation cannot be a full
security guarantee and does not serve as reliable protec-
tion. Isolated networks therefore are not immune to DoS
attacks and estimating their potential impact and counter-
measures is still relevant.

Additionally, with the shift of TSN towards being used
for routed networks, such as with DetNet, TSN networks
are increasingly losing their isolation property as they are
being connected to wide area networks. This increases
the risk of attacks and lowers the barrier for potential
attackers, especially from remote locations [1], [21].

Furthermore, the use-cases for Operational Technol-
ogy (OT) networks and TSN significantly overlap [1], [4],
[10], [22], and with the convergence of OT and IT net-
works come “cyber security challenges that are typically
associated with only with IT infrastructures” [20], [21]

Due to the time-sensitive and cyber-physical nature of
TSN networks, they “present potentially attractive targets
for cyber attackers” [21].

An additional consideration is that real-time systems
like TSN will often employ embedded microcontrollers
with little resources, making them sensitive to even small
attacks.

This provides context about why DoS attacks are
relevant to TSN networks and under which circumstances
they occur.

Seminar IITM SS 25 28 doi: 10.2313/NET-2025-11-3_06

DoS attack

Single sourceResource depletion
attack Node

Network

Infrastructure

DDoSBandwidth depletion
attack

Bug exploitation
attack

Memory depletion

CPU depletion

Classification by
exploited
vulnerabilities

Classification by
controlled
machines' number

Classification by
victim's type

Figure 1: An adjusted version of the taxonomy suggested in [14].

Existing security mechanisms in TSN

TSN standards primarily focus on the key characteris-
tics (performance, determinism) and practicality/ease-of-
use. Security is not a core consideration and has to be
actively added [5].

Existing network security paradigms, such as firewalls,
traffic anomaly detection or authentication can be used
with TSN, but may have to be adapted to the timing
requirements by TSN [1], [5].

Additionally, the IEEE provides several proposed or
standardized security mechanisms such as “Per-stream fil-
tering and policing”, “Frame Replication and Elimination
for Reliability” or “MACsec” [5], [23].

However, to isolate the effects that CBS has on secu-
rity, we will consider a network implementation with CBS
alone and no optional standards.

4. Evaluation

We will now assess the effect of CBS on security in
TSN networks against DoS attacks based on the structure
given by the DoS taxonomy discussed in Section 2.

In general, TSN and CBS greatly increase the com-
plexity of a network, increasing the attack surface for
semantic DoS attacks [19] / bug exploitation attacks [14].
Since CBS does not examine packet contents, it has no
impact on the defense against this type of attack.

Attacker Inside the Network

As stated in Section 3, a DoS attack can occur in an
isolated network from a node inside the network itself, if
it has previously been infected.

This can lead to a special case, where if the infected
node itself represents a service, its denial can be caused
by it not sending any packets. In the DoS taxonomy, this
is represented as “Denial of Node”. As CBS never goes
into effect here for the lack of packets, it cannot stop this
attack.

Otherwise, a DoS can only be achieved through send-
ing many or malformed packets.

When a node sends too many packets through an
existing flow, it will fill the queue of the switch it is

connected to (for end devices the ingress switch). Since
CBS does not allocate an individual queue to each flow,
other flows sharing the same queue will be starved of
buffer space. That is a Memory Depletion Attack, which
can lead to significant congestion loss through buffer
overflows. As TSN under normal operation eliminates
congestion loss completely, the starved nodes might not
know how to react to that, causing unpredictable errors [1].
For example, in combination with TSN Frame Replication
and Elimination, a network can assume zero packet loss
and might consider a node as faulty when its packets are
not received. This leads to the perceived failure of entire
nodes, virtually taking down entire machines.

Additionally, credit is only allocated per CBS-queue,
thus other flows will be starved of credit as well, resulting
in a perceived Bandwidth Depletion Attack [3].

CBS can only limit the starvation to the traffic class of
the attacking flow and any lower priority classes, as that
is the granularity of its queues and credits. Hence, higher
priority traffic is protected from this type of attack, while
lower priority traffic, such as best-effort, is not specially
protected.

A sender might also send an amount of packets which
overloads the classification algorithm of the receiving
switch, causing a CPU work depletion attack, or more
generally, if offloaded, a processing work depletion attack.
This can cause the failure of the entire switch. Since
shaping is performed after classification, the CBS shaper
cannot stop that type of attack.

On the physical level, since Ethernet is a shared
medium, an attacking node can deplete nodes also con-
nected to its outgoing ports by sending excessive amounts
of packets, provoking collisions. This bandwidth depletion
attack also happens in front of shapers, hence CBS cannot
prevent this.

So far, we assumed the attacking node only uses
existing flows and their traffic classes. If it can create
flows of arbitrary classes, with enough bandwidth, it can
overload all queues of a port at the same time, which
starves all other flows routed on that port of bandwidth
and causes unexpected congestion loss. In this case, CBS
cannot mitigate the DoS attack and the entire port fails.

If the attacker also sends to varying destination ad-
dresses which are routed on different egress ports of the

Seminar IITM SS 25 29 doi: 10.2313/NET-2025-11-3_06

Node

Attacker

Node

Node

Credit: -20

Switch

① Packet collisions ② Buffer depletion ③ Classification
overload ④ Credit starvation

② ②

① ③ ④

Figure 2: A simplified illustration of possible brute-force vulnerabilities with one attacking node inside the network.

same or different switches, it can multiply its effect across
all egress port of all switches it is connected to.

As multiple nodes get involved, forming a DDoS
attack, each node can attack in above fashion, denying
the service of all switches that each attacker is connected
to in the worst case.

Attacker Outside the Network

If the attacker is outside the TSN domain, it is most
likely switched as best-effort IP traffic. Reference [1]
states as an essential feature of TSN that the best-effort
traffic class can employ all the usual tools for IP traffic,
so the mitigation of DoS attacks can be handled by these.
However, since credits are only given to CBS-queues and
CBS traffic has higher priority than best-effort traffic, it is
protected from bandwidth starvation even in the event of a
DoS attack from best-effort traffic. If the outside machine
is equipped with the necessary hardware and no security
mechanisms are in place, it can also create CBS flows,
essentially making it a part of the TSN domain. The above
evaluation for an inside attacker applies.

After the Ingress Bridge

The CBS shaper forwards packets at a “rate such that,
over a relatively short term, is equal to the total band-
width allocated to the TSN flows using that queue” [1].
Bandwidth and burstiness are predictable and controlled,
even in the event of a DoS attack. This leads to any DoS
attack being contained to the connected ingress switches
and all their nodes. It will not propagate further into the
network, defending it against the attack.

Bandwidth and burstiness depend on the single pa-
rameter idleSlope that is passed to CBS-queues. As the
network accounts for the queue behavior derived from
the parameter, changes to it have no effect on the out-
come [24].

Less resource-intensive pulsing attacks, with the goal
of transmitting packets exactly when credits replenish,
do not work, since CBS-queues are first-come, first-serve
(FIFO) [3], [24].

A low and slow attack of creating many flows cannot
specifically target the CBS, since it does not keep state or
allocate computing resources for each flow.

As by design of CBS, it is also not possible to pro-
voke one node to accumulate a very high credit number
through blocking a port and subsequently a queue for a

long time. CBS defines a hiCredit value, limiting the
maximum amount of credits a queue can reach, which
is taken into consideration for bandwidth and burstiness
calculations [24].

5. Conclusion and Future Work

In this paper, we analyzed to which extent and with
which constraints CBS can defend against DoS attacks.
The core finding is that behind CBS shaped queues, the
network is safe from brute-force attacks. Furthermore,
CBS as a security mechanism works better the more re-
stricted the access is that each node has to other ports and
queues. However, the evaluation also clearly shows that
CBS is by no means a complete tool against DoS attacks.
Its most obvious shortcoming are semantic attacks, which
it cannot detect and protect of and where it consequently
cannot replace additional security tools, such as Intrusion
Detection Systems. It is important to be aware it was
not designed for security purposes and should not be
advertised as a solution.

For more certainty about the positive results in this pa-
per, future work needs to verify the results in both network
simulators and real networks. In order to reduce the impact
of DoS attacks, future work could explore introducing
traffic class checks and destination checks at switches.
Switches will check if the sender of an incoming packet
may use that priority and send to the denoted node based
on a network-wide policy. If the sender does not have
that permission, it is considered infected and its traffic
completely ignored (de-facto unplugged). If the ignoring
mechanism is implemented properly, it can also protect
against resource depletion of the classification algorithm.
These checks would be especially effective against attacks
from low-priority, less central nodes in a dense network
graph.

It might also be interesting to investigate the ring and
other network topologies and the combination and interac-
tion of CBS with other mechanisms for TSN security, for
example with Frame Replication and Elimination for path
redundancy. If each node is connected to two switches,
which both give access to the entire CBS-shaped network,
single source attacks might have a reduced impact.

As it stands now, however, with TSN still being a
newcomer to the industry and not enough data to draw suf-
ficient conclusions about its security, future work should
focus on dedicated security mechanisms to make reliable
and universal guarantees.

Seminar IITM SS 25 30 doi: 10.2313/NET-2025-11-3_06

References

[1] N. Finn, “Introduction to time-sensitive networking,” IEEE Com-
munications Standards Magazine, pp. 22–28, jun 2018.

[2] K. Zanbouri, M. Noor-A-Rahim, J. John, C. J. Sreenan, H. V.
Poor, and D. Pesch, “A comprehensive survey of wireless time-
sensitive networking (tsn): Architecture, technologies, applications,
and open issues,” IEEE Communications Surveys & Tutorials, pp.
1–1, 2024.

[3] J. Walrand, “A concise tutorial on traffic shaping and scheduling
in time-sensitive networks,” IEEE Communications Surveys &
Tutorials, vol. 25, no. 3, pp. 1942–1953, 2023.

[4] Y. Seol, D. Hyeon, J. Min, M. Kim, and J. Paek, “Timely survey
of time-sensitive networking: Past and future directions,” IEEE
Access, vol. 9, pp. 142 506–142 527, 2021.

[5] D. Ergenç, C. Brülhart, J. Neumann, L. Krüger, and M. Fischer,
“On the security of ieee 802.1 time-sensitive networking,” in 2021
IEEE International Conference on Communications Workshops
(ICC Workshops), 2021, pp. 1–6.

[6] ENISA (European Union Agency for Cybersecurity), “Threat
landscape.” [Online]. Available: https://www.enisa.europa.eu/
topics/cyber-threats/threat-landscape

[7] and European Union Agency for Cybersecurity, I. Lella,
M. Theocharidou, E. Magonara, A. Malatras, R. Svetozarov Nayde-
nov, C. Ciobanu, and G. Chatzichristos, ENISA Threat Landscape
2024 – July 2023 To June 2024, I. Lella, M. Theocharidou,
E. Magonara, A. Malatras, R. Svetozarov Naydenov, C. Ciobanu,
and G. Chatzichristos, Eds., 2024.

[8] A. Mahamid, “Time sensitive networking - 802.1qci,” in Proceed-
ings of the Seminar Innovative Internet Technologies and Mobile
Communications (IITM), Winter Semester 2020/2021, ser. Network
Architectures and Services (NET), G. Carle, S. Günther, and
B. Jaeger, Eds., vol. NET-2021-05-1. Munich, Germany: Chair
of Network Architectures and Services, Department of Computer
Science, Technical University of Munich, May 2021, pp. 9–12.

[9] R. Barton, M. Seewald, and J. Henry, “Management of
ieee 802.1qci security policies for time sensitive networks
(tsn),” Technical Disclosure Commons, October 2018. [Online].
Available: https://www.tdcommons.org/dpubs_series/1541

[10] F. Fischer and D. Merli, “Security considerations for ieee 802.1
time-sensitive networking in converged industrial networks,” in
2022 International Conference on Electrical, Computer, Commu-
nications and Mechatronics Engineering (ICECCME), 2022, pp.
1–7.

[11] R. Sethi, A. Kadam, K. Prabhu, and N. Kota, “Security consider-
ations to enable time-sensitive networking over 5g,” IEEE Open
Journal of Vehicular Technology, vol. 3, pp. 399–407, 2022.

[12] T. Häckel, P. Meyer, F. Korf, and T. C. Schmidt, “Secure time-
sensitive software-defined networking in vehicles,” IEEE Transac-
tions on Vehicular Technology, vol. 72, no. 1, pp. 35–51, 2023.

[13] P. Meyer, T. Häckel, F. Korf, and T. Schmidt, “Dos protection
through credit based metering – simulation based evaluation for
time-sensitive networking in cars,” 08 2019.

[14] S. Ramanauskaite and A. Cenys, “Taxonomy of dos attacks and
their countermeasures,” Central European Journal of Computer
Science, vol. 1, no. 3, pp. 355–366, 2011.

[15] D. Karig and R. Lee, “Remote denial of service attacks and
countermeasures,” Princeton University Department of Electrical
Engineering, Tech. Rep. CEL2001-002, 2001.

[16] A. Fadlallah and A. Serhrouchni, “Denial of service attack and
schemes analysis and taxonomy,” in IEEE SETIT 2005, Interna-
tional Conference on Sciences of Electronic, Technology of Infor-
mation and Telecommunications, 2005, 27–31 Mar. 2005, Tunisia.

[17] M. S. Specht and R. Lee, “Distributed denial of service: Tax-
onomies of attacks, tools, and countermeasures,” in 17th Interna-
tional Conference on Parallel and Distributed Computing Systems,
2004, pp. 543–550.

[18] C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense
mechanisms: Classification and state-of-the-art,” COMPUT NETW,
vol. 44, pp. 643–666, 2004.

[19] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos
defense mechanisms,” ACM SIGCOMM Computer Communication
Review, vol. 34, pp. 39–53, 2004.

[20] M. N. J. Glenn Murray and C. Valli, “The convergence of it and
ot in critical infrastructure,” in The Proceedings of 15th Australian
Information Security Management Conference, C. Valli, Ed. Edith
Cowan University, dec 2017, pp. 149–155.

[21] E. Grossman, T. Mizrahi, and A. J. Hacker, “Deterministic
Networking (DetNet) Security Considerations,” RFC 9055, Jun.
2021. [Online]. Available: https://www.rfc-editor.org/info/rfc9055

[22] K. Stouffer, K. Stouffer, M. Pease, C. Tang, T. Zimmerman, V. Pil-
litteri, S. Lightman, A. Hahn, S. Saravia, A. Sherule et al., Guide
To Operational Technology (OT) Security. US Department of
Commerce, National Institute of Standards and Technology, 2023.

[23] F. Rezabek, M. Bosk, L. Seidlitz, J. Ott, and G. Carle, “Context
matters: Lessons learned from emulated and simulated tsn environ-
ments,” in 2024 IEEE International Conference on Pervasive Com-
puting and Communications Workshops and other Affiliated Events,
PerCom Workshops 2024, ser. 2024 IEEE International Confer-
ence on Pervasive Computing and Communications Workshops
and other Affiliated Events, PerCom Workshops 2024. Institute
of Electrical and Electronics Engineers Inc., 2024, pp. 499–504,
publisher Copyright: © 2024 IEEE.; 2024 IEEE International Con-
ference on Pervasive Computing and Communications Workshops
and other Affiliated Events, PerCom Workshops 2024 ; Conference
date: 11-03-2024 Through 15-03-2024.

[24] 802.1Q-2022 - IEEE Standard for Local and Metropolitan Area
Networks–Bridges and Bridged Networks, IEEE Std. 802.1Q, Dec
2022. [Online]. Available: https://ieeexplore.ieee.org/servlet/opac?
punumber=10004496

Seminar IITM SS 25 31 doi: 10.2313/NET-2025-11-3_06

Seminar IITM SS 25 32

Governance of a Distributed Autonomous Organization

Keihan Pakseresht, Holger Kinkelin∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: keihan.pakseresht@tum.de , kinkelin@net.in.tum.de

Abstract—This paper explores and analyzes the governance
of a Decentralized Autonomous Organization (DAO) in the
context of managing a distributed research testbed. Since the
absence of a central authority gives the members complete
control over the network, governance plays a significant
role in the decision-making processes in any DAO. Using
a decentralized payment system as a case study, this paper
analyzes applicable governance models and identifies key
challenges in a DAO. By examining existing governance
mechanisms and their suitability for our scenario, the paper
aims to outline a strong governance methodology that fulfills
the requirements of the DAO and facilitate its objectives.

Index Terms—DAO, Governance

1. Introduction

Blockchain technology has gained significant popular-
ity in recent years, revolutionizing industries by enabling
secure and transparent transactions between parties. Its de-
centralized nature eliminates the need for intermediaries,
which is the initial idea for Decentralized Autonomous
Organizations (DAOs). DAOs have arisen as a promising
governance model, using blockchain to enable collabo-
rative decision-making without relying on classic hier-
archical structures. They give their community complete
control over their rules and operations.

Defining governance for each DAO is crucial, as it
depends on the specific goals and objectives of the or-
ganization. Generally, governance refers to the rules and
decision-making processes that manage a DAO. These
decisions can vary from simple ones, such as adding
or removing members, to more complex ones, such as
making major changes to the organization or its structure.

Understanding how decisions are made within a DAO
and how its token economy is managed is essential for
long-term sustainability.

1.1. Goal

This paper aims to investigate governance in DAOs
using a decentralized research testbed as a scenario. We
will analyze the most common governance models and
processes that are primarily used in DAOs and evaluate
their applicability to our research testbed scenario. By
the end of this paper, the reader should have a better
understanding of governance in DAOs and be able to
choose and design the most suitable solution for each
specific organization.

1.2. Outline

The paper is structured as follows:

• Section 2 includes a brief overview of the DAO
testbed scenario and relevant concepts and terms
in DAOs.

• Section 3 analyses the governance models and
process, discussing their advantages and disadvan-
tages in the context of the research testbed.

• Section 4 discusses the suggested methodology for
our use case.

• Section 5 concludes the paper with key takeaways
and an overview of future work and studies.

By following this structure, the paper systematically builds
an understanding of governance, ensuring practical appli-
cability to the research testbed scenario.

2. Background and Terminology

To understand how decentralized autonomous orga-
nizations work and what governance challenges lie un-
derneath, we need to define some terms and concepts
used in the paper. It is worth mentioning that because
the governance is the main focus of the paper, the terms
are simplified. Further details can be found in [1] and [2].

2.1. DAOs and Relevant Concepts

Decentralized Autonomous Organization(DAO) is a
transparent organization based on Blockchain technology.
The organization is managed by the members, and de-
pending on the rules defined in the Smart contracts, the
members can vote on the decisions of the organization.

Smart contracts are self-executing contracts with the
terms of the agreement between parties being directly
written into lines of code. They play a crucial role in
DAOs since there is no central authority to manage the
organization, and the terms of a smart contract can be very
different; one of the most commonly used methodologies
are token-based contracts.

Tokens are digital assets used to represent ownership
of a particular asset. They can be traded with other parties
and can be exchanged for other assets. It is important to
note that tokens are not always the same as cryptocurren-
cies. Depending on the use case, tokens can be used to
represent any type of asset, such as stocks, paintings or
even real estate.

With the power of smart contracts and tokens, De-
centralized Application(dAPP) can provide a platform for

Seminar IITM SS 25 33 doi: 10.2313/NET-2025-11-3_07

members to interact with the DAO. dApps are applications
that run on decentralized networks. They follow the rules
defined in the smart contracts and enable members to
interact with the DAO, normally via predefined tokens.

In the managing DAOs, it is important to differenti-
ate between on-chain and off-chain governance. On-chain
governance refers to the governance processes that are
proposed directly on the blockchain, and after voting, the
decision is automatically executed on the blockchain. Off-
chain governance, on the other hand, refers to the gover-
nance processes that are proposed outside the blockchain,
for example, in forums or social media. After voting, the
decision is executed manually by the members of the
organization.

2.2. Relevant Concepts in Testbed DAO

The suggested testbed DAO in [3] is built on Algorand
blockchain. Algorand is a blockchain platform that aims
to provide a decentralized, secure, and scalable platform
for developers to build applications. It uses a consensus
mechanism called Pure Proof of Stake(PPOS), which al-
lows for fast and secure transactions on the network [1].
This Blockchain technology offers the possibility to cre-
ate and manage digital assets, called Algorand Standard
Assets(ASA),which can represent any type of fungible
(like cryptocurrencies) or non-fungible (like NFTs) assets.
ASA can be traded efficiently and with low fees between
members on the Algorand network [1]. The paper [3]
suggests using ASA as a token to represent the resources
in the testbed DAO.

2.3. Testbed DAO Scenario

The rapid advancement of scientific research has led to
an increasing demand for computational resources. Many
research institutions operate specialized testbeds equipped
with specialized hardware, such as GPU clusters, 6G test-
ing equipment, and other resources. However, researchers
often require access to resources beyond their local infras-
tructure, necessitating a collaborative system for resource
sharing across institutions.

The bachelor thesis "Trustless Resource Sharing be-
tween Scientific Testbeds" [3] proposes a DAO to manage
sharing of computational resources. This system, built
using Algorand’s ASA token standard, enables compen-
sation when one institution utilizes another’s resources in
exchange for tokens. The technical aspects of the DAO
have been implemented, but the governance aspects re-
main unexplored.

Governance in the context of our scenario refers
mainly to the decision-making processes for research site
participation and management, including adding or re-
moving sites and determining which decisions should be
centralized or decentralized.

Since the testbed DAO is mainly based on collab-
oration between research sites, it is important to have
a governance model that encourages participation and
engagement from all members.

3. Analysis of DAO Governance

Selecting a suitable governance model for the DAO
is essential. Different decisions need to be made by the

DAO members, and these decisions can vary widely from
minor to large. Although not all members have the same
voting power, the governance model should still be fair
and transparent to all members. At the same time, it should
not allow any member to manipulate the voting process.

3.1. Challenges

Since every single decision and change needs to be
made by members themselves, it is crucial to understand
the challenges that might arise in a DAO.

Significant ownership concentration in DAOs can lead
to governance challenges since only a few large token
holders may have the power to influence decisions. This
can lead to lower participation rates from smaller token
holders, which can result in Growth challenges for the
DAO in the long run [4].

Conflicts of interest between various stakeholders, par-
ticularly between large and small token holders, can also
arise in DAOs. To address it an approach to governance
can be the "one token, one vote" model. But this can
lead to strategic voting and manipulation by large token
holders since there is no guarantee that all the members
will participate in the decision-making process.

Parties can buy votes and bribe other members to
manipulate the DAOs in their favor.

Another challenge is the lack of anonymous voting;
since all the votes are recorded on the blockchain(as a
part of general rule in any blockchain system), this can
lead to privacy concerns for the members of the DAO.
Beyond the governance challenges.

DAOs also face technical challenges such as scalabil-
ity, security, and code vulnerabilities, which are out of the
scope of this paper.

3.2. Voting Process

Depending on the scale and type of the DAO, the
voting process might differ from one DAO to another.
In this section, we will discuss the general voting process
in DAOs and the different stages that are involved in it.
More information about the voting process can be found
in [5]. Generally speaking, the voting process in DAOs
can be divided into three main stages: Proposal process,
voting, and post-voting implementation.

3.2.1. Proposal Process. Unlike corporations with annual
meetings and management/shareholder proposals with
specific requirements, DAOs typically have a continuous
proposal submission process by members. This often in-
volves two main steps: initial discussion and "temperature
check" on governance forums, followed by a formal on-
chain or off-chain proposal. Some DAOs require a mini-
mum token quorum to create proposals.

3.2.2. Voting Procedure. DAOs specify quorum require-
ments in their protocol, often lower than in traditional
corporations(where it is usually more than 50 percent)
due to a lack of voter participation. Token holders’ voting
power is usually determined at the creation of the pro-
posal. Many DAOs allow members to revote their tokens.
It is important to note that tokens that are used for voting
are not consumed in the voting process (however, they

Seminar IITM SS 25 34 doi: 10.2313/NET-2025-11-3_07

might be staked, and as a result, they will not be accessible
for a short amount of time),meaning that the tokens can be
used for other purposes, such as trading after the voting
process. Another key difference from traditional voting
is the real-time transparency of individual token holders’
votes in DAOs, Which means every member of the DAO
is able to see the votes of the other members.

3.2.3. Post-Voting Implementation. : On-chain votes are
automatically executed by smart contracts upon passing,
often with a "timelock delay" for security. Off-chain votes
(e.g. via Snapshot) typically require a trusted core team
or multisig setup to implement the changes on-chain,
introducing an element of centralization.

3.3. Voting Models and Strategies

In recent years, various governance models and strate-
gies have been developed to address the challenges of
DAO governance mentioned in the Analysis section. These
models seek to improve decision-making processes, en-
courage active participation, and ensure the health of
decentralized systems. Below, we explore some of the key
voting models used in DAOs.

3.3.1. Token-based Quorum Voting. In token-based
quorum system, voting power is directly proportional to
the number of tokens held by a participant. Each token
represents one vote, and decisions are made based on
the majority of votes cast. Depending on the quorum
requirement, a certain percentage of tokens must be in
favor of the decision for it to be valid.

This approach is straightforward and easy to under-
stand, making it accessible for participants [6]. Token-
based quorum voting is the simplest and most basic voting
model in DAOs. However, it can lead to centralization,
as large token holders may dominate decision-making
processes.

3.3.2. Quadratic Voting. Quadratic voting is a voting
mechanism which allows parties to express not just their
vote but also the intensity of their vote. Instead of a
simple one-vote-per-person or one-token-one-vote system,
the cost of casting additional votes on a proposal increases
quadratically. This means that while individuals can vote
multiple times, each additional vote becomes exponen-
tially more expensive.

The primary goal of quadratic voting is to reduce the
power of large token holders and promote more demo-
cratic decision-making. For example, if the cost of one
vote is one token, then casting two votes costs four tokens,
three votes cost nine tokens, and so on. This prevents
wealth-based manipulation and ensures that only strongly
supported proposals gain traction [5].

3.3.3. Conviction Voting. Conviction voting is a dynamic
model where participants continuously allocate their votes
(in this case, tokens) to proposals over time. Instead of a
one-time vote, the voting power of a proposal increases as
more participants commit tokens to it for a longer period.
The longer tokens remain staked on a proposal, the more
"conviction" it accumulates, making it more likely to be
accepted.

This approach encourages sustained support and pre-
vents short-term speculative voting. A proposal that re-
ceives steady, long-term backing is prioritized over one
that receives sudden but fleeting support. This model
aligns governance with the real commitment of stakehold-
ers rather than short-term advantage seekers [5].

3.3.4. Tenure-Based Voting (Vote-Escrow). Tenure-
based voting, also known as vote-escrow, ties voting
power to the duration for which tokens are held or locked.
Members who stake their tokens for a longer period gain
greater voting influence, incentivizing long-term commit-
ment and reducing short-term speculative behavior.

The key idea behind vote-escrow is to reward long-
term investors and contributors over transient participants.
For instance, a user locking tokens for one year might
receive one vote per token, while a user locking tokens for
four years could receive four votes per token. Contrary to
conviction voting, where the age of the proposal matters,
the age of the tokens plays the major role in vote-escrow
[5].

3.3.5. Reputation-Based Voting. In reputation-based vot-
ing, a participant’s voting power is determined by their
contribution history, expertise, or past decisions within
the DAO. Instead of relying solely on token holdings,
this model assigns weight to votes based on the trust and
reliability of the voter within the ecosystem.

The main objective of reputation-based voting is to
ensure that governance decisions are influenced by expe-
rienced and credible participants rather than just wealthy
token holders. For example, a researcher who has actively
contributed to the DAO over several years may have more
voting power than a newcomer with many tokens but no
prior engagement.

This approach incentivizes responsible participation
and helps maintain decision-making quality. Since trust
between parties and the party’s reputation is the measure
of voting power, consistent communication is necessary
[5].

3.3.6. Contribution-Based Voting. Contribution-based
voting rewards participants with voting power based on
their involvement in the DAO’s ecosystem. Instead of
token ownership being the primary determinant, voting
rights are allocated based on contributions such as code
development, governance participation, content creation,
or research efforts.

This model encourages active engagement and rewards
meaningful contributions to the organization. A developer
who contributes to maintaining the testbed infrastructure
receive additional voting power compared to a passive
token holder. By tying governance power to active partic-
ipation, this model ensures that decision-making remains
aligned with the DAO’s long-term success [5].

4. Discussion

As mentioned in [5], we need to differentiate between
an internal and external governance model. Since there
are more researchers from different institutions involved
in the DAO, There needs to be an internal governance

Seminar IITM SS 25 35 doi: 10.2313/NET-2025-11-3_07

Figure 1: Proposal Process

system in each institution, which is responsible for token
distribution and internal decisions.

The external governance model is responsible for the
overall governance of the DAO, where each institution
is an entity in the DAO and can vote on the decisions
that affect the whole DAO. The paper [3] suggests that
the internal governance model should be centralized, to
simplify the governance of the DAO. This discussion
focuses on the external governance model.

Most of the DAOs implement a hybrid governance sys-
tem which consists of on-chain and off-chain governance
models. Usually, the bigger the DAO gets, the more it
leans towards off-chain governance; although our testbed
DAO is not that big (since in our DAO, the only entities
are the testbeds), the off-chain governance model is still
recommended. Since essential decisions are made by the
testbeds, such as adding or removing other members, it is
important to have a model that is more flexible and allows
discussions.

Figure 1 shows the suggested hybrid proposal process
in our use case. The off-chain section of the process
consists of two steps, internal and exteranl discussion.
Upon creating a new proposal, it will be discussed fist
internally in each organization (Since different organiza-
tion have different internal governance model, this step is
optional, but still recommended). Afterwards the external
discussion takes place, where the representatives of the
organizations discuss the Proposal. This debates can be
done in the form of periodic meetings and, in urgent
cases, in the form of emergency meetings. After the off-
chain discussion, the on-chain voting phase will begin.
Any proposal that reaches the required quorum will be
finalized and executed on-chain via smart contracts.

Each voting model offers unique advantages and trade-
offs, depending on the goals of the DAO. Token-based
quorum voting is straightforward but can lead to central-
ization if a few large holders dominate decision-making.
While quadratic voting enhances democratic participation,
conviction voting prioritizes long-term commitment. Vote-
escrow and reputation-based voting ensure governance
stability by rewarding long-term stakeholders and trusted
contributors, while contribution-based voting promotes en-
gagement. A well-designed governance system may incor-
porate multiple strategies to balance fairness, decentraliza-
tion, and efficiency within a DAO. Since in our use case,
we aim to implement a governance model that encourages
active participation and commitment, the Contribution-
Based Voting model may be particularly suitable. By
rewarding participants based on their contributions to the
research testbed, we can incentivize ongoing engagement
and ensure that governance decisions reflect the interests
of dedicated stakeholders [7].

5. Conclusion

Selecting the right governance model for the DAO can
be a very challenging task, and there is no one-size-fits-all
solution. Depending on the scale, purpose, and type of the
DAO, different governance models and strategies can be
used. Two main focuses in the design of a governance
model should be the proposal process and the voting
process.

In the proposal process, the DAO should have a clear
and structured process for submitting and discussing pro-
posals. The transparency of the votes might seem con-
cerning at first glance, but in the long term, it leads to
open discussions and a more democratic decision-making
process.

Unevenly distributed voting power among the mem-
bers of the DAO, which is a characteristic of many DAOs,
can seem like a challenge for the DAO governance at first.
However, since each DAO has its unique characteristics
and goals, leveraging the voting power of desired members
can be an advantage for the DAO. In our use case, the
members with the most contribution to the DAO have the
voting power advantage.

Another aspect that should be considered is the to-
kenomics of the DAO. Future work should analyze the
best tokenomics method for your use case and answer
questions such as how tokens should be created, managed,
and distributed. Token distribution is a very important
aspect of our DAO, as there are always new testbeds
joining and leaving the network, it also needs to be clear
how to prevent inflation and deflation of the tokens.

References

[1] Algorand, “Algorand Developer Docs,” https://developer.algorand.
org/docs.

[2] “Blockchain and Applications,6th International Congress,” 2025.

[3] L. Kleinheinz, “Trustless Resource Sharing between Scientific
Testbeds,” 2024.

[4] L. T. Han J., Lee J., “DAO Governance,” 2023.

[5] T. L. Jungsuk Han, Jongsub Lee, “A review of DAO governance:
Recent literature and emerging trends,” 2025.

[6] M. Schranz, “Governance and Voting Mecha-
nism Models of DAOs,” https://blokk.studio/blog/
governance-and-voting-mechanism-models-of-dao.

[7] C. B. Darcy W. E. Allen, “Blockchain Governance: What we can
Learn from the Economics of Corporate Governance,” 2020.

Seminar IITM SS 25 36 doi: 10.2313/NET-2025-11-3_07

Adding data visualization to pos-testbeds

Daniel Tarassenko, Kilian Holzinger∗, Sebastian Gallenmüller∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: daniel.tarassenko@tum.de, holzinger@net.in.tum.de, gallenmu@net.in.tum.de

Abstract—The pos-testbeds provide a controlled and modular
environment focusing on reproducible network experiments.
At their core, the plain orchestrating service (pos) manages
the allocation, configuration, execution, monitoring, and data
collection of the experiments. However, pos lacks a user-
friendly interface for accessing and visualizing the collected
results. This paper presents a solution for this problem: a
web-based application that can easily be integrated into the
existing testbed infrastructure. Using it, the users can explore
the testbeds’ result directories in the browser and visualize
the collected data on an organized dashboard. This approach
supports data accessibility and reproducibility and enhances
the overall user experience on pos-based testbeds.

Index Terms—pos-testbeds, reproducibility, plain orchestrat-
ing service (pos), results visualization, web application

1. Introduction

Reproducibility is a fundamental principle of scientific
research. As described by Gallenmüller et al. [1], repro-
ducibility enables researchers to verify and validate the
results of their own and others’ experiments, making it a
key source of trust for scientific work.

In the context of computational research, ACM em-
phasizes [2] that a result is only fully established when it
can be reproduced independently. They also define three
categories to describe different levels of result validation:

• Repeatability: Using the same experimental
setup, the same team obtains the same results. (As
the weakest requirement for an experiment.)

• Reproducibility: Using the same setup and tools,
a different team can independently reproduce the
original results.

• Replicability: Using their own implementation
and environment, a different team can reach sim-
ilar results.

Despite the importance of reproducibility, it remains
a challenging task for computer science testbeds. The
systems are often complex and consist of many different
components, tools, and services, which can significantly
impact the results of an experiment, as described by
Nussbaum in [3].

To address these challenges and enable reproducible
experimentation in networking research the pos-testbeds
were developed at Technical University of Munich. These
testbeds provide a controlled and modular infrastructure
for automated network experiments, which are repro-
ducible by design [4]. With access to such a testbed,

researchers from different institutions can run their ex-
periments or verify and replicate the results of other
researchers, using the same environment.

With the specially developed plain orchestrating ser-
vice, the pos-testbeds are able to automate resource allo-
cation, configuration, experiment execution, monitoring,
and result collection [1]. While storing the results data
in a predefined and structured way, pos lacks a built-
in user-friendly interface for accessing and visualizing
the collected results. Currently, the users are required
to navigate the testbed filesystem manually and search
through the output files generated by pos or run external
scripts to visualize the data. As accessibility is a key
factor for reproducibility, the absence of a user-friendly
interface may be a barrier for researchers to effectively
access and verify the results. ACM also requires the results
to be accessible at least for the reviewers for granting an
"Artifacts Evaluated" badge [2].

In this paper, we present an approach to improve the
built-in accessibility and visibility of the vast amount of
data generated by pos, contributing to better reproducibil-
ity and enhancing the user experience of the pos-testbeds.
The solution consists of two integrated parts:

• A dashboard generator, which generates a static
HTML page to organize and visualize data such
as the used hardware nodes, energy data, executed
scripts, and logs.

• A lightweight server application, which allows
the user to browse the results directory of the
testbed and select an experiment. The dashboard
generator is then called for the selected experiment
and generates a HTML page, which is displayed
in the browser.

The paper is structured as follows: Section 2 provides
an overview of the pos-testbeds and the plain orchestrat-
ing service itself. Then, Section 3 presents the design
goals and structure of the visualization system. Section 4
describes the implementation details. Finally, Section 5
summarizes the results and highlights some possibilities
for future improvements.

2. Background

The pos-testbeds are a research infrastructure devel-
oped by the Chair of Network Architectures and Services
at the Technical University of Munich. They were de-
signed to provide an environment for reproducible and
automated network experiments [1]. Now these testbeds
are even a part of large-scale European projects like

Seminar IITM SS 25 37 doi: 10.2313/NET-2025-11-3_08

SLICES-RI [5] or GreenDIGIT [6], and used by hundreds
of students and researchers from various institutions.

Pos ensures exclusive hardware usage by allowing
only one experiment per hardware node to run at the same
time [1]. In contrast to other platforms like Planet-Lab [3],
which rely on container-based virtualization, the pos-
testbeds offer bare-metal machines for each experiment.
This approach eliminates distortions of the results caused
by varying hardware loads at different times, which would
make the results unreproducible and unreliable.

Furthermore, while offering many different OS images
to choose from, the testbed nodes are live-booted [1].
In other words, the operating systems are not installed
on the disks of the test nodes, but are only loaded into
the main memory from the management node for each
experiment run. This guarantees a clean and consistent
software environment for each experiment and avoids any
side effects from previous ones, enforcing repeatability.

According to the official pos documentation [7], each
testbed consists of multiple test nodes and one central
management node. These management nodes are hosting
the plain orchestrating service (pos), which is therby the
core component of the testbed infrastructure.

Running as a daemon on the management node, pos
is responsible for:

• Managing the access among the researchers.
• Configuring and booting the test nodes with the

selected OS image.
• Loading the experiment scripts on the test nodes.
• Synchronizing the test nodes and executing the

experiment scripts.
• Collecting the logs and results from the test nodes.

For each finished experiment pos stores the results in
a defined directory of the following structure:

• /config directory containing metadata files like:

– allocation.json with the experiment ID,
user name, loop variables, boot parameters,
etc.

– NODE.json with the hardware specifica-
tions for each node.

• /energy directory containing a CSV file per node
with the energy data. The CSV files may contain
different data sets, but in general, they always
include this data for the time period of the ex-
periment execution:

– Current, Voltage, Power and total con-
sumed energy

• /setup directory containing a PDF file with the
topology for each node.

• One /NODE directory for each node containing
files, like:

– python bootstrap scripts
– Log files like status, stdout, and stderr

for each experiment command, named with
the timestamp of their occurrence.

As described by Gallenmüller et al. [4], the entire
output of the experiment script is recorded, including
utility tools output, executed scripts, vars, device hard-
ware, and topology information. All this information is

stored in the result folder of the experiment and guarantees
publishability (R5).

The approach of pos aligns with the principles of
Open Science and FAIR data management. According
to the FAIR principles [8], scientific artifacts should be
Findable, Accessible, Interoperable, and Reusable. pos
enforces structured data collection and centralized artifact
storage, making experimental results easier to evaluate,
compare, and reproduce. This also aligns with repro-
ducibility guidelines such as the ACM Artifact Review
and Badging standard [2], which emphasize transparency,
automation, and accessibility as key enablers for trustwor-
thy computational research.

3. Design

The goal of this solution was to provide the experiment
results generated by pos in a user-friendly and acces-
sible way. To achieve this, two main components were
developed: a static dashboard generator and a dynamic
experiment browser. These two components are not sep-
arate solutions or independent approaches, but rather two
integrated parts of a single system and are designed to
work together.

3.1. Dashboard Generator

As a standalone Python script, the dashboard generator
takes a path to the desired pos result directory as an argu-
ment and generates a static HTML page to visualize the
data stored in it. For the dashboard to be well structured
and easy to navigate, it was divided into the following
sections: (Screenshots for each section are provided in the
appendix.)

Information. Figure 1 shows the information section con-
taining the data taken from /config/allocation.json.
It displays all key information about the experiment, such
as ID, user name, creation date, modification date, used
nodes, their global- and loop-variables, as well as their
boot parameters. By parsing this file, the dashboard gener-
ator can provide a comprehensive and consistent overview
of the experiment’s configuration.

Nodes. As shown in Figure 2, this section provides hard-
ware specifications for each of the used nodes. This data is
taken from /config/NODE.json and includes information
about the CPUs, RAM, networking cards, and all their in-
terfaces, but also the storage, motherboard, and operating
system image the experiment was run on.

Topology. The topology section displays images for each
node, showing the network interfaces and their intercon-
nections with other nodes. These images are taken from
the testbeds topology directory, which can be defined as
a program argument. An example is shown in Figure 3.

Timeline. As probably the most important part of the
dashboard, the timeline displays all events for each node
in chronological order. By selecting an event, the users
are presented with all associated files, such as executed
scripts, sent commands, standard output, standard error,

Seminar IITM SS 25 38 doi: 10.2313/NET-2025-11-3_08

and status files, which allows them to analyze the experi-
ment execution in detail. The timeline section is displayed
in Figure 4.

Energy. The final section of the dashboard is the en-
ergy section, shown in Figure 5. It displays the energy
consumption data for each node, found in the /energy
directory. Initially, the data is stored in CSV files with
varying columns, but in general, they contain the follow-
ing datasets: Voltage, Current, Power, and Total consumed
energy. The data is measured periodically with a sample
rate of about 1 Hz for the duration of an experiment. In
this section, users can turn on and off each data row to
display only the data they are interested in.

While for the most part, the dashboard generator ful-
fills the main requirements, as a result visualizing tool, it
produces only static HTML pages. This implies that pos
would need to call the dashboard generator after every
finished experiment to create a page that only contains
the results of this specific experiment. As a consequence,
the server would need to permanently store all generated
HTML pages for each experiment, even if they are never
visited after some time. This approach leads to redundant
storage usage, as the information would be saved twice:
as the original experiment result directory and as a static
HTML page. In particular, it also would repeatedly store
the identical web page layout structure, such as the header,
navigation sidebar, CSS and JavaScript as part of the
HTML files for each experiment, despite the fact they are
always the same. Another drawback resulting from the
static approach is that after making some changes to the
dashboard, for example, adding a new section or changing
the design, by editing some CSS, all previously generated
HTML pages would be outdated. This would require the
testbed to regenerate all HTML pages after every change.

3.2. Result Browser

To address these issues, a small flask web application
was implemented as the second part of the solution. It
is designed to run directly on the management node of
each testbed and provide a user-friendly web interface for
accessing the results of the testbed. Once configured with
the path to the result directory containing all experiment
results, it would allow the users of the testbed to browse
through all these results from their browser. Figure 6
shows a demo results directory of the experiment browser.
Here, the users can find and select the experiment they
are interested in. The flask application will then call the
dashboard generator to create a dashboard for the selected
experiment and display it to the user. The benefit of this
approach is, that the dashboard is constructed only in the
main memory of the server, without being stored on the
disk, therefore solving the problem of storing redundant
data. Also, since the dashboard HTML pages are only
created on demand, there are no extra operations for
creating a dashboard after each experiment. Moreover, this
allows the dashboard generator to be updated at any time,
as the result browser will just call the updated version of
the generator. So the users will get displayed the latest
version of the dashboard on every experiment visit.

By replacing manual file navigation with an interactive
web interface, the experiment browser improves accessi-
bility. The dashboard follows established design princi-
ples such as logical grouping, progressive disclosure, and
hierarchical layout, which reduce cognitive load and con-
tribute to a more intuitive user experience [9]. Together,
these two components significantly improve the usability
of the pos-based testbeds and support reproducibility [10].

4. Implementation

4.1. Project structure

This section gives some insights into the details of
the proposed solution’s implementation. The project is
structured as follows:

dashboardGenerator/
static/

images/
tum-logo.svg
folder.svg
...

templates/
base.html
dashboard.html
section_energy.html
section_information.html
...

generator.py
results_browser.py
README.md

4.2. Dashboard Generator

The dashboard generator is a standalone Python script
(generator.py), which is the core of the visualization
system. While it is not recommended to run the script
directly for creating HTML pages, it may be used for
testing purposes. The script takes three optional argu-
ments: (-i, --input), (-t, --topologies) and (-o,
--output). They define the paths to the experiment result
directory, the topology images directory, and the output
directory, respectively. The argument parsing is imple-
mented using the argparse library. When executed, the
script reads all files from the experiment directory and
renders a static HTML page using Jinja2 templates.

4.2.1. Data Parsing. First of all, the dashboard generator
parses all relevant files from the experiment directory.
JSON files such as allocation.json and NODE.json are
read using the built-in json module, while the energy data
is processed using the built-in csv module. To improve the
performance of the dashboard in the browser and reduce
the file size of the generated HTML file, the energy data
from the CSVs is downsampled to a default value of 200
data points per node. Since downsampling was not the
main focus of this paper, a simple algorithm is currently
used, that selects every N-th row and discards the rows
in-between. This approach is very easy to implement, fast,
and sufficient for demonstration purposes. In the future,
a more complex algorithm like LTTB (Largest-Triangle-
Three-Buckets) could be integrated to improve the down-
sampling quality. Unlike the N-th row approach, which
could omit important values like peaks, LTTB selects the
most significant points of the dataset, thereby preserving
the visual characteristics of the original data.

Seminar IITM SS 25 39 doi: 10.2313/NET-2025-11-3_08

All the parsed data is then stored in nested Python
data structures, like lists of dictionaries or lists of JSON
objects, which are then passed to the Jinja2 template
engine for rendering the HTML page.

4.2.2. Template Rendering. The core part of the dash-
board generator is the Jinja2 templating engine, which
was chosen for its simple integration as a Python library,
the Python-like syntax, good documentation and support
for modular templates. It enables the creation of HTML
templates with not only predefined static data, such as
the layout elements but also dynamic placeholders, which
are then filled in the rendering process on execution, as
described in the Jinja2 documentation [11]. Furthermore,
Jinja2 templates can contain variables, loops and condi-
tions for displaying dynamic data, like tables or lists. An
example of a Jinja2 loop is shown below:

<tbody>
{% for node in nodes %}
<tr>

<td>{{ node.hostname }}</td>
<td>

{% for cpu in node.processor %}
{{ cpu.model }}
{% endfor %}

</td>
...
<td>{{ node.image }}</td>

</tr>
{% endfor %}

</tbody>

This code snippet would generate a table row for each
node in the list of nodes while listing all CPU models
within a table cell.

Another feature of Jinja2 is the support of template
inheritance. Thus, a base template (base.html) defines
the overall layout structure, like the page header. This
base template is then extended by browse.html and
dashboard.html, which are also templates.

For better code structure and easier maintainability,
each section of the dashboard - Information, Nodes,
Topology, Timeline, and Energy - is implemented in its
own template file. Each of these section templates is then
included in the dashboard.html template.

4.2.3. Layout and Interactivity. To ensure a clean and
intuitive user interface, the Bootstrap framework [12] was
used. Bootstrap provides many ready-to-use components
for web applications, such as accordions, cards, buttons,
and more. In particular, the accorions as collapsible boxes,
are used to group the information, structure the dashboard
and visually hide as much information as possible. Thus,
the users are not overwhelmed by too much information
at once and giving them control over how much detail
they want to see.

The required Bootstrap CSS and JavaScript are cur-
rently included with CDN links in the base.html tem-
plate. In the future, only the used assets could be compiled
from Bootstraps SASS source files and stored locally
on the testbed. This would avoid loading unused assets,
reduce external dependencies and obsolete internet access.

In addition to Bootstrap, some simple JavaScript is
used to hide all the dashboard sections (Information,
Nodes, Topology, Timeline, and Energy) and only show
the section selected on the sidebar. In combination with

Bootstrap elements, this contributes to a clean structure
and an interactive user experience.

4.3. Result Browser

The second part of the visualization system is a
small web application built using Flask, a lightweight
web framework for Python [13]. As it is intended to run
directly on the management node of each pos-testbed, the
path to the testbed base directory must be provided as an
argument -d, --directory. Furthermore, the arguments
(-H, --host) and (-p, --port) are used to specify the
host and port of the web server. The application defines
the following endpoints:

• /browse/<path> – Allows navigation through the
results directory and displays its contents.

• /experiment/<path> – Initiates a dashboard gen-
eration and returns an HTML for a selected exper-
iment.

• /topology/<filename> – Serves topology im-
ages on demand, as they are not stored in the static
directory but on the testbed.

When listing a directory while browsing, the appli-
cation checks for each subfolder if it is an experiment
result directory. This is done by checking if the config/,
energy/, and setup/ directories are present. If so, the
experiment directory is displayed with a link to the
/experiment/<path> endpoint. When an experiment di-
rectory is clicked, a dashboard is generated using a direct
function call to generate_page() from generator.py.
The rendered HTML is delivered to the browser using
a Response object without storing it on the disk of the
hosting management node.

This on-demand generation of the dashboard avoids
redundant file storage and enables the dashboard gener-
ator to be updated at any time, as already discussed in
Section 3. In its current state, the application is designed
for internal use only, as no authentication or encryption is
implemented. This is because no HTTPS certificate was
available during the development.

4.4. Performance Considerations

As the proposed visualization solution is designed
for occasional, human-triggered interactions, rather than
continuous or high-frequency data processing, the perfor-
mance is not a critical factor for the system. Therefore a
formal performance evaluation was left out of the scope
of this paper. Nevertheless, some considerations are worth
mentioning:

• The execution time of the dashboard generator
depends on the size of the given experiment result
directory. In particular, the number of used nodes
and amount of recorded events for each node plays
a significant role, as all these files must be parsed,
saved in a data structure, and then rendered to an
HTML page.

• JinJa2 extensively uses caching and avoids re-
peated compiling of the templates, making the
rendering process nearly as efficient as executing
a Python function [14].

Seminar IITM SS 25 40 doi: 10.2313/NET-2025-11-3_08

• Since the dashboard generator is only invoked on
demand, the system avoids redundant processing
and remains idle most of the time.

5. Conclusion and Future Work

This paper presented a lightweight and modular so-
lution to improve the accessibility and visibility of ex-
periment results generated by the plain orchestrating ser-
vice (pos) in reproducible testbed environments. The sys-
tem consists of two parts: a static dashboard generator
and a dynamic experiment browser, both implemented
in Python. After integrating these tools directly into the
testbed infrastructure, users can access information like
experiment metadata, execution logs, hardware informa-
tion, and energy consumption through an interactive and
structured interface. This improves the user experience
and supports reproducibility by making data more acces-
sible and easier to interpret.

Future Work: Responsiveness improvements could
enable usage on mobile devices. While security was not
a focus in this prototype, future versions should include
HTTPS and user authentication using login, to support
secure and used-specific access to experiment results.
Filter and sorting functions in the experiment browser
would improve navigation, especially for users with many
experiments. Integration of live result data streaming while
experiment execution would allow real-time monitoring
of experiments. Finally, exporting results in RO-Crate
format [15] would enable standardized, machine-readable
packaging of experiments and simplify publishing and
sharing via FAIR-compliant repositories.

References

[1] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The pos
framework: A methodology and toolchain for reproducible network
experiments,” The 17th International Conference on emerging Net-
working EXperiments and Technologies (CoNEXT ’21), 2021.

[2] ACM, “Artifact review and badging version 1.1,” https://www.
acm.org/publications/policies/artifact-review-and-badging-current,
2020, online; Last access: 05.04.2025.

[3] L. Nussbaum, “Testbeds support for reproducible research,” Pro-
ceedings of Reproducibility ’17, 2017.

[4] S. Gallenmuller, D. Scholz, H. Stubbe, E. Hauser, and G. Carle,
“Reproducible by design: Network experiments with pos,”
Würzburg Workshop on Next-Generation Communication Networks
(WueWoWas’22), 2022.

[5] S. R. Infrastructure, “Post-5g blueprint,” https://doc.slices-ri.eu/
BlueprintServices/beyond5G/beyond5G.html, 2024, online; Last
access: 05.04.2025.

[6] C. of Network Architectures, I. Services, School of Computation,
and T. U. o. M. Technology, “Greendigit,” https://net.in.tum.de/
projects/greendigit/, 2024, online; Last access: 05.04.2025.

[7] D. Scholz and S. Gallenmüller, “Welcome to the plain orches-
trating service (pos),” https://i8-testbeds.pages.gitlab.lrz.de/pos/
cli/#welcome-to-the-plain-orchestrating-service-pos, 2025, online;
Last access: 04.04.2025; Note: Internal documentation, access re-
stricted to registered users only.

[8] M. D. W. et al., “The fair guiding principles for scientific data
management and stewardship,” Scientific Data, 2016.

[9] UXPin, “Effective dashboard design principles for 2025,” https:
//www.uxpin.com/studio/blog/dashboard-design-principles/, 2025,
online; Last access: 10.05.2025.

[10] J. Leipzig, D. Nüst, C. T. Hoyt, K. Ram, and J. Greenberg, “The
role of metadata in reproducible computational research,” Patterns,
2021.

[11] Pallets, “Jinja — jinja documentation (3.1.x),” https:
//jinja.palletsprojects.com/en/stable/, 2025, online; Last access:
05.04.2025.

[12] T. B. Authors, “Get started with bootstrap,” https://getbootstrap.
com/docs/5.3/getting-started/introduction/, 2025, online; Last ac-
cess: 05.04.2025.

[13] Pallets, “Welcome to flask — flask documentation (3.1.x),” https:
//flask.palletsprojects.com/en/stable/, 2025, online; Last access:
05.04.2025.

[14] Pallets, “Frequently asked questions,” https://jinja.palletsprojects.
com/en/stable/faq/, 2025, online; Last access: 10.05.2025.

[15] E. Hauser, S. Gallenmuller, and G. Carle, “Ro-crate for testbeds:
Automated packaging of experimental results,” IFIP Networking
Conference (IFIP Networking), 2024.

Seminar IITM SS 25 41 doi: 10.2313/NET-2025-11-3_08

Appendix

Figure 1: Informatin section

Figure 2: Nodes section

Figure 3: Topology section

Seminar IITM SS 25 42 doi: 10.2313/NET-2025-11-3_08

Figure 4: Timeline section

Figure 5: Energy section

Figure 6: Experiment browser

Seminar IITM SS 25 43 doi: 10.2313/NET-2025-11-3_08

Seminar IITM SS 25 44

Timeline of Host Monitoring Tools

Zeynep Öztürk, Tim Betzer∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: zeynep.oeztuerk@tum.de, betzer@net.in.tum.de

Abstract—Network monitoring is a fundamental component
of ensuring the reliability, performance, and security of
computer networks.

This paper traces the evolution of host monitoring tools,
from early packet-switching networks to modern observabil-
ity platforms. It highlights the increasing complexity of net-
work environments and the corresponding need for advanced
monitoring solutions. The paper explores the integration of
monitoring tools in cloud-native infrastructures, with par-
ticular attention to Kubernetes orchestration. Prometheus, a
tool with a pull-based architecture, and Nagios, a widely-used
legacy system, are examined as case studies to illustrate the
trade-offs between traditional and modern approaches. The
paper concludes by discussing current challenges in network
observability, such as automation, real-time alerting, and the
role of open-source tools in contemporary IT infrastructures.

Index Terms—network monitoring, host monitoring, SNMP,
Prometheus, Nagios, Kubernetes, network management, net-
work performance monitoring

1. Introduction

Since the introduction of the first computer networks,
the need for monitoring and managing them has been
a critical aspect of ensuring performance and reliability.
Network monitoring began in the 1960s and 1970s with
simple packet-switching systems and basic command-line
utilities. These tools enabled administrators to check de-
vice statuses and troubleshoot connectivity issues.

As networks expanded in size and complexity, it be-
came clear that more sophisticated monitoring solutions
were needed. Early tools, often developed in-house, were
limited in functionality and required substantial manual
effort. Despite their limitations, they laid the foundation
for the development of more advanced systems.

The 1980s marked the emergence of commercial net-
work monitoring tools, which were generally proprietary,
expensive, and used by large organizations. These tools
provided a more comprehensive view of network per-
formance, helping administrators address bottlenecks and
faults more effectively.

A significant milestone was the introduction of the
Simple Network Management Protocol (SNMP) in the late
1980s. SNMP offered a standardized method to monitor
and manage devices across different vendors, simplifying
the deployment and maintenance of monitoring infras-
tructures. This standardization supported the rise of both
commercial and open-source monitoring tools.

This paper provides a comprehensive overview of the
evolution of host monitoring tools, beginning with tra-
ditional methods and continuing to modern, cloud-native
observability platforms. It examines the fundamental Push
vs. Pull data collection models and presents Prometheus
and Nagios as case studies to explore the trade-offs be-
tween legacy and modern solutions. The discussion con-
cludes with an analysis of current trends, such as real-time
alerting, automation, and the growing importance of open-
source tools in today’s IT environments.

Figure 1: Timeline of host monitoring tools

2. Push vs. Pull

The general principle for collecting data in monitoring
systems is divided into two primary models: the Push
Model and the Pull Model.

2.1. Push Model

In the push model, monitored devices send their status
information autonomously to the monitoring system. This
typically occurs through agents or log forwarding and is
well-suited for continuous management.

An example of a tool following this model is
Checkmk, which uses agents to transmit data.

2.2. Opportunities and Challenges of the Push
Model

One of the key advantages of the push model is the
ability to detect problems quickly, as devices transmit
alerts as soon as an issue arises. This is particularly
beneficial in environments where real-time monitoring

Seminar IITM SS 25 45 doi: 10.2313/NET-2025-11-3_09

is essential, such as financial institutions or healthcare
systems. Additionally, the push model can help reduce
overall network load since data is not polled constantly.

However, the push model presents certain drawbacks.
It generally requires additional configuration effort, such
as deploying and maintaining agents on the monitored
devices, which can be time-consuming and operationally
complex. Moreover, since data is transmitted continuously,
this approach can lead to increased storage demands. This
is especially problematic in environments with limited
storage capacity or strict data retention policies.

Figure 2: Push vs Pull
Source: [1]

2.3. Pull Model

In contrast, the pull model is based on the princi-
ple that the monitoring system initiates data collection
by querying the monitored devices at regular intervals.
This follows the request–response paradigm and is com-
monly implemented using protocols such as SNMP, WMI,
or API-based interfaces. The pull model is particularly
suitable for ad hoc monitoring and manual, on-demand
analysis.

A practical example is Nagios, where the monitoring
server polls the status of devices—such as servers or
network hardware—at fixed intervals, typically every five
minutes [2].

2.4. Opportunities and Challenges of the Pull
Model

The pull model offers several advantages. It gives
the central monitoring system control over the frequency
of data collection, which can help balance network load
and optimize system performance. Another benefit is the
reduced complexity in deployment, as it does not require
agents to be installed on the monitored devices.

On the downside, the pull model can introduce latency
in problem detection. Since data is only collected at
scheduled intervals, issues may go unnoticed until the
next polling cycle. This delay can be problematic in
environments that require real-time responsiveness, such
as financial or healthcare sectors [3].

3. SNMP

The first attempts to create a unified monitoring tool
date back to the 1960s and 1970s, when it became evi-
dent that the number of hosts in computer networks was
growing rapidly [4]. During that time, monitoring systems
were mostly proprietary, tailored to specific hardware and
vendor environments.

The development of the Simple Network Manage-
ment Protocol (SNMP) in the 1980s by a group of uni-
versity researchers marked a turning point. It introduced
a standardized framework for monitoring and managing
devices across heterogeneous networks.

Although SNMP was originally intended as a tempo-
rary solution—“to fill the need for a network management
tool while a more theoretically sound system was being
developed by the IAB” [4]—it ultimately became the de
facto standard, and the intended transition never occurred.

The first version of SNMP was released in 1988,
with a design philosophy focused on simplicity and ease
of implementation. In 1993, SNMPv2 was introduced,
bringing enhancements such as bulk data retrieval and
improved error handling. However, it still relied on com-
munity strings for authentication, which were considered
insecure. In response to these concerns, SNMPv3 was
released in 1999, offering robust security features such
as authentication, encryption, and message integrity [4].

Today, SNMPv3 is the standard protocol for monitor-
ing and managing network devices, including switches,
routers, firewalls, printers, and servers.

3.1. Evaluation

One of the key factors behind SNMP’s widespread
adoption is its open nature. It is free software, not con-
trolled by any specific vendor, allowing organizations to
implement or build SNMP-based tools without incurring
licensing costs or facing vendor lock-in. This has led
to a broad ecosystem of SNMP-compatible devices and
software solutions.

This openness is especially valuable in network man-
agement, where organizations often deploy heteroge-
neous environments with equipment from various vendors.
SNMP provides a unified framework for managing such
diverse devices, enabling centralized visibility and control
[5].

Although SNMP has not demonstrated significant
shortcomings in fault and performance management since
its introduction, its continued prevalence can also be at-
tributed to the complexity involved in migrating to alter-
native protocols or platforms.

Nevertheless, SNMP does have certain limitations.
Being a pull-based protocol, it relies on the management
system to periodically query devices for information. This
approach can cause performance bottlenecks in large-scale
environments, where thousands of devices may need to be
polled regularly. Moreover, SNMP lacks robust support
for complex data modeling and does not efficiently cap-
ture relationships between devices. These factors limit its
scalability and adaptability in modern, dynamic network
infrastructures, where topologies change frequently and
systems must respond in real-time [4], [6], [7].

Seminar IITM SS 25 46 doi: 10.2313/NET-2025-11-3_09

4. Kubernetes

Kubernetes, commonly known as K8s, is an open-
source container orchestration platform designed to auto-
mate the deployment, scaling, and management of con-
tainerized applications across clusters of machines.

4.1. History

The initial public commit of Kubernetes was made on
GitHub on June 6, 2014. Shortly afterward, in September
of the same year, Google officially announced Kubernetes
as the open-source successor to its internal container
management system, known as Borg.

From the beginning, several major technology com-
panies, including Microsoft, RedHat, IBM, and Docker,
joined the Kubernetes community, contributing to its rapid
development and adoption. In 2015, with the release of
Kubernetes version 1.0, Google donated the project to the
newly established Cloud Native Computing Foundation
(CNCF).

The CNCF, which operates under the umbrella of the
nonprofit Linux Foundation, is a vendor-neutral organiza-
tion that supports the development and adoption of cloud-
native technologies. It serves as a collaborative home for
open-source projects that are critical to the cloud-native
ecosystem.

By 2016, Kubernetes became the first project to be
officially hosted by the CNCF. In 2017, it achieved another
milestone by becoming the first project accepted into the
CNCF’s Incubation Program. The following year, in 2018,
Kubernetes was the first project to graduate from the
CNCF, signaling its maturity and widespread adoption.

Today, Kubernetes is recognized as the second-largest
open-source project in the world, surpassed only by the
Linux kernel. It has become the default container or-
chestration solution used by approximately 71 percent of
Fortune 100 companies. Kubernetes has played a pivotal
role in shaping modern cloud-native architectures, setting
a standard for cloud service providers and transforming
how applications are developed, deployed, and managed
in distributed environments [8], [9].

As of now, Kubernetes continues to be one of the
fastest-growing and most actively maintained open-source
projects in software history.

Figure 3: A brief history of Kubernetes
Source: [10]

4.2. Evaluation

Kubernetes offers numerous advantages that have
made it the dominant platform in container orchestra-
tion. A key benefit is its ability to automatically scale
applications based on real-time demand, improving re-
source efficiency and reducing operational costs. It en-
sures high availability of services through built-in fea-
tures such as self-healing, load balancing, and automated
failover, thereby enhancing system reliability and mini-
mizing downtime.

Additionally, Kubernetes supports workload portabil-
ity and seamless integration across hybrid and multi-cloud
environments. This allows organizations to deploy and
manage applications consistently across different infras-
tructures, which is particularly beneficial for enterprises
with complex IT landscapes. Its robust networking capa-
bilities also simplify service discovery, DNS management,
and communication among distributed application compo-
nents.

Despite its strengths, Kubernetes presents a range of
challenges. Its architecture and operational model intro-
duce significant complexity, particularly during initial de-
ployment and cluster setup. The learning curve for admin-
istrators and developers new to Kubernetes can be steep,
often requiring deep technical understanding and hands-
on experience. Running Kubernetes in a production-grade
environment demands continuous monitoring, fine-tuning,
and specialized skills in areas such as networking, secu-
rity, and observability.

Moreover, Kubernetes can be resource-intensive,
which may not align well with the constraints of small-
scale projects or low-powered edge computing environ-
ments. Debugging and incident resolution within Kuber-
netes clusters can also be complex due to the distributed
nature of workloads and the limited visibility provided
by default tools. In many cases, advanced observability
solutions must be integrated to perform effective root
cause analysis [8], [9], [11].

5. Prometheus

Started as an internal project at SoundCloud in 2012,
Prometheus is now a widely used open-source monitoring
and alerting toolkit. It focuses specifically on cloud-native
environments, where it excels in collecting, storing, and
analyzing metrics in real time.

After gaining increasing adoption within SoundCloud,
and later from Docker and Boxever in 2014, Prometheus
had its first public launch on January 26, 2015. Within one
year of open-source development, Prometheus had grown
into a thriving community of users and contributors. The
project saw significant activity, with over 200 contribu-
tors, more than 2,300 pull requests, and over 4,800 stars
on GitHub. Even large companies such as Google and
CoreOS began using Prometheus in their infrastructure.
“Google is now instrumenting its open-source container
management system Kubernetes natively with Prometheus
metrics,” stated Volz [12].

On May 9, 2016, Prometheus joined the Cloud Native
Computing Foundation (CNCF) as its second open-source
project, following Kubernetes [5].

Seminar IITM SS 25 47 doi: 10.2313/NET-2025-11-3_09

Figure 4: Peak after getting submitted to Hacker News
Source: [13]

5.1. Evaluation

Prometheus is a powerful monitoring and alerting
toolkit, well-suited for cloud-native environments. Due
to its pull-based architecture, it easily monitors dynamic
systems, making it a popular choice for organizations
using microservices and container orchestration platforms
like Kubernetes. It is designed to be fast and efficient, with
a time-series database that enables high-performance data
storage and retrieval. It also supports flexible monitoring
capabilities, allowing users to define custom metrics and
alerts based on their needs. Additionally, it is highly
scalable and can manage large volumes of data, making
it suitable for organizations with complex infrastructures.

However, it does have some limitations. Prometheus
does not provide native long-term storage for metrics,
which can be a drawback for organizations that need to
retain historical data for compliance or analytical pur-
poses. It also focuses primarily on metrics and lacks built-
in support for logs or distributed clustering. This can
make it less suitable for organizations that require a more
comprehensive monitoring solution that includes logs and
distributed tracing [5], [11], [14], [15].

6. Nagios

Nagios is one of the oldest and most widely known
monitoring tools for IT infrastructures. It enables the
monitoring of servers, networks, applications, and services
to detect and respond to issues proactively.

Nagios was developed by Ethan Galstad in 1999 as a
side project called NetSaint. It was initially developed as
an open-source solution for network monitoring, with a
primary focus on hosts and services. Due to a trademark
issue with the term “Saint” in 2001, the project’s name
was changed to Nagios, an acronym for “Nagios Ain’t
Gonna Insist On Sainthood“ [2]. In 2007, Nagios Enter-
prises was founded, and after two years of development,
the first commercial edition of Nagios was released on
December 31, 2009.

6.1. Evaluation

Thanks to its plugin-based architecture, Nagios can
be extended to monitor a wide range of services and
applications, such as the availability and performance of
network devices, servers, and applications. It also supports

monitoring system metrics including CPU usage, mem-
ory consumption, disk space, and network traffic. Widely
adopted and well established, “Nagios was awarded ‘Best
Monitoring Application’ in the 2013 Linux Journal Read-
ers’ Choice Awards“ [16]—its third time receiving this
title.

Despite its capabilities, Nagios is not ideal for large,
dynamic environments where services and hosts change
frequently. In such cases, the manual configuration re-
quirements of Nagios can become cumbersome and time-
consuming [2], [16].

7. Conclusion and future work

Since the beginning of the computer networks and
the rising of the complexity of the network systems, the
need for monitoring tools has increased. Since then SNMP
has been the most widely used protocol for monitoring
network devices and Kubernetes has become one of the
most popular container orchestration platform. With the
Prometheus monitoring system, it is possible to monitor
the Kubernetes cluster and the applications running on it.
Nagios is a widely used monitoring tool, which is used to
monitor the host system.

Although commonly used host monitoring tools per-
form well for most modern systems, the continuous ad-
vancement of technology necessitates the development of
newer and more sophisticated monitoring solutions. One
emerging area of focus is the monitoring of quantum
computers, which are gaining popularity and present
unique challenges. Unlike classical systems that operate
with bits representing either 0 or 1, quantum computers
use qubits, which can exist in a superposition of states.
This fundamental difference makes monitoring quantum
systems significantly more complex than traditional com-
puting environments.

Nevertheless, major companies such as IBM and Ama-
zon are actively working on solutions in this domain.
For instance, Qiskit, an open-source quantum computing
framework developed by IBM, includes components that
support basic monitoring of quantum systems.

As quantum computing technology continues to
evolve, the demand for advanced monitoring tools will
grow in order to ensure the performance, stability, and
reliability of future quantum-based infrastructures [17].

References

[1] “Push vs pull architecture in cloud com-
puting,” https://www.alibabacloud.com/blog/
push-vs-pull-architecture-in-cloud-computing_595202, [Online;
accessed 6-April-2025].

[2] Nagios, “The nagios story,” https://www.nagios.org/story/, [Online;
accessed 30-March-2025].

[3] J.-P. Martin-Flatin, “Push vs. pull in web-based network manage-
ment,” 1998.

[4] “Snmp history,” https://docs.lextudio.com/snmp/snmp-history,
[Online; accessed 1-April-2025].

[5] “The prometheus monitoring system and time series database.”
https://www.cncf.io/projects/prometheus/, [Online; accessed 31-
March-2025].

[6] M. Fedor, M. Schoffstall, J. R. Davin, and D. J. D. Case, “A simple
network management protocol (snmp),” May 1990.

Seminar IITM SS 25 48 doi: 10.2313/NET-2025-11-3_09

[7] K. Brister, “High tech goes low key,” https://snmp.com/company/
history.shtml, 1998, [Online; accessed 1-April-2025].

[8] “Kubernetes project journey report,” 2023, [Online; accessed 28-
March-2025].

[9] S. Susnjara, “The history of kubernetes,” https://www.ibm.com/
think/topics/kubernetes-history, 2023, [Online; accessed 28-March-
2025].

[10] “Who made kubernetes?” https://www.opsramp.com/guides/
why-kubernetes/who-made-kubernetes/, [Online; accessed 6-
April-2025].

[11] N. S. an Elizabeth Bautista, “Towards a framework for monitoring
and analyzing high performance computing environments using
kubernetes and prometheus,” IEEE, Ed., 2019.

[12] D. Harrington, B. Wijnen, and R. Presuhn, “An architecture for de-
scribing simple network management protocol (snmp) management
frameworks,” RFC 3411, 2002.

[13] “One year of open prometheus development,” https://prometheus.
io/blog/2016/01/26/one-year-of-open-prometheus-development/,
[Online; accessed 6-April-2025].

[14] G. Darwesh, “Kubernetes monitoring with prometheus for security
purposes,” in Sammelband wissenschaftlicher Forschungsarbeiten
auf Grundlage des internationalen Wettbewerbs, Technologische
Innovationen und wissenschaftliche Entdeckungen, A. A. Vorobeva,
Ed.

[15] J. Turnbull, Monitoring with Prometheus, September 10, 2018.

[16] J. Gray, “Reader’s choice awards 2009,” Linux Journal, June 1,
2009.

[17] “Introduction to qiskit,” https://docs.quantum.ibm.com/guides,
[Online; accessed 5-April-2025].

Seminar IITM SS 25 49 doi: 10.2313/NET-2025-11-3_09

Seminar IITM SS 25 50

QWACs in Automated Environments

Leonard Auer, Stefan Genchev∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: auerle@in.tum.de, genchev@net.in.tum.de

Abstract—The European Union’s eIDAS 2.0 regulation
introduces Qualified Website Authentication Certificates
(QWACs) to enhance web authentication through verified
organizational identity. To address criticism regarding reg-
ulatory influence over the global root trust stores, the ETSI
recently proposed a novel approach, 2-QWAC, which binds a
QWAC to a standard TLS certificate via a digital signature.
This binding process, however, introduces operational com-
plexity, especially in environments where TLS certificates
are frequently rotated using the ACME protocol. In this
work, we survey common ACME implementations and ana-
lyze the feasibility of automating 2-QWAC binding renewal.
We present a proof-of-concept automation that extends the
ACME flow in a popular and open-source web server.

Index Terms—qualified web authentication certificates, 2-
qwac, eidas 2.0, acme, pki, automation

1. Introduction

The European Union’s eIDAS 2.0 regulation in-
troduces Qualified Website Authentication Certificates
(QWACs) to add verifiable organizational identities to
web authentication [1]. Unlike the Extended Validation
certificates, which have been removed from the user in-
terfaces of major web browsers [2], QWACs are issued by
Qualified Trust Service Providers (QTSPs) in the EU [3].

Initial criticism from browser vendors and academia
focused on the regulatory requirement for browsers to ac-
cept TLS certificates from those QTSPs. This would have
required including all EU-qualified Certificate Authori-
ties (CAs) into global root stores. Browser vendors and
academia raised two main concerns: First, this requirement
would circumvent the existing restrictions and processes
of global root stores, possibly introducing security risks.
Second, government intervention in the web trust model
would set a dangerous geopolitical precedent. [4], [5]

In response, the European Telecommunications Stan-
dards Institute (ETSI) revised the specification and intro-
duced a novel approach called 2-QWAC. It does not pro-
vide backwards compatibility, but co-exists along the orig-
inal approach now called 1-QWAC. This new framework
decouples identity assertion from transport layer security
by binding the QWAC to a separate, conventionally issued
Transport Layer Security (TLS) certificate. Importantly,
the QWAC is not used directly for the TLS handshake
but is validated separately via a signed binding. While
the specification still mandates visual indicators in web
browsers when a website uses a valid QWAC, 2-QWAC

provides a compromise between introducing website iden-
tity verification under eIDAS 2.0 and recognizing the
autonomy of browser vendors since it allows for a separate
QWAC root CA store instead of government-controlled
additions to a browser’s TLS root CA store. [3]

Major browser vendors have started efforts to imple-
ment QWACs [6], however, there do not yet exist solutions
to integrate them with the TLS tool chains in modern
web environments. With increasing TLS automation –
encouraged by organizations like the National Institute of
Standards and Technology [7] – via the Automatic Cer-
tificate Management Environment (ACME) protocol [8],
the added complexity of the 2-QWAC binding presents a
new challenge.

This paper investigates how such bindings can be
automated and synchronized with TLS certificate issuance.
We make the following main contributions:

• We provide an overview of popular ACME v2
implementations.

• We analyze integration opportunities for automat-
ing the QWAC bindings in a popular ACME v2
implementation.

• We implement a proof-of-concept binding renewal
mechanism for a popular open-source web server.

2. Background

For analyzing opportunities for automating the 2-
QWAC binding renewal, an understanding of the two main
concepts involved is necessary. This chapter provides an
overview of those – the 2-QWAC framework and the
ACME protocol.

2.1. 2-QWACs

QWACs are X.509 certificates issued by Qualified
Trust Service Providers. The certificates contain validated
organizational identity attributes about a website’s opera-
tor. [3] QTSPs are EU-qualified and -supervised CAs that
conform to regularly audited legal requirements. Examples
include the implementation of the NIS2 directive [9] and
obligations to the identity verification process set by the
eIDAS legal framework. [1]

The current ETSI specification [3] defines two co-
existing approaches:

• 1-QWAC: The QWAC is used as TLS certificate,
combining the identity assertion and TLS hand-
shake. In this approach, QWACs replace standard

Seminar IITM SS 25 51 doi: 10.2313/NET-2025-11-3_10

User Browser Server

request website

TLS handshake

verify X.509
using

web PKI

HTTP request

response with
Link header

request binding

binding

verify binding
using TLS
certificate

and QWAC

show website
with

EU Trust Mark

Figure 1: Sequence Diagram for a web request with valid
2-QWAC

TLS certificates. If the certificate received as part
of the TLS handshake contains indicators that it is
a QWAC, this approach is used.

• 2-QWAC: The QWAC is digitally bound to a stan-
dard TLS certificate. Browsers validate the identity
information independently of the TLS handshake.

The 2-QWAC binding is implemented through a
JAdES (JSON Advanced Electronic Signature) structure
signed using the QWAC private key. The structure refer-
ences both the QWAC and the TLS certificate fingerprints.
Website operators obtain QWACs and create bindings to
their TLS certificates. [3]

Figure 1 shows the flow of a typical, successful 2-
QWAC binding verification in web browsers. They first
validate the TLS certificate using their root trust store as
part of the usual TLS handshake. During a TLS session,
the web server’s response includes an HTTP Link header
pointing to the binding. Web browsers then fetch the
binding and validate it using the separate EU trust store.
If validation succeeds, the browser is supposed to show

the EU Trust Mark and the identity data of the QWAC. [3]

2.2. ACME

The Automatic Certificate Management Environment
protocol standardizes automated certificate issuance. Man-
ually obtaining a TLS certificate usually involves gener-
ating a Certificate Signing Request (CSR), sending it to a
CA, proving domain ownership, and deploying the issued
X.509 certificate on a web server. ACME allows web
servers to automatically request TLS certificates, prove
domain control, and deploy the certificates with minimal
website operator input. [8]

The ACME specification defines the following flow
for the automated process: [8]

1) Account registration: An ACME client – the web
server – requests an account with an ACME
server – the CA. The client sends optional contact
information or other optional data along with a
signature.

2) The client submits a certificate order.
3) Proving domain ownership: The ACME server

sends the client a list of challenges to prove
domain control. The client solves those chal-
lenges, for example, by creating a domain record
containing a unique value (dns-01) or returning
a unique value in an HTTP response (http-01).
The ACME server validates the challenge results.

4) The client submits a Certificate Signing Request
(CSR) to the ACME server.

5) Deployment: After the server issues the certifi-
cate, the client downloads and installs it.

3. ACME Client Survey

Automating the 2-QWAC binding requires awareness
of when TLS certificates are issued or renewed. Thus, we
aim to extend the ACME flow with logic to create the
binding between the QWAC and the TLS certificate. Ad-
ditionally, we need to extend the web server, for example,
to serve the binding. Thus, an extensible ACME client
with high integration with a web server is ideal for our
use case.

In this chapter, we highlight three conceptually dif-
ferent, popular ACME v2 implementations. We evaluate
them based on two criteria:

• Integration Level: This describes how tightly cou-
pled the ACME client is with the HTTP server.
Clients that have a high integration level are em-
bedded within the HTTP server runtime and can
directly influence the certificate lifecycle and mod-
ify web requests. Standalone tools that operate
outside the web server have a low integration level.
For our purpose, a high integration is ideal.

• Extensibility: This refers to how easily the ACME
client can be extended. A low extensibility means
that the client provides no or a limited plugin
API, while a highly extensible client has a modu-
lar architecture. Our approach benefits from high
extensibility.

Certbot [10] is a widely used command-line ACME
client maintained by the Electronic Frontier Foundation. It

Seminar IITM SS 25 52 doi: 10.2313/NET-2025-11-3_10

is written in Python and can be used both as a standalone
application as well as in combination with an existing web
server like Apache or nginx. Other, not officially supported
web servers can integrate Certbot through plugins. [11]

Certbot stores obtained certificates at predefined paths
(/etc/letsencrypt/live/$domain) and relies on exter-
nal configuration in the web server to deploy them [11].
Thus, it is loosely coupled with the actual web server.
Working with predefined locations should not pose an
issue when creating the binding: we know the location of
the TLS certificates and can define a path where website
operators should place QWACs. However, we would need
to additionally extend the web server to serve the binding
and modify the HTTP response headers.

cert-manager [12] is a Kubernetes certificate con-
troller written in Go. It automates the TLS certificate
issuance and management in a Kubernetes cluster. As part
of a modular issuer framework, it also incorporates an
ACME client. cert-manager consists of three Kubernetes
pods – a controller, a webhook, and a CA injector –,
making extension for binding logic more complex. Its
integration is specific to Kubernetes and less applicable
to general-purpose HTTP server deployments.

Caddy [13] is a modular and extensible HTTP server
written in Go. It has built-in modules with different
implementations to obtain TLS certificates, one of them
being an ACME v2 client. Since the ACME module is
implemented directly in the web server, it has a very high
integration. This means we should be able to effectively
modify the HTTP header and add endpoints. Caddy’s
modularity should aid in extending the ACME client to
control the certificate obtaining process.

4. Automated QWAC Binding Renewal

From the options we discussed, Caddy provides the
most promising foundation for automating the QWAC
binding renewal process due to its high extensibility and
high integration of the ACME module with the web server.
Thus, in the following, we analyze how QWAC binding
renewal can be achieved in Caddy.

4.1. Architectural Overview of Caddy

Caddy is a statically linked Go binary, but follows a
modular and extensible architecture by offering a plugin
system. Architecturally, Caddy can be divided into three
parts: [14]

• The command is Caddy’s command line interface.
• Caddy’s core reads the configuration file and is

responsible for module orchestration.
• A set of modules, both built-in and by external

developers. They contain most of Caddy’s func-
tionality and implement server features.

Modules define their own configuration options. They
follow a well-defined lifecycle: The load phase loads the
module into memory. The provision phase contains the
module setup code. The use phase executes the module
logic and the cleanup phase unloads the module. [14]

4.2. Implementation Approaches

In the following, we describe three strategies to hook
into certificate issuance in order to implement automated
binding renewal in Caddy.

Storage module. By implementing the interface
certmagic.Storage, it is possible to detect file changes,
including certificate file changes. Compared to a naive file
polling approach, this method should be able to detect
certificate changes with more precision. However, while
precise in detecting changes, this method lacks context: we
cannot immediately distinguish TLS certificate from other
certificates, nor determine whether the event corresponds
to issuance or renewal.

Issuer wrapping. certmagic.Issuer is an interface
implemented by certificate issuers. By wrapping the ex-
isting ACMEIssuer and registering it as new Issuer, we
can intercept calls to the Issue() function. This provides
full access to the CSR and the issued certificate, enabling
precise and controlled execution of binding logic. How-
ever, our second approach is not as general as our first
approach since it is specific to the issuer we wrap. Ad-
ditionally, this modification of the internal issuer pipeline
risks compatibility issues with future versions of Caddy.

Event-based hook. Our third approach uses Caddy’s
built-in event module. Caddy emits a cert_obtained
event when a TLS certificate is successfully obtained. We
can register a listener for this event and trigger the binding
logic. Since the event only contains the certificate path,
we need to parse the raw certificate bytes, which adds
additional complexity. However, we can reuse existing
libraries for this task. This approach is non-intrusive and
generic across issuers, while offering us the control over
the issuance process we require.

4.3. Proof-of-Concept Implementation

To show the feasibility of automated binding renewal
for 2-QWAC, we implement a proof-of-concept binding
renewal for Caddy. We choose the event-based approach
for its precision and robust compatibility. It comprises two
Caddy modules.

Middleware module. We implement a middleware that
modifies the ServeHTTP() function. It adds the Link
header to HTTP responses pointing to a configurable
endpoint. Additionally, it serves the corresponding con-
figurable endpoint which returns a static dummy JWT.
Event listener module. The event handler subscribes to
the cert_obtained event. Upon a newly created or issued
TLS certificate, it resolves the certificate paths and parses
the raw certificate bytes using Go’s crypto/x509 package.
Then, it computes a SHA-256 thumbprint and prints it
as proof that the certificate renewal has been detected.
The event handler then generates an HMAC-SHA-256
signature using a static secret as a placeholder for the
QWAC private key to simulate a digital binding operation.

4.4. Evaluation

We evaluate the implementation using Pebble, a
lightweight and local ACME test server [15]. We config-
ure our test setup with 15 seconds certificate lifetime in
Pebble, ten seconds renewal interval in Caddy and disable

Seminar IITM SS 25 53 doi: 10.2313/NET-2025-11-3_10

the challenge validation in Pebble for rapid testing. Then,
using those configurations, we start a local Pebble server
and a local Caddy server including our modules.

Using curl [16], we send a GET request to the Caddy
server. We inspect the HTTP response and validate the
presence and correctness of the Link header. We then
verify that requests to the Link header URL return the
static dummy JWT. Thus, we conclude that the middle-
ware module is working correctly. Next, we observe the
certificate renewals. Each certificate renewal triggers an
event within the Caddy server once Caddy’s polling has
detected it. The event listener module creates a log entry
including the certificate thumbprint and the HMAC-SHA-
256 signature. In conclusion, the results confirm that the
automation functions correctly under continuous rotation.

5. Conclusion and Future Work

The European Union’s eIDAS 2.0 regulation has ini-
tially received criticism from both browser and academia,
partly due to the introduction of QWACs [4], [5]. A
recent change to the QWAC specification introduces 2-
QWAC, an approach which does not require the addition
of EU-mandated certificate authorities to global root trust
stores [3]. 2-QWAC offers a viable compromise between
verified organizational identity and browser trust auton-
omy.

However, the 2-QWAC approach introduces more
complexity; by separating identity verification and TLS
handshake, a binding between QWAC and TLS certificate
is necessary. Manual management of bindings would not
be feasible for websites with frequent certificate rotation.

It is our belief that the adoption of QWACs depends
on the ability to integrate with modern, automated TLS
workflows. Our work demonstrates that automation of 2-
QWAC binding generation and renewal is both feasible
and practical. By leveraging Caddy’s modular architecture
and integrated ACME client, we implemented a proof-
of-concept that extends the ACME flow and is able to
dynamically serve bindings. We aim to make our imple-
mentation fully ETSI-compliant by implementing JAdES
binding generation.

For the adoption of QWACs to succeed, however,
implementations for other popular ACME clients like
Certbot are necessary. We identified multiple approaches
to automate the 2-QWAC binding, which future work
could generalize for other ACME clients. Furthermore, we
discussed characteristics of other popular ACME clients
hindering their extension with QWAC binding logic; fu-
ture work should find ways to address these challenges.

A comprehensive ACME client survey is left for fu-
ture work. While there exist lists of ACME implemen-
tations [17], [18], a comprehensive overview and fea-
ture comparison of ACME clients, evaluating support for
hooks, plugin APIs, and web server integration depth, has
– to our knowledge – not yet been published.

QWACs themselves offer opportunities for further re-
search, as well. Since the current specification is still very
recent, it has not yet been implemented in major web
browsers. How the parallel specification of two QWAC
variants, 1-QWAC and 2-QWAC, will affect adoption
and whether website operators will prefer one of the

approaches is an interesting question that requires further
observation.

As QWACs continue to evolve, automation will be
one key factor to their adoption. We believe our results
provide a foundational step toward fully integrated, secure,
and scalable QWAC usage in real-world environments.

References

[1] European Union, “Regulation (EU) No 910/2014 of the European
Parliament and of the Council of 23 July 2014 on electronic
identification and trust services for electronic transactions in the
internal market and repealing Directive 1999/93/EC,” Oct. 2024.

[2] Chromium Developers, “EV UI Moving to Page Info,” Avail-
able: https://chromium.googlesource.com/chromium/src/+/HEAD/
docs/security/ev-to-page-info.md, [Accessed: Jun. 22, 2025].

[3] ETSI, “Etsi ts 119 411-5, v2.1.1,” Available: https:
//www.etsi.org/deliver/etsi_ts/119400_119499/11941105/02.
01.01_60/ts_11941105v020101p.pdf, Feb. 2025, [Accessed: May
1, 2025].

[4] Mozilla, “November 2021 position paper on the European
Commission’s legislative proposal to revise the eIDAS Regu-
lation,” Available: https://blog.mozilla.org/netpolicy/files/2021/11/
eIDAS-Position-paper-Mozilla-.pdf, Nov. 2021, [Accessed: Jun.
10, 2025].

[5] “Global website security ecosystem at risk from EU Digital Identity
framework’s new website authentication provisions,” Available:
https://www.eff.org/files/2022/03/02/eidas_cybersecurity_
community_open_letter_1_1.pdf, Mar. 2022, [Accessed: Jun.
10, 2025].

[6] Chromium Developers, “Implement support for QWACs,” Avail-
able: https://issuetracker.google.com/issues/392931065, 2025, [Ac-
cessed: Jun. 19, 2025].

[7] M. Akram, W. Barker, R. Clatterbuck, D. Dodson, B. Everhart,
J. Gilbert, W. Haag, B. Johnson, A. Kapasouris, D. Lam, B. Pleas-
ant, M. Raguso, M. Souppaya, S. Symington, P. Turner, and
C. Wilson, “Securing Web Transactions: TLS Server Certificate
Management,” National Institute of Standards and Technology,
Tech. Rep. NIST Special Publication (SP) 1800-16, Jun. 2020.

[8] R. Barnes, J. Hoffman-Andrews, D. McCarney, and J. Kasten, “Au-
tomatic Certificate Management Environment (ACME),” Internet
Engineering Task Force, Request for Comments RFC 8555, Mar.
2019.

[9] European Union, “Directive (EU) 2022/2555 of the European Par-
liament and of the Council of 14 December 2022 on measures for
a high common level of cybersecurity across the Union, amending
Regulation (EU) No 910/2014 and Directive (EU) 2018/1972, and
repealing Directive (EU) 2016/1148 (NIS 2 Directive),” Dec. 2022.

[10] Certbot Developers, “Certbot,” Available: https://certbot.eff.org/,
[Accessed: May 26, 2025].

[11] ——, “User Guide,” Available: https://eff-certbot.readthedocs.io/
en/stable/using.html, 2018, [Accessed: Jun. 15, 2025].

[12] cert-manager Developers, “Cert-manager,” Available: https://
cert-manager.io/, 2025, [Accessed: May 26, 2025].

[13] ZeroSSL, “Caddy,” Available: https://caddyserver.com/, 2025, [Ac-
cessed: May 26, 2025].

[14] ——, “Architecture,” Available: https://caddyserver.com/docs/
architecture, 2025, [Accessed: May 21, 2025].

[15] Pebble Developers, “Letsencrypt/pebble,” Available: https://github.
com/letsencrypt/pebble, Jun. 2025, [Accessed: Jun. 9, 2025].

[16] “Curl,” Available: https://curl.se/, [Accessed: Jun. 9, 2025].

[17] Developers of Certify The Web, “ACME Clients,” Available: https:
//acmeclients.com/, [Accessed: May 26, 2025].

[18] Let’s Encrypt (ISRG), “ACME Client Implementations,” Available:
https://letsencrypt.org/docs/client-options/, Feb. 2025, [Accessed:
May 21, 2025].

Seminar IITM SS 25 54 doi: 10.2313/NET-2025-11-3_10

Market Models in the European Digital Identity Wallet Ecosystem

Timm Bauer, Stefan Genchev∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: timm.v.bauer@tum.de, genchev@net.in.tum.de

Abstract—The European Digital Identity (EUDI) Wallet cre-
ates new opportunities for issuing verifiable digital diplomas
as Qualified Electronic Attestations of Attributes (QEAA).
This paper explores and compares market models for
QEAA-based diploma issuance and verification. The mod-
els under consideration include university-operated Qual-
ified Trust Service Providers (QTSPs), outsourcing to ex-
ternal providers, government-supported schemes, pay-per-
verification, and industry-sponsored approaches. By exam-
ining stakeholder incentives and dependencies, this paper
highlights benefits and limitations per model. The analysis
reveals that there is no dominant market model, as the
optimal strategy depends on the use case and stakeholders.
Hybrid approaches can help adapt and apply models to
specific use cases, and an adoption phase may help gaining
trust and experience at a lower initial investment.

Index Terms—EUDI wallet, QEAA, eIDAS 2.0, verifiable
credentials, digital diplomas, market models

1. Introduction

The European Digital Identity (EUDI) Wallet, intro-
duced in the eIDAS 2.0 framework [1], is changing how
digital credentials are issued, stored, and verified. One key
application is the issuance and verification of Qualified
Electronic Attestations of Attributes (QEAA) [2], such as
higher education diplomas. This process involves multiple
stakeholders, each with distinct roles and incentives.

Although the wallet infrastructure is evolving, there
is a lack of analysis regarding sustainable market models,
particularly for the use case of digital university diplomas.
Actors here are universities, graduates, Qualified Trust
Service Providers (QTSPs), and employers [3], and their
interaction affects the sustainability and accessibility of
the EUDI wallet. This paper examines market models that
could govern the issuance and verification of QEAA-based
diplomas within the EUDI wallet ecosystem.

Section 2 provides an use-case-independent overview
of the legal and technical foundations. Section 3 delves
into the use case, by describing the problem and examin-
ing stakeholders, their roles, and incentives. By analyzing
incentives and funding mechanisms, Section 4 explores
applicable models, considering university-, government-,
and verifier-centric approaches. Using the QEAA-based
diploma use case as a representative scenario, this paper
aims to identify which market models can sustainably
support the issuance and verification of QEAA, while bal-
ancing incentives, accessibility, and financial obligations.

2. Background and Regulatory Framework

Regulation (EU) No. 910/2014 [4], known as eIDAS,
established a legal framework for electronic identification,
authentication, and trust services across the EU. Aimed at
enabling cross-border interoperability of services such as
eID, signatures, and seals, it faced limited adoption due
to restricted user control and lack of support for attribute
issuance [5], [6]. Additionally, its inflexibility with respect
to supporting diverse use cases caused it to be "unable to
respond to new market demands for Identity Management"
[7, p. 439]. These issues led to its 2021 revision and intro-
duction of eIDAS 2.0 [1], which mandates that Member
States provide citizens an EUDI Wallet [8].

2.1. European Digital Identity Wallet Ecosystem

The EUDI Wallet is a standardized and user-centric
digital wallet proposed by the European Union. Its main
objective is enabling citizens and organizations to store,
manage, and verify digital certified attributes [9]. This
wallet is related to the concept of Self-Sovereign Identity
(SSI), a model where users fully control their identity
data and can selectively share verified credentials issued
by trusted entities [10]. In the EUDI ecosystem, Trust
Service Providers (TSPs) are trusted entities that issue
Personal Identification Data (PID), a person’s core identity
attributes like name and date of birth. Comparable to the
SSI approach, the ecosystem is based on a trust triangle
betweet its participants, with the roles depicted in table 1:

TABLE 1: Digital Identity Ecosystem Participants [9]

Participant
EUDI

SSI Equivalent Description

PID Provider Issuer Issues identity attributes
End User Holder Wallet user who stores

and presents credentials
Relying Party Verifier Validates credentials

In this relationship, TSPs issue verified credentials to
users, who share them with a relying party to prove their
identity or attributes [10]. Wallet users control what infor-
mation they present to the relying party for verification.
This concept is referred to as Selective Disclosure [9].

2.2. Electronic Attestations of Attributes

In the EUDI Wallet Ecosystem, electronic attributes
refer to verified pieces of information, belonging to a
person or organization, that can be stored, shared, and

Seminar IITM SS 25 55 doi: 10.2313/NET-2025-11-3_11

verified digitally. The attestation of attributes, such as
certificates, licenses, and professional or educational qual-
ifications can be issued by TSPs or public authorities [2].
Based on the required level of assurance, a distinction
is made between different types of attribute attestations,
affecting their issuance and legal recognition [11]:

• Qualified Electronic Attestations of Attributes
(QEAA) are issued by QTSPs which must be
accredited according to the eIDAS 2.0. Examples
of QEAA include education diplomas, and their
legal effect is equivalent to paper documents [12].

• Public Electronic Attestations of Attributes
(Pub-EAA) are attributes originating from offi-
cial government records, for example driver’s li-
censes [11]. Issuers are public authorities, and the
legal effect is also equivalent to paper documents.

• Electronic Attestations of Attributes (EAA),
also called non-qualified EAAs, do not have to be
issued by a QTSP as they do not require the same
level of assurance. Issuers can be non-qualified
TSPs, but the legal effect is not equivalent to pa-
per documents. Examples of non-qualified EAAs
include gym membership attestations [12].

2.3. Monetization Strategies

One of the core requirements outlined in the eIDAS
2.0 regulation is that the EUDI Wallet should be provided
to citizens free of charge [9]. Additional costs may arise
for the other ecosystem participants based on the services
they provide, particularly for QTSPs due to strict qualifica-
tion requirements and regular conformity assessment [8],
[13]. Developing sustainable business models and mon-
etization strategies for attribute attestations is essential
for the successful implementation of a self-sustaining
wallet ecosystem [14]. Castaldo et al. [14] identify three
different pricing models, given that the system architecture
incorporates fitting verification and attribute management
methods to support the corresponding model:

• Issuance-based: In a pay-per-issuance fashion,
the user covers the cost of receiving a verified
attribute [15].

• Verification-based: Contrary to the above model,
the relying party would be required to pay-per-use
upon verifying a presented credential [15].

• Free of charge: Neither the wallet user nor the
verifier have to pay. To ensure sustainability, this
would most probably require external funding such
as government subsidies [13].

With the foundational principles established, this paper
now focusses on the issuance and use of digital university
diplomas as a representative use case of QEAA.

3. Use Case: QEAA for University Diplomas

This section showcases how the abstract technical
components and ecosystem participants translate into real-
world implementations, namely digital university diplo-
mas. Graduates typically need to prove their qualifications
for employment or further study. Paper-based verification
is slow, error-prone, and susceptible to fraud [13], [16],

with additional challenges in cross-border recognition
[17]. The EUDI Wallet provides an opportunity for an
interoperable, and user-oriented verification of educational
qualifications [18]. Diplomas as QEAA are legally recog-
nized, cross-border operational [12], and can be seam-
lessly integrated into digital workflows, e.g. supported by
the EU’s Single Digital Gateway, which aims to stream-
line access to public services across Member States [19].
In a sustainable ecosystem, participants require financial
compensation for provided services. This paper therefore
explores market models for issuing digital diplomas in the
EUDI ecosystem.

3.1. Stakeholders and Roles

The stakeholders are the degree-awarding institution,
a QTSP, the graduate, and the employer or higher ed-
ucation institution the graduate is applying to [3], [18].
The university acts as the issuer, but might partner with
an external TSP instead of fulfilling that role exclusively
itself. [3]. The graduate acts as the wallet user and the
employer as the relying party.

University
(Attribute Provider)

Qualified Trust Service
Provider (QTSP)

Student
(Credential Holder)

Verifier
(e.g., Employer)

Diploma Data

QEAA

QEAA Presentation

Validation

Figure 1: Attribute Issuance Workflow

Figure 1 shows the workflow for issuing and verifiy-
ing QEAA diplomas. Solid arrows indicate attribute data
flow, and the dotted arrows the verification process. The
university transfers the diploma information to the QTSP
via a secure channel. Upon receiving the information and
identifying the student, the QTSP issues a QEAA for
the diploma to the student’s wallet. Within an applica-
tion process, the student presents these credentials to the
employer, who verifies them via the QTSP’s signature [3].

3.2. Incentive Structure and Value Gain

To identify applicable market models for the presented
use case, it is necessary to understand the stakeholders’ in-
centives, especially their potential financial benefits. This
is important when considering the central question of who
is willing to pay for the attribute attestation.

• Issuing universities may benefit from improved
process efficiency, enhanced reputation, and com-
pliance with EU digital standards [3].

• Graduates gain portable, verifiable credentials that
improve cross-border access to jobs and educa-
tion [18].

• Employers can reduce hiring costs and impede
fraud through digital verification [16].

• QTSPs directly monetize their services through
their attestation business models [14].

Seminar IITM SS 25 56 doi: 10.2313/NET-2025-11-3_11

3.3. Related Work

Vaziri et al. [3] analyze the use case of universities
issuing digital diplomas, considering the regulatory and
operational challenges under the eIDAS 2.0 regulation.
A comparison of the approaches of diplomas as QEAA
as opposed to qualified sealed documents, reveals that
"QEAA offers superior interoperability and holder bind-
ing, [but] it faces regulatory uncertainty and implementa-
tion complexities" [3, p. 183]. Vaziri et al. explore sce-
narios where the university becomes a QTSP, outsourcing
to an external QTSP as shown in Figure 1, university al-
liances, and a "bring-your-own-QTSP" [3, p. 189] model.
Vaziri et al. [3] and Seegebarth et al. [2] also explore the
possibility of credentials electronically signed as qualified
electronic seals (QSeals) according to eIDAS 1.0, to ease
adoption until QEAA are fully applicable in the market.

4. Market Models for QEAA-Based Diploma

Having established the operational dynamics of digital
diplomas in the EUDI ecosystem, we now focus on the
market models that could emerge to support, govern,
and monetize such use cases. Understanding the value
exchange mechanisms and the economic and social impli-
cations for each market model is important for assessing
the benefits and limitations for stakeholders. Implementing
QEAA-based diplomas requires upfront investment and
ongoing compensation. Strong incentives for stakeholders,
in the form of substantial value gains, are necessary to
promote stakeholders’ willingness to pay. Network effects
also play a role, as a full transition from paper-based
to QEAA diplomas depends on widespread issuance and
employer adoption of digital application processes. While
graduates do benefit, as outlined in Section 3.2, their
benefits are not financial and their willingness to pay is
low, as a consequence [16]. Additionally, as the EUDI
Wallet is intended to be free for users [13], market models
must focus on other stakeholders.

This section presents five models, based on either the
university, the government, or the verifier bearing the pri-
mary cost. As the academic literature regarding formalized
market models for QEAA is scarce, these models are
mainly adopted from SSI-related monetization strategies,
or transferred from related trust services.

4.1. University-Centric

Similarly as proposed by Vaziri et al. [3], the
university-centric approach considers both the possibility
of the university becoming a QTSP and enlisting an
external QTSP.

4.1.1. Internal QTSP. In this market model, the univer-
sity itself becomes a QTSP and directly issues QEAA
for diplomas. This model provides a high level of trust,
since the university acts as both the authentic source of
the academic credential and is responsible for its authen-
ticity [3]. For verifiers, this direct issuance simplifies trust
relationships as there is no dependency towards external
issuers. The university’s motivations might include the
ability to exercise full control over credential issuance and
remaining the technical authority for authenticity, which is

also visible in the attribute attestation [3]. This approach
could also help avoid vendor lock-in by reducing reliance
on third-party infrastructure.

To gain and maintain the qualification status, univer-
sities must meet strict requirements and regularly face
conformity assessments. Vaziri et al. [3] conclude that
the regulatory and financial requirements are too high,
especially for smaller universities. University alliances,
such as EuroTeQ [20], could reduce the operational cost
per university. This approach could be considered a hybrid
version of the internal and external QTSP model.

4.1.2. External QTSP. In the external QTSP model, uni-
versities enlist an already accredited QTSP. The university
maintains its role as the authentic source, while delegating
the technical processes of credential creation, signing,
and lifecycle management to the external QTSP [3]. The
primary benefit in comparison to the internal approach is
that universities can implement eIDAS-compliant creden-
tials without substantial upfront investments. For verifiers,
trust in the credential depends on both the external QTSP,
and the university that is referenced in the QEAA as the
attribute source [3]. However, it introduces a long-term
dependence on the external service provider.

The university’s financial gain depends on the price for
issuing a QEAA-diploma compared to a paper-diploma,
and whether the paper-based process can be replaced
entirely. As of now, there is no standard price for QEAA
in the European market. Since both services are regulated
trust services under eIDAS, the pricing model might be
similar to that of remote qualified electronic seals, allow-
ing for an estimate. Sign8 is a German QTSP, that charges
approximately 2.50 EUR per signature, within a volume-
based pricing model [21]. In the year 2023, the Technical
University of Munich (TUM) had 9 541 graduates [22].
Assuming no more than 12 000 graduates per year, TUM
would be charged up to 30 000 EUR per year by Sign8.

4.2. Government-Centric

In the use case of QEAA diplomas, the government
was not considered a stakeholder so far, despite its signif-
icant role in the EUDI ecosystem. It plays a crucial part
either by directly providing the wallet infrastructure or
by enabling private providers to do so in a competitive
market [13]. This role was neglected in the previous
consideration because the infrastructure provider does not
significantly influence the presented market models. How-
ever, given the government’s involvement, government-
supported market models will also be considered.

External funding via direct subsidies could reduce
the financial barrier for the issuance of digital diplo-
mas by making the outsourcing model more financially
sustainable, especially for smaller universities. Alterna-
tively, state-operated TSPs could be established, issuing
the diplomas on behalf of universities free of charge,
comparable to the issuance of PuB-EAA [11]. At the
same time, this could introduce bureaucratic burdens, slow
down innovation cycles, and may raise concerns about in-
stitutional autonomy. Nonetheless, government-supported
issuance could enhance accessibility to QEAA diplomas
for all universities and support financial sustainability, if
the ecosystem is not self-sustaining.

Seminar IITM SS 25 57 doi: 10.2313/NET-2025-11-3_11

4.3. Verifier-Centric

Long-term self-sustainability in the EUDI Wallet
ecosystem can also be achieved if the verifier contributes
to the financial compensation. As verifiers, such as em-
ployers, benefit from improved credential verification pro-
cesses, making manual verification obsolete and prevent-
ing fraud, they have an incentive to invest [13], [16].
Similarly as for the university-centric models, the will-
ingness to pay depends on the opportunity cost compared
to current paper-based verification processes.

4.3.1. Pay-Per-Verification. The Pay-Per-Verification
model is based on the verification-based monetization
strategy on the side of the QTSP. This model is transferred
from market models for digital identification services,
such as know-your-customer processes, in which the re-
lying party pays an identity provider per user identifica-
tion [23]. In this analogy, the QTSP corresponds to the
identity provider and the employer to the relying party.

Universities collaborate with external QTSPs, which
employ a verification service that charges the verifier to
establish a usage-based monetization [14]. Cost for uni-
versities and students would be eliminated and transferred
to the employer. However, if different universities use
different QTSPs without a unified verification interface,
this could introduce process inefficiencies as employers
have to adapt to the corresponding interfaces.

Additionally, privacy concers arise from tracking veri-
fication requests for billing purposes. This tracking could
potentially lead to exposure of information regarding the
verification of credentials by specific parties. Depending
on the implementation, service providers could potentially
link users and credentials to verification requests, and
ultimately to the verifier [14], [16]. However, Castaldo
et al. [14] suggest a verification approach that would
maintain user anonymity and eIDAS compliance, even
considering a verification-based monetization strategy.

4.3.2. Sponsored Attestation. Academic credentials are
typically static, therefore they would be issued once and
potentially verified multiple times [13]. The pay-per-
verification model has the potential to establish long-
term sustainability and support ongoing maintenance of
the trust infrastructure. However, frequent verification fees
might discourage adoption from the employer’s side.

In the Sponsored Attestation model, companies that
directly benefit from the academic training of students
cover the costs of issuing eIDAS-compliant digital diplo-
mas. This model is particularly interesting when empirical
evidence indicates that a significant proportion of univer-
sity graduates are likely to apply to a particular employer.
Examples of this use case could be dual study programs
or university-industry partnerships, such as those between
TUM and SAP [24].

Similarly to government funding, universities would
benefit due to the reduced financial demand while
strengthening institutional ties with partners. However,
this approach could potentially result in unequal access,
where students of universities without industry partners
might lack digital academic credentials. This could lead
to a heterogeneous credential ecosystem and negative
network effects.

Nonetheless, this model could support the adoption of
QEAA and a self-sustainable ecosystem by aligning finan-
cial responsibility with financial benefits for the employer.
These employers could also benefit from this model if it is
implemented in the early stages when digital credentials
are not yet established as market standard. This would
give them early access to the benefits of digitally verifiable
academic credentials.

4.4. Adoption Phase

The implementation of verifiable credentials in busi-
ness processes is subject to network effects [13]. Integrat-
ing QEAA into processes requires substantial investments
in infrastructure and system integration, while the return
on investment depends on the usage rate. This effect could
hinder the use of QEAA-diplomas in the early stages of
EUDI ecosystem development, as the potential return on
investment may seem too low.

Seegebarth et al. [2] suggest splitting the transition
towards QEAA into two phases, whereas the first phase
represents an adoption phase. During this phase, verifiable
credentials would be implemented as eIDAS compliant
qualified sealed documents [2], [3]. The infrastructure for
this approach is already implemented and stakeholders
could gain trust and experience with the technology at
a lower cost, before QEAA will be fully utilized in
the second phase. Ultimately, QEAA are superior to the
QSealed document approach due to higher interoperabil-
ity, seamless process integration, and selective disclosure
features [3].

5. Conclusion

As eIDAS 2.0 facilitated the widespread adoption of
the EUDI wallet and QEAA-based credentials, the ques-
tion of how market models will shape the issuance and
verification of digital diplomas becomes increasingly crit-
ical. The models explored in this paper differ in funding,
monetization strategy, and stakeholder dependencies and
obligations, based on their respective incentive structures.

The internal QTSP approach provides the university
with maximum institutional control, but it requires the
university to meet strict conformity requirements, which
introduces high costs, making it not viable especially
considering smaller universities. Outsourcing to external
QTSPs offers better operational efficiency but introduces
dependencies on third parties.

Government-supported models would improve acces-
sibility independent of the university’s size and budget.
Public funding may also support adoption, as network
effects limit stakeholders’ willingness to invest during
early stages with low returns. Both direct subsidies and
central public services could support equity and adoption
but might reduce flexibility and institutional autonomy.

The pay-per-verification and sponsored attestation ap-
proaches would directly link costs to verifiers’ benefits
but could introduce privacy risks or unequal access. The
willingness to pay for both the issuing universities and
employers depends on the transition cost and operational
cost compared to paper-based diplomas.

Seminar IITM SS 25 58 doi: 10.2313/NET-2025-11-3_11

Further work could include comparative analyses re-
garding the cost and effort between paper-based and digi-
tal credential issuance and verification. Hybrid approaches
could also be applied since it is unlikely that one single
model will universally fit all educational contexts. Ulti-
mately, the success and sustainability of QEAA-diplomas
will depend on balancing financial sustainability, privacy,
and institutional autonomy.

References

[1] European Parliament and Council of the European Union, “Regu-
lation (eu) no 1183/2024 amending regulation (eu) no 910/2014 to
establish the european digital identity framework,” https://eur-lex.
europa.eu/eli/reg/2024/1183/oj, 2024, [Online; accessed 07-June-
2025].

[2] C. Seegebarth, P. Bastian, and M. Kraus, “Enabling attribute attes-
tations: Road from verifiable credential to qeaa,” Datenschutz und
Datensicherheit-DuD, vol. 48, no. 4, pp. 237–240, 2024.

[3] A. Vaziry, L. Vetter, and A. Küpper, “eidas 2.0: Evaluating the
issuance of digital university diplomas,” in Open Identity Summit
2025. Gesellschaft für Informatik eV, 2025, pp. 183–190.

[4] European Parliament and Council of the European Union, “Regula-
tion (eu) no 910/2014 on electronic identification and trust services
for electronic transactions in the internal market and repealing
directive 1999/93/ec,” https://eur-lex.europa.eu/eli/reg/2014/910/oj,
2014, [Online; accessed 07-June-2025].

[5] European Commission, “Study to support the impact
assessment for the revision of the eidas regulation -
final report,” https://digital-strategy.ec.europa.eu/en/library/
study-support-impact-assessment-revision-eidas-regulation, 2021,
[Online; accessed 07-June-2025].

[6] C. Busch, eIDAS 2.0: Digital Identity Services in the Platform
Economy. Centre on Regulation in Europe, 2022.

[7] J. Inza, “The european digital identity wallet as defined in the
eidas 2 regulation,” in Governance and Control of Data and Digital
Economy in the European Single Market: Legal Framework for
New Digital Assets, Identities and Data Spaces. Springer Nature
Switzerland Cham, 2025, pp. 433–452.

[8] S. Schwalm, “The possible impact s of the eidas 2.0 digital identity
approach in germany and europe,” in Open Identity Summit 2023.
Gesellschaft für Informatik eV, 2023, pp. 109–120.

[9] N. Urbach, T. Guggenberger, H. Pfaff, J.-C. Stoetzer, S. Feul-
ner, M. Babel, M. Principato, and J. Lautenschlager, “Eu digital
identity wallet - anwendungsfälle, nutzungspotenziale und her-
ausforderungen für unternehmen,” Projektgruppe Wirtschaftsinfor-
matik des Fraunhofer-Institut für Angewandte Informationstechnik
FIT, Bayreuth, 2024.

[10] J. Strüker, N. Urbach, T. Guggenberger, J. Lautenschlager, N. Ruh-
land, V. Schlatt, J. Sedlmeir, J.-C. Stoetz, and F. Völter, “Self-
sovereign identity - grundlagen, anwendungen und potentiale
portabler digitaler identitäten,” Projektgruppe Wirtschaftsinfor-
matik des Fraunhofer-Institut für Angewandte Informationstechnik
FIT, Bayreuth, 2021.

[11] Potential, “What are the 3 types of electronic attestations of
attributes (eaa)?” Apr 2025, [Online; accessed 07-June-2025].
[Online]. Available: https://www.digital-identity-wallet.eu/news/
what-are-the-3-types-of-electronic-attestations-of-attributes-eaa/

[12] European Commission, “Eu digital identity wallets
for issuers,” [Online; accessed 07-June-2025]. [On-
line]. Available: https://ec.europa.eu/digital-building-blocks/sites/
display/EUDIGITALIDENTITYWALLET/Wallet+for+Issuers

[13] K. Degen and T. Teubner, “Wallet wars or digital public infras-
tructure? orchestrating a digital identity data ecosystem from a
government perspective,” Electronic Markets, vol. 34, no. 1, p. 50,
2024.

[14] L. Castaldo, G. Cortese, S. Izzo, and F. Balsamo, “Electronic
attestation of attributes extended validation services,” TDI 2025:
3rd International Workshop on Trends in Digital Identity, 2025.

[15] M. Panfilio, “Possible architectures of digital european
wallets: national certifications and the roles of key
stakeholders,” Namirial, Feb 2025, [Online; accessed 07-
June-2025]. [Online]. Available: https://www.namirial.com/en/
inspiration/possible-architectures-of-digital-european-wallets/

[16] M. Kubach and H. Roßnagel, “Economically viable identity
ecosystems: Value capture and market strategies,” in Open Identity
Summit 2024. Gesellschaft für Informatik eV, 2024, pp. 27–38.

[17] Your Europe, “Recognition of academic diplomas,” [Online;
accessed 09-June-2025]. [Online]. Available: https://europa.eu/
youreurope/citizens/education/university/recognition/index_en.htm

[18] P. Herbke and H. Yildiz, “Elmo2eds: transforming educational
credentials into self-sovereign identity paradigm,” in 2022 20th
International Conference on Information Technology Based Higher
Education and Training (ITHET). IEEE, 2022, pp. 1–7.

[19] Bundesministerium für Digitales und Staatsmod-
ernisierung, “Die single digital gateway-verordnung
(sdg),” [Online; accessed 23-August-2025]. [On-
line]. Available: https://www.digitale-verwaltung.de/Webs/DV/DE/
onlinezugangsgesetz/info-sdg/info-sdg-node.html

[20] EuroTeQ, “About euroteq - how six universities engineer the
future,” [Online; accessed 20-June-2025]. [Online]. Available:
https://euroteq.eurotech-universities.eu/about-us/

[21] SIGN8, “Volumenbasierte modelle - digitale unterschriften
sign8,” [Online; accessed 10-June-2025]. [Online]. Available:
https://sign8.eu/volumebased/

[22] TU München, “Tum in zahlen 2023,” [Online; accessed 10-
June-2025]. [Online]. Available: https://mediatum.ub.tum.de/doc/
1774468/1774468.pdf

[23] V. Schlatt, J. Sedlmeir, S. Feulner, and N. Urbach, “Designing a
framework for digital kyc processes built on blockchain-based self-
sovereign identity,” Information & Management, vol. 59, no. 7, p.
103553, 2022.

[24] TU München, “Sap@tum collaboration lab,” [Online; accessed 20-
June-2025]. [Online]. Available: https://www.ioc.tum.de/sap-colab/
startseite/

Seminar IITM SS 25 59 doi: 10.2313/NET-2025-11-3_11

Seminar IITM SS 25 60

MASQUE-based Performance Enhancing Proxies

Patrick Bokelmann, Daniel Petri∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: patrick.bokelmann@tum.de, petriroc@net.in.tum.de

Abstract—Transport-layer protocols like TCP were origi-
nally designed to operate end-to-end, providing reliable and
congestion-controlled transport. However, with the growth
of the global Internet and the integration of wireless links,
this characteristic has been suppressed by Performance
Enhancing Proxies (PEPs) in an effort to boost transmission
performance. Yet, the widespread use of these middleboxes
has hindered the advancement of the TCP protocol by
effectively requiring network traffic to conform to their
standards. Novel transport protocols like QUIC combat
this ossification with extensive header encryption, forcing
the discontinuation of these transparent middleboxes. As
the demand for these performance enhancements persists,
this paper proposes the implementation of PEPs for QUIC
connections using successive Multiplexed Application Sub-
strate over QUIC Encryption (MASQUE) tunnels, allowing
the tunneled connection to disable its congestion control
mechanisms.

Index Terms—transport protocols, performance-enhancing
proxies, middleboxes, MASQUE, QUIC

1. Introduction

In previous decades, the global network has departed
from the transport layer’s end-to-end design in favor of
in-network performance enhancement functions. Operat-
ing on multiple network layers, Performance Enhancing
Proxies (PEPs) have transparently altered and optimized
network traffic. For instance, at the transport layer, mid-
dleboxes can filter or space out TCP acknowledgements,
retransmit packets that were lost on a path segment, send
localized acknowledgements, or terminate TCP connec-
tions and insert themselves as a man-in-the-middle [1].
Other use-cases include the implementation of tunneling,
compression, or prioritized connection multiplexing.

These practices are particularly beneficial in wireless
networks. For example, (geostationary) satellite links suf-
fer from long round-trip times (RTTs) due to their distance
from the Earth, which in turn cause long feedback loops.
Congestion events on the network path after the satellite
link may negatively affect the sending behaviour on the
satellite link, effectively underutilizing the link [1]. In
contrast, W-LAN links are prone to latency variations or
packet losses caused by layer-two retransmits and han-
dovers. By caching TCP segments, using local retrans-
mit timers, suppressing duplicate acknowledgements, or
outright TCP connection splitting, PEPs may isolate the
wireless and wired path segment.

However, the rise of widespread encryption has in-
creasingly hindered the operation of traditional PEPs.
Novel transport layer protocols like QUIC authenticate the
endpoint of a connection, preventing or impeding the im-
personation of endpoints. With transparent middleboxes’
reliance on specific protocol definitions, which signifi-
cantly hinders the evolution of new protocol iterations,
most of QUIC’s header fields are encrypted. While this
is effective in combating protocol ossification, it further
restricts the deployment of transparent PEPs. Neverthe-
less, with a congestion control scheme similar to TCP, the
protocol is still susceptible to the same issues mitigated
by PEPs.

Necessitated by the departure from these transparent
enhancements, there seems to be a general consensus
that connection endpoints should select network functions
and provide them with the necessary information that is
otherwise protected through encryption.

This paper explores a novel approach to realizing
similar features for QUIC connections by encapsulating
packets using MASQUE, an HTTP/3 proxy. Our design
proposes a sequence of MASQUE tunnels to provide re-
liable transport with split congestion control loops, which
allows the congestion control algorithm of the inner con-
nection to be disabled. The remainder of this work is
organized as follows: Section 2 outlines the mechanisms
of the QUIC protocol and provides an overview of the
MASQUE proxying. Section 3 discusses related work. We
then detail our proposed approach in Section 4. Finally,
we conclude the paper and identify points for future work
in Section 5.

2. Background

The QUIC protocol [2] is a novel transport protocol
built as a successor to TCP and used as the underlying
transport protocol for HTTP/3. Built on top of UDP, it
departs from port numbers and IP addresses to connection
IDs to identify a connection. These allow the connection
to migrate across different network paths. Furthermore, it
integrates TLS to provide a confidential and authenticated
connection. This not only results in a reduced connection
establishment duration in comparison to TLS on TCP,
but also directly authenticates the server at the transport
layer, ensuring an end-to-end connection. Additionally, it
introduced two different header types: one for packets
used to establish a connection, needing more header fields
during that phase. The second header type is used in 1-
RTT packets after the connection has been established,
which reduces the overhead of unused header fields. As

Seminar IITM SS 25 61 doi: 10.2313/NET-2025-11-3_12

explained in Section 1, most header fields in a QUIC
packet are encrypted in an effort to combat protocol
ossification. During the connection establishment process,
QUIC enables the use of 0-RTT packets to transmit appli-
cation data from a previous connection using an already
existing cryptographic context. While the encryption of 0-
RTT packets does not guarantee perfect forward secrecy,
this mechanism may be exploited to accelerate the estab-
lishment of tunnelled end-to-end connections.

The contents of a QUIC packet are further organised
into different frames, which are used to carry control in-
formation and application data. These frames allow QUIC
to support multiplexing multiple data streams, eliminating
head-of-line blocking issues commonly found in TCP.
Streams are used to transmit data reliably and are subject
to congestion and flow control. In addition to reliable
transport, the datagram extension [3] introduces support
for unreliable payloads contained in datagram frames.
While subject to congestion control, they do not have to be
retransmitted in case of a packet loss and are not subject
to flow control limitations.

MASQUE is a group of protocols that define the
tunneling of UDP, IP, or Ethernet packets over an HTTP/3
connection. The CONNECT-UDP method [4] allows the
proxying of UDP packets inside an HTTP connection.
The client connects to a MASQUE proxy and issues a
CONNECT-UDP upgrade request, providing the server’s
IP address and port number. Packets are then encapsulated
in HTTP datagrams, which directly translate to QUIC
datagrams [5], and sent through the QUIC connection
to the proxy. A packet the proxy receives is then de-
capsulated and forwarded to the server. UDP packets
with a QUIC packet payload can be sent in a MASQUE
connection, tunneling the end-to-end connection, as shown
in Figure 1.

Client MASQUE proxy Server

proxy connection

end-to-end connection

Figure 1: MASQUE Proxy [6]

Should the underlying transport protocol not support
unreliable data transmission, HTTP datagrams can in-
stead be enclosed in HTTP Capsules [5], which are then
transmitted reliably in a QUIC stream. This mechanism
also enables support for legacy protocols like TCP, thus
maintaining backward compatibility with previous HTTP
versions such as HTTP/1.1 or HTTP/2. HTTP Capsules
can be re-encoded into HTTP Datagrams in transit. How-
ever, this is discouraged in [5] to avoid disturbances in the
packet flow. While MASQUE was originally conceived
as a measure to improve user privacy, Krämer et al. [7]
voiced a proposal for usage in a performance-enhancing
context, using reliable transmissions to counteract the
effects of an unreliable local link.

3. Related Work

Kosek et al. [8] utilized QUIC’s connection migration
capabilities in combination with reworked cryptographic
mechanisms to split QUIC connections at a proxy while
maintaining an encrypted payload. The authors derive
additional keying material during the handshake to intro-
duce an additional layer of encryption for the application
data beyond the built-in QUIC transport layer encryption.
This enables the entire connection state, except for the
additionally derived keys, to be shared with a middlebox
while maintaining the application data’s end-to-end cryp-
tographic protections. To split an existing connection at a
so-called SMAQ middlebox, the client opens an additional
QUIC connection to the proxy, instructs it to act as a
SMAQ proxy, and shares the connection state. The proxy
then duplicates the connection state to gain a separate
state for each endpoint. Next, it sends a PING to both
the client and server using the new connection states,
thereby initiating a connection migration. Posing as the
other endpoint for both the server and client, the proxy
is thus able to split the connection and insert itself in the
middle while forwarding all traffic between the endpoints.
Before sending application data, the endpoints encrypt it
using the additional keying material. This largely main-
tains end-to-end privacy, integrity, and authenticity, despite
sharing the QUIC connection keys with a third party. This
design notably resembles TCP connection splitting with an
underlying TLS connection.

Yuan et al. [9] employ acknowledgements sent by
a proxy to simulate the behaviour of split congestion
control loops at the client. The proxy computes packet
identifiers of encrypted packets, which it then bundles
into acknowledgements sent to a connection endpoint.
Leveraging these early acknowledgements provided by the
middlebox, the packet’s sender can determine the path
segments the packet has successfully traversed and adjust
its congestion control algorithm accordingly. The authors
observe that the sum of the congestion windows of split
TCP connections using the QUBIC congestion control
algorithm should equal the congestion window of a single,
end-to-end congestion control loop. If a loss occurs on a
given path segment in the split scenario, only the conges-
tion window of that path would be decreased. Thus, the
sum only decreases proportionally to the path segment’s
share of the congestion window. To emulate this behaviour
in an end-to-end congestion control loop with access to
out-of-band acknowledgements over a path segment, the
congestion window is decreased proportionally to the path
segment’s share of the overall path.

4. Design

To achieve split congestion control loops, we establish
a sequence of MASQUE tunnels for the QUIC connection
over the entirety of the network path, as depicted in
Figure 2. Using HTTP capsules enables endpoints to dele-
gate the responsibility for end-to-end congestion and flow
control to the proxy connections on each path segment.
As each packet is tunneled using streams, it is transmitted
reliably to the next proxy. Furthermore, the path segment
to the (next) proxy is congestion-controlled by the con-
nection to the proxy, effectively realizing split congestion

Seminar IITM SS 25 62 doi: 10.2313/NET-2025-11-3_12

control loops. Note that this design relies on the server
either being able to accept a MASQUE connection or to be
able to receive incoming connections through a MASQUE
tunnel as proposed in [10]. Furthermore, middleboxes
must not convert HTTP capsules into QUIC datagrams,
as this would break end-to-end connection reliability.
While endpoints can disable their inner congestion control
mechanisms, they should still adhere to the flow control
limitations. Furthermore, acknowledgements should still
be processed in case a packet loss occurs at the server in
transit from the MASQUE tunnel connection to the end-
to-end connection. The frequency of the acknowledge-
ments, and the retransmit timers can be set higher than
usual, and acknowledgements can be bundled together.

Client MASQUE proxy Server

proxy connection proxy connection

end-to-end connection

Figure 2: End-to-end tunnel with chained MASQUE con-
nections

4.1. Connection Establishment

The connection establishment procedure is depicted
in Figure 3. We assume that no previous cryptographic
context is available from previous connections, i.e., no
0-RTT packets can be used. First, the client establishes
the connection to the proxy. Then, it upgrades the HTTP
connection and includes the initial end-to-end handshake
packet encapsulated in an HTTP capsule. Upon receiving
the Connect request, the proxy extracts the server address
and port and initiates a connection to the server. After
issuing a Connect request to the server and establishing
another MASQUE tunnel, the proxy forwards the initial
end-to-end handshake packet to the server. Finally, the
server responds with the end-to-end handshake packet,
which is tunneled through both MASQUE connections
using HTTP capsules. The connection is established as
soon as the client receives the server handshake, and data
can be exchanged end-to-end.

4.2. Performance Overhead

A conventional QUIC connection requires one RTT
to establish the cryptographic keys to send protected
data. Assuming the MASQUE proxy is on the direct
network path, establishing the connection through a series
of MASQUE tunnels requires an additional handshake
for each path segment. Because the HTTP upgrade token
containing the server destination address is application
data, it can only be transmitted once the handshake is
complete. Thus, establishing the tunnels can not be par-
allelized. The tunnel for the next path segment can only
start to be established after the handshake for the previous
tunnel has been completed, and the first 1-RTT packet
has been sent. Assuming that the first initial packet of
the end-to-end connection is already carried in the first 1-
RTT packet of each MASQUE connection, it reaches the

server after 1.5 consecutive RTTs on each path segment.
With the MASQUE tunnels fully established after the first
end-to-end packet, the server’s handshake response does
not experience similar delays. In total, this setup requires
at least two end-to-end RTTs to establish the end-to-end
connection. Note that these calculations do not account for
potential path asymmetries and processing delays in the
proxies, and only serve to provide an understanding of the
minimal latency overhead. Furthermore, 0-RTT packets,
or using already-established MASQUE tunnels, have the
potential to reduce this overhead significantly.

The latency of an established connection may be fur-
ther affected by the internal stream buffers of a proxy. In
particular, buffering stream data may lead to repeatedly
dis- and reassembling packets in the proxy, resulting in
a processing overhead. Additionally, Kühlewind et al. [6]
demonstrated that internal stream scheduling algorithms
may lead to an increase in packet losses for a proxied
connection if the MASQUE tunnel is shared with multiple
end-to-end connections.

Importantly, encapsulating QUIC packets in an HTTP
connection incurs an overhead in the number of bits
needed to transmit a packet. This decreases the available
bandwidth, as more bytes of the MTU are needed to
send the additional QUIC and HTTP headers, leaving
less space for the payload in each packet. When using
HTTP capsules to tunnel QUIC packets, the bit overhead,
including the end-to-end header, is approximately 10 %
for a packet size of 1440 B, whereas the overhead for
a packet without tunneling and a packet size of 1380 B
is approximately 3 % [6]. It should be noted that the
overhead when using a MASQUE tunnel may change
in the future, with efforts to introduce the capability to
forward packets instead of tunneling [11], reducing the
overhead induced by the additional headers of the outer
QUIC connection.

4.3. Comparison to Existing Approaches

By migrating the existing connection to the proxy,
Kosek et al. [8] avoid the tunneling overhead incurred by
additional headers of the outer connection, as discussed
in Section 4.2. However, with packets’ contents consisting
largely of application data, their approach should exhibit
similar processing overheads at the endpoints and mid-
dleboxes. Both approaches doubly encrypt the application
data as well as rebuild the outer encryption layer at the
proxy. However, our proposal does not necessitate the
connection to be established end-to-end first and allows
established tunnels to be used by parallel connections, re-
ducing the connection establishment latency. Furthermore,
it avoids having to rework QUIC’s cryptographic hand-
shake and exposing privacy-sensitive connection details
to a third party.

In contrast, Yuan et al. [9] limit the role of the proxy to
providing additional information to an endpoint in the con-
nection. As the proxied packet flow is only observed but
not modified by the middlebox, the additional information
necessitates a communication side-channel. Additionally,
this requires the proxy to operate on-path.Furthermore, the
endpoint receiving the acknowledgements needs to imple-
ment a congestion control algorithm that can capitalize
on them. Even then, such algorithms will only be able to

Seminar IITM SS 25 63 doi: 10.2313/NET-2025-11-3_12

Client Proxy Server

proxy client HANDSHAKE

proxy server HANDSHAKE

Connect, HTTP Capsule
e2e client HANDSHAKE

proxy client HANDSHAKE

proxy server HANDSHAKE

Connect, HTTP Capsule
e2e client HANDSHAKE

e2e server HANDSHAKE

e2e server HANDSHAKE

Figure 3: Connection Establishment

approximate the behavior of split congestion control loops.
Unless endpoints also exchange packet identifiers with a
middlebox that buffers sent packets, packets will always
have to be retransmitted end-to-end in case of a loss.Such
designs have not been investigated by academia as of
the writing of this paper. However, unlike the solutions
proposed in this paper and by Kosek et al., operating such
a proxy does not require support from both endpoints.
Finally, determining whether calculating and distributing
packet identifiers or de- and reencrypting packets requires
more computational resources remains an open question.

5. Conclusion and Future Work
In this paper, we motivated the continued relevance

of Performance Enhancing Proxies for post-TCP transport
protocols like QUIC and revisited the general mechanisms
of the QUIC protocol and MASQUE proxies. Our main
contribution is putting forward a proposal to realise PEPs
with split connection control loops for QUIC connections.
We further discussed the performance overheads of the
solution and compared alternative approaches.

Future work could empirically examine the presented
approach and evaluate its performance in comparison with
the alternative approaches discussed in Section 3. More-
over, finding alternative solutions to establish a reliable
and congestion-controlled tunnel between the last middle-
box and the server could eliminate a possible obstacle for
adopting the proposed scheme.

References
[1] J. Griner, J. Border, M. Kojo, Z. D. Shelby, and G. Montenegro,

“Performance Enhancing Proxies Intended to Mitigate Link-

Related Degradations,” RFC 3135, Jun. 2001. [Online]. Available:
https://www.rfc-editor.org/info/rfc3135

[2] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

[3] T. Pauly, E. Kinnear, and D. Schinazi, “An Unreliable Datagram
Extension to QUIC,” RFC 9221, Mar. 2022. [Online]. Available:
https://www.rfc-editor.org/info/rfc9221

[4] D. Schinazi, “Proxying UDP in HTTP,” RFC 9298, Aug. 2022.
[Online]. Available: https://www.rfc-editor.org/info/rfc9298

[5] D. Schinazi and L. Pardue, “HTTP Datagrams and the
Capsule Protocol,” RFC 9297, Aug. 2022. [Online]. Available:
https://www.rfc-editor.org/info/rfc9297

[6] M. Kühlewind, M. Carlander-Reuterfelt, M. Ihlar, and
M. Westerlund, “Evaluation of QUIC-based MASQUE proxying,”
in Proceedings of the 2021 Workshop on Evolution, Performance
and Interoperability of QUIC, ser. EPIQ ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 29–34.
[Online]. Available: https://doi.org/10.1145/3488660.3493806

[7] Z. Krämer, M. Kühlewind, M. Ihlar, and A. Mihály, “Cooperative
performance enhancement using quic tunneling in 5g cellular
networks,” in Proceedings of the 2021 Applied Networking
Research Workshop, ser. ANRW ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 49–51. [Online].
Available: https://doi.org/10.1145/3472305.3472320

[8] M. Kosek, B. Spies, and J. Ott, “Secure middlebox-assisted quic,”
in 2023 IFIP Networking Conference (IFIP Networking), 2023, pp.
1–9.

[9] G. Yuan, M. Sotoudeh, D. K. Zhang, M. Welzl, D. Mazières,
and K. Winstein, “Sidekick: In-Network assistance for secure
End-to-End transport protocols,” in 21st USENIX Symposium
on Networked Systems Design and Implementation (NSDI 24).
Santa Clara, CA: USENIX Association, Apr. 2024, pp. 1813–
1830. [Online]. Available: https://www.usenix.org/conference/
nsdi24/presentation/yuan

Seminar IITM SS 25 64 doi: 10.2313/NET-2025-11-3_12

[10] Y. Rosomakho, “Reverse HTTP CONNECT for TCP and
UDP,” Internet Engineering Task Force, Internet-Draft draft-
rosomakho-masque-reverse-connect-00, Apr. 2025, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-rosomakho-masque-reverse-connect/00/

[11] T. Pauly, E. Rosenberg, and D. Schinazi, “QUIC-Aware
Proxying Using HTTP,” Internet Engineering Task Force,
Internet-Draft draft-ietf-masque-quic-proxy-05, Mar. 2025, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-ietf-masque-quic-proxy/05/

Seminar IITM SS 25 65 doi: 10.2313/NET-2025-11-3_12

Seminar IITM SS 25 66

Time-Sensitive Networking on virtualized network components

Simon Burger, Florian Wiedner∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: simon.burger@tum.de, wiedner@net.in.tum.de

Abstract—Time-Sensitive Networking (TSN) and network
virtualization are integral to our modern networking land-
scape. While TSN enhances Ethernet with mechanisms for
deterministic data transmission, network virtualization pro-
vides the flexibility and scalability required for rapidly
deploying applications. However, their convergence remains
a challenging topic.

This paper surveys the individual challenges of TSN and
network virtualization before deriving issues that complicate
the integration of TSN in virtualized networks (e.g., timing,
scheduling, and hardware constraints). It also gives an
overview of possible synergetic effects of TSN in virtual-
ized environments before concluding with potential research
directions that would benetif effective integration.

Index Terms—time-sensitive networking, tsn, network virtu-
alization, tsn in virtualized networks

1. Introduction

Time-Sensitive Networking (TSN) can be seen as the
critical enabler of real-time networking. Industrial and
automotive systems, as well as communication networks,
have increasingly become real-time applications [1]. With
this, the real-world need for deterministic communication
with strict latency and jitter guarantees has increased
drastically. For example, a missed deadline in an airbag
control system is a serious safety hazard.

TSN extends the Ethernet standard to support such
guarantees and aims to enable the convergence of time-
critical and best-effort network traffic [2]. Simultaneously,
network virtualization has become irreplaceable. It enables
flexible and programmable network infrastructures that
allow virtual networks to share the same physical compo-
nents [3]. This allows for separating physical infrastruc-
ture and network services, which is essential for technolo-
gies like 5G, edge computing, and for modern data center
environments, as agile deployment and multitenancy are
indispensable [4], [5]. Although these technologies devel-
oped independently, their combination promises appealing
opportunities. However, successfully integrating them is a
challenging task. While virtualized environments provide
flexibility, scalability, and resource efficiency, they can
undermine the timing determinism that TSN was designed
to guarantee [3], [6]. We will investigate the challenges in
deploying TSN within virtualized network environments.
Furthermore, we will discuss what is currently missing
to make this process seamless. The paper is structured
as follows: Section 2 provides the necessary background
on TSN and network virtualization concepts. Section 3

focuses on challenges intrinsic to TSN, whereas Section
4 then outlines the challenges of virtualized networks.
Lastly, in Section 5, we explore the integration challenges,
highlighting conflicts and mutual benefits that arise when
attempting to guarantee deterministic communication over
a virtualized infrastructure, before concluding by summa-
rizing the findings and suggesting directions for future
research in Section 6.

2. Background

To grasp how TSN may converge with virtual net-
works in the future, it is necessary to understand each
technology separately first. Therefore, this section briefly
outlines essential mechanisms of TSN and network virtu-
alization.

2.1. Time-Sensitive Networking

TSN is a set of standards concerning deterministic
communication that builds upon Ethernet, as Ethernet can
not guarantee latency or low jitter (i.e., variation in packet
delay) [1]. Essential concepts include:

• Scheduling means to decide which frames to trans-
mit at what time. While numerous optimization
objectives exist, latency and determinism are the
most relevant ones for TSN [1].

• Traffic shaping is done by prioritizing frames and
delaying the queuing of others. Combined with
a fitting schedule, this establishes a traffic profile
that complies with Quality of Service (QoS) re-
quirements (e.g., latency) [1].

• The Precision Time Protocol (PTP) is used to
synchronize clocks of each node in a system by
choosing a Grandmaster Clock, which propagates
timing information to all other clocks [7].

2.2. Virtualization

Network virtualization is used to create multiple vir-
tual networks (VNs) on shared physical infrastructure,
which is referred to as the substrate network [3]. The map-
ping of virtual nodes and links onto the physical substrate
is known as Virtual Network Embedding (VNE) [8].

Different virtualization techniques are used to create
virtualized environments. These include virtual machines
(VMs), bare-metal hypervisors, and containers, each with
different performance and flexibility properties [4]. In a
virtual network, these can constitute virtual nodes. Regular

Seminar IITM SS 25 67 doi: 10.2313/NET-2025-11-3_13

Switches, Network Interface Cards (NICs), and Routers
can be virtualized and part of a VN. As these nodes
are independent of their physical location, they can be
placed anywhere, which impacts resource usage, load
balancing, and other aspects [9]. By leveraging kernel
bypassing techniques (e.g., Data Plane Development Kit
(DPDK)), the virtualization overhead caused by the kernel
networking stack can be reduced. Here, network device
drivers implemented in the userspace are used to send
or receive data directly, avoiding the kernel networking
stack. [10]. Furthermore, with direct device assignment,
VMs can avoid any hypervisor involvement and access
I/O network devices directly, thus reducing virtualization
overhead [11].

3. Challenges in Time-Sensitive Networking

Modeling and simulating time-sensitive networks.
Network modeling is essential for developing and test-
ing novel frameworks, architectures, or protocols. For
real-time networks in particular, a robust validation is
inevitable. A tight analysis is fundamental to achieving
given requirements with minimal resources (i.e., better
utilization). For instance, several different modeling lan-
guages already exist for automotive embedded systems
capable of modeling high bandwidth Ethernet connec-
tions. However, Ashjaei et al. note that most of the ex-
isting open-source solutions (e.g., AMALTHEA4public,
COMDES) cannot support the requirements of TSN [12].

Performance simulation, which can be done in hard-
ware (HW) or software, is another crucial but difficult
topic. Due to only a few studies in this field, existing
TSN performance simulation methods, especially physical
simulation, while still beneficial, are not yet fully mature
and must be improved further (e.g., timing precision) [13].
Their ideal usecase can be seen in validating network
characteristics under various conditions and enabling rapid
testing of different TSN parameters (e.g., within TSN
schedulers).

Clock synchronization. To enable real-time com-
munication in a convergent network, both end devices and
network devices must have the same notion of time [14].

Firstly, the PTP relies on precise time stamps of each
message. Less precision in clock synchronization induces
jitter and decreases determinism [15].

Secondly, once a common understanding of time has
been established, time is crucial for assigning transmission
time slices to packets of various priorities [2]. As dis-
cussed by Chahed et al., even minor misalignments can
have a devastating effect on latency and jitter, possibly
violating the given QoS requirements [1].

Reliability. Any deterministic system has to be
reliable. In TSN, reliability is usually guaranteed by a
combination of mechanisms. These include Path Control
and Reservation, Frame Replication and Elimination for
Reliability, and Per-Stream Filtering and Policing. These
manage and reserve network resources along the chosen
path, send replicated frames along disjoint paths, and filter
traffic to prevent overload, improving network reliability.
While necessary, these practices lead to increased com-
plexity and resource overhead (e.g., bandwidth). Further-
more, it introduces a high risk of misconfiguration [13].

Scheduling and traffic shaping. In state-of-the-art
network architectures, the delays for propagation, process-
ing, and transmission of messages can be considered de-
terministic and constant. Therefore, the non-determinism
is primarily a result of scheduling and queuing delays [14].
To minimize the jitter that a convergent real-time network
experiences, appropriate scheduling strategies are essen-
tial. The schedule sets the ideal traffic profile (e.g., type
and volume of network traffic), while the selected shaping
mechanism ensures that the traffic adheres to said profile.
Different shaping mechanisms have been developed, each
with their respective use cases. Some mechanisms, like
Asynchronous Traffic Shaping, do not require a central-
ized clock but may not be able to meet certain QoS
requirements regarding latency. More common approaches
like Cyclic Queuing and Forwarding and Time-Aware
Shaping (TAS) require time synchronization across all net-
work parts, which is, as previously described, challenging
to achieve. Depending on the application area, you must
weigh different goals (e.g., performance v. dynamism) to
choose the best-fitting traffic-shaping and scheduling algo-
rithms [1]. The transmission schedule in TSN networks is
usually computed offline (i.e., all requests known a priori).
While there are a range of proposed mechanisms (e.g.,
TAS), the problem can still not be solved in polynomial
time, even if the arrival time of every time-triggered
traffic is known in advance [6]. For this reason, heuristic
solutions are often applied (e.g., HLS [16]). They do not
deliver optimal schedules, but are faster and more efficient
in complex networks and under restricted resources [17].

Hardware support. Specialized hardware can be
expensive. Together with an increasing need for time-
critical enabled networks, this has led to increased efforts
towards achieving real-time capabilities using commer-
cial off-the-shelf (COTS) hardware [7], [18] or software-
based implementations [15], [19], [20]. Without special-
ized hardware, some precision will be lost. For example, if
a NIC does not support the IEEE 802.1AS standard, the
oftentimes required timing precision in the nanosecond
range can not be achieved [7].

Moreover, clock synchronization is a significant diffi-
culty for software-only implementations of the PTP. This
is due to time stamps of messages being introduced in
higher network layers instead of specialized hardware
interfaces, leading to more jitter [15]. Especially in em-
bedded systems, it can be necessary to implement specific
time-sensitive functions directly in hardware to reduce
load on the Central Processing Unit (CPU) [12].

On the other hand, some feasible and precise enough
software-only implementations of the PTP do already
exist [15]. Furthermore, newer Linux kernel versions are
equipped with a TAS implemented in the TAPRIO (Time-
aware priority shaper) queuing discipline (qdisc) [7].
Software-only frameworks for emulation and performance
testing of TSN networks are also starting to be used in
areas like mobile networks [13].

4. Challenges in Network Virtualization

Mapping of physical resources. The mapping of
physical resources (i.e., the VNE problem) constitutes
one of the most critical and complex challenges in net-
work virtualization. This assignment of VN components

Seminar IITM SS 25 68 doi: 10.2313/NET-2025-11-3_13

to the physical substrate must satisfy various constraints,
such as CPU capacity, link bandwidth, and other QoS
guarantees [21]. The VNE problem is shown to be NP-
hard, both in offline settings and in more realistic online
scenarios (i.e., requests arrive dynamically over time). For
this reason, heuristic or approximation-based algorithms
are employed to achieve feasible mappings. However,
these often operate under simplifying assumptions such
as infinite substrate capacities or static topologies, which
limit their applicability in real-world settings [8].

Another dimension to the resource mapping challenge
is the dynamic nature of virtualized environments. Virtual
machines and containers may be migrated or scaled in
response to changing requirements or workloads [22]. The
virtual machine placement can be optimized for different
objectives, like energy consumption or response time [9].
These changes require a new mapping of resources and
impact the previously computed transmission schedules.

Moreover, virtualization technologies themselves in-
troduce overhead that must be factored into the resource
mapping in case of strict QoS requirements. In particular,
hypervisor-based virtualization introduces additional la-
tency and jitter. To mitigate these issues, recent approaches
advocate kernel-bypassing techniques (e.g., DPDK) and
direct device assignment [11]. Tail latency and through-
put improvements can be an order of magnitude when
utilizing these. [23].

Interoperability between heterogeneous networks.
As virtual networks scale across administrative domains
and physical infrastructures, interoperability issues be-
tween heterogeneous networks emerge.

The deficiency in standardized interfaces between in-
frastructure providers (InPs), service providers (SPs, i.e.,
organizations that create VNs on the infrastructure of
different InPs), and end users is one issue [8]. Propri-
etary network orchestration implementations hinder cross-
domain compatibility and complicate VN provisioning for
the SPs [24]. A standardized model (e.g., XML-based) is
required to express requirements, making processes like
signaling and bootstrapping across diverse infrastructure
domains seamless and simplifying the establishment of
end-to-end virtual links [8].

Another issue is the naming and addressing incom-
patibility across network domains. Each virtualized envi-
ronment may implement its own naming and addressing
schemes. This heterogeneity further complicates end-to-
end communication. Chowdhury et al., therefore, con-
sider it an important research challenge to find a suitable
framework for enabling global connectivity. They further
mention one such framework called iMark, which would
theoretically be viable but is not feasible in practice [8].

Resource discovery also becomes non-trivial, as inter-
domain virtual link provisioning requires infrastructure
providers to maintain and expose accurate representations
of their physical topology and link capacities. This can
be done event-based or periodically [8]. Cross-provider
resource allocation mechanisms must be established to
allow end-to-end virtual links spanning multiple admin-
istrative domains. Without it, VNs would be restricted to
a single domain, which may not always be sufficient. This
again necessitates standardized interfaces and interopera-
ble signaling protocols between service and infrastructure
providers. The diversity of physical networking technolo-

gies, each with different characteristics, makes this task
particularly challenging [3], [8].

Security in VNs. Isolation is one of the design
criteria network virtualization should fulfill. While VNs
leverage mechanisms like secure tunnels and advanced
encryption to achieve some degree of security, some
threats on the physical layer still have to be addressed [3].
Examples would be different forms of physical tampering.

An important aspect in that regard is the monitoring
and efficient isolation of failures within the substrate
network [3]. Network Virtualization is equipped with
several monitoring tools (e.g., for bandwidth or memory
usage) that can be used to detect malfunctioning or mali-
cious nodes, which have to be isolated and then removed
from the network [25]. Moreover, the flexibility and pro-
grammability of each virtualized network element [3], [25]
imply an increase in the importance of secure program-
ming.

Lastly, to help prevent failures that could lead to
compromised network security, the InPs are required to
employ admission control. Primarily due to dynamic resiz-
ing of allocated resources, it is challenging to constantly
account for the physical network’s available resources.
However, this is necessary for upholding QoS guarantees
and ensuring a secure network [8].

5. Combining Time-Sensitive Networking
and Network Virtualization

As these technologies mature, integrating one into the
other is a logical step. This section will explore difficulties
arising from said integration, like timing precision and
scheduling, while highlighting synergetic effects, making
this a promising area of research.

5.1. Challenges and limitations

Timing Precision and Hardware Constraints.
In a TSN-enabled network, precise time synchronization
across all network components is typically achieved by the
PTP. However, in software-only implementations of the
PTP, time stamps are obtained at higher network layers
due to the lack of specialized hardware interfaces, intro-
ducing jitter and undermining timing precision [15]. This
issue is particularly critical in virtualized environments
because the often-used general-purpose hardware limits
support for specialized functionality.

Virtualized environments add complexity due to the
lack of hardware timestamping support and delays intro-
duced by hypervisors and virtual switches [10], [15]. In
such settings, achieving nanosecond precision is difficult.
For example, using the software-based TAPRIO qdisc in
Linux systems may result in synchronization failures when
combined with the PTP if the NIC lacks IEEE 802.1AS
support [7]. Frame drops or delays and clock synchro-
nization become unpredictable when hardware queues are
full, or timing mechanisms are unavailable or not properly
emulated [6]. This additional unpredictability caused by
virtualization can not be tolerated in real-time environ-
ments.

Moreover, VMs and containers introduce additional
overhead through multiple network stack traversals, which

Seminar IITM SS 25 69 doi: 10.2313/NET-2025-11-3_13

can considerably impact timing guarantees [10]. For ex-
ample, it takes roughly 3 to 10 µs to enter and exit
a VM and perform an I/O operation [26]. While the
use of kernel-bypassing technologies like the DPDK and
direct device assignment improve performance, they re-
duce flexibility by tightly coupling virtual machines to
specific physical resources (i.e., complicating VM migra-
tion). They also come at the cost of increased CPU load,
which can further jeopardize the strict QoS requirements
of TSN [11].

Additionally, software-only TSN stacks are inefficient
with regard to checksum calculations and memory oper-
ations, as specialized HW like NICs and Direct Memory
Access controllers typically handle these. In such cases,
these tasks consume considerable CPU resources and can
introduce latency, which is detrimental to real-time perfor-
mance and reliability. The software-based network stack
with TSN support proposed by Denzler et al. tolerates
the mentioned loss in performance in favor of reducing
dependence on hardware-specific capabilities [27].

Lastly, heterogeneous networks and inconsistent hard-
ware capabilities across network segments further worsen
the synchronization issues. The need for priority trans-
lation and the degradation of synchronization across do-
mains can result in inconsistent scheduling behavior and
increased jitter, which are difficult to compensate for [1].
Depending on the given TSN requirements, these condi-
tions may not be sufficient.

Scheduling Complexity and Resource Con-
tention. TSN relies on centralized scheduling and shap-
ing mechanisms (e.g., TAS). The schedules are usually
computed offline, which requires a static view of the
network topology and traffic flows [6]. These mechanisms
become more complex when integrated into virtualized
environments, where topologies are dynamic due to VM
migrations or scaling. In such cases, offline scheduling
approaches can become ineffective, as real-time dynamic
reconfiguration is not scalable [6], [28].

Virtualization techniques amplify scheduling complex-
ity as they allow virtual components such as talkers and
listeners to be placed flexibly across the network nodes.
This increases the dimensionality of the scheduling prob-
lem since both placement and timing must be optimized
to preserve end-to-end latency guarantees [1].

Moreover, many incremental scheduling algorithms
are designed to accommodate new flows without mod-
ifying previously allocated time slots to prevent jitter
and inconsistencies. While these algorithms support some
dynamic updates, it becomes problematic in virtualized
networks where frequent and flexible reconfiguration is
often required [14].

Additionally, optimal resource scheduling is itself, as
discussed in section 3, NP-hard and typically requires
heuristic solutions [8]. These heuristics may not be ac-
curate enough to support the hard real-time requirements
of TSN, even more so in scenarios where multiple infras-
tructure providers are required to coordinate themselves.

Highly parallel processing platforms, like in automo-
tive systems, introduce even more uncertainty because
multiple virtualized components compete for shared re-
sources (e.g., memory, I/O bandwidth). This may lead to
execution time variability (i.e., jitter), presenting another
challenge in virtualized TSN environments [12]. The poor

timing predictability is especially problematic for traffic
with hard deadlines, meaning such virtualized parallel
systems are not well-suited for real-time guarantees.

Finally, complexity further increases because of the
physical resource constraints (e.g., limited processing or
buffer capacity at gateways) to which deployed virtual net-
work functions must adhere. It is not possible to minimize
the resulting jitter in polynomial time [29].

5.2. Possible synergetic effects

Although they do not solve any of the challenges of
implementing one another, TSN and network virtualiza-
tion each address some weaknesses of the other. As pre-
viously mentioned, real-time-enabled virtualized networks
have applications across a wide range of industries. The
following will be a concise overview of how both tech-
nologies can benefit from each other once the previously
discussed challenges are overcome.

• Virtualized networks may introduce unpredictable
latency, jitter, and even packet loss due to shared
physical resources and virtualization overhead [6],
[11]. The lack of real-time guarantees can make
VNs impracticable in ultra-low latency systems. If
TSN is introduced to such systems, a bounded la-
tency and deterministic transmission can be guar-
anteed through the various mechanisms described
in the TSN standard.

• TSN is typically rather strict, assuming static
topologies and centralized offline scheduling [6].
This can become infeasible in more dynamic envi-
ronments, like cloud-based or industrial systems.
Network virtualization can enable dynamic de-
ployment of TSN-enabled functions across VMs,
increasing flexibility and scalability.

• As TSN traditionally requires hardware support
(e.g., by NICs [7]), experimenting with it can
be expensive. Many TSN features can be imple-
mented in software on general-purpose COTS HW,
enabling better academic research and simpler
testing using virtualized networks.

6. Conclusion and future work

The paper examined TSN and network virtualization
separately before investigating the challenges of deploying
TSN within virtualized network environments. This high-
lighted how their realization poses timing, scheduling, and
resource management issues. Identified challenges include
a lack of hardware support in virtualized environments
(e.g., for timestamping), limitations of centralized offline
scheduling in dynamic topologies, and the difficulty of
achieving deterministic behavior in systems that inherently
tend towards flexibility.

Several research directions must be pursued to fully
leverage the benefits of TSN in virtualized networks.
Firstly, ongoing research on developing accurate clock
synchronization protocols should be directed towards
fully software-based implementations. Moreover, flexible
scheduling algorithms must be specifically designed and
evaluated for dynamic environments while still enabling
real-time guarantees. Furthermore, practical solutions for

Seminar IITM SS 25 70 doi: 10.2313/NET-2025-11-3_13

solving the VNE problem in real time are needed. Fur-
ther improving kernel-bypassing techniques could be a
viable research direction to increase performance while
preserving the configurability and scalability of virtualized
networks.

References

[1] H. Chahed and A. Kassler, “Tsn network scheduling—challenges
and approaches,” Network, vol. 3, no. 4, pp. 585–624, 2023.
[Online]. Available: https://www.mdpi.com/2673-8732/3/4/26

[2] A. Weder, “TIME SENSITIVE NETWORKING: Eine Einführung
in TSN,” Fraunhofer IPMS, Dresden, Germany, White Paper, 2019.
[Online]. Available: http://s.fhg.de/time-sensitive-networking

[3] N. M. Mosharaf Kabir Chowdhury and R. Boutaba, “Network
virtualization: state of the art and research challenges,” IEEE
Communications Magazine, vol. 47, no. 7, pp. 20–26, 2009.

[4] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia,
“Open, programmable, and virtualized 5g networks: State-of-the-
art and the road ahead,” Computer Networks, vol. 182, p. 107516,
2020. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1389128620311786

[5] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny,
M. G. Rabbani, Q. Zhang, and M. F. Zhani, “Data center network
virtualization: A survey,” IEEE Communications Surveys & Tuto-
rials, vol. 15, no. 2, pp. 909–928, 2013.

[6] M. Pahlevan, “Time sensitive networking for virtualized integrated
real-time systems,” Doctor of Engineering Dissertation, University
of Siegen, Siegen, Germany, 2019.

[7] F. Rezabek, M. Bosk, G. Carle, and J. Ott, “Tsn experiments using
cots hardware and open-source solutions: Lessons learned,” in
2023 IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events (PerCom
Workshops), 2023, pp. 466–471.

[8] N. M. K. Chowdhury and R. Boutaba, “A survey of network
virtualization,” Computer Networks, vol. 54, no. 5, pp. 862–876,
2010. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1389128609003387

[9] A. Laghrissi and T. Taleb, “A survey on the placement of virtual
resources and virtual network functions,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 2, pp. 1409–1434, 2019.

[10] A. Garbugli, L. Rosa, A. Bujari, and L. Foschini, “Kubernetsn:
a deterministic overlay network for time-sensitive containerized
environments,” in ICC 2023 - IEEE International Conference on
Communications. IEEE, 2023, p. 1494–1499. [Online]. Available:
http://dx.doi.org/10.1109/ICC45041.2023.10279214

[11] A. Garbugli, L. Rosa, L. Foschini, A. Corradi, and P. Bellavista,
“A framework for tsn-enabled virtual environments for ultra-low
latency 5g scenarios,” in ICC 2022 - IEEE International Confer-
ence on Communications, 2022, pp. 5023–5028.

[12] M. Ashjaei, L. Lo Bello, M. Daneshtalab, G. Patti, S. Saponara,
and S. Mubeen, “Time-sensitive networking in automotive
embedded systems: State of the art and research opportunities,”
Journal of Systems Architecture, vol. 117, p. 102137, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1383762121001028

[13] J. Pei, Y. Hu, and L. Tian, “A review on key mechanisms of
time-sensitive networking,” in 2021 International Conference on
Advanced Computing and Endogenous Security, 2022, pp. 01–07.

[14] N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental flow
scheduling and routing in time-sensitive software-defined net-
works,” IEEE Transactions on Industrial Informatics, vol. 14, no. 5,
pp. 2066–2075, 2018.

[15] K. Correll, N. Barendt, and M. Branicky, “Design considerations
for software only implementations of the ieee 1588 precision time
protocol.”

[16] M. Pahlevan, N. Tabassam, and R. Obermaisser, “Heuristic
list scheduler for time triggered traffic in time sensitive
networks,” vol. 16, no. 1, 2019. [Online]. Available: https:
//doi.org/10.1145/3314206.3314208

[17] C. Xue, T. Zhang, Y. Zhou, M. Nixon, A. Loveless, and S. Han,
“Real-time scheduling for 802.1qbv time-sensitive networking
(tsn): A systematic review and experimental study,” in 2024 IEEE
30th Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2024, pp. 108–121.

[18] J. Coleman, S. Almalih, A. Slota, and Y.-H. Lee, “Emerging cots
architecture support for real-time tsn ethernet,” in Proceedings of
the 34th ACM/SIGAPP Symposium on Applied Computing. New
York, NY, USA: Association for Computing Machinery, 2019,
p. 258–265. [Online]. Available: https://doi.org/10.1145/3297280.
3297542

[19] M. K. Hany, K. Montgomery, and R. Candell, “An analytical
evaluation for software-based tsn in industrial wi-fi networks,”
in 2024 IEEE 7th International Conference on Industrial Cyber-
Physical Systems (ICPS), 2024, pp. 1–6.

[20] R. Candell, K. Montgomery, M. Kashef Hany, S. Sudhakaran,
and D. Cavalcanti, “Scheduling for time-critical applications uti-
lizing tcp in software-based 802.1qbv wireless tsn,” in 2023 IEEE
19th International Conference on Factory Communication Systems
(WFCS), 2023, pp. 1–8.

[21] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hessel-
bach, “Virtual network embedding: A survey,” IEEE Communica-
tions Surveys & Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[22] O. Smimite and A. Karim, “Containers placement and migration
on cloud system,” International Journal of Computer Applications,
vol. 176, 07 2020.

[23] J. Fried, G. I. Chaudhry, E. Saurez, E. Choukse, I. Goiri,
S. Elnikety, R. Fonseca, and A. Belay, “Making kernel bypass
practical for the cloud with junction,” in 21st USENIX Symposium
on Networked Systems Design and Implementation (NSDI 24).
USENIX Association, Apr. 2024, pp. 55–73. [Online]. Available:
https://www.usenix.org/conference/nsdi24/presentation/fried

[24] A. Francescon, G. Baggio, R. Fedrizzi, R. Ferrusy, I. G.
Ben Yahiaz, and R. Riggio, “X–mano: Cross–domain management
and orchestration of network services,” in 2017 IEEE Conference
on Network Softwarization (NetSoft), 2017, pp. 1–5.

[25] N. C. Fernandes, M. D. D. Moreira, I. M. Moraes, L. H. G.
Ferraz, R. S. Couto, H. E. T. Carvalho, M. E. M. Campista, L. H.
M. K. Costa, and O. C. M. B. Duarte, “Virtual networks: isolation,
performance, and trends,” annals of telecommunications - annales
des télécommunications, vol. 66, no. 5, pp. 339–355, 2011.

[26] D. B. Oljira, “Low latency communication in virtualized and
multipath networks,” Ph.D. dissertation, 2020.

[27] P. Denzler, T. Frühwirth, C. Lehr, and J. Auffray, “Time-predictable
software-based tsn-enabled network stack for mixed criticality
traffic,” in 2024 IEEE 20th International Conference on Factory
Communication Systems (WFCS), 2024, pp. 1–8.

[28] A. Stage and T. Setzer, “Network-aware migration control and
scheduling of differentiated virtual machine workloads,” in 2009
ICSE Workshop on Software Engineering Challenges of Cloud
Computing, 2009, pp. 9–14.

[29] Y. Zhang, Q. Xu, M. Li, C. Chen, and X. Guan, “Qos-aware map-
ping and scheduling for virtual network functions in industrial 5g-
tsn network,” in 2021 IEEE Global Communications Conference
(GLOBECOM), 2021, pp. 1–6.

Seminar IITM SS 25 71 doi: 10.2313/NET-2025-11-3_13

Seminar IITM SS 25 72

Applications of MASQUE-proxies in TEE Environments

Martin Halfen, Lion Steger∗, Daniel Petri∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: martin.halfen@tum.de, stegerl@net.in.tum.de, petriroc@net.in.tum.de

Abstract—This paper will talk about two privacy and
anonymity enhancing technologies: MASQUE-Proxies and
Trusted Execution Environments (TEEs). TEEs offer
hardware-based confidentiality and integrity for sensitive
computations, whereas MASQUE enables encrypted and
obfuscated traffic tunneling over QUIC and HTTP/3, en-
hancing resistance to traffic analysis. This paper investigates
the possibilities of merging these two technologies to create
secure, privacy-preserving proxy infrastructures. We investi-
gate the technical foundation of TEEs and MASQUE, assess
practical implementations like Apple’s iCloud Private Relay,
and discuss the role of TEEs in enhancing trust through
verifiable execution. We assess performance trade-offs using
related TEE-based proxy implementations.

Index Terms—confidential computing, cloud computing,
MASQUE-Proxy, TEE

1. Introduction

Today the demand for privacy and anonymity in the
online realm is higher than ever, New technologies such as
Trusted Execution Environments (TEEs) and MASQUE
proxies are promising ways to address these concerns.
TEEs leverage hardware-based security to ensure that sen-
sitive data is processed securely, even if the surrounding
software stack is compromised by an adversary.

MASQUE (Multiplexed Application Substrate over
QUIC Encryption) is a new proxying protocol built upon
the modern foundations of HTTP/3 and QUIC. The pro-
tocol allows the user to tunnel arbitrary data through
connections that appear to external observers as standard
encrypted HTTP traffic [1]. This obfuscation method helps
protect metadata and improves resistance against traffic
analysis. MASQUE is already deployed in services like
Apple’s iCloud Private Relay, which aims to hide users’
network traffic from adversaries [2].

The combination of TEEs and MASQUE proxies
creates a powerful framework for both secure compu-
tation and private communication. This synergy opens
up promising opportunities for privacy-preserving appli-
cations in this area.

This paper explores the technical foundations, po-
tential applications, and challenges of combining these
technologies. In Section 2.1, we provide an overview of
TEEs and their specification. In Section 2.2 we cover the
MASQUE protocol and its technical foundations. With
this background we discuss in Section 4 the potential ap-
plications of combining these technologies, as well as the
technical challenges that can arise with their integration.

2. Background

This section provides the essential background needed
to understand how MASQUE proxies are integrated with
Trusted Execution Environments. Our starting point will
be a description of the fundamental principles and security
guarantees of TEEs, with an emphasis on the mechanisms
that render them especially appropriate for safeguarding
sensitive computations on untrusted infrastructure. Subse-
quently, we investigate the MASQUE protocol and its dis-
tinctive proxying features which uses QUIC and HTTP/3,
emphasizing how it facilitates efficient and private net-
work tunneling. These technologies can be combined to
establish the foundation for proxy architectures that are
secure, high-performance, and privacy-preserving.

2.1. Trusted Execution Environments (TEEs)

TEEs leverage hardware-based security mechanisms
to protect the integrity and confidentiality of software
running on potentially untrusted platforms, such as public
cloud infrastructure, third-party data centers, or infrastruc-
ture with uncontrolled access. In this paper, we assume
an adversarial model where the adversary has full control
over the entire software stack and can execute any arbi-
trary privileged program, and has also full control over
all OS duties like CPU scheduling and IO operations [3].
TEEs offer two critical functionalities: remote attestation
and runtime protection.

Remote attestation enables an external verifier to de-
termine the integrity of a TEE instance before interacting
with it as Li et. al show in their work [3]. This process
involves the TEE instance requesting an attestation from
a trusted attestation authority, typically a secure manufac-
turer TEE instance or a secure hardware component on
the chip [3]. The authority generates a signed attestation
report that includes a cryptographic measurement of the
TEE’s initial state, covering both the deployed software
and critical system components, including CPU features,
memory layout, and operating system parameters [3].
The verifier can then use this report to determine whether
the TEE instance is trustworthy before providing sensitive
data or workloads.

After verifying the initial state of the TEE through
remote attestation, the system must also ensure its integrity
during runtime. This phase, referred to as Runtime Protec-
tion (RP), is responsible for managing system resources
such as CPU, memory, and I/O—while protecting the TEE
from interference by the untrusted components of the OS
[3].

Seminar IITM SS 25 73 doi: 10.2313/NET-2025-11-3_14

UDP Header

QUIC Header (in this case short)

QUIC Frame Header (in this case QUIC-datagram)

Encapsulated Datagram Payload
UDP packet/IP packet

HTTP/3 Datagram Header: Quarter Stream ID (Stream ID / 4)

Protected

Partially Encrypted

Authenticated

Figure 1: UDP/IP over MASQUE-Proxy taken from [1]

Several runtime protection strategies have been pro-
posed by Li et. all [3] in thier paper:

1) Unprotected Mode: The TEE relies fully on
the untrusted OS for resource management, espe-
cially for I/O operations like networking or disk
access [3]. This simplicity comes at the cost of
exposure to side-channel attacks and manipula-
tion.

2) Isolated Runtime Management: TEE resources
are managed separately by the runtime layer,
while the OS handles non-TEE workloads. This
is typical for context switching scenarios [3].

3) Guarded Runtime: A mediation layer observes
and verifies OS actions, such as memory alloca-
tion, to maintain integrity without full detachment
from the OS [3].

4) TEE-Managed Mode: The TEE manages its
hardware resources independently (e.g., virtual
memory). While highly isolated, this mode can
conflict with system schedulers and degrade per-
formance [3].

Each of these modes represents a trade-off between
security, performance and trust assumptions. Selecting the
appropriate runtime protection strategy depends on the
threat model and the level of trust placed in the underlying
OS.

2.2. MASQUE Proxy

The core idea behind the Multiplexed Application
Substrate over QUIC Encryption (MASQUE) protocol is
to enable the tunneling of arbitrary data streams over
HTTP/3 using the QUIC transport protocol [1]. MASQUE
supports two main tunneling modes: CONNECT-UDP and
CONNECT-IP, both of which allow traffic to be obfuscated
and multiplexed in a way that resembles standard web
traffic, thereby enhancing privacy [1].

In CONNECT-UDP mode, the client must first specify
the target IP address and port to which UDP packets
should be forwarded. After the QUIC connection with
the MASQUE-proxy is established, raw UDP packets
are wrapped within HTTP/3 datagrams and sent to the
MASQUE-proxy. The proxy then unwraps the UDP-
packages from the QUIC-header and forwards the UDP
payloads to the specified endpoint and relays the responses
back to the client. This mode is particularly suitable for
use cases such as Voice-over-IP, where UDP is already
the underlying transport protocol [1].

In CONNECT-IP mode, the client encapsulates raw IPv4
or IPv6 packets into HTTP/3 datagrams, which are then
transmitted over a QUIC connection to the MASQUE
proxy. The proxy unwraps the packets and forwards them
to their intended destination, enabling the tunneling of
arbitrary IP traffic. This mechanism allows MASQUE to
emulate a full-tunnel VPN, where the client’s entire IP-
layer traffic is routed through the proxy in a way that is
indistinguishable from standard encrypted web traffic [1].

In both tunneling modes, MASQUE leverages the
encryption of QUIC and commonness of HTTP/3 traffic to
hide the nature of tunneled traffic, making it more difficult
for an adversary to perform traffic classification, surveil-
lance or correlation. This makes MASQUE a compelling
candidate for privacy-preserving proxy deployments in
trusted or semi-trusted network environments.

3. Related Work

TEEs have been proposed as a foundation for secure
computing in an untrusted environment such as data cen-
ters. Li et al. [3] provide a comprehensive systematiza-
tion of the design choices and pitfalls in modern TEE
architectures, including remote attestation and runtime
protection models [3]. Practical deployments methods
such as SCONE [4] have demonstrated how TEEs can
be used to secure containerized applications.

In the context of encryption proxies, Bouhairi et al.
[5] evaluate a SCONE-based implementation of the Eperi
Gateway, an encryption proxy, and demonstrate how TEEs
can ensure data confidentiality. However, their findings
also reveal a measurable performance overhead, with la-
tency increasing from 423 ms to 912 ms, effectively more
than doubling [5]. Their findings provide insights into the
practical trade-offs when deploying proxy services within
secure enclaves.

The MASQUE protocol is a relatively recent devel-
opment, offering encrypted tunneling over HTTP/3 using
QUIC. It has been implemented in Apple’s iCloud Private
Relay, which uses a two-hop architecture to decouple user
identity from destination servers [2]. Probst [1] presents
a MASQUE-based proxy prototype for lower OSI-layer
traffic, illustrating the flexibility of MASQUE for privacy-
preserving proxying.

Kühlewind et al. [6] published a paper about the
performance of MASQUE without a TEE environment.

To date, no published work has examined the in-
tegration of MASQUE proxies with TEEs. This paper
proposes such a combination, outlines the benefits for

Seminar IITM SS 25 74 doi: 10.2313/NET-2025-11-3_14

privacy-preserving analytics, and identifies future research
directions to realize this architecture in practice.

4. Applications of MASQUE-Proxies in TEE
Environments

The integration of MASQUE proxies with TEEs
presents a promising pathway for achieving secure and
more private communication over the internet. TEEs, such
as Intel SGX, can help eliminate the need to trust proxy
providers blindly by providing a mechanism to verify the
running TEE instance. The combination of MASQUE’s
effective multiplexed proxying via the QUIC protocol with
the confidentiality assurances of TEEs enables a new way
of secure proxy-based architectures.

This section investigates three particular domains of
application in which TEE integration can be advantageous
for MASQUE proxies.

First, we discuss in Section 4.1 how TEE can be
used in way that traffic obfuscation techniques are used
to improve user anonymity. Next, we examine in Sec-
tion 4.2 how TEEs can enhance trust in systems like
iCloud Private Relay. Finally, we analyze in Section 4.3
the performance trade-offs observed in TEE-based proxy
implementations to understand their practical implications.

4.1. Confidential Proxying with Traffic Obfusca-
tion

When browsing the internet, an adversary observing
the network traffic can often determine which website a
user is accessing. The primary purpose of a proxy is to
conceal the user’s intended destination, thereby enhancing
privacy by preventing direct association between the user
and the target website [1].

User Adversary Website
Direct

Proxy

Proxy
Only sees incoming traffic

Sees destination

Figure 2: Using a proxy to hide the destination website
from network observers

Ensuring user anonymity when using proxies is a criti-
cal requirement when using a proxy. One effective method
to achieve this is through a technique known as mixing [7].
In this approach, data packets originating from multiple
users are collected at an intermediate node. These packets
are then shuffled and subjected to an intentional delay
before being forwarded to the destination [7]. This ran-
domized reordering and timing obfuscation significantly
complicate the task of correlating input and output flows,
both for the proxy provider and for a global passive adver-
sary, thereby enhancing traffic-level privacy, as depicted in
Figure 4.1.

A fundamental challenge in proxy based anonymiza-
tion is the need to trust the proxy provider not to log
incoming and outcoming traffic. As such logs would en-
able the correlation of network activity with a specific

A

B

C

ABC shuffle
+ wait CAB google.com

Sender

Proxy
Receiver

Figure 3: The mixing Workflow

users. This trust requirement can be mitigated through
the use of TEEs combined with remote attestation. If the
cloud provider supplies both the proxy source code and the
corresponding TEE measurement, remote attestation can
be employed to verify that the proxy instance is indeed
running within a genuine, untampered TEE. An additional
advantage of this approach is the strong isolation provided
by TEEs. It becomes significantly more difficult for an
adversary, even one with access to the same physical
hardware, to escape their execution context and observe
traffic processed by the TEE instance [3]. This strengthens
the anonymity of the traffic obfuscation mechanism.

4.2. Enhancing Trust in iCloud Private Relay
through TEEs

Another approach to enhancing privacy is known as
re-routing, where traffic is relayed through one or more
intermediary nodes [7]. Apple implements this concept
in its proprietary service iCloud Private Relay [2], which
uses the MASQUE protocol as the underlying proxying
mechanism.

The core idea behind this method is to separate the
knowledge of the data source and its destination. Apple
receives the user’s incoming traffic but does not see the
final destination. Instead, it forwards the encrypted request
to a third-party relay, which then delivers the data to the
intended receiver [2]. This two-hop architecture ensures
that no single entity has full visibility of both the sender
and the receiver [1], [2].

However, this model relies on a degree of trust in
both Apple and the third-party relay provider. Users must
assume that neither party colludes or logs identifying
information [2]. This is where TEEs can strengthen the
trust model. If both relay providers executed their services
inside a TEE environment, published their code and at-
testation measurements, users could independently verify
that their data is handled as promised.

Unfortunately, this level of transparency is currently
unrealistic. Apple does not typically open source its code-
base, and Apple did not state anything about public at-
testation in their white paper [2]. Nonetheless, this idea
highlights the potential role of TEEs in increasing ac-
countability and verifiability in privacy-preserving relay
systems.

4.3. Performance Implications of TEE-Based
Proxy Implementations

Bouhairi et al. [5] investigate how the Eperi Proxy can
be implemented using SCONE, a secure Docker container

Seminar IITM SS 25 75 doi: 10.2313/NET-2025-11-3_14

framework based on Intel SGX technology. SCONE en-
ables the creation of secure Dockerfiles from any Docker
image and offers additional features such as filesystem
shielding, network shielding and secure system calls [4].
Through this implementation, encryption and decryption
operations are executed entirely within the secure enclave,
ensuring both data confidentiality and integrity.

The Eperi Gateway shares similarities with MASQUE,
which also emphasizes secure and confidential data trans-
mission, but uses TCP/TLS over the QUIC protocol [5].
Therefore, several observations from the SCONE-based
implementation may provide valuable insights for a po-
tential MASQUE-based TEE deployment.

One of the main findings from their evaluation is
a significant increase in latency, rising from 423 ms to
912 ms, more than double [5]. This latency loss is critical,
especially for latency-sensitive applications such as iCloud
Private Relay. Several factors contribute to this overhead,
including cache flushes, the cost of integrity checks per-
formed at each context switch, and the memory encryption
overhead introduced by Intels SGX architecture [3].

Another key metric analyzed is throughput. While the
TEE-based implementation achieves similar throughput
levels to the non TEE implementation, it demands sub-
stantially more CPU resources, 910 % instead of 790 % at
maximum throughput [5]. As a result, the SCONE system
reaches a throughput ceiling at approximately 100req/s,
due to near saturation of the available virtual CPU cores
which will result in a latency jump [5].

5. Conclusion and Future Work
In conclusion, TEEs offer promising new opportunities

to enhance the privacy guarantees of MASQUE-based
proxy architectures. By isolating sensitive operations, like
encryption and decryption, and enabling verifiable execu-
tion, TEEs could mitigate trust assumptions inherent in
current systems. However, challenges remain, including
susceptibility to denial-of-service (DoS) attacks and en-
clave resource exhaustion, which must be systematically
addressed to ensure robust and practical deployments [3].

However, given that MASQUE is a relatively new
protocol, there is currently little research on the integration
of TEEs in practical MASQUE proxy deployments. Most
available comparisons rely on alternative systems, such as
the Eperi Gateway.

For future work, a prototype implementation of a
MASQUE proxy within a TEE instance, using frameworks
such as SCONE, could provide valuable insights into per-
formance overheads and practical feasibility. Additionally,
further investigation is needed into mechanisms that allow
end users to verify that a MASQUE proxy is genuinely
running inside a trusted TEE instance on a cloud provider,
possibly through remote attestation.

Such developments could significantly increase the
trustworthiness and transparency of next-generation pri-
vacy infrastructures.

References

[1] C. Probst, “Rust-based MASQUE-Proxying for Lower OSI Layer
Traffic,” Jul 2023, accessed: 2025-06-01. [Online]. Available: https:
//oc.net.in.tum.de/s/MsdcpDFrJ2ikHsa/download/thesis_probst.pdf

[2] Apple Inc., “iCloud Private Relay Overview,” Whitepaper, Dec
2021, accessed: 2025-06-01. [Online]. Available: https://www.apple.
com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf

[3] M. Li, Y. Yang, G. Chen, M. Yan, and Y. Zhang, “Sok:
Understanding design choices and pitfalls of trusted execution
environments,” in Proceedings of the 19th ACM Asia Conference
on Computer and Communications Security, ser. ASIA CCS ’24.
New York, NY, USA: Association for Computing Machinery, 2024,
p. 1600–1616. [Online]. Available: https://doi.org/10.1145/3634737.
3644993

[4] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell,
D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer,
“Scone: secure linux containers with intel sgx,” in Proceedings of
the 12th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’16. USA: USENIX Association, 2016,
p. 689–703.

[5] M. J. A. Bouhairi, M. Mullick, M. Wolf, I. Gudymenko,
and S. Clauß, “Encryption Proxies in a Confidential
ComputingEnvironment,” feb 2023, accessed: 2025-06-08.
[Online]. Available: https://wwwpub.zih.tu-dresden.de/~s0278016/
publications/Encryption_Proxies_in_Conf_Comp_Environments.pdf

[6] M. Kühlewind, M. Carlander-Reuterfelt, M. Ihlar, and
M. Westerlund, “Evaluation of quic-based masque proxying,”
in Proceedings of the 2021 Workshop on Evolution, Performance
and Interoperability of QUIC, ser. EPIQ ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 29–34.
[Online]. Available: https://doi.org/10.1145/3488660.3493806

[7] F. Shirazi, M. Simeonovski, M. R. Asghar, M. Backes, and C. Diaz,
“A survey on routing in anonymous communication protocols,”
ACM Comput. Surv., vol. 51, no. 3, Jun. 2018. [Online]. Available:
https://doi.org/10.1145/3182658

Seminar IITM SS 25 76 doi: 10.2313/NET-2025-11-3_14

Evaluation of sources for IPv6 Hitlists

Finn Johannes Hartmann, Lion Steger∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: finn.hartmann@tum.de, stegerl@net.in.tum.de

Abstract—IPv6 hitlists are essential tools for conducting
large-scale internet measurements. This paper evaluates var-
ious data sources used to construct IPv6 hitlists, focusing on
IPv6 address stability and Border Gateway Protocol (BGP)
distribution. Our analysis reveals significant differences in
the quality and characteristics of each source’s data and
highlights the importance of source selection in measurement
studies.

Index Terms—IPv6, measurement, ASN, historical analysis

1. Introduction

The ongoing adoption of IPv6 has introduced many
challenges due to the large scale of the address space (2128

addresses). Due to this size, it is infeasible to scan the
whole space. To address this need, the ‘IPv6 Hitlist Ser-
vice’ maintained by the Chair of Network Architectures
and Services at TUM [1] provides a continuously updated
list of responsive IPv6 addresses. In the following, we will
refer to it as ‘hitlist’. The hitlist contains IPv6 addresses
from different public sources and verifies their responsive-
ness regularly. Hence, it has become an essential tool for
internet scans.

Previous work by Steger et al. [2] established this
hitlist methodology, while Gudehege [3] analyzed the
source quality deeply.

In this paper, we will analyze such an IPv6 hitlist, and
focus on two other aspects:

• The stability of Autonomous System Numbers
(ASNs) [4] for IPv6 addresses over time (Sec-
tion 4.1)

• The source distribution across ASNs (Section 4.2)

With these analyses, we try to find a choice of sources
that will improve future measurement efforts in their
overall representativeness. We aim to inform future mea-
surement efforts by better understanding the relationship
between sources and ASNs and address stability.

2. Data Overview

This section provides foundational information on the
hitlist dataset and the methods used to collect and process
the data. The subsequent analysis presented in Section 4
is based on this background.

We are using a dataset collected by the IPv6 Hitlist
Service [1]. The hitlist contains a filtered list of reach-
able IPv6 addresses gathered from their last scan [5].
To perform these scans, they use various sources, e.g.,

the hitlist, Bitnodes, and IPInfo (Section 2.2). Hence,
the hitlist shows IPv6 addresses from the active Internet
address space and is updated regularly, nowadays on a
monthly basis, but in the earlier days weakly or daily,
during each scan.

These addresses are subsequently categorized based
on their responsiveness to different network protocols,
enabling a deeper understanding of IPv6 address space
utilization [2].

For our evaluation, we worked on an SQL import of
the hitlist by Gudehege [3], which is structured into two
main components:

• Inputdata: All collected IPv6 addresses, irrespec-
tive of their responsiveness, are active unless our
scan reverts this assumption.

• Outputdata: A filtered subset of the inputdata
that includes only addresses that responded during
active scans.

2.1. Data Structure

The distinction between the inputdata and outputdata
tables is essential for our analysis. Not all relevant meta-
data is presented in both tables, necessitating the use of
both to perform a comprehensive evaluation.

• Inputdata Table Fields: ip, source, date, bgpIp,
bgpMask, asn

• Outputdata Table Fields: ip, protocol, date,
bgpIp, bgpMask, asn

The key difference lies in the protocol field in the
outputdata and the fact that only responsive IPv6 addresses
are retained. This makes the outputdata particularly useful
for filtering reachable IPs.

2.2. Data Collection

The IPv6 addresses were aggregated from a diverse
range of publicly available sources, including e.g.:

• Bitnodes — provides active Bitcoin nodes, which
operate over IPv6 [6]

• IPInfo — offers a dataset which contains enriched
metadata for their observed IPs, including e.g.
geolocations and ASN [7]

• Rapid7DNS — contains IPv6 responses from
large-scale zone file scans [8]

• RIPE — collects data by using globally distributed
probes, which are based on a community sup-
ported measurement [9]

Seminar IITM SS 25 77 doi: 10.2313/NET-2025-11-3_15

• Hitlist — is maintained by the Chair of Net-
work Architectures and Services which combine
all these different sources and perform their scans
on this data to update their list of responsive IPv6
addresses and performance DNS resolution [1], [5]

This comprehensive aggregation strategy ensures
broad coverage of the active IPv6 address space. The
database on which our analyses are based contains ap-
proximately 11B entries. Therefore, we limited the data
volume for our evaluation by using a sampling condition
in which we only included every 100th entry.

3. Related work

This paper is based on data collection from the IPv6
hitlist maintained by the Chair of Network Architectures
and Services since 2018 by Gasser et al. [1]. They have
introduced a methodology for generating IPv6 hitlists by
aggregating data from various sources. The hitlist structure
on which we are working is based on the SQL structure
from Gudehege [3]. This structure is explained in the
background (Section 2.1).

Our work extends these studies by providing a com-
parative analysis of data sources concerning IPv6 address
stability and BGP [10] distribution, offering insights into
the suitability of each source for different measurement
objectives.

4. Analysis

During the analysis in this chapter, we focus on
two main aspects: IPv6 address stability (Section 4.1)
and source ratio per ASN (Section 4.2). The analysis is
based on measurements from the hitlistdb.inputdata
dataset. Each source is analyzed over time to detect
volatility patterns and systematic biases in network dis-
tribution.

4.1. Analysis of ASN stability

This subsection examines, we examine the ASN
changes from November 2023 to October 2024, focusing
on the temporal patterns and source-specific characteris-
tics of IPv6 address stability.

4.1.1. Data preparation. In the following analysis, we
work with a subset of our inputdata, specifically querying
the dataset for all IPv6 addresses that have appeared with
more than one Autonomous System Number (ASN). From
this query, we gather a list of ‘unstable’ IPs exhibiting
ASN changes, which were used for a detailed timeline
visualizations of ASN stability patterns.

4.1.2. Observations. Figure 1 shows the monthly count
of IPv6 addresses that changed their ASN, broken down
by data source. Additionally, Figure 2 presents the relative
fraction of IPs with ASN changes per source, providing
normalized insights into source-specific volatility patterns.

Monthly ASN Change Patterns: The monthly ASN
change analysis reveals significant temporal and source-
specific variations in IPv6 address stability. From Novem-
ber 2023 to February 2024, we observe a noticeable peak

in the total number of ASN changes in IPs, reaching ap-
proximately 2,500–3,000 per month. Afterward, the total
number of IPs with ASN changes declines and stabilizes
around 1,000–1,500 changes per month. Such a noticeable
difference could be caused by increased network infras-
tructure changes or BGP hijacking [11]. The latter refers
to a falsely announced BGP prefix by an Autonomous
System (AS).

Source-Specific Volatility Patterns: The clustering
of sources shows a clear behaviour pattern across dif-
ferent sources. High-volatility sources (including ipinfo,
yarrp, and rapid7dns) contribute disproportionately to
ASN changes throughout the observation period. How-
ever, such a high proportion could also be based on the
size of these sources (TABLE 1), which is, in our case,
very likely. In peak months, ipinfo and rapid7dns show
a similar pattern to the total cumulation. Such a pattern
indicates that these sources capture IP addresses that are
associated with dynamic or ephemeral infrastructure. This
leads to the effect that they are assigned only temporarily
and change more frequently. Each newly assigned IPv6
address may also map to a different Autonomous System
due to load balancing or routing optimization. Against
that, there are stable sources such as bitnodes, openipmap,
and ripe, where assigned IP addresses infrequently change
over time. These sources rarely exceed 200–300 changed
ASNs monthly, making them more suitable for long-term
network topology studies.

Source Count

ipinfo 8.168.647.739
hitlist 2.349.036.709
yarrp 541.657.853
rapid7dns 228.492.805
ripe 202.662.048
bitnodes 50.812.377
openipmap 45.478.545

TABLE 1: IPv6 address counts per data source

However, unlike the total number of IP changes, the
relative numbers show that ipinfo and yarrp have consis-
tent IP changes. The relative numbers are based on the
total number of IP changes for the corresponding source.
More than 50% of ipinfo and more than 40% of yarrp IPs
change their ASNs monthly. Generally, there is nearly the
same pattern as shown in Figure 1. Initially, all sources
have a high change rate, spreading from 10% to 100%.
From March to October, we can observe clusters. One has
a high change rate of roughly 50%–90%, and the other
from around 0%–45%.

Temporal Stability Trends: The data shows an over-
all decline in ASN changes with a constant decrease from
the peak in early 2024 to approximately 1,000–1,500 per
month.

Figures 3 and 4 illustrate the ASN change patterns
per IP over time by plotting temporal ASN assignment
intervals for individual IP addresses.

The frequency of ASN changes observed for specific
IP addresses, particularly those shown in Figure 3, rep-
resent an uncommon behavior in typical internet infras-
tructure. The analysis reveals that most IPv6 addresse
with frequent ASN share a common BPG prefix. Two

Seminar IITM SS 25 78 doi: 10.2313/NET-2025-11-3_15

2023−11 2024−01 2024−03 2024−05 2024−07 2024−09

Month

0

500

1000

1500

2000

2500

3000

N
u
m

b
er

o
f

C
h
a
n
g
ed

IP
s

Monthly Count of IPs with ASN Changes (Sampled)

source

bitnodes

hitlist

ipinfo

openipmap

rapid7dns

ripe

yarrp

Total

Figure 1: Monthly ASN changes per source

20
23

-1
1-

01

20
23

-1
2-

01

20
24

-0
1-

01

20
24

-0
2-

01

20
24

-0
3-

01

20
24

-0
4-

01

20
24

-0
5-

01

20
24

-0
6-

01

20
24

-0
7-

01

20
24

-0
8-

01

20
24

-0
9-

01

20
24

-1
0-

01

Month

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
o
f

IP
s

w
it

h
A

S
N

C
h

a
n

g
e

Monthly ASN Change Rate (Relative per Source)

Source

bitnodes

hitlist

ipinfo

openipmap

rapid7dns

ripe

yarrp

Figure 2: Monthly ASN change rate (relative per source)

2023−11

2024−01

2024−03

2024−05

2024−07

2024−09

2024−11

Date

2001:500:121::30

2001:502:f3ff::90

2610:a1:1021::230

2610:a1:1014::89

2001:502:f3ff::23f

2001:502:d399::195

2001:502:d399::229

2001:502:100e::149

2610:a1:1074::82

2001:502:4612::10f

2001:502:100e::204

2610:a1:1074::5

2610:a1:1073::8e

2610:a1:1013::31

2610:a1:1073::1:19

2610:a1:1015::247

2610:a1:1015::1e

2001:dcd:2::8

2610:a1:1073::1:76

2610:a1:1073::1:62

IP

ASN Time Intervals – Top 20 IPs with Most ASN Changes

ASN

397200

396566

396570

397203

20172

32651

396576

396571

396567

396826

211369

36617

21313

40647

396543

22547

36618

397239

397240

397233

397213

397231

397218

397222

397226

397242

397220

397219

397237

397241

397238

397228

19905

397225

397215

397232

Figure 3: Top 20 IPv6 addresses with most ASN changes

2023−11

2024−01

2024−03

2024−05

2024−07

2024−09

2024−11

Date

2607:f280:3023:c134:57c:9a59:5dee:ce9e

2800:190:4001:22:a5b5:67da:9ab9:4a83

2a02:8108:8000:2b:e1d5:3b79:8cf3:b4c9

2403:6200:8870:fdc7:1d7c:57d4:bd4a:fc9a

2a02:6b8:c04:209:0:604:9094:16d2

2a02:6b8:c29:f354:0:492c:c829:0

2803:9800:9896:707c:6165:257a:624d:d7f4

2803:9800:b888:8209:855d:97fc:4166:e96a

2607:f280:2000:102::66e

2a03:6f00:8::2299

2001:e60:87b5:4433:6cdd:5c08:1c54:1d44

2404:d540:1:589:3:2:1:584

2804:7f8c:100c:5a00:c8e7:8188:75b9:1b6b

2606:40:2033:6000::

2403:6200:8000:a1:70cb:a2a9:9154:b0e

2403:6200:8892:1a1a:5547:6fde:b6ca:e1c1

2a02:8108:90c0:8c18:5e49:79ff:fe72:1d4c

2a05:541:114:a3::1

2403:6200:88a0:b3d:9552:2dba:bf53:543a

2a09:3c82:2dfd:fb01:fa9b:16c8:162:cdef

IP

ASN Time Intervals – Top 20 IPs with Fewest ASN Changes

ASN

4766

3559

45758

45629

2501

2907

36492

15169

398053

36040

19037

11664

271695

1

208398

13238

31334

3209

200088

9123

207713

215540

399989

400177

Figure 4: Top 20 IPv6 addresses with the fewest non-zero
ASN changes

representative examples include:

2001:500:121::30 (1)

2001:502:f3ff::90 (2)

This behavior is most likely attributable to Multi-
Origin AS (MOAS) prefixes, where the same IPv6 BGP
prefix is announced by multiple ASNs simultaneously
or over time [12]. This phenomenon serves as a strong
indicator for dynamic, ephemeral infrastructure deploy-
ment patterns or as a way of load balancing on the AS-
level (2001:500:121::/48 or 2001:502:f3ff::/48 [13],
[14]).

These addresses switch ASNs multiple times between
2023 and 2024, including changes to AS397239 (Ver-
cara, LLC), AS397220 (Vercara, LLC), and AS396566
(VeriSign Global Registry Services) [15]. By often using
the same ASNs, we can strongly assume that these ad-
dresses are used temporarily.

Conversely, Figure 4 presents IPv6 addresses with sta-
ble ASN assignments throughout the observation window.
Examples include:

2a02:8108:8000:2b:e1d5:3b79:8cf3:b4c9 (3)

2404:d540:1:589:3:2:1:584 (4)

These findings emphasize the need for stability-aware
selection when analyzing IPv6 topologies. Ignoring ASN
volatility may lead to biased assumptions about the persis-
tence or reachability of observed prefixes. Using diversi-
fied and stable sources, as recommended in [2], [3], [12],
strengthen measurement accuracy.

4.2. Source distribution per ASN

During this chapter, we analyze the source distribution
per ASN for the 10 ASNs with the most entries in the
hitlist.

Seminar IITM SS 25 79 doi: 10.2313/NET-2025-11-3_15

33
20

12
32

2

13
33

5

20
77

3

20
94

0

31
33

4

63
94

9

13
59

67

19
75

40

21
04

03

ASN

2

4

6

8

N
u
m

b
er

o
f

IP
s

×107

47040540

60919373

85957873

20975568

15194338 14068441

19650114

12676223

24467144

14973435

Top 10 ASNs

source

bitnodes

hitlist

ipinfo

openipmap

rapid7dns

ripe

yarrp

Figure 5: Top 10 ASNs with corresponding source con-
tributions

4.2.1. Data preparation. To analyze the distribution of
IPv6 addresses across ASNs by source, we extracted all
records containing valid BGP prefix information and ASN.
We grouped entries by BGP prefix, ASN, and source.
Subsequently, we counted the number of IPs associated
with each combination. If one IPv6 address had more than
one source, it was counted for every source individually.
Hence, we explicitly considered from which source an
IPv6 address was imported. Finally, we identified the top
10 ASNs with the highest IP counts and visualized the
source contributions, which are shown in a stacked bar
plot.

4.2.2. Observations. Figure 5 reveals significant imbal-
ances in source contributions across the top 10 ASNs by
IP count, with entry counts ranging from approximately
1.2×107 to 8.6×107 across different ASNs.

ASN Distribution Imbalances: An essential observa-
tion from the distribution is the pronounced source dom-
inance pattern. AS13335 (Cloudflare) shows the highest
total count (approximately 8.6×107 entries) with dominant
contributions from ipinfo and hitlist sources.

Representativeness Implications: The significant im-
balances cause several concerns for IPv6 measurement
studies — Geographic bias from single-source dominance
may skew results toward specific regions, source-specific
collection methodologies may introduce systematic tem-
poral biases, and certain sources may preferentially cap-
ture specific infrastructure types (e.g., CDN nodes, resi-
dential addresses, or enterprise networks) [3], [16].

Certain ASNs, such as AS13335 (Cloudflare Inc.),
AS3320 (Deutsche Telekom AG), and AS12322 (Free
SAS) [15], are heavily dominated by data from one or
two sources, e.g., ipinfo or hitlist. This skew can result in
an overrepresentation of specific network regions, which
may bias scanning results if only single-source hitlists are
used.

Hence, incorporating multiple diverse sources is cru-
cial to improve ASN diversity and global representative-
ness in IPv6 measurements [3].

5. Conclusion and Future Work

After analyzing ASN stability and source distribution
per ASN, the evaluation of IPv6 hitlist entries indicates

significant stability of IPv6 addresses and variability of
BGP distribution. Sources like Bitnodes and Yarrp pro-
vide more stability, making them preferable for longitudi-
nal studies. In contrast, while offering broader coverage,
sources such as IPInfo and Rapid7DNS may introduce
volatility and skewed ASN representation.

Recommendations for Future Measurements:
Based on our analyses and the distribution patterns ob-
served, we recommend multi-source integration to mit-
igate single-source biases, source-aware sampling with
weighted contributions to achieve balanced ASN represen-
tation, stability-informed selection, and prioritizing stable
sources for longitudinal studies. At the same time, volatile
sources should be included for comprehensive coverage
and geographical validation by cross-validating source
contributions with known infrastructure distributions.

Future research should focus on developing method-
ologies to balance the trade-off between data diversity
and stability. Additional metadata, such as geolocation and
latency measurements, could enhance the utility of IPv6
hitlists. Moreover, exploring machine learning techniques
to predict IPv6 address stability may improve the hitlist
quality. One such approach is called Target Generation
Algorithms (TGAs) [2].

References

[1] O. Gasser, J. Zirngibl, and L. Steger, “IPv6 Hitlist Service,” https:
//ipv6hitlist.github.io/, 2025, [Online; accessed 02-June-2025].

[2] L. Steger, L. Kuang, J. Zirngibl, G. Carle, and O. Gasser, “Target
Acquired? Evaluating Target Generation Algorithms for IPv6,” in
Proceedings of the Network Traffic Measurement and Analysis
Conference (TMA), Jun. 2023, best Paper Award.

[3] J. Gudehege, “Analysis of IPv6 Hitlist sources,” Academic Re-
search Paper, 2024, [Provided by advisor; accessed 02-June-2025].

[4] G. Huston, “Exploring autonomous system numbers,” The Internet
Protocol Journal, vol. 9, no. 1, pp. 2–23, 2006.

[5] O. Gasser, Q. Scheitle, S. Gebhard, and G. Carle, “Scanning
the IPv6 Internet: Towards a Comprehensive Hitlist,” in
Proc. 8th Int. Workshop on Traffic Monitoring and Analysis,
Louvain-la-Neuve, Belgium, Apr. 2016. [Online]. Available:
https://net.in.tum.de/pub/ipv6-hitlist/

[6] “Bitnodes ipv6 snapshot dataset,” https://bitnodes.io, 2021, [On-
line; accessed 13-June-2025].

[7] “Ipinfo.io ipv6 dataset,” https://ipinfo.io/data, 2024, [Online; ac-
cessed 13-June-2025].

[8] “Rapid7 forward dns dataset,” https://opendata.rapid7.com/sonar.
fdns_v6/, 2022, [Online; accessed 13-June-2025].

[9] “Ripe atlas ipv6 measurement data,” https://atlas.ripe.net, 2024,
[Online; accessed 13-June-2025].

[10] “Border Gateway Protocol (BGP),” RFC 1163, Jun. 1990.
[Online]. Available: https://www.rfc-editor.org/info/rfc1163

[11] “What is BGP hijacking?” https://www.cloudflare.com/learning/
security/glossary/bgp-hijacking/, [Online; accessed 14-June-2025].

[12] K. Z. Sediqi, A. Feldmann, and O. Gasser, “Live long and pros-
per: Analyzing long-lived moas prefixes in bgp,” 2023, [Online;
accessed 05-June-2025].

[13] “Internet health report,” https://www.ihr.live/en/prefix/2001:500:
121::/48, [Online; accessed 18-June-2025].

[14] “Internet health report,” https://www.ihr.live/en/prefix/2001:502:
f3ff::/48, [Online; accessed 18-June-2025].

[15] “AS2org API Doc,” https://api.data.caida.org/as2org/v1/doc, 2025,
[Online; accessed 15-June-2025].

[16] E. Katz-Bassett, J. P. John, A. Krishnamurthy, D. Wetherall, T. An-
derson, and Y. Chawathe, “Towards ip geolocation using delay
and topology measurements,” in Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, 2006, pp. 71–84.

Seminar IITM SS 25 80 doi: 10.2313/NET-2025-11-3_15

Modeling the Architecture of QUIC Implementations with rustviz

Leopold Jofer, Daniel Petri∗, Marcel Kempf∗,
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: leo.jofer@tum.de, petriroc@net.in.tum.de, kempfm@net.in.tum.de

Abstract—QUIC implementations differ vastly in their sup-
port for the different QUIC standards and extension-RFCs.
A lack of documentation and an architectural overview
make it difficult to judge which library supports what, how
extensible they are and how they are structured. This paper
examines two QUIC implementations: tquic by Tencent and
neqo, developed by Mozilla for the Firefox web browser.
Utilizing our custom tool, rustviz, we break down their ar-
chitecture and subsequently model their design and intended
usage via the C4 software model. From that, we infer their
RFC support and extensibility and try to find potential anti-
features or deterrents to including them in a project. Our
findings were added to the QUIC Explorer, which makes
it easy for developers to filter and assess the suitability of
QUIC libraries.

Index Terms—QUIC, QUIC Explorer, architecture, software,
tquic, neqo, Rust, C4 Model

1. Introduction

With the advent of the Web as a dominant platform
in our lives, the speed, latency and reliability of web
transport protocols have gained an increasingly important
role. Traditional network communication, such as HTTP
or SSH, use TCP for transmitting data. However, TCP
was designed for the Internet of a different time and
therefore has significant downsides and problems. Head-
of-line blocking, connection establishment overhead and
poor performance are just some of the baggage that TCP
brings when using it [1]. As such, a need for a more
efficient, faster and vertically integrated network stack
has arisen. The next stage of this evolution is marked by
QUIC, a new TCP alternative that aims to surpass these
restrictions thanks to a more advanced design [2].

QUIC, a comparatively new protocol, solves and mit-
igates many of these problems, by integrating encryption,
multiplexing streams and establishing connections in a
more efficient manner. It is a user-space protocol, building
on the properties of UDP, with various congestion control
algorithms, that can detect packet loss across streams
without blocking. On top of QUIC, HTTP/3 was designed
as an efficient application layer protocol that aims to
replace and improve HTTP/1.1 and HTTP/2 with better
header compression and without head-of-line blocking [3].

However, when using QUIC in their application, de-
velopers may face challenges in finding a suitable imple-
mentation that fits their needs. Information about which li-
braries exist, what features they support and how standard-

compliant they are is scattered, scarce and often out of
date.

1.1. Adoption Landscape

Google, Cloudflare, Apple, Tencent and many more
each have their own QUIC implementations with varying
support for the different iterations and RFCs related to
QUIC [4], [5]. As a developer, finding the right library
or tool for your use case can therefore be quite hard, as
public information is scattered across different websites,
tables, repositories and documentations. Sometimes, the
information given about what an implementation supports
is quite scarce. Finding out what really is in the codebase
is challenging.

1.2. Scope of the paper

In this paper, we cover two implementations, tquic by
Tencent and neqo by Mozilla, which is used in firefox.
We use our newly developed tool, called rustviz, to dive
deeper into the codebase and find anomalies and features
regarding the implementations. Our findings will be added
to the QUIC explorer.

2. Background

QUIC is not a singular standard or RFC. Rather, it
is composed out of multiple RFCs, extensions, and drafts
that describe different parts and additions to the protocol.
For example, HTTP/3’s header compression with QPACK
is specified in a separate RFC from the underlying QUIC
protocol [6]. Some parts of the QUIC protocol itself (like
congestion control) are described by the RFC, yet their
concrete algorithm or implementation is not. Libraries can
evoke security and compatibility concerns, like the choice
of the TLS library used - which is a frequent target for
attacks [7] - or implementation correctness.

2.1. QUIC Explorer

There exist many different QUIC implementations
with different characteristics, maturity levels, and use
cases. Judging which one is right for a certain use case
can be a fairly complex problem. The QUIC Explorer
[4] provides a central repository that enables users to
filter QUIC implementations by feature and language and
provides them with a simple overview.

Seminar IITM SS 25 81 doi: 10.2313/NET-2025-11-3_16

2.2. C4 model

In this paper, we use the C4 modeling approach to ex-
amine the architecture of the libraries that are considered.
The C4 model defines four abstraction layers:

• the context in which a software system exists,
• the containers of which the aforementioned soft-

ware system is composed,
• the components of such a container, e.g. code

modules
• the actual code of the application [8] [9]

C4 helps to frame the context in which a library is be-
ing used, as well as the inner workings of the library itself.
Since we are examining the architecture of libraries — not
entire software systems — in this paper, the relevant layers
for this paper are the container layer and the component
layer. Modeling the actual code would mostly yield low-
level implementation details, which are not relevant for us.
Instead, small peeks into the codebase when necessary are
deemed adequate.

2.3. Encrypted Client Hello (ECH)

ECH is a mechanism to hide the site the user is
visiting. When a client connects to a server with TLS,
the Server Name Identification (SNI) as well as other TLS
extensions are unencrypted, allowing potential adversaries
to uncover which server the client is connecting to. ECH
uses a public key (most commonly from a DNS record)
to encrypt the SNI, therefore making it substantially more
difficult to reveal what web address a client is visiting
[10].Hence, it yields a considerable privacy benefit. The
main threat actors that this protocol protects against are
network observers and ISPs. It is however only effective
when multiple websites use the same ECH origin. If every
web origin/domain had its own ECH address, that address
would still uniquely identify a visitor.

QUIC does not create connections layered over a TLS
connection, but instead integrates it directly into the proto-
col. The initial handshake also establishes the encryption
as well as the data connection. Encrypted Client Hello
does not require a separate TLS layer to function. Instead,
the QUIC-TLS handshake (CRYPTO packets, see [11]) is
encrypted and wrapped in a so called ClientHelloOuter-
Message. This outer message contains a SNI that is
generic enough to be useless to an adversary. The receiv-
ing QUIC server decrypts this message, thus uncovering
the actual destination of the packet and redirecting the
stream.

2.4. Sans-I/O

The Rust package ecosystem is split into synchronous
(using the standard library and threads) and asynchronous
packages (using a third-party executor for the futures). The
choice of executor furthers this fragmentation, as every ex-
ecutor has a slightly different I/O interface. For example,
a library written for mio, Tokios I/O implementation is
not compatible with async-std, another async executor
[12].

To circumvent this issue, Rust libraries for protocols
typically resort to feature flags to allow for switching

executor. In other cases, they just pick one. Sans-I/O
libraries instead expose a set of handles that hook into I/O
for the caller to implement, like e.g. quiche by Cloudflare
[13]. Another advantage of this approach is that it future-
proofs the library to a certain extent and makes it easier
to use in all kinds of environments, like embedded or IoT
(Internet of Things) devices.

3. Design and Methodology

In order to not exceed the scope of the paper, go into
meaningful depth and be able to make a sensible compar-
ison, we chose the following two QUIC implementations:
neqo by Mozilla and tquic by Tencent.

3.0.1. neqo by Mozilla. neqo is Mozilla’s QUIC im-
plementation, written in the Rust programming language
[14]. Its primarily used in Firefox, tightly integrated as
a part of the greater — not to be confused by name —
Necko network stack [15]. In fact, neqo’s primary purpose
does not entail being used outside of the Firefox/Necko
ecosystem. It is not published on crates.io, the Rust pack-
age registry. As a result, neqo on its own has not seen
wider adoption beyond that scope. But, due to its use in
Firefox, which has around 155 million monthly active
users [16], we nonetheless consider it relevant to analyze.

3.0.2. tquic by Tencent. tquic is a performant QUIC
library developed by Tencent, also written in Rust. Its
primary use is in the Tencent cloud [17]. In contrast to
neqo, tquic is being developed as a standalone library that
can be integrated into various codebases and has also been
released as a crate on crates.io [18]. Since existing public
information on the library is sparse even though it is used
quite widely, it is the second library that we analyze.

3.1. Diagram Creation

Creating component-level diagrams by hand is tedious
and can be error-prone. It is easy to miss or misunderstand
a part of the codebase and create a wrong schematic. We
use a custom-made tool called rustviz1 to generate these
diagrams automatically. To reduce noise, our tool can filter
it’s output so that test suites and binaries can be omitted.

In addition, to showcase how the projects fit into the
greater scope of the technical landscape and how they are
used, we hand-create C4 diagrams on a container level.
In select cases the source code of the implementation is
examined as well.

3.2. Analyzed Features

Since our goal is to add our findings to the QUIC
Explorer, the key features we examine partially stem from
its list of features. Below is a list of the features that we
look for in this paper and why.

• Encrypted Client Hello Support, since it is not yet
part of the QUIC Explorer and relevant for privacy
requirements.

• TLS Library choice, since old, untested or wrong
crypto poses a huge threat to security.

1. github.com/leopoldlabs/rustviz

Seminar IITM SS 25 82 doi: 10.2313/NET-2025-11-3_16

Figure 1: container view of neqos usage in Firefox

4. Implementation

rustviz can operate on two abstraction layers of a
Rust project. It is able to infer the dependencies between
different crates in a cargo workspace by parsing and
discovering the corresponding Cargo.toml files. From
this workspace, an internal graph is built. Also, it can
visualize the relationships between different modules, so
it tracks which module imports which. This is done by
generating documentation for a given crate with rustdoc.
This documentation is then parsed and traversed with a
breadth-first search in order to build a simplified module
graph. In both cases, this Graph can then be output in tex-
tual form as C4-Diagrams or GraphViz-Diagrams. These
can then be viewed with the MermaidJS Diagram Viewer
or a GraphViz visualizer. Unnecessary modules can be
omitted with the --filter option. This process uncovers
architectural patterns and gives an easy overview of how
the codebase is structured, making it easier to uncover
support for different RFCs and standards. This provides
a good entry point for exploring the codebase. The inter-
actions between the various components of the codebase
also unveil insights into its modularity and extensibility.

5. Evaluation

5.1. neqo

neqo’s unique place in the Firefox codebase means
that it depends on packages that are fairly unusual for
the Rust ecosystem. Figure 1 shows that if the browser
wants to establish a QUIC connection, Necko calls neqo
via cbindgen. The sockets are handled by NSPR, a library
that provides a cross-platform abstraction for sockets, files
and other primitives [15], [14]. It does not implement I/O
itself.

As visible in Figure 1, neqo uses the NSS (Network
Security Services) library for cryptographic operations, the
well-maintained library that is also used elsewhere in Fire-
fox. It does so with C bindings, generated by cbindgen.

Figure 2: the individual crates that make up the
neqo library. generated with rustviz --filter
fuzz,test-fixture,neqo-bin, visualized with graphviz

Since there is no significant abstraction layer over NSS,
swapping out the cryptography library is not easy in
neqo and would require drastic code changes. neqo’s NSS
dependency and lack of publicly available crate makes it
harder to integrate into regular Rust projects, as the build
process becomes more complicated. NSS and NSPR are
external C/C++ dynamic libraries [19] that are often out of
date on older distributions. Consumers of neqo can build
their own version of the NSS and NSPR. This process is
outlined in the neqo documentation [14].

Digging deeper, Figure 2 shows the internal struc-
ture of the library and how different features are com-
partmentalized into various crates. Common abstractions,
utilities and other shared pieces of code, that are used
throughout the library, such as QLOG support, are inside
neqo_common. On the other hand, higher-level abstractions
of QUIC such as streams, network methods and UDP data-
gram parsing are all concentrated inside neqo_transport.

In order to provide the necessary cryptographic prim-
itives for QUIC and to interface with the cryptographic
library NSS, neqo provides C bindings. The definitions
for these bindings are defined in neqo_crypto. HTTP/3
support can be layered on top using neqo_http3, which
uses the QPACK decoder and encoder from the separate
neqo_qpack crate. neqo has full support for client-side
HTTP/3 and experimental support for server-side HTTP/3,
which is not meant for production use but rather client-
code testing [14, neqo-http3/src/lib.rs:21-23]. Taking a
closer look at the neqo_transport crate reveals that neqo
has support for ECH. The Connection struct contains
methods to enable ECH on the server and client side
respectively, as well as methods to retrieve the current
ECH configuration of the connection.

5.2. tquic

tquic is being developed for general usage in Rust
projects on the server side and is also a sans-io QUIC

Seminar IITM SS 25 83 doi: 10.2313/NET-2025-11-3_16

library [17]. In contrast to neqo, it is not divided into
different crates with different functionalities, instead it
is only organized with Rust modules. It hooks itself
into a server (or client) as a user space library. When
a connection reaches a server, the kernel of the server
forwards those UDP packets to the respective web server.
The web server then calls the delegated handlers provided
by tquic, so that the task of parsing them and handling the
connection is delegated from the main program to tquic,
the library. Just like neqo, tquic also contains an HTTP/3
and a QPACK implementation, but they are hidden behind
the h3 feature flag and contained inside of the h3 module.
We are going to update this feature on the QUIC Explorer
for both.

tquic uses Google’s BoringSSL, a mature crypto li-
brary forked from openSSL that is also used in Google
Chrome. It does so in conjunction with the ring crate,
which has been explicitly marked as an experiment in it’s
README [20]. Presumably this was done to protect the
author of any liability. Yet, the seeming risk of this de-
pendency is unfortunately not mentioned anywhere in the
tquic docs. tquic is not presented as experiment either. An
explanation would be sensible and helpful in this context.
It does not contain an ECH configuration. There is no
mention of it in the codebase and official documentation.

6. Conclusion and future work

Both tquic and neqo are solid, architecturally sound
choices when picking a QUIC library and they will stay
so for the foreseeable future due to their large supporters.

Due to the QUIC specification and extensions being so
expansive, the number of elements to consider when pick-
ing a QUIC library is substantial. Finding out the extent
of what RFC and feature is actually implemented remains
a tedious task. While the QUIC Explorer mostly mitigates
this and provides a nice overview, it still needs to be
kept up-to-date and expanded as well. Library developers
should put more emphasis on compatibility documentation
and provide more usage examples.

6.1. Future outlook

Code comments and docs can state that a feature is
supported, but whether it is implemented lacklusterly or
properly can hardly be inferred from that.

6.1.1. Spec compliance. An example for this kind of
testing is the QUIC tests developed by Microsoft for their
protocol testing language, Ivy. The tests can verify that a
implementation is spec compliant.

The tquic developers claim to have used these tests for
their library, however their test environment and test har-
ness version were not published. Ivy itself is unmaintained
[21], just like the tests that were published for QUIC
within the ivy repository. Not only would the language
require updates, the tests would also have to be rewritten
in order to be compliant with the RFC, not just the old
drafts.

6.1.2. Automated Testing. New versions of libraries can
potentially create unintended regressions. While both neqo
and tquic come with Unit tests, full integration tests,

potentially using ivy have the potential to catch more
errors. A public dashboard could show the percentage
of passing tests, and how the resulting spec compliance
evolves over time.

6.1.3. Better generation of C4 Diagrams. This is regard-
ing the generation of code-level diagrams that showcase
the relationships between functions, structs, traits, etc.
This is presumably also useful in a broader scope than
QUIC library analysis, for example as an educational help
for Rust learners and teachers.

7. Related Work

There are a few similar tools to rustviz.

• cargo tree in the Rust Toolchain outputs a tree
visualization of a crate’s dependency graph [22].

• cargo-modules, a separate tool, shows a tree
overview of a crate’s modules [23].

References

[1] M. contributors, “Head-of-line blocking - Glossary,” 2025, [Online;
accessed 11-Aug-2025]. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Glossary/Head_of_line_blocking

[2] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

[3] G. Perna, M. Trevisan, D. Giordano, and I. Drago, “A first look
at http/3 adoption and performance,” Computer Communications,
vol. 187, pp. 115–124, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0140366422000421

[4] M. Kempf, “QUIC Explorer,” https://quic-explorer.net, accessed:
2025-08-12 (Commit 105a3a4). [Online]. Available: https://
quic-explorer.net

[5] I. Q. W. Group, “implementations.md - quic working group.”
[Online]. Available: https://github.com/quicwg/quicwg.github.io/
blob/main/implementations.md

[6] C. B. Krasic, M. Bishop, and A. Frindell, “QPACK: Field
Compression for HTTP/3,” RFC 9204, Jun. 2022. [Online].
Available: https://www.rfc-editor.org/info/rfc9204

[7] “Vulnerabilites - OpenSSL,” 2025, [Onlin,e accessed 12-
Aug-2025]. [Online]. Available: https://openssl-library.org/news/
vulnerabilities/index.html

[8] S. Brown, “The C4 Model for Software Architecture,” 2018,
[Online; accessed 21-June-2025]. [Online]. Available: https:
//www.infoq.com/articles/C4-architecture-model/

[9] ——, “The C4 model for visualising software architecture,”
2019, [Online; accessed 21-June-2025]. [Online]. Available:
https://c4model.com/

[10] E. Rescorla, K. Oku, N. Sullivan, and C. A. Wood, “TLS Encrypted
Client Hello,” Internet Engineering Task Force, Internet-Draft
draft-ietf-tls-esni-25, Jun. 2025, work in Progress. [Online].
Available: https://datatracker.ietf.org/doc/draft-ietf-tls-esni/25/

[11] M. Thomson and S. Turner, “Using TLS to Secure QUIC,” RFC
9001, May 2021. [Online]. Available: https://www.rfc-editor.org/
info/rfc9001

[12] M. Endler, “The State of Async Rust,” 2025, [Online; accessed
20-Aug-2025]. [Online]. Available: https://corrode.dev/blog/async/

[13] A. G. (Cloudflare), “Enjoy a slice of QUIC, and Rust!”
2019, [Online; accessed 21-June-2025]. [Online]. Available:
https://blog.cloudflare.com/enjoy-a-slice-of-quic-and-rust/

[14] Mozilla, “Neqo, the Mozilla Firefox implementation of QUIC in
Rust,” 2025, [Online; accessed 21-June-2025]. [Online]. Available:
https://github.com/mozilla/neqo/tree/main

Seminar IITM SS 25 84 doi: 10.2313/NET-2025-11-3_16

[15] ——, “Firefox Source Docs,” 2025, [Online; accessed 15-Aug-
2025]. [Online]. Available: https://firefox-source-docs.mozilla.org/
networking/http/http3.html

[16] ——, “Firefox User Activity Dashboard,” 2025, [Online;
accessed 15-Aug-2025]. [Online]. Available: https://data.firefox.
com/dashboard/user-activity

[17] Tencent, “tquic Documentation,” 2025, [Online; accessed 15-Aug-
2025]. [Online]. Available: https://tquic.net/docs/intro/

[18] “tquic - Crates.io,” 2025, [Online; accessed 15-Aug-2025].
[Online]. Available: https://crates.io/crates/tquic

[19] “nspr: Summary - Mozilla Mercurial,” 2025, [Online; accessed
21-June-2025]. [Online]. Available: https://hg-edge.mozilla.org/
projects/nspr

[20] B. Smith, “ring,” 2025, [Online; accessed 21-June-2025]. [Online].
Available: https://github.com/briansmith/ring

[21] Microsoft, “IVy is a research tool intended to allow interactive
development of protocols and their proofs of correctness and
to provide a platform for developing and experimenting with
automated proof techniques.” 2020, [Online; accessed 21-June-
2025]. [Online]. Available: https://github.com/microsoft/ivy

[22] “cargo-tree(1),” 2025, [Online; accessed 24-Aug-2025].
[Online]. Available: https://doc.rust-lang.org/cargo/commands/
cargo-tree.html

[23] regexident, “cargo-modules,” 2025, [Online; accessed 24-
Aug-2025]. [Online]. Available: https://github.com/regexident/
cargo-modules

Seminar IITM SS 25 85 doi: 10.2313/NET-2025-11-3_16

Seminar IITM SS 25 86

Autoencoder-Based Anomaly Detection in Networks

Yavuzalp Kaplan, Johannes Späth∗, Max Helm∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: yavuzalp.kaplan@tum.de, spaethj@net.in.tum.de, helm@net.in.tum.de

Abstract—Modern computer networks produce large
amounts of traffic, and unusual patterns in this traffic
can signal failures, misconfigurations, or security threats.
Autoencoders are used for anomaly detection, as they cap-
ture normal patterns and identify anomalies through re-
construction error. In this paper, we review the use of
autoencoder-based models for network anomaly detection.
We discuss preprocessing techniques, loss functions, and
hyperparameters, and we summarize experimental results
from previous studies on datasets such as NSL-KDD, UNSW-
NB15, KDDCUP’99, and InSDN. The results show that while
autoencoders achieve promising detection performance, out-
comes vary depending on the dataset and parameter choices.

Index Terms—Autoencoder, Anomaly Detection, Preprocess-
ing, Activation Functions, Loss Functions

1. Introduction

In October 2016, a large Distributed Denial of Ser-
vice (DDoS) attack caused major problems across the
internet [1]. Websites like Twitter, Netflix, Reddit and
many others became unreachable for several hours. The
attack was executed using a botnet called Mirai, which
had infected many Internet of Things (IoT) devices such
as digital cameras and DVR players. These devices, which
normally send very little traffic, began to generate large
amounts of repeated Domain Name System (DNS) re-
quests to Dyn, a major DNS provider. Traditional intrusion
detection systems (IDS), which usually detect known at-
tack patterns, failed to notice the early signs of this attack
because the traffic did not match any known signatures.
But this kind of abnormal network behavior, especially
many quiet devices sending a lot of similar traffic at the
same time, could have been detected earlier using machine
learning methods like autoencoders.

Attacks like the Mirai botnet show that network se-
curity is becoming more important. Today, cyberattacks
happen more often and are harder to detect [2]. Attacks
such as DoS, port scans, data theft can cause serious
damage, e. g., by disrupting critical services, mapping net-
work vulnerabilities, or exfiltrating sensitive information.
Traditional IDS methods use signatures to compare traffic
to known attack types. This helps with known threats, but
it does not work well for new or unknown attacks, which
are called zero-day attacks [3].

Anomaly detection offers a different approach. Instead
of relying on predefined attack signatures, it tries to find

unusual behavior in the network. This makes it useful for
detecting new and unknown threats.

In this paper, we explain how autoencoders can be
used for network anomaly detection. We describe the
preprocessing steps, how the autoencoder model works
and how reconstruction loss helps to detect anomalies. We
also discuss the types of attacks that autoencoder-based
models can find and look at results from previous studies.

2. Background

Autoencoders are a type of neural network that are
used for anomaly detection. They work by learning normal
patterns in the data. An autoencoder has three parts: an
encoder, which compresses the input into a smaller repre-
sentation, a latent space that stores this compressed form
and a decoder, which reconstructs the original data from it.
The model is trained to minimize the difference between
the input and the output. If the model sees something
very different from what it has learned, the difference,
or reconstruction loss, becomes larger, which signals a
possible anomaly.

However, network data often contains different types
of features. Some are strings, like protocol_type and
flag, while others are numbers, like src_bytes and
dst_bytes. Some are binary, like is_guest_login.
These different types of data cannot be used directly in
an autoencoder. Preprocessing steps are needed to convert
them into numbers. One common method is One-Hot-
Encoding, which turns categorical features into binary
vectors. Datasets like KDDCUP’99 and NSL-KDD pro-
vide examples of such features and are often used in
network anomaly detection research [4].

Several previous studies [3], [5]–[14] have applied
autoencoder-based models to network anomaly detection
tasks, using public datasets such as NSL-KDD, KDD-
CUP’99, UNSW-NB15, InSDN, etc. These works show
that autoencoders can successfully detect a variety of
attacks, including DoS, Probe, R2L, U2R, Backdoors,
Exploits, Fuzzers and more. However, the performance of
these models depends on many factors, such as the choice
of hyperparameters, the preprocessing techniques and the
characteristics of the dataset [15].

3. Autoencoders

An autoencoder is a type of machine learning model
based on a neural network architecture. Its main goal is
to reconstruct given input. It is a structure that learns to

Seminar IITM SS 25 87 doi: 10.2313/NET-2025-11-3_17

compress the input data into a lower-dimensional space,
and then learns to make as faithful an approximation of
the input data as possible from this compressed representa-
tion. In the process, the model learns the key features and
patterns of the data, filtering out unnecessary information
and noise.

The structure of an autoencoder usually consists of
three main parts: encoder, latent space and decoder. The
encoder part takes the input data such as an image, an
audio file or a network connection log and transforms
it into a smaller and denser representation, the latent
space, also known as bottleneck. This latent space is a
compressed and informative representation of the input
data. The decoder takes the compressed representation
and tries again to produce a prediction of the original
input data. Figure 1 illustrates the simple architecture of
an autoencoder, including the encoder, latent space and
decoder components [16].

Figure 1: Simple Autoencoder Architecture

3.1. Learning Techniques

Within the concept of machine learning, there are
different learning techniques. These are divided into su-
pervised, semi-supervised and unsupervised learning. Su-
pervised learning is a type of learning where each input
data has a corresponding label. The model learns the
relationship between the input data and the label, and aims
to predict the label for new data. Semi-supervised learning
is an approach that combines labeled and unlabeled data
to improve learning accuracy when labeled data is scarce.

However, these methods fail to detect zero-day attacks
that can occur daily in networks [3]. For this reason, an
unsupervised learning technique is applied to the autoen-
coder for anomaly detection in networks. In this technique,
the input data is not labeled, but is learned from the data
itself. The model tries to discover patterns, relationships,
groupings or hidden structures in the data. Since there are
no labels, the model learns entirely from the distribution
of the data and tries to discover normal and abnormal
states or clusters within the data.

3.2. Activation Functions, Encoder and Decoder

Activation functions enable the network to build a
nonlinear structure and help it learn complex data pat-
terns. Which activation function is used for encoding and
decoding the data directly affects the success and the
performance of the model. Therefore, this function, which
determines what and how the model learns, should be

carefully selected before training [15]. If the activation
function is not chosen correctly, the model may struggle
to learn complex relationships and may not produce the
expected results. Commonly used activation functions are
sigmoid, tanh, rectified linear unit (ReLU), and scaled
exponential linear unit (SELU), which are defined in
Eq. (1) – (4).

σ(x) =
1

1 + e−x
(1)

tanh(x) =
ex − e−x

ex + e−x
(2)

ReLU(x) = max(0, x) (3)

SELU(x)

{
λx if x > 0

λα(ex − 1) if x ≤ 0
(4)

We will now focus on how the encoder and decoder
work with activation functions. An encoder is a neural
network that compresses the input data into a lower-
dimensional latent space, i. e., it maps a high-dimensional
input vector X into a smaller latent vector Z.

Z = σ(WX + b) (5)

Here, Z is the compressed representation in latent
space, σ is the activation function, W is the weight matrix
and b is the bias vector. From this latent representation
produced by the encoder, the decoder tries to produce a
prediction of the input data. The goal is to output X̂ as
close as possible to the input X [5].

X̂ = σ(W ′Z + b′) (6)

4. Anomaly Detection

As discussed in Section 3, the main purpose of au-
toencoders is to compress the input data into a smaller
latent space and then reconstruct the original data from
this representation. In this process, the success of the
model is measured by the similarity between the input
data and the reconstructed data. One of the most common
methods used to measure this similarity is reconstruction
loss [15].

4.1. Loss Functions

Reconstruction loss is a numerical measure of how
accurately the model can reproduce a data given as input.
Functions such as Mean Squared Error (MSE) or Binary
Cross-Entropy (BCE) are usually preferred [15]. MSE is a
common choice, especially when working with numerical
data. MSE takes the average of the squares of the differ-
ences between the input and model output and is defined
as follows:

LMSE(X, X̂) =
1

n

n∑

i=1

(Xi − X̂i)
2 (7)

Where n is the number of features, Xi is the i-th
feature in the original input and X̂i is the i-th feature in the

Seminar IITM SS 25 88 doi: 10.2313/NET-2025-11-3_17

reconstruction output. Alternatively the BCE loss function
can also be applied. This function, which is used when the
input data is binary (0 or 1), calculates the binary cross-
entropy loss difference between the expected and actual
output.

LBCE(X, X̂) =

− 1

n

n∑

i=1

(
Xi · log(X̂i) + (1−Xi) · log(1− X̂i)

)
(8)

The loss function should be chosen carefully so that
the model can learn correctly. A loss function that is not
appropriate for the data type or the problem can negatively
affect the model’s learning process and cause inaccurate
results. For example, using BCE loss in numerical data
can lead to the model’s outputs being stuck in a wrong
range. Hence, the loss function must match the data type
and the model’s purpose.

4.2. Preprocessing

Network logs often contain various types of features,
such as protocol_type, src_bytes, dst_bytes, flag,
is_guest_login, num_access_files etc. Public datasets
like KDDCUP’99, NSL-KDD, UNSW-NB15 include such
examples [4]. However, these raw data features cannot be
directly fed into an autoencoder model, because some of
them are strings like protocol_type, some are numeric
like src_bytes, some are binary like is_guest_login.
Autoencoders only use numerical data for training and
testing [17]. To make them suitable for training, a pre-
processing step is necessary. One common approach is
to use One-Hot-Encoding, which converts categorical and
string-based features into numerical vectors. This process
transforms all data into a fully numerical format, allowing
the autoencoder to process the input effectively.

For example, the feature protocol_type has three
distinct attributes: tcp, udp and icmp, each of which is
encoded into a three-dimensional binary vector, such as
[1,0,0], [0,1,0] and [0,0,1], respectively. In other words,
the single feature protocol_type is encoded into three
features by one-hot-encoding [6].

After preprocessing, the original data is transformed
into a fully numerical vector. A simplified example of
such a vector is shown in (9).

x = [0.0, 1.0, 0.78, 0.54, 0.12, 0.0, 1.0, 0.33, . . .] (9)

4.3. Security

Anomaly detection models are important tools for
protecting computer networks. They find unusual activ-
ities that are different from normal network behaviour.
Autoencoder-based models are especially useful because
they learn what normal traffic looks like and detect any-
thing that seems unusual, even if the attack is new or
unknown. Unlike signature-based systems, they do not
need labeled attack data and can work without knowing
the exact type of attack in advance.

These models detect many different kinds of network
attacks by checking how much a new traffic pattern differs
from what was learned during training. The most common

attack types that anomaly detection systems aim to protect
against include Denial of Service (DoS), Probe, Remote to
Local (R2L), User to Root (U2R), Backdoors, Exploits,
Fuzzers, Generic, Portscans, Reconnaissance, Shellcode,
and Worms [18].

Autoencoder-based models detect these attacks by
spotting patterns that do not match normal traffic, helping
to protect networks from a variety of threats. The NSL-
KDD and KDDCUP’99 datasets are commonly used in
tests for detecting DoS, Probe, R2L and U2R attacks,
while the UNSW-NB15 dataset is used to evaluate mod-
els against attacks such as Backdoors, DoS, Exploits,
Fuzzers, Generic, Portscans, Reconnaissance, Shellcode
and Worms [18].

5. Evaluation

Evaluating the performance of an anomaly detection
system is essential to understand how efficiently it can
detect unusual patterns in network traffic. This section
introduces the commonly used performance metrics in
anomaly detection and discusses the factors that affect
model performance, such as the choice of loss function,
network architecture, and training settings.

5.1. Evaluation Metrics

To evaluate the performance of autoencoder-based
anomaly detection models, four common metrics are used:
precison, recall, f1-score, and accuracy. These metrics are
computed from four basic measures, true positive (TP),
false positive (FP), true negative (TN), false negative (FN):

• TP, defined as the number of anomalies correctly
identified as anomalies.

• FP, referring to the number of normal samples
incorrectly identified as anomalies.

• TN, defined as the number of normal samples
correctly identified as normal.

• FN, referring to the number of anomalies incor-
rectly identified as normal.

The metrics for performance measurement in anomaly
detection systems are as follows:

Precision: Indicates the proportion of samples pre-
dicted as anomalies that are actually anomalies.

Precision =
TP

TP + FP
(10)

Recall (Sensitivity): Measures the proportion of ac-
tual anomalies correctly identified by the model.

Recall =
TP

TP + FN
(11)

F1-Score: The harmonic mean of Precision and Re-
call.

F1 = 2 · Precision · Recall
Precision + Recall

(12)

Accuracy: The overall correct prediction rate of the
model.

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Seminar IITM SS 25 89 doi: 10.2313/NET-2025-11-3_17

5.2. Hyperparameters

The performance of autoencoder-based anomaly de-
tection systems depends on various factors and hyperpa-
rameters [15], including:

• Number of hidden layers: More layers can cap-
ture complex patterns but may also lead to overfit-
ting, where the model memorizes the training data
and fails to generalize.

• Number of neurons per layer: Controls the
model’s ability to learn patterns; more neurons
improve learning but increase computational cost.

• Size of the latent space: A smaller space forces
stronger compression and may help anomaly de-
tection, but too small a space can cause informa-
tion loss.

• Activation function: The choice of activation
functions affects the model’s ability to capture
nonlinear relationships.

• Loss function: Defines the optimization target;
MSE and BCE are the most common choices.

• Learning rate: Sets the update step size; high
rates can cause instability, while low rates may
slow convergence.

• Number of epochs: The number of training cy-
cles; too few may lead underfitting, where the
model fails to capture patterns in the data, while
too many may result in overfitting.

• Batch size: Number of samples used per training
step; large batches provide more stable updates,
while small batches add variability but may im-
prove generalization.

These hyperparameters must be carefully tuned to bal-
ance model complexity, training efficiency and detection
performance.

5.3. Experimental Results

Anomaly detection tasks have been extensively studied
in the literature, and several works have demonstrated
the potential of autoencoder-based models in identifying
anomalous network traffic. This section provides a sum-
mary of experimental results reported in previous studies,
highlighting the performance of autoencoder architectures
across different datasets and metrics.

Table 1 summarizes the results on the NSL-KDD
dataset. Study [3] tested a memory-augmented deep au-
toencoder (MemAE) to improve anomaly detection by
using a memory mechanism. Study [7] applied a sparse
autoencoder to learn sparse features for better detection.
Study [6] chose the Mean Absolute Error (MAE) as loss
function for better performance, while Study [8] tested a
denoising autoencoder (DAE) to make the model more
robust to noise. Additionally, Study [9] applied a Fully
Connected Network (FCN) and a Shallow Long Short-
Term Memory network (SLSTM), achieving strong results
in terms of precision and recall.

Table 2 covers the UNSW-NB15 dataset. Study [3]
tested MemAE again on this dataset. Additionally,
Study [10] used an autoencoder for different attack-
ing scenarios such as DoS, Backdoors, Shellcode, etc.
Study [11] evaluated other machine learning models on

this dataset, including Decision Tree (DT), K-Nearest
Neighbours (KNN), Naïve Bayes (NB), and Random For-
est (RF). Furthermore, Study [12] explored the use of
more complex models such as Stacked Sparse Autoen-
coder (SSAE), Variational LSTM (VLSTM), and CNN-
LSTM, highlighting the diversity of approaches in han-
dling anomaly detection tasks.

Table 3 presents results for the KDDCUP dataset. For
example, Study [13] used an autoencoder model on this
dataset. Study [14] used the Deep Autoencoding Gaussian
Mixture Model (DAGMM) on the same dataset, combin-
ing clustering and autoencoder reconstruction errors to
detect anomalies.

Table 4 shows results on the InSDN dataset. Study [5]
applied both a One-Class Support Vector Machine (OC-
SVM) and a Long Short Term Memory autoencoder
(LSTM) on this dataset.

TABLE 1: Evaluation Metrics on NSL-KDD Dataset

Model Accuracy Precision Recall F1-Score
MemAE [3] 0.8951 0.9062 0.8951 0.8993

Sparse AE [7] 0.8839 0.8544 0.9595 0.904

AE [6] 0.9061 0.8683 0.9843 0.9226

AE [8] 0.8828 0.9123 0.8786 0.8951

DAE [8] 0.8865 0.9648 0.8308 0.8928

FCN [9] - 0.997 0.874 0.931

SLSTM [9] - 0.983 0.996 0.99

TABLE 2: Evaluation Metrics on UNSW-NB15 Dataset

Model Accuracy Precision Recall F1-Score
MemAE [3] 0.853 0.8774 0.853 0.8526

AE [10] 0.9516 - - -

DT [11] 0.8455 0.864 0.846 0.8549

KNN [11] 0.8449 0.855 0.845 0.85

NB [11] 0.7639 0.782 0.764 0.7729

RF [11] 0.8363 0.869 0.836 0.8522

SSAE [12] - 0.731 0.963 0.832

VLSTM [12] - 0.86 0.978 0.907
CNN-LSTM [12] - 0.801 0.956 0.872

TABLE 3: Evaluation Metrics on KDDCUP Dataset

Model Accuracy Precision Recall F1-Score
AE [13] 0.9282 0.9236 0.9923 0.96

DAGMM [14] - 0.9297 0.9442 0.9369

TABLE 4: Evaluation Metrics on InSDN Dataset

Model Accuracy Precision Recall F1-Score
OC-SVM [5] 0.875 0.89 0.93 0.91

LSTM [5] 0.905 0.93 0.93 0.93

6. Conclusion and Future Work

Autoencoder-based models are a useful tool for de-
tecting anomalies in network traffic by learning normal
patterns and identifying unusual data points. These models
can help identify various types of attacks, including both

Seminar IITM SS 25 90 doi: 10.2313/NET-2025-11-3_17

known and unknown threats. However, the performance of
an autoencoder model depends on careful preprocessing,
the choice of loss function, and tuning of hyperparameters.

The experimental results summarized in Tables 1 – 4
show that no single autoencoder-based model consistently
outperforms others across all datasets and metrics. For
example, on the NSL-KDD dataset, FCN achieved the
best precision, while SLSTM reached the highest recall.
On UNSW-NB15, MemAE achieved the highest precision,
but VLSTM provided the strongest recall. For KDDCUP,
AE and DAGMM both delivered strong results, with AE
performing better in recall and DAGMM achieving the
highest precision. On the InSDN dataset, LSTM clearly
outperformed OC-SVM across all metrics. These findings
suggest that the dataset and selected hyperparameters play
a major role in determining which model performs best.

While existing studies show promising results, further
research is needed to optimize models for real world
network environments and large scale data. Future work
should focus on making these models more scalable, more
robust, and easier to deploy in practice.

References

[1] N. Woolf, “DDoS Attack That Disrupted Internet Was Largest of
Its Kind in History, Experts Say,” https://www.theguardian.com/
technology/2016/oct/26/ddos-attack-dyn-mirai-botnet, 2016, [On-
line; accessed 18-Jun-2025].

[2] J. Martin, “Cybersecurity Statistics: IoT, DDoS, and Other
Attacks,” https://explodingtopics.com/blog/cybersecurity-stats#
iot-ddos-and-other-attacks, 2025, [Online; accessed 19-Aug-2025].

[3] B. Min, Y. Jihoon, S. Kim, D. Shin, and D. Shin, “Network
Anomaly Detection Using Memory-Augmented Deep Autoen-
coder,” IEEE Access, vol. PP, pp. 1–1, 07 2021.

[4] M. S. Yadav and R. Kalpana, “Data Preprocessing for Intrusion De-
tection System Using Encoding and Normalization Approaches,”
in 2019 11th International Conference on Advanced Computing
(ICoAC), 2019, pp. 265–269.

[5] M. S. Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut, “Network
Anomaly Detection Using LSTM Based Autoencoder,” in Proc.
16th ACM International Symposium on QoS and Security for
Wireless and Mobile Networks (Q2SWinet), Alicante, Spain, 2020,
pp. 37–45.

[6] W. Xu, J. Jang-Jaccard, A. Singh, Y. Wei, and F. Sabrina, “Im-
proving Performance of Autoencoder-Based Network Anomaly
Detection on NSL-KDD Dataset,” IEEE Access, vol. PP, pp. 1–
1, 2021.

[7] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A Deep Learning
Approach for Network Intrusion Detection System,” EAI Endorsed
Transactions on Security and Safety, vol. 3, no. 9, 2016.

[8] R. C. Aygun and A. G. Yavuz, “Network Anomaly Detection
with Stochastically Improved Autoencoder Based Models,” in 2017
IEEE 4th International Conference on Cyber Security and Cloud
Computing (CSCloud), 2017, pp. 193–198.

[9] R. K. Malaiya, D. Kwon, J. Kim, S. C. Suh, H. Kim, and I. Kim,
“An Empirical Evaluation of Deep Learning for Network Anomaly
Detection,” in 2018 International Conference on Computing, Net-
working and Communications (ICNC), 2018, pp. 893–898.

[10] L. Ashiku and C. Dagli, “Network Intrusion Detection System
using Deep Learning,” Procedia Computer Science, vol. 185, pp.
239–247, 2021, big Data, IoT, and AI for a Smarter Future.

[11] F. A. Khan and A. Gumaei, “A Comparative Study of Machine
Learning Classifiers for Network Intrusion Detection,” in Artificial
Intelligence and Security, X. Sun, Z. Pan, and E. Bertino, Eds.
Cham: Springer International Publishing, 2019, pp. 75–86.

[12] X. Zhou, Y. Hu, W. Liang, J. Ma, and Q. Jin, “Variational LSTM
Enhanced Anomaly Detection for Industrial Big Data,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 5, pp. 3469–
3477, 2021.

[13] M. Ahmed, A. N. Mahmood, and J. Hu, “A Survey of Network
Anomaly Detection Techniques,” Journal of Network and Com-
puter Applications, vol. 60, pp. 19–31, 2016.

[14] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho,
and H. Chen, “Deep Autoencoding Gaussian Mixture Model for
Unsupervised Anomaly Detection,” in International Conference on
Learning Representations, 2018.

[15] K. Berahmand, F. Daneshfar, E. S. Salehi, and et al., “Autoencoders
and their applications in machine learning: a survey,” Artificial
Intelligence Review, vol. 57, no. 28, 2024.

[16] IBM, “Variational Autoencoder,” https://www.ibm.com/de-de/
think/topics/variational-autoencoder, 2024, [Online; accessed 26-
May-2025].

[17] H. Torabi, S. Mirtaheri, and S. Greco, “Practical Autoencoder-
Based Anomaly Detection by Using Vector Reconstruction Error,”
Cybersecurity, vol. 6, 2023.

[18] Z. Ahmad, A. S. Khan, C. W. Shiang, J. Abdullah, and F. Ahmad,
“Network Intrusion Detection System: A Systematic Study of
Machine Learning and Deep Learning Approaches,” Transactions
on Emerging Telecommunications Technologies, vol. 32, no. 1, p.
e4150, 2021.

Seminar IITM SS 25 91 doi: 10.2313/NET-2025-11-3_17

Seminar IITM SS 25 92

Blockchain Governance and Tokenomics

Vadym Khyzhniak, Holger Kinkelin∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: vadym.khyzhniak@tum.de, kinkelin@net.in.tum.de

Abstract—Resource sharing among distributed research
testbeds demands contribution rewards, transparent mem-
bership, and fair use of hardware. We propose a dual-token
Decentralized Autonomous Organization (DAO) on Algorand
— “cash” Payment Tokens for real-time resource payments
and “prepaid” Governance Tokens for contribution-based
voting. We define initial issuance, token lifecycles, and two
core workflows (new-member onboarding and monthly dis-
tributions tied to usage) and add safeguards to prevent pool
depletion and abuse. Our framework focuses on tokenomics
and offers a simple, automated solution for equitable testbed
coordination.

Index Terms—DAO, Algorand, tokenomics, payment tokens,
governance tokens, resource sharing, testbed coordination

1. Introduction

Resource sharing across multiple research testbeds
poses specific challenges: how to reward contributions,
ensure fair access to hardware, and make membership
decisions in an optimal, transparent way. A Decentral-
ized Autonomous Organization (DAO) built on Algorand
can address these challenges by encoding payment and
governance rules directly in on-chain logic.

1.1. Goal

This paper examines the tokenomics of a DAO that
coordinates resource sharing among distributed research
testbeds. By leveraging Algorand Standard Assets (ASA),
the DAO issues two token types (proposed by us):

• Payment Tokens, used to "book" specialized
hardware resources (GPU clusters, 6G testbeds,
etc.),

• Governance Tokens, used to vote on membership
and parameter changes.

Our objectives are to:

• Define the roles and lifecycle of each token type.
• Describe the initial minting and allocation to

founding sites and the seeding of on-chain pools.
• Explain how those pools function under "cash"

versus "prepaid" models.
• Analyze critical corner cases — such as empty

pools and inactive token holders.
• Identify open questions and recommendations for

sustainable operation.

1.2. Outline

The paper is structured as follows:

• Section 2 presents a concise overview of the DAO
testbed scenario and defines the key concepts and
terminology (DAO, governance processes, Algo-
rand smart contracts, ASA).

• Section 3 analyzes our dual-token model (Pay-
ment & Governance), details initial issuance and
ongoing token flows, including member admission
workflows, and addresses critical corner-case pro-
tections.

• Section 4 discusses remaining open questions and
directions for future work, such as parameter tun-
ing, cycle lengths, and replenishing mechanisms.

• Section 5 concludes with the main takeaways and
an outlook on prototyping.

Following this structure, the paper systematically de-
velops the tokenomics framework and demonstrates its
practical applicability to the research testbed ecosystem.

2. Background and Definitions

In order to design a robust tokenomics framework, we
first explain the core concepts and terminology that form
our DAO model. We focus on DAOs, their governance
processes, the Algorand platform’s smart contract capa-
bilities, and the role of ASA.

2.1. What is a DAO?

A Decentralized Autonomous Organization (DAO) en-
codes its rules in on-chain smart contracts, automating
proposals, fund management, and membership without
centralized boards [1].

2.2. Governance

Governance in a DAO typically follows three
stages [2]:

1) Proposal Creation (Off-Chain & On-Chain):
Members come up with and discuss proposals
off-chain (e. g. forums or meetings), A finalized
proposal is then submitted on-chain, registering
its details in the governance contract.

2) Voting: Token holders lock (or stake) their GTs
to cast votes for or against the proposal within

Seminar IITM SS 25 93 doi: 10.2313/NET-2025-11-3_18

a predefined period. Vote weight can be propor-
tional to holdings or adjusted by other rules.

3) Execution: After voting closes, if the quorum
and approval thresholds are met, a smart contract
automatically carries out the decision implemen-
tation, such as minting new tokens, transferring
assets, or updating the system’s parameters.

Such a hybrid off-/on-chain model balances the orga-
nization’s low-cost coordination with transparency.

2.3. Algorand and Smart Contracts

Algorand is a public blockchain that uses a pure
proof-of-stake (PPoS) consensus mechanism to achieve
fast finality and low transaction fees. Its design prioritizes
scalability and energy efficiency, making it suitable for
high-frequency micro-transactions such as resource pay-
ments in our scenario.

Algorand supports two types of smart contracts [3]:

• Stateless Contracts: Lightweight scripts that ap-
prove single transactions based on static condi-
tions. They cannot store data between calls.

• Stateful Contracts: Programs with an on-chain
key-value store, which allows to retain state across
multiple transactions, what is essential for tracking
token-pool balances, proposal counts, and vote
tallies over time.

Our DAO uses stateful contracts because they “re-
member” pool reserves and governance state, enabling
multi-step workflows like minting, reclaiming, and mem-
ber admission without using any external databases.

2.4. Algorand Standard Assets (ASA)

ASAs provide native support for issuing and managing
fungible tokens without a contract code [4]. ASAs are
defined by parameters including total supply, decimal
precision, and designated addresses with minting, freez-
ing, or management privileges. ASA tokens benefit from
Algorand’s high throughput and low transaction fees, mak-
ing them suitable for frequent transactions (resource pay-
ments) and governance actions (proposals). Our system
will create two ASA instances: one for PT and one for GT
— leveraging Algorand’s built-in support for transparent
token management.

3. Tokenomics

The proposed DAO’s design depends on two tokens:
Payment Tokens (PT), operating as “cash” for resources,
and Governance Tokens (GT), issued monthly in a “pre-
paid” way to reflect recent contributions. Such an ap-
proach enables payments while keeping voting power
aligned with participation.

3.1. Payment Tokens (Cash Model)

PTs are the DAO’s on-chain cash for resource book-
ings. At Genesis, the DAO mints a fixed PT supply of
(illustratively) 1,000,000 tokens. Founding members (five
testbeds) receive 50% of that supply (500,000 PT), split

equally at 100,000 PT each to cover initial operations and
establish baseline liquidity. The remaining 50% (500,000
PT) is held in the PT Pool, from which newly admitted
testbeds receive a one-time allocation (determined by gov-
ernance) when they join.

Under this model, whenever Testbed A books, say,
10 GPU hours or 10 6G time slots (defined by the
rules) on Testbed B, A transfers 1,000 PT directly from
its wallet to B’s wallet. This immediate, wallet-to-wallet
payment ensures providers are compensated in real-time.
If a testbed exhausts its PT balance, it may either earn
tokens by providing resources or, if necessary, subject to
a governance vote and receive a capped one-time top-up
from the PT Pool (e. g. up to 1,000 PT per defined cycle).

By granting founding members half the supply and re-
serving the rest for governed new-member allocations and
emergency top-ups, the cash model provides both initial
stability and the flexibility to onboard additional testbeds
in a controlled, democratic fashion. The controlled top-up
mechanism pushes testbeds to manage their PT budgets
carefully and use resources wisely, preventing frivolous
or simply wasteful bookings.

3.2. Governance Tokens (Prepaid Model)

GTs encode decision-making power within the DAO
and are never used for resource payments. At launch,
the DAO mints a total supply of 100,000 GT. Found-
ing members (five testbeds) receive 50% of that supply
(50,000 GT), split equally 10,000 GT each to establish
initial governance rights. The remaining 50% (50,000 GT)
is held in the GT Pool, reserved for periodic, contribution-
based issuance to all active testbeds.

Rather than a one-off grant, GT are distributed (e. g.
monthly) according to each testbed’s contribution: at the
start of each cycle, the DAO measures the PT each testbed
earned during the previous month (e. g. A earned 20,000
PT and B earned 5,000 PT). To maintain a 1 GT : 10
PT ratio reflecting the GT Pool’s ten times smaller size
relative to PT, the contract issues 1 GT for every 10 PT
earned. Thus, the smart contract transfers GT from the
pool: A receives 2,000 GT, B receives 500 GT. Any GT
that remain unspent by the end of the cycle are returned
to GT pool, preventing accumulation and ensuring that
voting power always reflects recent, active participation.

Since newcomers have no prior earnings, the DAO
grants each newly admitted testbed a minimal allocation,
1,000 GT for example, ensuring they can immediately
participate in governance. This welcome grant comes from
the GT Pool and helps integrate new members without
skewing voting power excessively.

This prepaid issuance model aligns governance influ-
ence with actual contributions and discourages passive or
long-inactive members from hoarding voting power. By
resetting GT balances every cycle and returning unused
tokens, the DAO maintains a dynamic, merit-based gover-
nance structure in which decision-making rights are based
on each testbed’s real-time engagement.

3.3. Operational Workflows

This subsection describes the DAO’s two routines that
drive token distribution and resource coordination. First,

Seminar IITM SS 25 94 doi: 10.2313/NET-2025-11-3_18

we detail a hypothetical New-Member Admission Flow,
which governs how candidates join and receive their initial
token allocations. Then, we describe the ongoing monthly
token flow, showing how PT earnings translate into GT
issuance, resource bookings are made, and how unused
governance tokens return to the pool each cycle.

3.3.1. New-Member Admission Flow. Membership
starts off-chain: candidates announce their hardware ca-
pabilities on the DAO forum. A sponsoring member then
submits the candidate’s details, such as address and capac-
ity, to the on-chain governance contract, opening a forty-
eight-hour vote. Token holders stake their cycle-issued
GT to vote. If a simple majority supports admission, the
contract atomically transfers the one-time PT allocation
(e. g. 50,000 PT) and a welcome GT grant (e. g. 1,000
GT) to the newcomer’s wallet, as shown in Fig. 1. Finally,
the registry marks the testbed as active, enabling it to both
consume and provide resources in the next cycle [5].

Figure 1: New-Member Admission, welcome grant.

3.3.2. Ongoing Monthly Token Flow. On the first day of
each cycle, the contract tallies each testbed’s PT earnings
from the previous month and issues GTs at a 1 GT :
10 PT ratio from the GT Pool. Resource bookings occur
via instant PT transfers between wallets as the month pro-
ceeds. Governance proposals may arise anytime: members
stake GTs to vote, and once voting closes, the contract
enacts the decision and returns staked GT. At the cycle’s
end, any unspent GTs return to the pool. This loop (PT
earnings → GT issuance → PT resource bookings → GT
return) ensures that token balances remain tightly coupled
to actual contributions and usage while maintaining the
integrity of both token pools.

3.4. Corner-Case Protections

Even the most robust tokenomics framework must
prepare for exceptional situations. Below, we expand our
original principles with complementary safeguard meth-
ods for PT/GT pools, treasury reclamation, emergency
needs, and "rage quits" to ensure the DAO remains op-
erational and equitable.

3.4.1. PT Exhaustion and Emergency Top-Ups. Be-
cause Payment Tokens are granted once upfront, heavy

consumers may run their wallets to zero before earning
new tokens. Our DAO offers a capped emergency top-up
mechanism to prevent deadlock where a testbed cannot
book critical resources. Any testbed in need may submit
a governance proposal, requiring only a simple majority
of staked GT, to unlock a one-time PT grant (e. g.
limited up to 1,000 PT per cycle) from the PT Pool.
This advance must be repaid through subsequent resource
earnings. By tying such top-up to governance approval, we
ensure that requests are reasonable and encourage careful
PT usage. Beyond liquidity, contract-level security risks
must be considered. Attacks such as double-reporting of
resource usage, Sybil identities, or malicious proposals
could undermine fairness. These risks suggest the need for
trusted measurement oracles and rate-limiting mechanisms
in future prototypes.

3.4.2. PT Pool Depletion. If repeated top-ups exhaust the
PT Pool, the DAO faces a shortage of reserve tokens for
new member allocations and emergencies. Two recovery
paths are available:

• Controlled Minting: The DAO can pass a vote to
mint additional PTs at a predetermined percentage
of the original supply (e. g. 5%) to replenish the
pool, balancing liquidity needs with token scarcity.

• Inactive Balance Reclamation: If a testbed re-
mains inactive (no PT earnings or bookings) for
two consecutive cycles, its leftover PT balance can
be returned to the PT Pool via a routine gover-
nance action, reclaiming tokens without affecting
total supply.

These methods ensure that reserve tokens remain available
for both new members and emergencies.

3.4.3. GT Pool Depletion. A similar risk arises if con-
tinuous GT issuance to existing and new members drains
the Governance Token Pool. Once depleted, no further
GTs can be allocated, meaning governance for newcomers
is frozen, and active contributors are disabled. To guard
against this, two ways are possible:

• Mint Voting: Voting approves the creation of new
GTs, similarly to PT minting, to refill the pool for
upcoming cycles.

• Inactivity Confiscation: Members who neither
earn PT nor participate in votes for three consecu-
tive cycles lose their remaining GTs, which return
to the pool. Thus, active participants are supported
without increasing supply.

3.4.4. Imbalanced Resource Usage. A handful of very
large testbeds might monopolize resource consumption
and earn disproportionate GT allotments, threatening to
tilt governance in their favor [6]. To maintain equitable
influence, the DAO can cap monthly GT allocations per
member (e. g. no more than 20% of total GTs issuable per
cycle). In such a way, the system is safeguarded against
"plutocracy".

3.4.5. Departing Members. As mentioned in [7], the
right to exit should be part of the core protocol so that
any member can exit at any time and for any reason.

Seminar IITM SS 25 95 doi: 10.2313/NET-2025-11-3_18

When a testbed voluntarily exits the DAO, it should return
its PT and GT holdings to the pools rather than retain
them. Upon an on-chain exit call, the governance contract
returns any unused PTs/GTs to the respective pools rather
than burning them, thereby preserving supply for future
cycles. The system will have no orphaned tokens and
maintains pool integrity.

4. Open Questions and Future Work

While our dual-token framework lays the groundwork
for coordinating resource sharing, some parameters merit
further study. For example, the emergency top-up cap
must balance availability and token scarcity: too low,
and testbeds lack critical access; too high, and PT loses
value. Simulations will be crucial to pinpoint an effective
threshold.

The cadence of GT issuance also deserves scrutiny.
We currently use monthly cycles tied to PT earnings,
but shorter intervals (e. g. weekly) might align voting
power more closely with activity, whereas longer intervals
could cut overhead. Likewise, the newcomer GT grant
must strike a balance — large enough to include new
members yet small enough to avoid temporary imbalances.
Allowing the community to vote on these parameters
offers flexibility.

Our framework would benefit from empirical valida-
tion. Even simple simulations of token flows could show
whether pools deplete too quickly or whether voting power
stabilizes over time. Future work should include cost
comparisons against existing resource-sharing federations
(e. g. GENI, PlanetLab) to quantify advantages in fairness
and overhead.

Finally, our pool-replenishment strategies, like minting
via majority vote or reclaiming inactive balances, have to
be tested in real environment. We must determine when to
mint additional tokens rather than reclaiming them based
on pool levels and member activity. Adding adaptive logic
that monitors these metrics might result in a more efficient
system.

5. Conclusion

We have presented an architecture for a research
testbed DAO: PTs enable instant, peer-to-peer transfers
for resource usage, and GTs are distributed cyclewise in
proportion to contributions, ensuring decision rights align
with activity. Algorand-implemented solution via stateful
smart contracts and ASA enables streamlined membership
onboarding, token issuance, resource exchanges, and to-
ken "recycling" in a standalone system.

By incorporating emergency votes, controlled minting,
and user exits, we are establishing the DAO principles and
providing an efficient structure for a distributed testbed
ecosystem. At the same time, several trade-offs remain to
be explored, such as balancing emergency liquidity against
token scarcity, calibrating cycle lengths for governance,
and ensuring that heterogeneous resources are priced in a
fair and flexible way.

Our contribution should therefore be seen less as a
final protocol and more as a blueprint for experimentation.
A logical next step will be to implement a minimal pro-
totype and run simulations of token flows under different

workloads. Pilot deployments across a small federation
of research sites would further validate scalability and
robustness in real-world settings. Such evaluations will
ultimately determine how well the proposed dual-token
system generalizes and how it can be integrated with
broader DAO frameworks.

References

[1] S. Wang, W. Ding, J. Li, Y. Yuan, L. Ouyang, and F.-Y. Wang,
“Decentralized autonomous organizations: Concept, model, and ap-
plications,” IEEE Transactions on Computational Social Systems,
vol. 6, no. 5, pp. 870–878, Oct. 2019.

[2] K. Pakseresht and H. Kinkelin, “Governance of a distributed au-
tonomous organization,” Chair of Network Architectures and Ser-
vices, Technical University of Munich, Tech. Rep., 2024, seminar
paper.

[3] J. Weathersby, “Linking algorand stateful and stateless
smart contracts,” https://developer.algorand.org/articles/
linking-algorand-stateful-and-stateless-smart-contracts, Nov.
2020, Algorand Developer Portal.

[4] “Algorand Standard Assets (ASAs),” https://developer.algorand.org/
docs/get-details/asa/, [Online; accessed 22-June-2025].

[5] Upstream, “Joining a dao,” https://guide.upstreamapp.com/
dao-members/joining-a-dao, 2024, [Online; accessed: 19-June-
2025].

[6] M. Esposito, T. Tse, and D. Goh, “Decentralizing governance:
exploring the dynamics and challenges of digital commons and
daos,” Frontiers in Blockchain, vol. 8, p. 1538227, 2025, published:
16 May 2025.

[7] Moloch, “Ragequit,” https://moloch.daohaus.fun/features/ragequit,
2025, [Online; accessed: 19-June-2025].

Seminar IITM SS 25 96 doi: 10.2313/NET-2025-11-3_18

Securing BGP - Mechanisms to Prevent Routing Leaks

Leon Spörl, Michael Oberrauch∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: leon.spoerl@tum.de, oberrauc@net.in.tum.de

Abstract—The Border Gateway Protocol (BGP) is today’s
prevailing interdomain routing protocol, and due to its
widespread adoption, it is likely to remain so for the foresee-
able future. BGP was designed with scalability and efficiency
in mind but lacks fundamental security features. Routing
leaks caused by misconfiguration or malicious actions are
among the main vulnerabilities. We evaluate the leading
security mechanisms IRR, RPKI, and BGPsec with respect to
performance, scalability, adoption, and their ability to fulfill
specific security objectives. Often, inconsistent adoption is
the limiting factor of the described mechanisms as security
features only take full effect if rules are uniformly applied
and strictly enforced. We conclude by reviewing promising
new advancements regarding the implementation of ASPA
and outline potential future developments.

Index Terms—Autonomous System Provider Authorization
(ASPA), Border Gateway Protocol (BGP), Border Gateway
Protocol Security (BGPsec), Internet Routing Registry (IRR),
Resource Public Key Infrastructure (RPKI)

1. Introduction

Since its introduction over 30 years ago, the Border
Gateway Protocol has become the global de facto standard
of inter-AS routing. Despite its excellent routing capabil-
ities, it is insecure by design.

One of the key problems of BGP is that an AS has no
control over its resources, i.e., how the AS number and IP
prefixes that have been uniquely assigned by the Regional
Internet Registry are announced and propagated. This lack
of control allows malicious or misconfigured networks to
distribute incorrect routing statements. Routing leaks are
a common type of security violation caused by erroneous
route propagation. Minor routing errors can affect large
regions, with even simple attacks posing a major threat
to the Internet’s backbone. There have been numerous
incidents, one of them being an accidental route leak
induced by Google in August 2017, which caused massive
Internet disruptions in Japan [1].

Incidents like this stress the need for globally deployed
BGP security mechanisms. In this paper, we analyze the
most relevant innovations that allow us to prevent routing
leaks and other BGP-related attacks. We begin by review-
ing related work in this research area, followed by some
background information and definitions. We then examine
popular security approaches and end with an outlook on
future developments.

2. Related work

In the early days of BGP, most research papers only
proposed new solutions or evaluated a single security
proposal [2], [3]. A few years later, the first systematic
reviews were published. As BGP security is a quickly
evolving field of research, the findings of literature surveys
from around 2010 are outdated and do not address most
of today’s security mechanisms [4]–[6]. A reasonable
recent survey by Mitseva et al. [1] provides an exten-
sive overview of BGP security properties and solution
approaches.

Regarding the individual security mechanisms, recent
research includes a quantitative analysis of RPKI deploy-
ment by Chung et al. [7] and a survey by Rodday et
al. [8] summarizing RPKI-related studies, challenges and
solution proposals. Research by Du et al. [9] highlights
vulnerabilities of the Internet Routing Registry, by quanti-
fying and analyzing irregular IRR records. The challenges
of BGPsec deployment and optimization approaches are
summarized by Abdelhafez and Fadlalla [10].

3. Background

Before discussing the attributes of BGP and the need
for specific security measures, we have to take a look
at the general structure of the Internet and its historical
background.

3.1. Autonomous Systems

The Internet consists of many interconnected, inde-
pendently administered networks, so-called autonomous
systems (ASes). From a technical perspective, an au-
tonomous system is a set of routers that follow a uniform
routing plan to allow for intra- and inter-AS network
communication. [11] An AS is managed by a single
organization and is identified by a unique 16 or 32-bit
number. The AS numbers (ASNs) and IP address spaces
are assigned by the Regional Internet Registries (RIRs) to
the respective autonomous systems. [1], [12] Depending
on the geographical location, a different RIR applies [13]:

• AfriNIC: Africa
• APNIC: parts of Asia, Pacific Region
• ARIN: North America, parts of the Caribbean
• LACNIC: Latin America, parts of the Caribbean
• RIPE NCC: Europe, Middle East, parts of Asia

A variety of interior gateway protocols are used for rout-
ing within an AS, i.e., intradomain routing [14]. Some

Seminar IITM SS 25 97 doi: 10.2313/NET-2025-11-3_19

organizations may even run multiple routing protocols in
parallel or use proprietary standards. While intradomain
routing is transparent to other ASes and does not have to
follow a common standard, interdomain routing requires
an operational standard so all autonomous systems can
span a global network.

3.2. The Border Gateway Protocol

The Border Gateway Protocol (BGP) was first intro-
duced in 1989 [15], specified in RFC 1105, and replaced
the Exterior Gateway Protocol (EGP) [16]. The most
recent version, BGP-4 [11], is today’s de facto standard
for global inter-AS routing [1]. In the early days of
the Internet, there were also other interdomain routing
protocols proposed, e.g. the OSI Inter-Domain Routing
Protocol (IDRP) [17], which was expected to replace BGP
but has no relevance today [18], [19].

The BGP specification describes how autonomous sys-
tems can exchange reachability information and announce
IP prefixes to each other [11]. BGP is a path-vector proto-
col, meaning that not only the distance but the whole path
to a destination is announced. Therefore, each AS adds
itself to the path before propagating the route to others. [5]
Using that information, every AS can maintain its own
reachability graph, make informed routing decisions, and
derive a routing table. Topology changes are propagated
within minutes, making BGP a dynamic and resilient
protocol. An AS can take different metrics into account
when making routing decisions, the most relevant ones
being path and prefix length. The shortest path method is
used to minimize the number of hops between source and
destination. If announced IP address ranges overlap, the
announcement with the more specific IP prefix is usually
prioritized. [12]

Business agreements and financial considerations also
play a role when selecting paths and propagating routes
to other ASes. Two connected autonomous systems can
have a customer-provider relationship, i.e., the customer
pays the provider for the traffic routed over the path or a
peer-to-peer relationship where traffic is routed over the
link free of charge. [20] If each AS tries to maximize
its revenue and only propagates routes that incur financial
gain, we speak of valley-free routing. After a packet has
traversed a provider-to-customer or peering link, it is only
allowed to take additional provider-to-customer links and
must not again move upwards in the hierarchical BGP
model. Valley routes may lead to increased path lengths
and ASes unintentionally transiting traffic [21].

3.3. BGP Route Leaks

Although the term route leak already appears in liter-
ature from the early 2000s, it lacked a uniform definition
for a long time [22]. RFC 7908, published in 2016, defines
a route leak as "the propagation of routing announce-
ment(s) beyond their intended scope" [23]. A route leak
occurs when an AS propagates a learned route to another
AS and thereby violates the policies of an AS alongside
the resulting path. More specifically, policies typically
refer to the business relations described in Section 3.2. A
policy violation can be the infringement of the valley-free
property [1].

RFC 7908 provides a taxonomy of route leaks based
on observed incidents and differentiates between six types.
The first five depict distinct scenarios where learned BGP
routes from non-customer ASes are announced to provider
or peering ASes. Figure 1 illustrates a type 1 route leak
where an AS receives a route announcement from a
provider AS and propagates it to another provider AS.
The leaked route is probably preferred by AS 3 because
customer ASes are more highly prioritized than peering
ASes, resulting in a hairpin turn at AS 2.

AS 1

AS 2

AS 3customer custo
merpeering

route
announcement route leak

route
announcement

Figure 1: BGP route leak type 1

The remaining route leak category, type 6, refers to an
issue that can occur if BGP is used as a routing protocol
inside an AS. In this case, internal and external BGP must
be strictly separated. Misconfiguration can lead to internal
routes being exported to the outside and announced to
other autonomous systems. These internal prefixes may be
more specific than externally routed ones and are therefore
preferred by other ASes.

This behavior is similar to a route hijack, also known
as prefix hijack, which occurs when an AS originates a
prefix it is not the holder of. If the address space belongs
to another AS, this can have severe consequences as the
illegitimately announced route may be selected by other
ASes across the Internet due to a shorter path or a more
specific prefix. [1], [5]

The distinction between BGP route leaks and hijacks
is not very sharp in the literature. While Wijchers and
Overeinder [24] draw a clear line between the terms, the
RFC on route leak classification cites resources about
prefix hijacks and lists hijacking incidents as examples for
route leaks [23]. Both incidents can happen by accidental
misconfiguration or with malicious intent [5], [23].

4. Security Mechanisms
BGP uses the Transmission Control Protocol

(TCP) [25], which offers some basic error correction
and retransmission mechanisms [11]. However, BGP
provides no confidentiality or integrity protection for
its messages [5]. By default, route advertisements are
not authenticated, so autonomous systems can announce
arbitrary prefixes, no matter if they are the legitimate
holders [12]. There are various approaches to make
BGP more secure and reliable. We will analyze the
most popular ones regarding their security properties,
performance, practicability, and adoption.

4.1. Internet Routing Registry

The Internet Routing Registry (IRR), proposed in
1995, was one of the first attempts to make BGP routing

Seminar IITM SS 25 98 doi: 10.2313/NET-2025-11-3_19

more transparent and secure [26]. The IRR is a set of
public databases where ASes can upload routing infor-
mation on prefixes they hold using the Routing Policy
Specification Language (RPSL) [27]. Other ASes can then
fetch the data and create BGP route filters [1].

As of May 2025, there exist 18 IRR databases1 hosted
by companies as well as Regional and National Internet
Registries. Many of the databases mirror other IRRs to
provide exhaustive data sets. The different IRR providers
do not use standardized authentication and validation
mechanisms, resulting in varying quality of database
records [9]. RIRs can authenticate their members and
approve ownership of resources before publishing routing
information for a certain address space. Other routing reg-
istries lack the ability to perform this kind of authorization
but may publish routing information on an address space
anyway. [12]

Malicious actors exploited these circumstances in the
past. Du et al. [9] describe a case where attackers were
able to hijack a prefix belonging to Amazon and added a
manipulated route object to the ALTDB routing registry.
They were thereby able to reroute customers of a company
that used Amazon’s cloud resources to a phishing page
and stole cryptocurrency worth $235,000. This is not an
isolated incident. Over the period of 1.5 years, Du et
al. analyzed RADB, which is the largest IRR database
holding over 1.5 million route objects. By investigating
consistency across IRR databases and checking if database
entries match BGP announcements, they detected 34,199
irregular entries and classified 6,373 of them as suspicious.

Proposals to improve IRR’s security did not resolve
all vulnerabilities or were simply not implemented on a
broad scale [1], [28], [29]. IRR’s main issue is the lack
of global uniformity, making route validation unreliable
and error-prone. While it was a great advance in terms
of routing transparency in the 90s, it does not meet the
expectations of BGP security today. [12]

4.2. Resource Public Key Infrastructure

The Resource Public Key Infrastructure (RPKI) [30]
is an out-of-band system that enables resource holders to
cryptographically prove their identity and digitally sign
statements on the intended use of their resources. The
infrastructure uses X.509 certificates [31] with two exten-
sions that bind AS numbers and IP address prefixes to the
holder of the certificate’s private key [32]. The hierarchical
structure of RPKI is based on five trust anchors, with
each Regional Internet Registry operating its own root
Certificate Authority (CA). AS administrators can request
resource certificates over the member portal of their re-
spective RIR. This procedure is called hosted RPKI, as
certificate creation, publication, and key rollover are all
done by the RIR. Although this process is relatively simple
and convenient for most members, it is not sufficient for
all of them. Some organizations must host their own child
CA in order to delegate RPKI administration to their
customers. This operating mode is called delegated RPKI
and is supported by all RIRs except for AFRINIC (as of
May 2025). [7]

1. https://irr.net/registry

Using their resource certificate, autonomous systems
can sign Route Origin Authorizations (ROAs) [33]. A
ROA authorizes an AS to originate a certain IP address
space. Apart from the prefix and ASN, a ROA contains
the maximum prefix length the specified AS is allowed
to advertise. The issued ROAs are typically published by
the RIRs. Other ASes can then fetch the data sets, verify
the ROA signatures and derive validated ROA payloads
(VRPs). The verification of incoming BGP announce-
ments, known as route origin validation (ROV) [34], can
return three different results:

• Valid: announcement covered by a VRP
• Invalid: announcement from unauthorized AS or

announcement violates the VRP’s maximum prefix
length attribute

• NotFound: announced prefix not (fully) covered
by any VRP

Given that RPKI is still far from universal adoption,
announcements returning the NotFound status should be
accepted for now. [7], [12]

The deployment of RPKI started in 2011 and was
impaired by many configuration errors in the early adop-
tion stages. Chung et al. [7] evaluated RPKI statistics that
were collected from 2011 to 2019. Throughout 2011, they
observed 48.92% of VRP-covered announcements to be
invalid. This value drastically improved over the years,
settling between 2% and 5% in 2019. During the whole
measurement period, around half of the invalid announce-
ments were caused by too specific prefixes. Many of the
published ROAs were missing the MaxLength attribute,
indicating misconfiguration as a cause. In recent years,
the general adoption has improved.

The ratio of unique IPv4 prefix-origin pairs (combina-
tions of IP prefix and origin AS number) covered by VRPs
has increased from 12% in early 2019 to over 56% in May
2025 according to the NIST RPKI Monitor2. The IPv6
coverage shows similar numbers, recording almost 58%
validatable IPv4 prefix-origin pairs in May 2025. While
there is less historic data available for IPv6, the observable
trend is similar to IPv4 [7].

RPKI only takes full effect if all ASes systemati-
cally drop invalid announcements. Some major service
providers, such as AT&T, are already enforcing this pol-
icy. [7] RPKI’s route origin validation prevents prefix
hijacks but does not target route leaks as defined in
Section 3.3. An AS can restrict route origination for its
resources, but the path an announcement takes is un-
known [8].

4.3. Border Gateway Protocol Security

Border Gateway Protocol Security, better known as
BGPsec [35], is a BGP extension that relies on RPKI’s
resource certificates to provide cryptographic path vali-
dation. BGPsec replaces the AS_PATH attribute with a
BGPsec_PATH attribute inside the BGP update messages.
The new attribute contains digitally signed path informa-
tion. Each AS that an announcement traverses signs the
previous path, its own AS number, and the number of the
AS the announcement will be propagated to. Every router

2. https://rpki-monitor.antd.nist.gov

Seminar IITM SS 25 99 doi: 10.2313/NET-2025-11-3_19

in the announcement chain verifies the signatures and can
detect path forgery. [10]

The main downside of BGPsec is its poor adoption due
to the high entry barrier. Most ASes would need to replace
their hardware to support BGPsec, without deriving a
direct benefit from the investment [1]. If one router along
the announcement path has no BGPsec capabilities, the
whole path immediately becomes invalid. There is no
NotFound state like in RPKI, so partial BGPsec deploy-
ment has little utility. [36] Aside from that, the exten-
sion generates significant computational overhead slowing
down the BGP operations by a factor of 70, as shown
by Kim and Kim [37]. There have been optimization
efforts to reduce CPU overhead and memory consumption,
but no optimization algorithm could be implemented at
scale yet. While there is some room for improvement,
well-performing BGPsec requires specialized hardware
accelerators. [10]

4.4. Autonomous System Provider Authorization

Autonomous System Provider Authorization
(ASPA) [38] is a draft that has been discussed by
the Internet Engineering Task Force (IETF) over the last
years. ASPA objects are part of the RPKI, similar to
ROAs [7]. By generating and signing an ASPA object,
an AS can specify a list of provider ASes. Using these
statements, each hop along a path can be identified as

• Provider,
• Not Provider, or
• No Attestation if no ASPA can be retrieved from

the customer.

Given this information, we can make plausibility checks
and detect implausible paths potentially caused by route
leaks. ASPA explicitly supports incremental deployment.
If some ASes make no attestation, the plausibility check
succeeds if no other policy violations are detected, no
matter how sparsely the feature is deployed. ASPA is
capable of detecting (accidental) route leaks and even
protects against some forms of prefix hijacks. The wider
the adoption of ASPA, the harder it becomes for attackers
to perform unrecognized route hijacks. However, Route
Origin Authorization is still the most reliable method of
hijacking prevention. ASPA’s deployment model is very
similar to ROAs. Cryptographic operations are handled by
certificate authorities, while routers can handle verification
without much computational overhead.

RIPE officials stressed ASPA’s significance at the
"RIPE 90" meeting in May 2025. It is yet to be standard-
ized and is planned to be implemented in RIPE’s hosted
RPKI in summer 2025. ARIN and APNIC also intend to
test their implementations in 2025. [39]

4.5. Other Approaches

Apart from the already presented security mechanisms,
there were many other proposals in the past, most of them
having no relevance nowadays. One of the first approaches
was Secure-BGP (S-BGP) [2], which is conceptually
very similar to RPKI. It uses an out-of-band public key
infrastructure to authenticate prefix announcements and

provide route origin validation. Since S-BGP’s adoption
was obstructed by performance issues, Secure Origin BGP
(soBGP) [3] was developed at Cisco Systems in 2003.
It also relies on a PKI and is characterized by a lower-
overhead implementation, but uses proprietary certificates
and, hence, lacks interoperability.

Further proposals were made in the following years,
but none of them was realized at a large scale until RPKI
was standardized in 2012 [1]. More recent research by
Hari and Lakshman [40] suggests blockchain-based BGP
security, omitting the PKI’s central root of trust. However,
the scalability and performance of a blockchain-based
solution have not yet been demonstrated with a practicable
implementation.

5. Conclusion and Outlook

When assessing the features, performance, and adop-
tion of BGP security mechanisms, we can conclude that
efficient solutions have already been found, but advance-
ments are impeded by a heterogenous system topography
and rigid legacy systems.

The resource public key infrastructure provides a solid
base that allows developments like Route Origin Autho-
rization and Autonomous System Provider Authorization
to build upon. BGPsec is a proven solution for path vali-
dation, which was well integrated into BGP and RPKI but
is constrained by computational overhead. This substantial
entry barrier slows down the adoption process. The most
important advancement in the upcoming years will be the
further increase of RPKI adoption. The objective should
be a full coverage allowing for strict ROA policy en-
forcement without locking out autonomous systems from
global routing. Even though ASPA is still an IETF draft,
it can be seen as a promising technique. As soon as the
standardization is finished, it will profit from a low entry
barrier, given the persisting RPKI and ASPA’s excellent
support for incremental deployment.

References

[1] A. Mitseva, A. Panchenko, and T. Engel, “The state of affairs
in BGP security: A survey of attacks and defenses,” Computer
Communications, vol. 124, pp. 45–60, 2018. [Online]. Available:
https://doi.org/10.1016/j.comcom.2018.04.013

[2] S. Kent, C. Lynn, and K. Seo, “Secure Border Gateway Protocol
(S-BGP),” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 4, pp. 582–592, 2000.

[3] R. White, “Securing BGP Through Secure Origin BGP,” 2003.
[4] M. O. Nicholes and B. Mukherjee, “A survey of security techniques

for the border gateway protocol (BGP),” IEEE Communications
Surveys and Tutorials, vol. 11, no. 1, pp. 52–65, 2009.

[5] K. Butler, T. R. Farley, P. McDaniel, and J. Rexford, “A Survey
of BGP Security Issues and Solutions,” Proceedings of the
IEEE, vol. 98, no. 1, pp. 100–122, 2010. [Online]. Available:
https://dx.doi.org/10.1109/JPROC.2009.2034031

[6] G. Huston, M. Rossi, and G. Armitage, “Securing BGP — A
Literature Survey,” IEEE Communications Surveys and Tutorials,
vol. 13, no. 2, pp. 199–222, 2011.

[7] T. Chung, E. Aben, T. Bruijnzeels, B. Chandrasekaran,
D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, R. v.
Rijswijk-Deij, J. Rula, and N. Sullivan, “RPKI is Coming of
Age: A Longitudinal Study of RPKI Deployment and Invalid
Route Origins,” in Proceedings of the Internet Measurement
Conference, ser. IMC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 406–419. [Online]. Available:
https://doi.org/10.1145/3355369.3355596

Seminar IITM SS 25 100 doi: 10.2313/NET-2025-11-3_19

[8] N. Rodday, I. Cunha, R. Bush, E. Katz-Bassett, G. D. Rodosek,
T. C. Schmidt, and M. Wählisch, “The Resource Public
Key Infrastructure (RPKI): A Survey on Measurements and
Future Prospects,” IEEE Transactions on Network and Service
Management, vol. 21, no. 2, pp. 2353–2373, 2024. [Online].
Available: https://doi.org/10.1109/TNSM.2023.3327455

[9] B. Du, K. Izhikevich, S. Rao, G. Akiwate, C. Testart, A. C.
Snoeren, and k. claffy, “IRRegularities in the Internet Routing
Registry,” in Proceedings of the 2023 ACM on Internet
Measurement Conference, ser. IMC ’23. New York, NY,
USA: Association for Computing Machinery, 2023, p. 104–110.
[Online]. Available: https://doi.org/10.1145/3618257.3624843

[10] M. Abdelhafez and Y. Fadlalla, “BGPsec Deployment Challenges
and Optimization Efforts,” in 2024 IEEE 22nd Student Conference
on Research and Development (SCOReD), 2024, pp. 277–281.
[Online]. Available: https://doi.org/10.1109/SCOReD64708.2024.
10872667

[11] Y. Rekhter, S. Hares, and T. Li, “A Border Gateway Protocol
4 (BGP-4),” RFC 4271, Jan. 2006. [Online]. Available: https:
//www.rfc-editor.org/info/rfc4271

[12] A. Band, “RPKI Documentation,” https://rpki.readthedocs.io, 2018,
[Online; accessed 13-May-2025].

[13] R. Housley, J. Curran, G. Huston, and D. R. Conrad, “The Internet
Numbers Registry System,” RFC 7020, Aug. 2013. [Online].
Available: https://www.rfc-editor.org/info/rfc7020

[14] M. Athira, L. Abrahami, and R. G. Sangeetha, “Study on network
performance of interior gateway protocols — RIP, EIGRP and
OSPF,” in 2017 International Conference on Nextgen Electronic
Technologies: Silicon to Software (ICNETS2), 2017, pp. 344–348.

[15] K. Lougheed and Y. Rekhter, “Border Gateway Protocol
(BGP),” RFC 1105, Jun. 1989. [Online]. Available: https:
//www.rfc-editor.org/info/rfc1105

[16] D. L. Mills, “Exterior Gateway Protocol formal specification,”
RFC 904, Apr. 1984. [Online]. Available: https://www.rfc-editor.
org/info/rfc904

[17] C. Kunzinger, “OSI INTER-DOMAIN ROUTING PROTOCOL
(IDRP),” Internet Engineering Task Force, Internet-Draft draft-
kunzinger-idrp-ISO10747-01, Nov. 1994. [Online]. Available:
https://datatracker.ietf.org/doc/draft-kunzinger-idrp-ISO10747/01/

[18] J. A. Hawkinson and T. J. Bates, “Guidelines for creation, selection,
and registration of an Autonomous System (AS),” RFC 1930, Mar.
1996. [Online]. Available: https://www.rfc-editor.org/info/rfc1930

[19] K. Butler, T. Farley, P. McDaniel, and J. Rexford, “A survey of
BGP security,” ACM, vol. 5, pp. 1–35, 2004.

[20] L. Gao and J. Rexford, “Stable Internet routing without global
coordination,” in Proceedings of the 2000 ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems, ser. SIGMETRICS ’00. New York, NY,
USA: Association for Computing Machinery, 2000, p. 307–317.
[Online]. Available: https://doi.org/10.1145/339331.339426

[21] S. Y. Qiu, P. D. McDaniel, and F. Monrose, “Toward Valley-Free
Inter-domain Routing,” in 2007 IEEE International Conference on
Communications, 2007, pp. 2009–2016.

[22] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding
BGP misconfiguration,” in Proceedings of the 2002 Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communications, ser. SIGCOMM ’02. New York,
NY, USA: Association for Computing Machinery, 2002, p. 3–16.
[Online]. Available: https://doi.org/10.1145/633025.633027

[23] K. Sriram, D. Montgomery, D. R. McPherson, E. Osterweil,
and B. Dickson, “Problem Definition and Classification of
BGP Route Leaks,” RFC 7908, Jun. 2016. [Online]. Available:
https://www.rfc-editor.org/info/rfc7908

[24] B. Wijchers and B. Overeinder, “Quantitative Analysis of BGP
Route Leaks,” NLnet Labs, Nov. 2014. [Online]. Available: https:
//ripe69.ripe.net/presentations/157-RIPE-69-Routing-WG.pdf

[25] W. Eddy, “Transmission Control Protocol (TCP),” RFC 9293, Aug.
2022. [Online]. Available: https://www.rfc-editor.org/info/rfc9293

[26] T. Bates, E. Gerich, L. Joncheray, J.-M. Jouanigot, D. Karrenberg,
M. Terpstra, and J. Yu, “Representation of IP Routing Policies in
a Routing Registry (ripe-81++),” RFC 1786, Mar. 1995. [Online].
Available: https://www.rfc-editor.org/info/rfc1786

[27] C. Villamizar, T. J. Bates, C. Alaettinoglu, D. Meyer, M. Terpstra,
D. Karrenberg, and E. P. Gerich, “Routing Policy Specification
Language (RPSL),” RFC 2280, Jan. 1998. [Online]. Available:
https://www.rfc-editor.org/info/rfc2280

[28] E.-y. Kim, L. Xiao, K. Nahrstedt, and K. Park, “Secure Interdomain
Routing Registry,” IEEE Transactions on Information Forensics
and Security, vol. 3, no. 2, pp. 304–316, 2008.

[29] G. Siganos and M. Faloutsos, “Analyzing BGP policies: methodol-
ogy and tool,” in IEEE INFOCOM 2004, vol. 3, 2004, pp. 1640–
1651 vol.3.

[30] M. Lepinski and S. Kent, “An Infrastructure to Support Secure
Internet Routing,” RFC 6480, Feb. 2012. [Online]. Available:
https://www.rfc-editor.org/info/rfc6480

[31] S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and
D. Cooper, “Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile,” RFC 5280, May
2008. [Online]. Available: https://www.rfc-editor.org/info/rfc5280

[32] D. C. W. L. Jr., K. Seo, and S. Kent, “X.509 Extensions for IP
Addresses and AS Identifiers,” RFC 3779, Jun. 2004. [Online].
Available: https://www.rfc-editor.org/info/rfc3779

[33] M. Lepinski, D. Kong, and S. Kent, “A Profile for Route
Origin Authorizations (ROAs),” RFC 6482, Feb. 2012. [Online].
Available: https://wwfw.rfc-editor.org/info/rfc6482

[34] R. Bush, “Origin Validation Operation Based on the Resource
Public Key Infrastructure (RPKI),” RFC 7115, Jan. 2014. [Online].
Available: https://www.rfc-editor.org/info/rfc7115

[35] M. Lepinski and K. Sriram, “BGPsec Protocol Specification,”
RFC 8205, Sep. 2017. [Online]. Available: https://www.rfc-editor.
org/info/rfc8205

[36] R. Lychev, S. Goldberg, and M. Schapira, “BGP security in partial
deployment: is the juice worth the squeeze?” SIGCOMM Comput.
Commun. Rev., vol. 43, no. 4, p. 171–182, Aug. 2013. [Online].
Available: https://doi.org/10.1145/2534169.2486010

[37] K. Kim and Y. Kim, “Comparative analysis on the signature
algorithms to validate as paths in bgpsec,” in 2015 IEEE/ACIS 14th
International Conference on Computer and Information Science
(ICIS), 2015, pp. 53–58.

[38] A. Azimov, E. Bogomazov, R. Bush, K. Patel, J. Snijders,
and K. Sriram, “BGP AS_PATH Verification Based on
Autonomous System Provider Authorization (ASPA) Objects,”
Internet Engineering Task Force, Internet-Draft draft-ietf-sidrops-
aspa-verification-22, Mar. 2025. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-ietf-sidrops-aspa-verification/22/

[39] T. Bruijnzeels, “RPKI Functionality Roadmap,” May 2025.
[Online]. Available: https://ripe90.ripe.net/wp-content/uploads/
presentations/110-RIPE-NCC-RPKI-Features-2025.pdf

[40] A. Hari and T. V. Lakshman, “The Internet Blockchain: A
Distributed, Tamper-Resistant Transaction Framework for the
Internet,” in Proceedings of the 15th ACM Workshop on
Hot Topics in Networks, ser. HotNets ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 204–210.
[Online]. Available: https://doi.org/10.1145/3005745.3005771

Seminar IITM SS 25 101 doi: 10.2313/NET-2025-11-3_19

Seminar IITM SS 25 102

Demonstrating Encrypted Client Hello (ECH) Privacy Benefits

Jasper Christian Stritzke, Tim Betzer∗, Christian Dietze∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: jasper.stritzke@tum.de, betzer@net.in.tum.de, diec@net.in.tum.de

Abstract—Encrypted Client Hello (ECH) extends TLS 1.3
by encrypting the entire ClientHello, eliminating plain-
text Server Name Indication (SNI) leakage. A reproducible
container-based testbench, built from CoreDNS, an ECH-
enabled Nginx instance, and an experimental curl client,
allows direct, side-by-side observation of ECH-protected
versus conventional TLS handshakes with the same endpoint.
Packet captures produced by the framework show that ECH
conceals the actual destination hostname, exposing only an
innocuous outer SNI to passive observers. In contrast, plain-
text TLS exposes the real domain in every trace. The work
demonstrates that ECH eliminates the plaintext metadata
leak in TLS 1.3 without altering the overall handshake
semantics, compatibility, or application-layer behavior.

Index Terms—TLS, Encrypted Client Hello, ECH, SNI, Pri-
vacy, Network Security, HPKE

1. Introduction

1.1. Evolution of Internet Privacy and TLS Chal-
lenges

The increasing demand for internet privacy has driven
significant advancements in cryptographic protocols, par-
ticularly within the Transport Layer Security (TLS) suite.

While TLS 1.3 encrypts most handshake data, a crit-
ical privacy vulnerability persists: the Server Name In-
dication (SNI) extension and other sensitive fields re-
main plaintext. The SNI, transmitted during the initial
ClientHello message, reveals the target domain to net-
work observers, enabling pervasive monitoring, censor-
ship, and traffic analysis [1], [2], compromising user
privacy despite encrypted communication.

Following post-Snowden surveillance concerns, the
Internet Engineering Task Force (IETF) formally identi-
fied pervasive monitoring as an attack in RFC 7258 [3],
transforming privacy from a technical feature into a foun-
dational protocol requirement.

ECH represents a critical infrastructure upgrade for in-
ternet privacy, directly countering surveillance capabilities
that undermine encrypted communication confidentiality.

1.2. ECH as a Comprehensive Privacy Solution

Encrypted Client Hello represents a significant ad-
vancement in addressing TLS privacy vulnerabilities
through a comprehensive, protocol-level approach. Rather

than addressing individual metadata leaks, ECH funda-
mentally restructures the TLS handshake to encrypt all
sensitive client information from initial connection.

This enhancement eliminates piecemeal privacy solu-
tions by providing complete ClientHello metadata protec-
tion, creating a unified defense against passive surveillance
and traffic analysis across TLS 1.3 implementations. ECH
prioritizes immediate privacy benefits and long-term pro-
tocol sustainability, ensuring infrastructure compatibility
while establishing foundations for future privacy enhance-
ments.

1.3. Purpose and Significance of the ECH Test-
bench Project

The ECH Testbench project provides a local, repro-
ducible framework demonstrating ECH functionality and
privacy benefits. By comparing ECH-enabled with non-
ECH TLS traffic to the same server, the testbench shows
how ECH obscures real target domains, challenging pas-
sive network observation. This setup provides an interac-
tive playground for exploring ECH’s operational flow and
privacy implications.

2. Background on TLS and Encrypted Client
Hello

This section provides essential background on TLS
handshake mechanics, the privacy vulnerabilities in cur-
rent implementations, and the evolution toward ECH as a
comprehensive solution.

2.1. Fundamentals of TLS Handshake and SNI

TLS handshakes establish secure channels where
client and server negotiate cryptographic parameters and
authenticate identities. The Server Name Indication (SNI)
extension allows clients to specify target hostnames in
ClientHello messages. When multiple domains share IP
addresses, servers use this field to present correct certifi-
cates [2].

Despite subsequent application data encryption, the
ClientHello with SNI extension remains unencrypted in
TLS 1.3, exposing target domains to on-path observers
including ISPs, government agencies, and malicious ac-
tors [1]. This plaintext exposure undermines user privacy
by revealing browsing habits and enabling censorship or
traffic analysis [4]. Intermediaries can inspect the first
TLS packet to determine specific targets, despite full
communication encryption.

Seminar IITM SS 25 103 doi: 10.2313/NET-2025-11-3_20

2.2. Evolution from ESNI to ECH

The privacy risks of plaintext SNI motivated the pro-
posal of Encrypted SNI (ESNI), an early attempt to hide
the SNI field [2]. However, ESNI proved insufficient by
protecting only SNI; remaining ClientHello extensions
(e.g., ALPN list) stayed visible for client fingerprint-
ing or service inference. This led to the comprehen-
sive Encrypted Client Hello (ECH) protocol, encrypt-
ing the entire ClientHello. ECH distributes public keys and
parameters via DNS SVCB/HTTPS resource records, more
appropriate than ESNI’s TXT records, bootstrappable over
encrypted DNS transports, reducing sensitive metadata
leakage. The unencrypted "outer" ClientHello carries only
"innocuous" values [1].

2.3. ECH Technical Mechanisms

ECH operates by dividing the TLS ClientHello mes-
sage into two parts: an "outer" ClientHello and an "inner"
ClientHello [4]:

Outer ClientHello: This part is unencrypted and
contains innocuous values for sensitive extensions, and
a generic "outer SNI" (also known as a public name
or fronting domain), extracted from the HTTPS SVCB
record, visible to network observers, and used as a fallback
if ECH fails.

Inner ClientHello: This part is encrypted using a
public key retrieved by the client and contains the actual
sensitive extensions, including the real target domain (the
"inner SNI").

ECH uses the Hybrid Public Key Encryption (HPKE)
standard for inner ClientHello encryption/decryption [5].
The server’s ECH configuration, including HPKE public
key, cipher suite, and public domain name, is conveyed
via DNS. This DNS mechanism bootstraps ECH, allow-
ing clients to discover encryption parameters before TLS
handshake initiation.

This split ClientHello structure lets network observers
only see the generic public name (e.g., web.local in
the testbench, or cloudflare-ech.com in Cloudflare’s
deployment) in the outer SNI, while the actual target
domain (e.g., ech.test) is hidden within the encrypted
inner ClientHello [6]. This means multiple unrelated
sites can appear indistinguishable to inspection tools if
hosted by the same ECH-enabled provider, significantly
enhancing privacy by obscuring the destination. This
effect is especially relevant for companies like Cloud-
flare, where all ECH-enabled users could share the same
cloudflare-ech.com domain. Sites that self-host their
entire infrastructure still benefit from this technology, but
the fronting domain would still maintain a 1:1 mapping.
The privacy benefits in this scenario would not be as great
as with shared ECH-compatible providers.

2.4. Challenges and Advanced ECH Mechanisms

Even with ECH, a potential challenge arises if only
sensitive services adopt it, creating a "Do not stick out"
problem where ECH usage itself becomes identifiable [1].
To address this, ECH-supporting clients always include
the ECH extension: either a real ECH extension when
server configuration is available, or a GREASE (Generate

Random Extensions And Sustain Extensibility) ECH ex-
tension to mask which servers support ECH. Additionally,
"Implicit ECH" allows clients to choose any outer SNI and
config_id, further obfuscating ECH usage and preventing
fingerprinting [7].

Implementing Implicit ECH requires servers to per-
form trial decryption across multiple potential keys, which
adds computational complexity but significantly enhances
the robustness of ECH against sophisticated traffic anal-
ysis and fingerprinting attempts. This demonstrates a
nuanced understanding of privacy that extends beyond
simple encryption, addressing the challenge of hiding the
fact that privacy mechanisms are in use to avoid drawing
unwanted attention and prevent network observers trying
to filter or flag ECH traffic.

3. ECH Testbench Architecture and Experi-
mental Setup

This section details the containerized testbench ar-
chitecture designed to demonstrate ECH functionality
through direct comparison of encrypted and plaintext TLS
handshakes.

3.1. Overview of Testbench Design Principles

The ECH testbench is a self-contained environment
demonstrating ECH privacy benefits through direct com-
parison of plaintext and ECH-TLS traffic, showcasing
ECH’s SNI and sensitive field protection. The architec-
ture emphasizes simplicity and reproducibility, using con-
tainerization for deployment ease and consistent cross-
environment setup.

The project supports both podman compose and
docker compose.

3.2. Key Components and Their Functions

The testbench comprises three primary components,
each with a distinct role in demonstrating ECH function-
ality:

3.2.1. DNS Server (CoreDNS). CoreDNS serves DNS
records, including HTTPS SVCB records for ech.test.
This HTTPS record contains ECH configuration (Base64-
encoded ECHConfigList) for automatic client discov-
ery of ECH-enabled connections [8]. HTTPS records
standardize ECH configuration for service binding. The
coredns/zones/ech.test.zone file defines the DNS
zone with HTTPS record containing ech SvcParamKey
for ECH configuration.

3.2.2. ECH Server (Nginx). A single Nginx server,
specifically compiled with ECH support, handles both
normal and ECH-enabled TLS requests to the same end-
point. The server decrypts the inner ClientHello for ECH
requests to identify the real target domain (ech.test)
while processing standard TLS requests normally [5].

ECH support implementation in Nginx requires uti-
lizing an ECH feature branch of OpenSSL and Nginx
sources, as native, out-of-the-box ECH support is still
maturing. This highlights practical challenges in deploy-
ing bleeding-edge privacy protocols, often necessitating
development branches or patched software [9].

Seminar IITM SS 25 104 doi: 10.2313/NET-2025-11-3_20

3.2.3. ECH Client (curl). The curl client, specifically
compiled with ECH support, generates test traffic for
both ECH and plain TLS connections. It also facilitates
packet capture with tcpdump. These pcap files can be
inspected to see ECH and non-ECH traffic in action. The
clients/curl/scripts/benchmark.sh script automates
traffic generation for both ECH and plain TLS connec-
tions, ensuring a controlled and comparable setup.

3.3. Network Layout and Configuration

The testbench operates within a defined isolated net-
work environment to simulate real-world interactions and
ensure controlled experimentation. Table 1 summarizes
the network configuration.

TABLE 1: Network Layout and IP Addresses

Component IP Address Role in Network

DNS Server 13.37.0.53 ECH config, HTTPS RR
ECH-enabled Nginx 13.37.0.10 Web target
Curl Client 13.37.0.50 Sends traffic

3.4. Operational Flow and Experimental Proce-
dure

The ECH-enabled connection follows a distinct se-
quence of operations designed to ensure the encryption
of sensitive ClientHello information:

DNS Query for ECH Configuration: The ECH-
enabled client (curl 1) initiates the process by querying the
DNS server (CoreDNS) for the HTTPS record associated
with ech.test [5]. The server’s ECH public key from
the ECH configuration is used to encrypt its subsequent
ClientHello message.

ECH Config Retrieval: The DNS server responds
with the HTTPS record, which includes the ECH con-
figuration. This configuration contains web.local as the
designated public fronting domain, along with the neces-
sary Hybrid Public Key Encryption (HPKE) public key
and cipher suite. The client parses this Base64-encoded
configuration to prepare for the encrypted handshake.

ClientHello Construction: The client constructs a
TLS handshake message with two distinct parts [4]:

• Outer ClientHello: The actual ClientHello
that contains non-sensitive information,
including web.local as the visible SNI and
the encrypted_client_hello extension (type
65037)

• Inner ClientHello: Encrypted section contain-
ing the sensitive information like the real target
ech.test as its SNI, embedded within the ECH
extension

Server Processing: The ECH-enabled Nginx server
receives the ClientHello, processes the Outer ClientHello,
then attempts to decrypt the "inner" ClientHello using its
corresponding private key, identified by the ECH con-
fig_id. Upon successful decryption, the server identifies
the real target domain, presents the appropriate certificate
and completes the handshake.

1. As curl currently does not support DoH with untrusted certs, the
HTTPS record is manually fetched and passed to curl

3.4.1. Plain TLS Flow (Unencrypted Connection). In
contrast, a plain TLS connection follows the traditional,
unencrypted handshake process with a standard Clien-
tHello containing the plaintext SNI directly specifying
ech.test, allowing any on-path observer to extract the
target domain.

3.4.2. Traffic Generation and Analysis. The testbench
employs specific scripts for traffic generation and analysis.
The benchmark.sh script automates the generation of
both ECH and plain TLS traffic in the client using the
ECH-enabled curl build, while the analyze_traffic.sh
script processes the captured network traffic to extract and
compare key fields such as SNI values and the presence
or absence of the ECH extension.

4. Results and Discussion

This section presents the experimental findings from
packet-level analysis of ECH versus plaintext TLS traffic,
demonstrating ECH’s effectiveness in concealing sensitive
metadata.

4.1. Traffic Analysis: SNI Visibility and ECH
Extension Presence

The experimental results from the testbench quan-
tify ECH’s privacy protection effectiveness. Running the
benchmark will result in pcap files that contain all the
network traffic between the client, the DNS, and the Nginx
server.

Below are excerpts from the packet captures, which
were opened in Wireshark for Mac.

Figure 1 shows the client requesting an A (and AAAA)
record for ech.test and the DNS server responding. After
the client receives the DNS response, a TCP connection is
initiated. After the initial SYN, ACK procedure, the client
sends the ClientHello, with the SNI visible (ech.test) to
network observers.

Figure 1: Plaintext TLS showing SNI exposure

Figure 2 shows the ECH-enabled client requesting
the A (and AAAA) records but also the HTTPS Resource
Record. After receiving the IPv4 and the ECHConfig, the
client starts the TLS handshake with a ClientHello. This
time, as the client used ECH, a network observer can
only see the fronting domain web.local defined in the
ECHConfig, hiding the real SNI encrypted in the "inner"
ClientHello.

The Nginx server processes both (ECH and non-ECH)
connections as requests to ech.test, while network ob-
servers perceive only the generic web.local domain for
the ECH-enabled request.

ECH’s privacy effectiveness depends on deployment
scale: when ech.test remains the sole service behind

Seminar IITM SS 25 105 doi: 10.2313/NET-2025-11-3_20

Figure 2: Demonstrating SNI concealment via ECH

a given outer SNI, the 1:1 mapping preserves some fin-
gerprintability. However, when multiple unrelated services
share the same fronting domain, such as web.local in
this testbench or cloudflare-ech.com in Cloudflare’s
production deployment [4], all ECH-protected connections
become indistinguishable to external observers, maximiz-
ing privacy through traffic aggregation.

4.2. Implications for Network Security

ECH effectively prevents several classes of passive
attacks:

SNI-based censorship becomes infeasible as censors
cannot identify target domains from ClientHello inspec-
tion. Traffic correlation attacks are significantly hin-
dered when multiple services share the same outer SNI.
Pervasive monitoring capabilities are reduced as ISPs
and intermediaries lose visibility into user browsing pat-
terns.

However, ECH does not protect against active attacks
or endpoint-based monitoring. Network administrators
must adapt security strategies toward behavioral analysis
rather than content-based inspection of TLS metadata.

5. Related Work

This section positions our testbench contribution
within the broader landscape of TLS privacy research and
practical ECH evaluation approaches.

Privacy Analysis and Formal Verification. Hoang et
al. [10] conducted the first comprehensive empirical study
of domain name encryption privacy benefits, analyzing k-
anonymity properties of 7.5M domains across nine global
vantage points. Only 30% of domains achieve meaningful
privacy (k>100), while 20% gain no benefit from one-
to-one domain-IP mappings, establishing ESNI effective-
ness limitations. Bhargavan et al. [11] provided the first
mechanized formal analysis of TLS 1.3 privacy properties
with ECH, using ProVerif to define client identity privacy,
unlinkability, and extension privacy. They identified early
ECH draft vulnerabilities and established theoretical foun-
dations for encrypted handshake security.

Deployment Measurement Studies. Tsiatsikas et
al. [12] measured ECH and ESNI adoption across top
1M domains, finding minimal ECH deployment despite
theoretical benefits. Less than 19% of domains supported
ESNI, with practically no ECH support as of 2023, high-
lighting deployment gaps.

Practical Implementation and Testing. While Cloud-
flare and other CDNs have enabled ECH in production
environments [4], controlled evaluation frameworks re-
main limited. Hoang et al. [10] performed large-scale

active DNS measurements to assess real-world co-hosting
patterns, but focused on privacy quantification rather than
demonstrating ECH functionality. Most evaluation ap-
proaches rely on theoretical analysis or internet-scale mea-
surements rather than controlled, reproducible testbeds for
direct ECH protocol comparison.

Censorship Circumvention Context. Recent work
has examined ECH’s role in circumventing SNI-based
censorship [13], though ECH deployment remains in-
sufficient to provide widespread censorship resistance.
Research shows that authoritarian regimes have actively
blocked ESNI traffic, emphasizing the need for robust
ECH adoption and evaluation frameworks.

6. Conclusion and Future Work

This section synthesizes the key findings from our
ECH testbench evaluation, assesses its broader implica-
tions for internet privacy, and outlines future research
directions.

6.1. Summary of Findings

This paper analyzes Encrypted Client Hello (ECH)
privacy benefits through a practical testbench framework
demonstrating critical privacy enhancements in modern
TLS communications. By comparing ECH-enabled and
plain TLS connections, we prove ECH’s effectiveness
in hiding real target domains from network observers
through encrypted inner ClientHello and generic "outer"
SNI, cloaking real domain names.

The key findings include:

• ECH effectively conceals target domains
(ech.test) behind generic public names
(web.local), especially when multiple sites share
the same outer SNI

• The same server infrastructure can seamlessly han-
dle both ECH and plain TLS connections

• ECH presents significant challenges for traditional
network security monitoring approaches

6.2. Significance for Internet Privacy

ECH eliminates the last major plaintext metadata leak
in TLS 1.3, completing privacy protection by encrypt-
ing previously exposed ClientHello fields. The testbench
demonstrates protection without functional compromises,
maintaining TLS 1.3 compatibility while preventing pas-
sive domain monitoring. However, widespread adoption
faces implementation complexity, evidenced by required
experimental software builds.

Protocol effectiveness scales with adoption density as
ECH maximizes privacy when multiple services share
common outer SNIs, creating indistinguishable traffic for
network observers.

ECH development reflects broader internet protocol
design shifts toward privacy-by-design principles, where
user privacy becomes fundamental rather than optional.
Current deployment by major CDN providers like Cloud-
flare indicates ECH’s transition from experimental to
production-ready technology, with advancing browser sup-
port. This directly responds to the IETF’s recognition of
pervasive monitoring as an infrastructure attack.

Seminar IITM SS 25 106 doi: 10.2313/NET-2025-11-3_20

6.3. Challenges and Limitations

While ECH provides substantial privacy benefits, chal-
lenges remain for successful deployment.

Implementation Complexity: ECH requires system-
atic DNS infrastructure, server software, and client appli-
cation updates. Our testbench demonstrates experimental
software needs, highlighting maturity challenges.

Adoption Incentives: The "Do not stick out" prob-
lem suggests ECH effectiveness depends on widespread
adoption to avoid making ECH-enabled traffic a signal to
adversaries.

Infrastructural Concentration: ECH offers greatest
privacy gains when endpoints are shared, favoring large
CDN deployment like Cloudflare, potentially incentivizing
further internet infrastructure centralization.

6.4. Future Work and Extensions

Future research directions based on this work include:
Extended Testbench Scenarios: Expanding the test-

bench to include more complex scenarios such as test-
ing ECH performance under varying network conditions,
evaluating compatibility with different TLS proxies or
middleboxes, and exploring the implications of Implicit
ECH for further obfuscation [7].

Performance Analysis: Comprehensive latency and
throughput measurements under varying network con-
ditions, quantifying ECH’s operational overhead in
production-like environments.

Enterprise Security Solutions: Research into new
methods for enterprise network security monitoring in
an ECH-pervasive environment would be valuable, po-
tentially exploring endpoint-based security solutions or
privacy-preserving analytics techniques that can operate
effectively without requiring plaintext SNI access.

Deployment Studies: Large-scale studies of ECH de-
ployment challenges and adoption patterns in real-world
environments.

Mitigating Infrastructural Concentration: Examine
ECH deployment approaches that lessen reliance on dom-
inant CDNs, thereby expanding the range of participating
operators and enhancing end-user privacy.

References
[1] E. Rescorla, K. Oku, N. Sullivan, and C. A. Wood, “TLS Encrypted

Client Hello,” Internet Engineering Task Force, Internet-Draft

ietf-tls-esni-25, Jun. 2025, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/25/

[2] NordVPN, “What is encrypted SNI, and how does it relate to cen-
sorship?” https://nordvpn.com/blog/encrypted-sni/, 2024, [Online;
accessed June 21, 2025].

[3] S. Farrell and H. Tschofenig, “Pervasive Monitoring Is an Attack,”
RFC 7258, 2014. [Online]. Available: https://www.rfc-editor.org/
rfc/rfc7258.html

[4] Cloudflare, “Encrypted Client Hello - the last puzzle piece to
privacy,” https://blog.cloudflare.com/announcing-encrypted-client-
hello/, 2023, [Online; accessed June 21, 2025].

[5] T. Probst, “Decoding TLS Encrypted Client Hello extension,”
https://thibautprobst.fr/en/posts/ech/, 2025, [Online; accessed June
21, 2025].

[6] Security.com, “Navigating Encrypted Client Hello (ECH): Insights
from RSAC 2025 Conference,” https://www.security.com/expert-
perspectives/navigating-encrypted-client-hello-ech-insights-rsac-
2025, 2025, [Online; accessed June 21, 2025].

[7] N. Sullivan, “Implicit ECH Configuration for TLS 1.3,” Internet
Engineering Task Force, Internet-Draft draft-sullivan-tls-implicit-
ech-00, Feb 2025, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-sullivan-tls-implicit-ech/

[8] B. Schwartz, M. Bishop, and E. Nygren, “Bootstrapping
TLS Encrypted ClientHello with DNS Service Bindings,”
Internet Engineering Task Force, Internet-Draft draft-ietf-tls-
svcb-ech-08, Feb 2025, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-tls-svcb-ech/

[9] Nginx, “Request for Encrypted Client Hello (ECH) Support in Ng-
inx,” https://github.com/nginx/nginx/issues/266, 2024, gitHub Issue
#266, [Online; accessed June 21, 2025].

[10] N. P. Hoang, A. A. Niaki, N. Borisov, P. Gill, and
M. Polychronakis, “Assessing the privacy benefits of domain
name encryption,” CoRR, vol. abs/1911.00563, 2019. [Online].
Available: http://arxiv.org/abs/1911.00563

[11] K. Bhargavan, V. Cheval, and C. A. Wood, “A symbolic
analysis of privacy for TLS 1.3 with encrypted client hello,”
in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’22. New
York, NY, USA: ACM, 2022, pp. 279–292. [Online]. Available:
https://doi.org/10.1145/3548606.3559360

[12] Z. Tsiatsikas, G. Karopoulos, and G. Kambourakis, “Measuring
the adoption of TLS encrypted client hello extension and its
forebear in the wild,” in Computer Security. ESORICS 2022
International Workshops, ser. Lecture Notes in Computer Science,
vol. 13785. Cham: Springer, 2023, pp. 177–190. [Online].
Available: https://doi.org/10.1007/978-3-031-25460-4_10

[13] S. Wendzel, W. Mazurczyk, L. Caviglione, and A. Mileva, “A
survey of internet censorship and its measurement: Methodology,
trends, and challenges,” 2025. [Online]. Available: https://arxiv.
org/abs/2502.14945

Seminar IITM SS 25 107 doi: 10.2313/NET-2025-11-3_20

ISBN 978-3-937201-85-6

9 783937 201856

ISBN 978-3-937201-85-6
DOI 10.2313/NET-2025-11-3

ISSN 1868-2642 (electronic)
ISSN 1868-2634 (print)

1

	Energy efficiency of DPDK
	Overview of Network Telescopes
	Energy Consumption Reports Using Jupyter Notebooks
	Firewalling with eBPF: A Performance Comparison of XDP-based Solutions
	Congestion Control Schemes for Multipath QUIC
	Credit-Based Shaping As Defense Against DoS Attacks
	Governance of a Distributed Autonomous Organization
	Adding data visualization to pos-testbeds
	Timeline of Host Monitoring Tools
	QWACs in Automated Environments
	Market Models in the European Digital Identity Wallet Ecosystem
	MASQUE-based Performance Enhancing Proxies
	Time-Sensitive Networking on virtualized network components
	Applications of MASQUE-proxies in TEE Environments
	Evaluation of sources for IPv6 Hitlists
	Modeling the Architecture of QUIC Implementations with rustviz
	Autoencoder-Based Anomaly Detection in Networks
	Blockchain Governance and Tokenomics
	Securing BGP - Mechanisms to Prevent Routing Leaks
	Demonstrating Encrypted Client Hello (ECH) Privacy Benefits

