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Abstract—This paper investigates the design, analysis, and
potential of robust and reliable broadcast protocols in dis-
tributed systems, addressing challenges like fault tolerance,
latency, and communication efficiency in both stand-alone
and simulation-based frameworks. Existing broadcast proto-
cols are examined, with a focus on evaluating their scalability
and resilience under failure conditions. We explore the
limitations of traditional transport protocols like TCP and
introduce modern alternatives such as QUIC, which offer
enhanced performance in high-latency, high-concurrency
environments. QUIC’s built-in encryption, faster connection
setup, and improved multiplexing make it a promising alter-
native for reliable broadcast communication. The study pro-
vides a comparative analysis of TCP and QUIC, highlighting
their strengths, weaknesses, and use cases. Additionally, it
examines the role of advanced cryptographic techniques
like threshold cryptography and Distributed Key Generation
(DKG) and discusses open-source implementations, for in-
stance, libp2p. The findings offer valuable insights for future
research in the deployment of the QUIC protocol in reliable
broadcasts.

Index Terms—reliable broadcast, distributed systems, broad-
cast protocols, fault tolerance, communication efficiency,
scalability, TCP, QUIC, TLS, consensus algorithm, threshold
cryptography, distributed key generation (DKG), libp2p

1. Introduction

Reliable broadcast is a fundamental primitive in dis-
tributed systems, ensuring that messages are consistently
delivered to all intended recipients, even under adverse
conditions such as network failures or malicious attacks
[1]. These protocols underpin critical applications like
blockchain networks, distributed databases, and fault-
tolerant systems. Three primary requirements must be
met for reliability: validity, agreement and integrity [2].
Validity ensures that all correct nodes eventually deliver a
message if the sender is correct; agreement guarantees that
all correct nodes deliver the same message; and integrity
prevents tampering or duplication of messages. These
requirements were first formalized in 1983 [3] and remain
foundational in distributed systems research.

Traditional transport protocols like TCP have been
widely adopted due to their robustness and well-
understood reliability mechanisms. Combined with TLS
(Transport Layer Security) for encryption, TCP has long
been the standard for secure communication. However,
these solutions face challenges in scalability and effi-
ciency, particularly in high-latency environments or under

heavy network congestion. To address these limitations,
modern alternatives like QUIC [4] have emerged. QUIC
incorporates built-in encryption, multiplexing, and faster
connection setups, presenting a promising alternative for
reliable communication, including broadcast scenarios.

This paper explores the current state of reliable broad-
cast solutions, analyzing existing algorithms and used pro-
tocols with a focus on evaluating the feasibility of QUIC
as a substitute for TCP. This is achieved through a compar-
ative analysis of these transport protocols, their advantages
and disadvantages, and use cases involving advanced cryp-
tographic techniques such as threshold cryptography and
Distributed Key Generation (DKG). Furthermore, we in-
vestigate open-source implementations, including libp2p,
and discuss the possible future developments in reliable
broadcasting.

2. Background, Related Work and Existing
Broadcast Solutions

Ensuring reliable broadcast in distributed systems is a
fundamental challenge, especially in environments where
communication may be unreliable, and nodes may fail. To
address this, various consensus mechanisms and synchro-
nization models have been developed to guarantee mes-
sage delivery and agreement among nodes. This section
explores the principles behind reliable broadcast and con-
sensus, highlighting key algorithms, and examines the role
of different synchronization models in achieving reliable
communication.

2.1. Consensus Algorithms

Consensus algorithms are fundamental to ensuring
consistency in distributed systems, especially when deal-
ing with unreliable communication and potential faults.
These algorithms enable a set of processes or nodes to
agree on a single value, even in the presence of failures,
ensuring reliable broadcast of messages. A few notable
consensus algorithms are widely used to achieve this
reliability:

2.1.1. Paxos. Paxos is a foundational consensus algorithm
used in partially synchronous to synchronous systems.
Paxos ensures that a majority of nodes reach agreement
on a single value despite faults (e.g, node crashes). It
operates under the assumption that at least one correct
process is not faulty, and it guarantees safety and liveness.
Safety in this context means that no two nodes will
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decide on different values and liveness means that a de-
cision will eventually be made under specific conditions.
While Paxos is a breakthrough in consensus protocols, its
implementation is viewed as complex and inefficient in
terms of performance due to frequent communication and
coordination overheads [5].

2.1.2. Raft. Raft was designed as a more understand-
able alternative to Paxos, focusing on clarity and ease
of implementation. Raft divides the consensus process
into three key components: leader election, log replication,
and safety. A leader is elected to manage the consensus
process, and the leader’s log is replicated across follower
nodes. Raft ensures that all changes to the system are
coordinated through the leader, simplifying the process
and improving efficiency in comparison to Paxos. [6].

2.1.3. Byzantine Fault Tolerant (BFT) Algorithms. In
more adversarial environments, where nodes may behave
arbitrarily, BFT algorithms are used. For example, Prac-
tical Byzantine Fault Tolerance (PBFT) is designed to
tolerate up to one-third of the nodes being compromised
by a Byzantine adversary. The algorithm works by having
nodes exchange messages in multiple rounds to achieve
agreement on a transaction, even in the presence of faulty
or malicious participants. [7].

2.2. Sybil resistance approaches

While Consensus algorithms determine how nodes
agree on a single state or value in the system, sybil
resistance determines who gets to participate in the net-
work and ensures that participation is fair, preventing
adversaries from gaining excessive influence. A Sybil
attack occurs when an adversary controls a large number
of nodes, allowing them to disrupt the network by cen-
soring messages, invalidating transactions, or influencing
consensus outcomes. In the context of reliable broadcast,
Sybil resistance ensures that an adversary cannot gain
disproportionate control over message dissemination.

Decentralized systems implement Sybil-resistant
mechanisms to counterfeit sybil attacks by imposing
economic or computational barriers to prevent adversaries
from cheaply creating multiple identities. Proof of Stake
(PoS): Forces participants to stake cryptocurrency as
collateral, ensuring economic penalties for dishonest
behavior.

Sybil resistance mechanisms often incorporate con-
sensus techniques to validate participation. For example,
PoS uses consensus among staked participants to finalize
blocks while preventing Sybil attacks by requiring eco-
nomic commitment. Sybil resistance is a prerequisite for
secure consensus in decentralized networks. Without it,
consensus protocols become vulnerable to 51% attacks (in
PoW) or stake concentration attacks (in PoS), where an
attacker gains the majority influence and disrupts agree-
ment.

Moreover, the efficiency and scalability of consen-
sus mechanisms are influenced by the choice of Sybil
resistance methods. PoW offers strong Sybil resistance
but suffers from high energy consumption, whereas PoS
reduces energy usage but introduces new challenges, such

as stake centralization risks. Some systems combine multi-
ple mechanisms, such as PoS with reputation-based Sybil
resistance, to balance security, efficiency, and decentral-
ization.

2.2.1. Proof of Work (PoW). In this approach, miners
compete to solve complex mathematical puzzles using
computational power. The first to succeed earns the right
to create a new block and receive rewards. PoW ensures
security by making mining computationally expensive,
deterring Sybil attacks and fraudulent transactions. An
attacker would need to control more than 51% of the
network’s total computational power to alter transactions,
which is highly costly and impractical. However, PoW’s
high energy consumption raises questions regarding its
scalability and environmental impact. Despite this, it re-
mains widely used in networks like Bitcoin, Litecoin, and
Monero, where strong security and decentralization are
prioritized [8].

2.2.2. Proof of Stake (PoS). PoS offers a more energy-
efficient alternative by selecting validators based on the
number of coins they have staked as collateral rather
than computational work. This system ensures security
by making dishonest behavior costly, as malicious valida-
tors risk losing their staked assets [9]. Unlike PoW, PoS
significantly reduces energy consumption while maintain-
ing Sybil resistance, as attackers would need to control
a majority of the staked assets to manipulate the net-
work. It also supports faster transaction finality, making it
more scalable for high-volume applications. PoS is widely
adopted in blockchain platforms like Ethereum 2.0.

2.3. Synchronization Models in Reliable Broad-
casting

In the context of reliable broadcasting, the synchro-
nization model of a system plays a crucial role in deter-
mining the guarantees provided by the underlying com-
munication protocols. These synchronous, partially syn-
chronous, and asynchronous models define the expec-
tations regarding timing and network delays, and they
influence the design and robustness of reliable broadcast
mechanisms.

Synchronous systems operate under strict timing as-
sumptions, where a known finite upper bound (∆) ensures
that messages are delivered within a specified timeframe
[10]. This model simplifies protocol design by providing
predictable communication, making it suitable for applica-
tions requiring high reliability and determinism. Examples
include high-frequency trading systems and real-time con-
trol networks. However, the reliance on accurate ∆ value
presents challenges: a conservatively large ∆ may degrade
performance due to long timeouts, while a small ∆ risks
safety violations in real-world conditions.

The partially synchronous model bridges the gap be-
tween synchrony and complete asynchrony. It assumes
an unknown finite upper bound (∆) on message delays,
which holds only after a Global Stabilization Time (GST)
[11]. Before GST, the system behaves asynchronously.
This model is highly applicable in real-world distributed
systems where networks experience transient disruptions
but eventually stabilize.
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Asynchronous systems place no bounds on message
delivery times, making them highly flexible but challeng-
ing for achieving consensus. The lack of timing guaran-
tees means that protocols must ensure eventual message
delivery and consensus without relying on temporal as-
sumptions. This model is essential for environments with
unpredictable delays, such as highly decentralized peer-
to-peer networks.

3. Comparative Analysis: TCP vs. QUIC for
Reliable Broadcast

Reliable broadcast depends heavily on the underly-
ing transport protocol, which influences factors such as
latency, security, and message delivery efficiency. This
section explores the strengths and weaknesses of TCP and
QUIC protocols and compares them.

3.1. TCP as the traditional transport layer

TCP (Transmission Control Protocol) [12] is the cor-
nerstone of reliable data transmission in modern net-
working. It offers reliability through mechanisms such as
retransmissions, in-order delivery, and congestion control.
These guarantees make TCP essential for applications like
file transfers, web browsing, and distributed databases like
Google Spanner. TCP’s acknowledgment system ensures
data integrity, while its flow control mechanisms [13] aim
to prevent network congestion.

3.1.1. Challenges of TCP. TCP suffers from inherent
latency due to its three-way handshake and sequential
acknowledgment system. The Round-Trip Time (RTT) for
a TCP connection establishment is at least one RTT for
the handshake, and additional RTTs are incurred for data
transfer, especially with larger datasets. Moreover, the
sequential acknowledgment of packets introduces head-
of-line blocking, where a single lost packet can delay the
entire stream, a significant drawback for time-sensitive
applications [14].

The inefficiency of TCP becomes more pronounced
in large-scale systems, particularly where high throughput
and low-latency communication are required, such as in
real-time media streaming or large distributed systems.

3.1.2. Deployment in Real-World Broadcast Systems.
TCP is integral to traditional, reliability-sensitive systems
like distributed databases (e.g., Apache Cassandra, Mon-
goDB) where data consistency and integrity are critical.
The established ecosystem around TCP and different ver-
sions of TLS guarantees secure and reliable connections
in transactional systems. However, the latency and lack
of multiplexing are limitations in dynamic, distributed
environments, where faster connection establishment and
handling of multiple streams are required [15].

3.2. QUIC as an Alternative

QUIC is a modern transport protocol designed by
Google to address some of the TCP limitations, especially
in terms of connection setup time, security, and multiplex-
ing. Key Features of QUIC are:

Built-in Encryption: QUIC integrates Transport
Layer Security (TLS) 1.3 directly into the protocol, elim-
inating the need for a separate security layer as required
by protocols like HTTP/2 over TLS.

Reduced handshake: This built-in encryption also
reduces connection setup time by consolidating the trans-
port(previously TCP) and security(TLS) handshakes into
a single phase. QUIC establishes secure connections more
efficiently compared to TCP, as the TLS handshake occurs
alongside the initial connection establishment, reducing
latency significantly [4].

Fast Connection Establishment: QUIC also supports
0-RTT (zero round-trip time) connection establishment,
allowing data to be sent in the initial packet even before
the handshake is complete. This is particularly beneficial
in environments where latency is a concern, such as high-
frequency trading or live-streaming applications. [4]

Multiplexing: QUIC improves the efficiency of mul-
tiplexing by allowing multiple independent data streams
within a single connection [4]. Unlike TCP, where head-
of-line blocking can occur, QUIC allows independent
streams to proceed without interference. This is partic-
ularly important in modern applications where multiple
data types are transmitted simultaneously.

3.2.1. Potential Advantages in Reliable Broadcasting.
QUIC’s design introduces new possibilities for use in
reliable broadcasting scenarios, particularly in distributed
systems where rapid and fault-tolerant message delivery
is crucial.

QUIC’s low-latency connection setup and inherent
support for multiplexing make it suitable for distributed
systems requiring rapid message dissemination. This,
combined with its resistance to head-of-line blocking, en-
sures that broadcast messages can be delivered quickly and
efficiently, even in environments with unreliable network
conditions, where network changes are a possibility. This
is due to the fact that QUIC relies on a Connection ID
to identify connections, and not on the IP Addresses and
Sockets of the participants.

3.2.2. Limitations and Open Questions. Despite its
many advantages, QUIC presents certain challenges that
may affect its adoption in all contexts.

One significant challenge to QUIC’s adoption is its
limited compatibility with legacy systems, particularly
those that rely on TCP-based communication stacks.
QUIC requires modern infrastructure and support for UDP
(User Datagram Protocol), making it less suitable for en-
vironments where legacy protocols are deeply integrated.

4. Analysis and open-source implementations

In this section we explain existing implementation ap-
proaches and make assumptions about possible enhance-
ments through future work.

4.1. Implementations focusing on TCP-based so-
lutions

One notable example where TCP outperforms QUIC
in reliable broadcast scenarios is its role in PBFT con-
sensus. A study evaluating the performance of QUIC in
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PBFT-based blockchain networks found that TCP achieves
better execution times due to its optimized message repli-
cation and congestion control mechanisms [16]. PBFT re-
lies on frequent and structured message exchanges across
multiple communication rounds, requiring consistent, in-
order delivery and efficient retransmission of lost packets.
TCP, with its persistent connections and built-in relia-
bility mechanisms, efficiently handles this high message
volume, ensuring that consensus operations proceed with
minimal delays. In contrast, QUIC must implement re-
liability and congestion control at the transport layer,
leading to additional processing overhead. QUIC reduces
connection establishment latency and supports multiplex-
ing, but the study showed that these benefits do not im-
prove PBFT execution times. QUIC’s congestion control
mechanisms, such as BBR and New Reno, don’t consis-
tently outperform TCP due to their handling of packet
loss and congestion feedback in high-frequency message
replication scenarios. The simulation results indicate that
TCP remains the preferred choice for PBFT and similar
consensus protocols, where timely, ordered message deliv-
ery and efficient network congestion handling are crucial.
However, the study suggests that QUIC may become more
viable with further optimizations in congestion control for
large-scale distributed systems. Protocols designed for par-
tial synchrony, such as Paxos or Raft [17], can be imple-
mented over TCP/TLS, especially when message delivery
times are uncertain but the system can eventually stabilize.
These protocols ensure that once a system reaches GST,
reliable communication can be achieved, with TCP/TLS
offering secure and reliable transport. However, when low-
latency and high-throughput are required, QUIC may be
favored.

4.2. QUIC use cases

Asynchronous Byzantine Fault Tolerant (ABFT) algo-
rithm is an example of an asynchronous protocol that
can be implemented over QUIC in cases where low
latency is critical, especially in decentralized or mobile
networks. QUIC offers distinct advantages over TCP
in asynchronous systems due to its reduced handshake
overhead, which allows for faster message exchanges.
However, those are mainly assumptions that haven’t been
consolidated by by research.

In asynchronous environments, TCP can still be used,
but it is typically less efficient compared to QUIC due
to the higher latency introduced by TCP’s handshake
and slower connection re-establishment after packet loss.
TCP and TLS are more suitable for environments with
moderate to low network instability, while QUIC performs
better in volatile networks(e.g, mobile environments or
global-scale decentralized systems).

4.2.1. Potential of QUIC for Reliable Broadcast in
Decentralized Transactions. QUIC has shown promise
in decentralized transaction systems, particularly in peer-
to-peer Bitcoin transactions and payment channels. Stud-
ies highlight that QUIC’s low-latency handshake, built-in
encryption, and multiplexing make it well-suited for fast
and secure financial transactions in blockchain networks.
QUIC Bitcoin Transactions leverage QUIC’s Connection
ID mechanism to enable direct, unpublished transaction

exchanges between peers, reducing reliance on interme-
diaries and mitigating security risks such as man-in-the-
middle (MITM) attacks [18]. Additionally, QUIC Bit-
coin Channels introduce efficient payment channels that
maintain state even during network switches, allowing
seamless transactions between users and machines. These
capabilities suggest that QUIC could be a valuable alterna-
tive to TCP for high-speed, trustless financial exchanges,
particularly in use cases requiring lightweight, adaptable,
and encrypted communication channels in decentralized
networks.

4.2.2. Threshold Cryptography and Distributed Key
Generation (DKG). Threshold cryptography, particularly
Distributed Key Generation (DKG), plays a fundamental
role in decentralized security mechanisms. As outlined in
Das and Ren’s work [19], DKG ensures that signing keys
are securely distributed among multiple participants rather
than being held by a single entity. Their scheme employs
adaptively secure BLS threshold signatures, which main-
tain security even if an adversary selects corrupted nodes
dynamically. The protocol minimizes overhead compared
to prior DKG approaches, ensuring efficient key man-
agement in distributed environments. This decentralized
key-sharing mechanism is particularly relevant for secure
broadcast systems, where maintaining integrity and fault
tolerance in adversarial conditions is crucial.

QUIC, on the other hand, integrates cryptographic
handshakes with transport-layer encryption, minimizing
round-trip times and ensuring secure data transmission [4].
While QUIC itself does not inherently implement DKG,
its built-in encryption and low-latency communication
may offer advantages in scenarios where distributed key
agreement protocols like DKG are deployed. Specifically,
QUIC’s multiplexed streams and rapid reconnection ca-
pabilities could potentially reduce the overhead associated
with key exchange and cryptographic signing in decentral-
ized networks. However, no existing research—including
that of Das and Ren—has explicitly evaluated QUIC’s
interaction with DKG. Further studies would be required
to determine whether QUIC’s performance benefits align
with the security guarantees of threshold cryptographic
protocols.

4.2.3. DAG-Based Consensus Mechanisms:. QUIC’s
low-latency and efficient communication protocols align
well with Directed Acyclic Graph (DAG) structures used
in systems like IOTA [20]. DAGs enable parallel transac-
tion processing without the bottleneck of sequential blocks
typical of traditional blockchain systems. QUIC’s quick
message propagation and connection setup are beneficial
for the high-throughput and low-latency requirements of
DAG-based consensus, where real-time message delivery
is essential for scalability and network efficiency.

4.2.4. libp2p. In libp2p, reliable broadcast is essential
for efficient message delivery across peers. TCP and
QUIC—play key roles in this functionality.

TCP’s head-of-line blocking can be a significant draw-
back in real-time applications. Additionally, TCP’s re-
liance on middleboxes for header inspection can cre-
ate challenges for deploying new protocol features [21].
QUIC avoids head-of-line blocking which makes it ideal
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for real-time and high-concurrency environments. Web-
Transport, built on QUIC, offers an alternative to Web-
Sockets by enabling bidirectional communication over
stream multiplexing [22]. Unlike WebSockets, which use a
single connection, WebTransport allows multiple streams
to operate in parallel, improving performance. It also
enables browsers to connect to libp2p nodes securely
using self-signed certificates, addressing WebSocket’s lim-
itations in peer-to-peer networks. A standard WebSocket
connection is conducted through 6 RTTs:

• 1 RTT for TCP handshake.
• 1 RTT for TLS 1.3 handshake.
• 1 RTT for WebSocket upgrade.
• 1 RTT for multistream security negotiation (Noise

or TLS 1.3).
• 1 RTT for security handshake (Noise or TLS 1.3).
• 1 RTT for multistream muxer negotiation (mplex

or yamux).
In comparison, WebTransport only requires 3 RTTs:

• 1 RTT for QUIC handshake.
• 1 RTT for WebTransport handshake.
• 1 RTT for libp2p handshake; one for multistream

and one for authentication(with a Noise hand-
shake) [22].

5. Conclusion and future work
In conclusion, while the exploration of TCP and

QUIC for reliable broadcast in distributed systems has
provided valuable insights, it is clear that further re-
search is needed, particularly regarding QUIC’s evolving
capabilities and potential for broader adoption. QUIC’s
inherent advantages in latency reduction, multiplexing,
and built-in encryption make it an increasingly promising
candidate for high-performance applications, especially in
real-time communication, streaming, and large-scale de-
centralized systems. QUIC is still undergoing development
and its full potential in diverse distributed environments
remains an area for continued investigation. QUIC con-
tinues to mature and gain support across the industry. In
my opinion it is expected that QUIC’s deployment will
expand, offering new opportunities for optimizing reliable
broadcasting in environments where speed, scalability, and
fault tolerance are critical. Future research should focus
on refining QUIC’s interoperability with legacy systems,
exploring hybrid solutions that combine the strengths of
both TCP and QUIC, and further integrating advanced
cryptographic techniques to enhance the security and effi-
ciency of reliable broadcast protocols. As the adoption
of QUIC accelerates, it is anticipated that it will play
an increasingly integral role in shaping the next gener-
ation of communication protocols, driving innovation in
distributed systems and beyond.
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