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Abstract—Widely deployed, loss-based, congestion control
and avoidance mechanisms, such as CUBIC and RENO,
have served well for many years. Until recently, packet loss
may have been a good indicator for congestion, but with
increasing wireless networks in public venues, as well as
ever-growing buffer sizes leading to bigger delays, packet
loss has become an unreliable indicator of congestion. In this
paper, we present the Bottleneck-Bandwidth and Round-Trip
(BBR) algorithm and its evolution from version 1 to version
3. Originally developed by Google in 2017 [1], BBR uses
a model-based approach to regulate congestion, making it
better suited to modern network conditions.

Index Terms—BBR, Network Path Modeling, Congestion
Control, TCP

1. Introduction

When Jacobson et al. set out to analyze the reason
for the “first of [. . . ] a series of congestion collapses“
[2] they developed a new way to prevent such an event
from happening again. It was then that packet loss was
decided to be used as the main indicator for congestion in
a network [1]. They proposed to use a mechanism called
the congestion window (cwnd) in order to start sending
packets at a slow rate, increasing it on every successful
transmission indicated by a received acknowledgement
(ACK). This algorithm is now known as TCP Tahoe [3].
Many other congestion control algorithms, such as TCP
Reno and TCP CUBIC, the latter of which has become
the default algorithm in Linux as stated by Sangtae Ha et
al [4], were developed over the years. Lately however, the
rise of wireless network in public venues and ever-growing
buffer sizes have led to packet loss not being a reliable
indicator of congestion anymore [1]. This is where the
BBR algorithm developed by Google comes into play. The
main contribution of this paper is to give an overview of
the current state of BBR congestion control and compare
the different versions that have been developed since.
In the following sections, we first provide an overview
of conventional congestion control methods and discuss
the limitations of relying solely on packet loss. BBR’s
fundamental concepts and goals are then introduced. We
explore how each successive version refines the algo-
rithm’s design, model parameters, and fairness. Finally we
discuss the current challenges, achievements and future
directions for BBR.

2. TCP Congestion Control

Traditional congestion control algorithms, dating back
to TCP Tahoe and Reno, rely on packet loss as a primary
indicator of congestion and use the cwnd as primary mech-
anism to regulate the sending rate. This cwnd describes
the maximum not yet acknowledged amount of data in
bytes that can be in flight at any given time as described by
Rasool Al-Saadi et al [5]. The sender continually increases
its cwnd until loss is detected, then reduces it aggressively.
The window is then steadily increased again, starting the
process anew. Loss itself is detected via duplicate ACKs
triggered by out-of-order arrivals. Instead of reacting to
the first duplicate ACK the algorithm waits for three or
more duplicates (a process called fast retransmit) [5] to
confirm that out-of-order arrival is a result of congestion.
By how much the cwnd is reduced and in what manner
it is restored thereafter differs between algorithms. Loss-
based algorithms therefore require a low loss environment
to ever efficiently utilize the connection for a prolonged
time. Even if the cwnd ever reaches its maximum, loss-
based algorithms will continue growing it, leading to an
unavoidable loss event and cwnd reduction. Gomez et al.
state that “using Reno in a 10 Gbps link with a 100 ms
propagation delay needs more than an hour to fully utilize
the bandwidth. Avoiding this issue demands a loss rate
lower than 0.00000002%“ [6]. One important aspect to
notice here is that by detecting loss on duplicate acknowl-
edgments it takes at least one round-trip time (RTT) to
detect the congestion and make adjustments which is why
longer buffers make it difficult to adapt quickly due to
the delay they inherently introduce by filling the network
bottleneck’s buffer.

2.1. CUBIC

One of the most widely used algorithms is TCP CU-
BIC, which was developed by Sangtae Ha, Injong Rhee,
and Lisong Xu in 2008 [4]. Instead of growing the cwnd
linearly after loss like TCP Reno does, Sangtae Ha et
al. propose to instead use a cubic function to restore the
cwnd, making the recovery of the cwnd much faster. The
cwnd growth after loss can be split into three phases:
slowing growth that grows the cwnd very quickly at
first, plateau and increasing growth. Figure 1 displays the
various phases that CUBIC goes through. Additionally,
the cwnd is only reset by 30% after a loss as compared
to Reno which reduces it by 50%. This process makes
CUBIC and similar loss-based algorithms such as TCP
Reno predictable in terms of their sending behaviour.
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However, CUBIC still does not solve the inherent problem
of loss-based algorithms. These algorithms remain stuck
in a loop: they probe for the maximum speed, then reduce
it again after a loss. This often shows as a sawtooth-like
pattern, although in CUBIC it is less pronounced thanks
to the cubic function. Since packet loss in itself is only
a binary indicator of congestion, it does not provide any
information about how strongly the network is congested,
which means that the algorithms have only the way of
reducing the cwnd by a fixed factor.

Figure 1: Function of data in flight over time in CUBIC
[7].

The question why TCP CUBIC—or, more broadly,
loss-based congestion control approaches—may no longer
be sufficient, and what led to the development of BBR,
arises. Loss-based algorithms and their way of growing
the cwnd makes them inherently suffer from the following
problems:

• With wireless networks becoming more and more
common, packet loss can also be caused by inter-
ference or other factors unrelated to congestion.

• Network nodes with deep buffers can store a lot
of data before they start dropping packet. Long
queueing of packet leading to high RTT make it
hard to adapt to congestion swiftly and can lead
to a lot of data being sent at an excessive rate.

• Network nodes with shallow buffers might simply
be overwhelmed by a short-lived burst of data and
drop packets despite there being no congestion.
Furthermore even just a slight overshoot of the
maximum bandwidth can lead to packet loss and
an adjustment of the cwnd by much more than
would actually be required.

To solve the stated problems a new approach is needed
where the BBR algorithm comes into play.

3. BBR

BBR was originally developed in 2017 and has
since evolved over three versions. This section gives an
overview of what BBR aims to solve as well as its
implementation details and the differences between the
versions.

3.0.1. Kleinrock’s Optimal Operating Point. BBR tries
to operate at a point that is close to the optimal operating
point as described by Kleinrock [8]. Figure 2 shows the
optimal operating point as a function of the bottleneck
bandwidth and the RTT.

Figure 2: Impact of inflight data volume on RTT and
delivery rate [9].

The two graphs display how the RTT and the delivery
rate change in correlation to the amount of data in flight.
It can be seen that, as the amount of data in flight
increases, there is a limit to the increase in delivery rate.
Furthermore, the round-trip time continues to rise even
long after the delivery rate stopped increasing. This can
be explained by the fact that, while the data volume in
flight is below a certain threshold, there are no queues
yet because the network is under-utilized and delivery-
rate can still be increased by sending more packets. As
the threshold is exceeded, however, the data in flight will
exceed the bottleneck’s capacity, which causes it to be
queued in the nodes buffer resulting in a RTT increase.
Since the bottleneck is already sending as fast as it can, the
delivery rate will not increase anymore as newly arriving
packets are either queued or dropped entirely. While loss-
based algorithms tend to operate at point B as shown in
Figure 2, BBR tries to operate at the point where the
delivery rate is maximized and the RTT is minimized. This
is where the bottleneck is fully utilized excessive forming
of queues, Kleinrock’s optimal operating point [1].

3.1. Goals

BBR departs from the loss-based approach and instead
keeps an updated model of the network path to smoothly
and continuously adapt its sending rate to the current
network conditions. By doing so, it aims to be proactive in
its approach rather than reactive, as loss-based algorithms
are. Keeping continuous track of the network path solves
the issue of only having packet loss as binary indicator
of congestion. The goals of BBR can be summarized as
follows:

• Maximizing Throughput at Minimal Delay:
BBR aims to fully utilize the bottleneck link
by sending at a rate close to the measured bot-
tleneck bandwidth, while keeping the in-flight
data near the bandwidth-delay product (BDP). It
avoids persistent queue buildup (and the resultant
bufferbloat) by doing so and thus maintains low
latency for network traffic [1].

• Proactive, Model-Based Control: Instead of
waiting for packet loss, BBR continuously moni-
tors both bottleneck bandwidth and minimum RTT
to build a near real-time model of the path. It
adjusts its sending rate according to that model so
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that it operates near Kleinrock’s optimal operating
point.

• Improved Robustness to random loss: By de-
coupling congestion control from packet loss,
BBR is inherently more tolerant of random losses
and does not over-correct when just a slight con-
gestion, which could be solved by just a small
reduction of the sending rate, occurs.

3.2. BBR State Machine Phases

BBR operates by creating a network path model using
the RTT and the bandwidth with which it can calculate
the BDP.

BDP = Max. Bandwidth ·Min. RTT

In order to find the minimal RTT one has to send at a rate
that avoids the formation of queues so that no delay is
introduced by the network. On the other hand, in order to
find the maximum bandwidth one has to send at a rate that
makes queues form as those are an indicator of congestion
and therefore a nodes limit. These two measurements are
crucial for BBR to operate at Kleinrock’s optimal operat-
ing point and can only be measured individually as they
are exclusive to each other. BBR does this by utilizing an
internal state machine, see Figure 3, that switches between
probing for exactly these two measurements [7]. During
each of these phases BBR maintains a set of parameters
that influence the sending rate [10]. Some of the most
important parameters are:

• pacing_rate: Main parameter that controls the
spacing between packets. It is updated on each
received ACK and aims to match the bottlenecks
rate instead of sending packets in bursts. In a
perfect scenario, the pacing rate would be equal
to the maximum bandwidth, but the distinction
between pacing rate and sending rate is deliber-
ate. The sending rate, i.e. actual throughput, can
however fall below the pacing rate, for example if
the sender is application-limited or the cwnd limit
has been reached.

• pacing_gain: Multiplier for the pacing rate. Used
to increase or decrease the rate for probing in
various phases.

• cwnd: Limits the maximum inflight data volume.
Bound by inflight_hi and inflight_lo.

• cwnd_gain: Multiplier for the cwnd. Used to in-
crease or decrease the cwnd for probing in various
phases.

• inflight_hi: New since BBRv2 inflight_hi is a
long-term upper bound on inflight data based on
past loss events. The congestion window is limited
to this value.

• inflight_lo: New since BBRv2 inflight_lo is a
short-term upper bound on inflight data in the
probing current cycle.

3.2.1. Startup Phase. When establishing a new connec-
tion, BBR will start in the startup phase. This phase
aims to estimate the bottleneck bandwidth very quickly by
setting the pacing_gain and cwnd_gain to high values and
therefore allowing the cwnd and pacing_rate to effectively

Life cycle phases Property BBRv1 BBRv2 BBRv3

Startup

cwnd_gain 2/ ln 2 (∼ 2.89) 2/ ln 2 (∼ 2.89) 2.00
pacing_gain 2/ ln 2 (∼ 2.89) 2/ ln 2 (∼ 2.89) 2.77
Max. cwnd 3xBDP - -
inflight_hi - max.cwnd max(est. BDP, last cwnd)
Exit send. rate <25% for 3 consec. RTTs loss/ECN rate ≥ thresh. (8) loss/ECN rate ≥ thresh. (6)

Drain pacing_gain 0.35
Exit cwnd ≤ 1xBDP

ProbeBW

Phases 8 fixed gain cycles {Cruise, Refill, Up, Down} {Cruise, Refill, Up, Down}
* Cycle = RTprop cwnd limits = {inflight_hi, inflight_lo} -

cwnd_gain - cwnd_gain(Up)=2.0 cwnd_gain(Up)=2.25
pacing_gain [1.25, 0.75, 1, 1, 1, 1, 1, 1] pacing_gain(Down)=0.75 pacing_gain(Down)=0.90

Exit cwnd ≥ (pacing_gain · BDP) or loss loss/ECN rate ≥ thresh. loss/ECN rate ≥ thresh.

ProbeRTT
Frequency 10s 5s 5s

cwnd 4 BDP/2
Duration 200 ms + RTprop - -

TABLE 1: Evolution of BBR parameters over various
versions [11].

double every round. Generally the maximum bandwidth
is found in around O(log2(BDP)) RTTs in version 3 [10].

This phase is exited as soon as packet loss has reached
a certain threshold or the maximum bandwidth has been
found as indicated by a plateau. In context of BBR a
plateau is reached when the delivery rate has increased
by less than 25% over the last three RTTs.

3.2.2. Drain Phase. During the startup, phase a queue of
around 1 BDP [10] has been built up at the bottleneck.
In order to remove this queue, the drain phase reduces
the pacing gain which in turn reduces the sending rate.
While any value below 0.5 should be able to drain the
queue within ≤ 1 RTTs, BBRv3 uses a value of 0.35 [10].
Once the volume of data in-flight has been reduced to <=
1 BDP the drain phase is exited. If inflight_hi was set
during startup, indicating that there was packet loss, the
drain phase will empty the queue even further to provide
some headroom for better coexistence with other flows.

3.2.3. Probe Bandwidth Phase. The probe bandwidth
phase is a long-lived phase in which BBR oper-
ates most of the time. While originally this phase
was only called ProbeBW it has been split into
four sub-phases in BBRv2 between which the al-
gorithm cycles: ProbeBW_DOWN, ProbeBW_CRUISE,
ProbeBW_REFILL and ProbeBW_UP [12].

• ProbeBW_DOWN: Aims to drain the volume in
flight to below 1 BDP with potentially additional
headroom that can be used by other flows.

• ProbeBW_CRUISE: Sending rate is adjusted to
the maximal available bandwidth with some mar-
gin BBRPacingMarginPercent [10]. If packet
loss occurs bw_lo and inflight_lo are adjusted to
reduce the sending rate as necessary. The phase is
exited after a certain amount of packets depend-
ing on the environment to be more fair towards
coexisting Reno and CUBIC flows [10].

• ProbeBW_REFILL: Aims to “refill the pipe“
[10] to prepare for the next phase. Necessary to
not underestimate the path by causing packet loss
with a sudden burst of data.

• ProbeBW_UP: Probes for changes in maximum
bandwidth by sending with an increased rate. It
is exited after a delivery rate increase plateau has
been found or packet loss exceeds a threshold.

3.2.4. Probe RTT Phase. ProbeRTT is entered after at
most 5 seconds have passed since the last ProbeRTT phase
and can be switched into from any other phase. The goal
of this phase is to measure the minimal RTT. Because
existing queues would introduce a delay and therefore

Seminar IITM WS 24/25 99 doi: 10.2313/NET-2025-05-1_17



Startup Drain ProbeBW DOWN ProbeBW CRUISE ProbeBW REFILL ProbeBW UP ProbeRTT

Figure 3: State transitition diagram for BBRv3 [10].

skew the measured minimal RTT they must be drained
by sending a volume of data that is lower than the BDP.
This is done by halving the cwnd_gain to lower inflight
data volume before taking measurements [10].

3.3. Evolution of BBR

The most notable changes between versions are the
incorporation of packet loss when determining the bot-
tleneck bandwidth [11], [13] and the breakdown of the
ProbeBW phase into four sub-phases in BBRv2 [12].
Piotrowska found in a study that BBRv1 caused excessive
packet loss in some scenarios [12] which likely led to this
decision. To further limit the inflight data volume the pa-
rameters inflight_hi and inflight_lo have been introduced.
The former is used in BBR’s long term path model while
the latter is used in the short term model to limit the cwnd
[10]. The long term model is supposed to be more stable
and keep track of long term safe data rates and volumes,
while the short term model is adjusted more often to adapt
to current network conditions [10]. BBRv3’s changes were
much less radical than the ones introduced in v2. BBRv3
is mostly BBRv3 with the inclusion of fixes for bugs that
affected fairness towards other flows [12], [14]. Further-
more parameters have been adjusted, pacing_gain during
startup has been been lowered to 2.77 and cwnd_gain was
drastically reduced to 2.00. A full overview of parameter
changes can be found in Table 1.

3.4. Fairness

BBR is not the only congestion control algorithm
in use and therefore has to compete with others for
bandwidth. While only a couple of congestion control
algorithms have been outlined in this paper, there are many
more in use for various scenarios. All concurrent internet
flows using various algorithms have to compete for their
share of available bandwidth and therefore it is important
that none takes away most of it while others are left
with the bare minimum. This section briefly summarizes
research about BBR’s fairness towards itself as well as
other congestion control algorithms.

3.4.1. Fairness towards BBR. Zeynali et al. have eva-
luted fairness between multiple BBR flows in various
scenarios such as flows starting at the same point in
time and flows being started at different times [11]. They
have found that while for two same version BBR flows
starting at the same time the fairness as described by Jain’s
Fairness Index [15] has indeed improved a little bit, it
has worsened extremely for staggered flows. While two
BBRv1 and BBRv2 flows being started with a gap of 15

s of each other converged to a similar bandwidth rather
quickly, it took almost 5 minutes for the same to happen
among two BBRv3 flows for a buffer with 16*BDP size.
In total, while BBRv1 displays many more retransmissions
due to its complete ignorance of packet loss as a signal
for congestion, it ends up being the fairest when fighting
for bandwidth among itself.

3.4.2. Fairness towards other congestion control al-
gorithms. Gomez et al. have evaluated fairness between
various versions of BBR among themselves as well as
CUBIC [6]. They observed various scenarios such as two
flows competing with each other without any loss, 100
flows (split up in 50 of each version) competing with
each other and 100 flows (split up in 50 of each version)
without loss, as well as the same scenarios with a loss of
0.025%. For 100 flows and a loss of 0.025% they have
found that BBRv3 and CUBIC have similar throughput
for higher buffer sizes. For smaller buffer sizes BBRv3
reaches a higher throughput than CUBIC. This effect is
even worse for BBRv2 and CUBIC, where BBRv2 takes
almost all the bandwidth in shallow buffer settings. All
in all their results show that better resource sharing and
therefore fairness is achieved with bigger buffer sizes the
more flows compete against each other. However, even for
shallow buffers Piotrowska et al. found that BBRv3 does
indeed enhance “fairness by 12%“ towards CUBIC [12].
On the other hand Zeynali et al. found that even multiple
CUBIC flows cannot compete against a single BBR flow
in terms of Jain’s Fairness Index and “end up competing
between themselves for the bandwidth leftover[. . . ]“ [13],
[15].

4. Conclusion and future work

In this paper, we presented the past and current state
of Google’s BBR algorithm. BBR, according to Google,
shows much promise in terms of operating at near BDP
and providing high bandwidth. They state that “Play-
backs using BBR show significant improvement in all of
YouTube’s quality-of-experience metrics“ [1] and “BBR
reduces median RTT by 53 percent on average globally
and by more than 80 percent in the developing world.“
[1]. BBRv3 has become the default congestion control
algorithm for traffic in Google’s services [13] and now
accounts for at least more than 40% of the internet’s
total traffic volume according to Mishra et al [16]. It is
consistently developed and improved upon and - given
its parametrized nature and usage of a state machine -
it is easy to imagine that more states could be added
in the future to further improve the algorithm or bet-
ter adapt to specific scenarios. Although BBRv3 brings
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notable improvements over earlier versions, research has
revealed that it can still be highly unfair towards other
BBR connections. Therefore it is critical that further re-
finements are needed to enhance fairness not only when
BBRv3 coexists with other congestion control algorithms,
but especially when several BBRv3 flows share the same
bottleneck, especially if BBRv3 is to become the default
congestion control algorithm of the future. As of March
2024 however, BBRv3 was not yet included in Linux’s
mainline TCP, for which a submission was planned as
soon as possible [17]. Looking at the latest meetings of
the Congestion Control Working Group (ccwg) it becomes
clear that development of BBR is in full force with one
of the most recent topics that are being discussed being
making improvements to BBR for real-time connections
[18].
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