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Abstract—The Transport Layer Security (TLS) protocol is a
cornerstone of modern web security. In the TLS ecosystem,
the configurations of servers are mostly concealed from
clients, as servers only react to the clients’ proposals during
the handshake process. Scanning and fingerprinting ap-
proaches address this gap by performing several handshakes
with the server in order to extract as much information as
possible about its TLS configuration. This information can
be helpful in improving the network security by discovering
misconfigurations and identifying malicious servers. This
paper classifies existing TLS scanners into three categories.
We introduce every category and discuss its characteristics
while highlighting its advantages and drawbacks. We also
introduce a local testbed to compare the performance of
various scanners based on their ability to distinguish between
different TLS configurations.

Index Terms—Active scanning, Fingerprinting, TLS, SSL

1. Introduction

Throughout the last years, Transport Layer Security
(TLS) has become a widely used security protocol and the
standard for encrypted communication over the Internet
[1]. It guarantees the integrity and confidentiality of the
data as well as the authentication of the involved parties.
The TLS protocol begins with a handshake where the
client and the server negotiate a common cryptographic
base. In the handshake, the client shares all their capa-
bilities with the server. The latter, however, only chooses
from the client’s proposals according to its internal config-
uration. As a result, the server’s TLS capabilities remain
unclear for external parties.

A possible way to uncover this information is by passively
listening to the server’s TLS communications. Based on
the content of the captured data packets, we attempt to
reconstruct the server’s TLS configuration.This approach
does not generate any additional traffic and does not strain
either the target server or the network. It is, however,
inherently inefficient with protocols that implement en-
cryption mechanisms since a third-party listener has no
access to the session’s cryptographic keys. For example,
in TLS 1.3, the server already encrypts several fields in
the Server Hello message, which makes them inaccessible
for analysis by passive monitoring tools [2]. This is where
active scanning tools become relevant. The idea is to
craft and transmit several Client Hello messages and then
observe the server’s responses to attempt to reconstruct
its TLS configuration. Such scans are beneficial not only
because they provide us with a detailed overview of the
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server’s configuration, but also because they are powerful
tools for finding vulnerabilities and misconfigurations.
Furthermore, scanning approaches can help detect mali-
cious Command & Control (C&C) servers as they usually
have the same, or similar, configurations [3].

This paper categorizes existing TLS scanners into three
types: Elementary TLS Scanners such as TUM goscanner
[4] or zgrab2 [5]. In their basic mode, these scanners only
initiate one TLS handshake and return the server’s re-
sponse. They are practical for Internet-wide measurements
[5] and can provide us with invaluable insights into the
TLS ecosystem. The second type are server debugging
tools that are able to reconstruct a detailed and comprehen-
sive representation of the server’s internal configuration,
such as DissecTLS [6], SSLyze [7], and testssl.sh [8].
The third and last type are fingerprinting approaches. The
most relevant representatives are JARM [9] and Active
TLS Fingerprinting (ATSF) [10]. These approaches only
send a small fixed number of Client Hello messages and
generate a unique fingerprint for every TLS configura-
tion, which is primarily used to differentiate and compare
servers.

The remainder of this paper is organized as follows: We
start by explaining the methodology of the TLS protocol in
section 2. Section 3 summarizes the most important TLS
configuration parameters from a scanner’s perspective.
Section 4 analyzes different TLS scanning approaches and
discusses their advantages and limitations. In section 5, we
compare the performance of TLS scanners across different
categories in a local environment before we conclude in
section 6.

2. Methodology

A basic understanding of the TLS protocol, especially
the TLS handshake, is required to understand the scanners’
work system. This paper only focuses on TLS 1.2 and TLS
1.3, as all previous versions are deprecated [11]. They are
also the most relevant and widely used versions within the
TLS ecosystem [6]. TLS 1.2, standardized in 2008 [12],
has been the backbone of secure Internet communication
for over a decade. Its successor, TLS 1.3, was standardized
in 2018 [13] and introduced several significant improve-
ments. The faster handshake process is one of the most
important enhancements. TLS 1.3 only takes 1 Round-
Trip Time (RTT) to complete the handshake instead of 2
RTTs in TLS 1.2. The newest version is also inherently
more secure as it only supports AEAD cipher suites [13]
that simultaneously provide privacy and authenticity [14].
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The following figure captures the most important steps of
the TLS 1.3 handshake:

Client Server

Client Hello = { TLS Version, Cipher suites ...,
Extensions = {ALPNs, supported versions, supported groups ... }}

3
>

Server Hello = {Version, Selected cipher suite ...,
Extensions = {ALPN, version, supported groups ...}}

A

Change cipher spec

A

Encrypted extensions, Certificate, Certificate verify .... , Finished

Change cipher spec

Y

Finished, [Application data]

Y

Encrypted application data

A
Y

Figure 1: TLS 1.3 Handshake [15]

2.1. Client Hello

The client initiates the handshake by sending a Client
Hello message to the server [13]. This message specifies
the client’s supported TLS versions and suggests several
cipher suites for the server to choose from. The Client
Hello message can potentially contain more than ten ex-
tensions [13] with the majority of them not relevant for
our work. This paper only focuses on the most important
extensions from a scanning perspective. As part of the
handshake, the client also generates multiple key pairs
(public and private) based on the proposed key exchange
algorithms (in the supported groups extension) and in-
cludes the public keys in the key share extension of the
CH message [13]. These keys are necessary for generating
the symmetric encryption key.

2.2. Server Hello

In response to the Client Hello message, the server
replies with a Server Hello message [13]. This message
selects a cipher suite from those proposed by the client and
specifies the server’s extensions. After generating its key
pair and receiving the client’s public key, the server can
calculate the symmetric encryption key. It also includes its
public key in the key share extension to allow the client to
calculate the same cryptographic material. Furthermore, in
order to authenticate itself, the server sends its Certificate
and a Server Certificate Verify message to prove owner-
ship of the private key associated with the certificate. To
ensure the integrity of the handshake, the server applies
a hash function on all the previously exchanged data and
sends the result in the Finished message (encrypted). The
client also performs the same operation and compares the
output with server’s hash. If both hashes are equal, then
it means that the handshake messages were transmitted
correctly. To conclude the handshake, the client sends
a Change Cipher Spec message followed by a Finished
message. From this point, the client and the server can
start exchanging application data in an encrypted and
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secure manner. In earlier TLS versions, the Change Cipher
Spec record was used as an indication that all subsequent
records will be encrypted [12]. To avoid misbehavior of
middleboxes, implementations try to make the TLS 1.3
handshake similar to TLS 1.2 [13]. This includes the
transmission of the Change Cipher Spec record, which
does not serve any function in TLS 1.3.

3. TLS Configuration parameters

It would be impractical and costly for scanners to
extract all the server’s TLS properties since it would
require a lot of time and resources. Depending on the
information it wants to gather, each scanner prepares a
specific strategy to extract this information [6]. The table
below outlines some of the TLS configuration parameters
that can be extracted by scanning tools [6].

TABLE 1: The typically extracted TLS configuration
properties

Parameters Representation

Supported Versions set

Cipher Suites
Supported Groups priority list/set!

ALPNs

Deflate compression bool

' A set in case the server uses the client preferences.

The Supported Versions field lists all the TLS versions
supported by the server. These versions include TLS
1.0, TLS 1.1, TLS 1.2, and TLS 1.3. Although TLS
1.0 and TLS 1.1 were formally deprecated in RFC
8996 due to security concerns [11], they continue to
be accepted by servers within the TLS ecosystem [6].
One of the most important properties of a TLS server
is its supported cipher suites. A cipher suite in TLS
1.3 specifies the AEAD (Authenticated Encryption with
Associated Data) cipher mode that will be used for
bulk encryption and a hash algorithm. This is different
from previous TLS versions, where the cipher suite also
contained information about the key exchange algorithm.
In TLS 1.3, the key exchange algorithm is negotiated
through extensions as discussed in the previous section.
A server’s supported cipher suites are defined in relation
to a specific TLS version. For example, TLS 1.3 only
defines and supports 5 cipher suites [13], meaning that
any server using this version should only accept a subset
of these 5 cipher suites [13].

The supported groups parameter specifies the
cryptographic groups that the server supports for
the key exchange protocol used for the generation of the
symmetric encryption key.

The Application-Layer Protocol Negotiation (ALPN)
extension optimizes the communication. In the Client
Hello message, the client provides a list of the supported
application protocols, and the server selects at most one
protocol based on its capabilities. The server then includes
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it in the ALPN extension of the Server Hello message
[16]. This extension enables the negotiation of the
application layer protocol during the TLS handshake. It,
therefore, reduces the overhead that would have otherwise
occurred if the negotiation were to be completed after
the handshake.

In versions prior to 1.3, the TLS protocol included
support for compression methods, with the most used
being the deflate compression method. Clients and servers
would negotiate a commonly supported compression
method through the compression methods field. However,
TLS 1.3 obsoleted this feature entirely due to known
security vulnerabilities, such as the CRIME attack [17].
TLS 1.3, however, still implements the compression
methods field in the handshake messages, with its value
always set to O (indicating no compression). This is
done to maintain backward compatibility with previous
versions.

4. Capabilities of TLS Scanners

This section explores the three categories of TLS
scanners: Elementary scanners, fingerprinting approaches,
and server debugging tools. In the following subsections,
we introduce each type and provide examples of different
implementation approaches.

4.1. Elementary Scanners

Elementary scanners initiate a single handshake with
the server and return the server’s response. This approach
provides very limited information about the server’s con-
figuration, which makes such tools impractical for scan-
ning in their base mode. They are utilized as founda-
tions for more complex implementations, where their
elementarity and scalability can be leveraged as part
of a deeper analysis. A prominent example is zgrab2,
which can perform a TLS handshake over HTTP with
the entire IPv4 address space in less than 6 hours and
20 minutes [5]. This tool is highly effective for con-
ducting Internet-wide surveys. Censys.io [5] is a search
engine powered by zgrab2 that automates Internet-wide
scanning. It offers a REST API and a web interface
for querying an up-to-date database of the public ad-
dress space gathered through continuous scanning with
zgrab2. The search interface supports advanced search
features, including "full-text searches, regular expressions,
and numeric range queries" [18]. For example, a com-
mand such as services.tls.versions.tls_version
= "TLSvl_3" and location.country code = "DE" re-
turns all IPv4 hosts in Germany that support TLS 1.3,
which are currently around 3.7M hosts. Durumeric et al.
[5] argue that this approach democratizes the internet-
wide scanning process by making the scanning of the TLS
ecosystem accessible to researchers and users in general
without concerns about legal permissions or network in-
frastructure.

Another example is TUM goscanner [4] which serves as
a foundation for the implementation of DissecTLS.

4.2. TLS Debugging Tools

Scanners of this type provide a detailed overview of
the server’s TLS configuration. This is typically achieved
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by sending a large number of Client Hellos to exhaustively
test all possible configurations. As there are over 370
ciphers that can be used across different TLS versions, the
number of Client Hellos required is primarily determined
by the Cipher Suites parameter [19]. SSLyze [7] is a scan-
ning tool that implements a "naive" algorithm. It performs
a full cipher suite scan by conducting one TLS handshake
for each cipher suite. This results in approximately 543
transmitted Client Hello messages [19]. A main advantage
of this stateless approach is that it allows for paral-
lelization of requests, trading the high generated traffic
for a speedup in the scan execution [19]. testssl.sh [8],
while more efficient and optimized than SSLyze [6], also
remains impractical for big-scale measurements due to the
high number of sent requests. Such tools should only be
used on a small scale, where we’re only interested in fast
and precise results and where the scanning costs can be
neglected. The most prominent debugging tool that com-
bines the lightweight nature of fingerprinting approaches
with the precision and completeness of debugging tools
is DissecTLS. Integrated as a feature of TUM goscanner
[4], DissecTLS divides the scanning process into multiple
subtasks, each responsible for collecting information about
specific parameters [6]. Each task maintains a state and
dynamically crafts the next Client Hello based on this
state. This approach reduces redundant handshakes that
do not yield new information.

4.3. Fingerprinting Approaches

Fingerprinting approaches, unlike the previously dis-

cussed categories, do not produce a human-readable repre-
sentation of the server’s configuration. Instead, they aim to
minimize the number of sent Client Hellos while extract-
ing as much information as possible. The collected data
is then stored in a concise format called a "fingerprint",
which is primarily used for comparing servers [3]. The
reduced traffic footprint and the lightweight output make
these methods highly scalable and well-suited for large-
scale scanning. The most significant use case for these
tools is the identification of Command and Control (C&C)
servers, which are a fleet of computers that have the
same or similar configurations and are used to transmit
malicious commands and steal data. By comparing the
similarity between a fingerprint of an unknown server and
that of a known C&C server, fingerprinting tools provide a
high probability indication on whether the server is a C&C
server. Althouse et al. [3] argue that their fingerprinting
tool JARM can identify "most, if not all Cobalt Strike C2
servers" on the IPv4 address space on port 443.
JARM [9] sends 10 Client Hellos specifically designed to
extract as much information as possible about the server’s
TLS configuration. It then uses the received Server Hellos
to produce a 62-character fingerprint with the following
structure [3]:

TLS extensions

| 15d3fd1 6d29d29d00042d43d000000?1 784f39f8305ba9220d037894b6ff26‘

TLS versions and cipher suites

Figure 2: JARM Output Example

Each three characters of the first 30 provide information
about the TLS version and cipher suite chosen by the
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server as a response to each of the ten Client Hellos. A
"000" indicates that the server refused the connection [3].
The remaining 32 bits are constructed using a truncated
SHA256 hash on the TLS extensions sent by the server
in the Server Hello.

An even more advanced fingerprinting tool is Active TLS
Fingerprinting (ATSF). Sosnowski er al. [10] suggest
that this tool is superior to JARM in identifying C2
Servers and generally better at distinguishing server
configurations [10]. Similar to JARM, ATSF sends ten
distinct Client Hello messages. However, it provides a
more precise fingerprint by leveraging additional TLS
handshake messages. While JARM only deals with the
extensions present in the Server Hello message (Plus
the ALPN extension), ATSF also incorporates extensions
from Encrypted Extensions, Certificate Request, Hello
Retry Request and Certificate TLS messages [10].
ATSF, however, produces a longer output than JARM
since it employs a different technique for generating
fingerprints. In fact, for every TLS handshake, it produces
an independent fingerprint and then concatenates all these
outputs to generate the final server’s fingerprint [10]. This
is an example of an elementary handshake fingerprint:

Cipher Encrypted Extensions  Alerts
— —— —
771 1301 _43.AwQ-51.23 _0.-10.AAo... ___18.<40.
| I —

Version Server Hello Extensions Certificate Extensions

Figure 3: ATSF handshake fingerprint example

5. Comparison of Scanners in a Local

Testbed

In our local testbed, we compared the TLS scan-
ners based on two important criteria: their capability to
correctly distinguish between different TLS configura-
tions, and the amount of traffic they produce throughout
the scanning process. The main test parameter for this
experiment is the Cipher suites parameter. We selected
this parameter because it allows for a wide range of
possible configurations, matching our experiment’s needs.
We selected 5 TLS 1.2 cipher suites, resulting in 325
unique configurations. We can compute this number by
calculating the number of all permutations of all the
possible combinations of the selected cipher suites. The
use of permutation was necessary because server pref-
erences were enabled throughout the experiment (except
when scanning the Preferences property). This means that
the server keeps an internal priority list of the supported
cipher suites and always picks the highest-priority cipher
suite available. For each configuration, we deployed a
Docker container running an Nginx Version 1.27.3 server.
We ran each scanner against all 325 servers and counted
the unique scan outputs generated. This value reflects the
number of configurations successfully identified by the
scanner. For ATSF and JARM, we were able to use the
output directly. For the other scanners, we used a Python
script that extracts the scanned cipher suites from the
scan results, which we can then use as a basis for the
differentiation. This measure was necessary to avoid un-
stable results, as some parameters, such as scan time, can
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vary even for the same configuration. We also extracted
other simple parameters, such as Preferences, and Session
Tickets which can be either en- or disabled. To assess the
scanning costs, We used tcpdump to capture the number
of Client Hellos sent by the client during each scan, and
then computed the average number across all scans.

The following table summarizes the results of the exper-
1ment.

TABLE 2: Identified number of Nginx configurations for
each scanner.

Test Case ATSF JARM SSLyze testssl.sh DissecTLS | Total
Cipher Suites 22 17 31 325 325 325
Preferences 2 2 1 2 2 2
Session Tickets 2 2 2 2 2 2
Average CHs 10 10 447 128.1 11 -

As shown in the table, only dissecTLS and testssl.sh
were able to completely identify all the servers’ cipher
suites configurations. ATSF and JARM, however, were
only able to differentiate around 20 unique configurations.
This result is expected, as these fingerprinting tools only
send a fixed number of Client Hellos. Their lower level of
precision is offset by significantly reduced scanning costs,
making them ideal tools for large-scale deployments. SS-
Lyze had a relatively poor performance, as it was only
able to differentiate 31 unique configurations. The reason
behind this is that SSLyze does not consider the order of
the cipher suites [6], meaning it could only differentiate
between the different combinations of the 5 cipher suites,
which amount to 31 configurations. On top of that, it was
by far the most costly scanner in terms of generated traffic,
with an average of 447 Client Hellos. While testssl.sh
was able to distinguish all configurations, its high average
scanning cost of 128 Client Hellos makes it unsuitable for
large-scale use cases. DissecTLS is the best-performing
scanner in this experiment. It effectively combines the low
cost typically associated with fingerprinting approaches
while maintaining the accuracy and precision of TLS
debugging tools. The average of approximately 11 sent
Client Hellos, along with the successful identification of
all the TLS configurations, clearly demonstrates this.

6. Conclusion and Future Work

In this paper, we introduced the concept of TLS scan-
ning. We presented three different scanning categories:
Elementary scanners, fingerprinting techniques, and de-
bugging tools. We explained each category’s methodology
and introduced its most relevant representatives. Addition-
ally, we discussed each type’s advantages, limitations, and
use cases. We then compared the performance of differ-
ent scanners in a controlled environment by evaluating
their ability to identify different TLS configurations while
monitoring the scanning costs. The conclusion was that
DissecTLS is the most efficient scanner, providing the pre-
cision of debugging tools while generating minimal traffic,
typically a feature of fingerprinting tools. It should be
mentioned, however, that the experiment was conducted
in an artificial environment. The results could be slightly
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different from reality. As part of future work, we could
scan actual servers within the TLS ecosystem and then
compare the scanners’ performance. This would provide
more realistic and precise results.
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