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Abstract—QUIC plays an important role in today’s Internet
by providing several benefits over TCP. In this paper, we
explain how ECN can be used to optimize QUIC’s congestion
control. ECN tries to avoid retransmissions by explicitly
notifying the sender about congestion in the network instead
of silently dropping packets. When using QUIC, this can
be done by including ECN counts in the ACK frames to
mirror information about incipient congestions back to the
sender, who can then reduce its sending rate. We also take
a look at the support of ECN with QUIC in the Internet
based on related work. ECN with QUIC is currently barely
used, mainly because of missing support in common QUIC
implementations and failures in the ECN validation stage.

Index Terms—QUIC, ECN, congestion control

1. Introduction

QUIC, a protocol introduced by Google [1], provides
many benefits over the Transmission Control Protocol
(TCP). By providing a zero round-trip time (0-RTT) hand-
shake and avoiding head-of-line blocking delays, QUIC
significantly reduces latency [1], [2]. Among other rea-
sons, this has led to a wide adoption of QUIC in the
Internet. Today, 8.4% of all websites use QUIC [3].

QUIC can be used with different congestion control
algorithms [1], [2]. Traditional, loss-based congestion con-
trol algorithms like CUBIC [4] treat lost packets as a sign
of congestion and consequently reduce the sending rate
while retransmitting lost packets. These retransmissions
increase the latency and reduce the available bandwidth.

By using Explicit Congestion Notification (ECN), the
sender can be notified of congestion before packets have
to be dropped. Routers can set a codepoint in the IP header
to signalize incipient congestion. When a packet with this
codepoint set arrives at the receiver, the receiver has to
mirror this information back to the sender. The sender then
reduces its sending rate. To achieve this, support of higher
layer protocols, such as TCP or QUIC, is necessary. [5]

In the following, we show how ECN can be used with
QUIC to optimize QUIC’s congestion control. Section 2
provides background information about QUIC and how
ECN can be used with TCP. Section 4 focuses on how
ECN works with QUIC. In Section 5, we take a look
at the support of ECN with QUIC in the Internet. Next,
Section 6 discusses an idea of how congestion control with
ECN could be further improved. Section 7 concludes this
paper by providing a short summary.

Seminar IITM WS 24/25

73

2. Background

To understand how ECN with QUIC works, we first
take a look at the QUIC protocol itself and how ECN can
be used with TCP.

2.1. QUIC

Langley et al. [1] demonstrated their experiences at
Google with QUIC in 2017. According to them, using the
transport layer protocol TCP comes with various draw-
backs. First, using Transport Layer Security (TLS) on top
of TCP increases the delay by requiring both a TCP and
TLS handshake. Second, multiplexing TCP streams can
lead to head-of-line blocking delays.

Making changes to TCP to cope with these challenges
is difficult [1]. Since TCP is implemented in the kernel,
deploying changes takes time. Creating a completely new
transportation protocol on layer 4 is challenging due to
middleboxes like Network Address Translations (NATSs)
or Firewalls, as they would explicitly need to be adapted
to support the new protocol. QUIC circumvents this by
building on top of the User Datagram Protocol (UDP).

QUIC solves the previously mentioned problems of
TCP [1]. To establish a new, secure connection, QUIC
only needs a one round-trip time (1-RTT) handshake by
combining the TLS and transport layer handshake. Under
certain conditions, subsequent connections to the same
server can be established using a O-RTT handshake.

A single QUIC packet can consist of multiple frames,
each containing data of a specific stream. Losing a UDP
datagram only affects the streams contained in that data-
gram. Therefore, head-of-line blocking can be avoided. [1]

QUIC does not require a specific congestion control
mechanism, making it possible to use different algo-
rithms [1].

2.2. ECN

When using loss-based congestion control, nodes drop
packets in case of a full buffer to signalize congestion [5,
Section 1], [6]. The sender is able to detect congestion
due to duplicate acknowledgments or timeouts and con-
sequently reduces its congestion window [6].

Loss-based congestion control algorithms tend to keep
buffers full, leading to a queuing delay [5], [7]. Both full
buffers and retransmissions increase the latency. Active
Queue Management (AQM) algorithms [8] like Random
Early Detection (RED) [9] are trying to avoid the build-up
of large queues at routers. While this reduces the queuing
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delay, ECN mitigates the issue of retransmissions due to
dropped packets [5].

2.2.1. ECN on the IP layer. ECN makes it possible
to inform the sender about congestion without dropping
packets. This can be done by setting the Congestion
Experienced (CE) codepoint in the IP header [5].

RFC 3168 [5] refers to a packet with the CE codepoint
set as a "CE packet". In the following, we use the same
definition.

0123456 78 9101112131415

Version IHL ToS ECN

Figure 1: First 2 Byte of the IPv4 header. Based on
RFC 791 [10, Figure 4] and RFC 3168 [5, Figure 2]

RFC 3168 defines four ECN codepoints by using bits
6 and 7 of the type of service (ToS) and traffic class field
of the IPv4 and IPv6 header, respectively [5, Section 5].
Figure 1 shows the first two bytes of the IPv4 header,
including the ECN field. The codepoint "00" is set if
ECN is not being used. "11" is the CE codepoint. Either
ECT(0) ("01") or ECT(1) ("10") are set by the transport
protocol endpoints if they support ECN. Originally, both
codepoints were handled equally by routers and served as
a one-bit nonce. [5]

More recently, however, ECT(1) serves as a Low
Latency Low Loss and Scalable Throughput (L4S) iden-
tifier [11]. Routers supporting L4S set the CE codepoint
earlier, enabling faster reactions by the endpoints.

2.2.2. Compatibility of ECN. Since the adoption of ECN
by routers and hosts happens gradually and is therefore not
supported or used by every router and host, it is important
that ECN works alongside existing congestion control
algorithms. Thus, and to ensure fairness, hosts have to
react to an ECN in the exact same way as to a dropped
packet. In addition, routers are only allowed to set the
CE codepoint if the packet would have been dropped to
signal congestion when not using ECN. Routers should
deal with a CE packet just as with any other packet. If a
queue is entirely full, routers still have to drop incoming
packets, even when ECN is used. [5]

2.2.3. ECN with TCP. If an endpoint receives a CE
packet, the endpoint has to mirror this information back to
the sender so the sending rate can be reduced. To achieve
this, ECN requires support from the Transport Layer. [5]

First, when setting up a connection, both endpoints
have to be able to signal their capability and willingness to
use ECN (Section 2.2.4). Then, after agreeing to use ECN,
both endpoints have to react to CE packets by reducing
their sending rate (Section 2.2.5). [5]

TCP supports ECN by introducing two flags. Bits 8
and 9 of the reserved field of the TCP header are used for
a congestion window reduced (CWR) flag and ECN-Echo
(ECE) flag, respectively. Figure 2 shows the CWR and
ECE flags. [5, Section 6]

2.2.4. Negotiating the use of ECN. If a host is willing
and capable of using ECN, it has to send a packet with
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Figure 2: TCP header supporting ECN.
Based on RFC 3168 [5, Figure 4]

the ECE, CWR, and the SYN flag set in the TCP header.
The receiver of this packet can then signal their support
of ECN by setting the ACK, SYN, and ECE flags but
not the CWR flag in the response. This response is then
acknowledged by a packet with the ACK flag set. After
completion, both endpoints have to react appropriately
to CE packets and to TCP segments with the ECE flag
set. However, they do not have to set the ECN-capable
Transport (ECT) codepoint in the IP header themself. [5]

@ IP header: ECT

@ TCP header: ACK, ECE

@ IP header: CE

Y

@ IP header: ECT, TCP header: CWR

Sender

S

Router

—

Receiver

Figure 3: ECN with TCP

2.2.5. Using ECN. Figure 3 illustrates the use of ECN
with TCP. When sending a packet, the sender sets the
ECT(0) or ECT(1) codepoint in the IP header (1). Then,
a router on the network path experiences congestion. Since
the ECT codepoint in the IP header of our packet is set,
the router can mark the packet with the CE codepoint (2).
When receiving a CE packet, the receiver sets ECE in
the TCP header (3) to mirror the information back to the
sender. Upon receiving a TCP segment with the ECE flag
set, the sender reduces its congestion window and informs
the receiver about that by setting the CWR flag (4). As
soon as the receiver processes this flag, it stops setting
ECE in the TCP header. [5]

3. Related work

Most of the related, previous work has focused on
ECN with TCP. However, more recent work has also
studied improvements and the support of using ECN with
QUIC.

ECN with TCP. Floyd [12] has conducted sim-
ulations to point out several advantages of using ECN
with TCP. For instance, in one of their LAN simulation
scenarios, they were using ten telnet connections, a 0.1
msec TCP clock, packet-based RED gateways (with and
without ECN), and a 64 kB maximum TCP window. In
this experiment, they were able to decrease the average
delay from about 20ms to nearly zero by using ECN.
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Different simulation scenarios show similar results: by
using ECN, fewer packets were dropped, which decreased
delays. They also pointed out potential disadvantages,
mainly focusing on misbehaving endpoints and losing
acknowledgment (ACK) packets.

A variety of other studies have focused on the support
of ECN on the Internet. Lim et al. [13] have shown in
2022 that over 85% of Alexa Top 100K web servers
support ECN with TCP. Bauer et al. [14] have observed a
similar number while conducting Internet measurements
regarding the effect of TCP options. This is a massive
increase from what previous work has shown earlier. For
instance, Bauer et al. [15] conducted experiments using
the Alexa Top 1M list in 2011. Only about 17% of web
servers supported ECN at that time.

ECN with QUIC. While ECN with TCP is widely
deployed in today’s Internet, Sander et al. [16] were able
to show that the opposite holds for QUIC. By conducting
extensive research and experiments on the support of ECN
with QUIC in the Internet, they were able to demonstrate
that by the time of their studies, ECN could be used with
less than 2% of QUIC hosts. We take a closer look at their
results in Section 5. Uchida et al. [17] proposed a method
to leverage ECN with QUIC to improve the fairness of two
competing hosts using QUIC with CUBIC and BBR [7],
respectively. By adapting how CUBIC reacts to ECN
codepoints and by adapting BBR’s phase transitions, they
were able to improve fairness in their experiments. For
instance, when using a bottleneck link buffer of 1 Mbit,
they improved Jain’s fairness index value from less than
0.7 to nearly 1.

In this paper, we mainly focus on how ECN with
QUIC works (Section 4) and what current impediments
toward a wide deployment of ECN with QUIC are (Sec-
tion 5).

4. ECN with QUIC

This section is based on RFC 9000 [2], which contains
specifications on how ECN can be used with QUIC.
Similar to using ECN with TCP, the sender decreases its
sending rate when receiving a CE packet. In contrast to
using ECN with TCP, ECN with QUIC can also be used
in only one direction. In addition, the receiver informs
the sender not only about CE packets but also about the
ECT(0) and ECT(1) codepoints it receives. In order to use
ECN with QUIC, a sender first has to confirm that both
the receiver and intermediate nodes support ECN.

4.1. Mirroring ECN Counts

To be able to use ECN with QUIC, the receiver needs
to be able to access bits 6 and 7 of the ToS and traffic
class field of the IPv4 and IPv6 header, respectively. The
receiver then maintains counts for the ECT(0), ECT(1),
and CE codepoints it has observed. These counts can be
mirrored back to the sender using specific fields in the
ACK frames.

Similar to TCP, ACK frames in QUIC are used to
confirm successfully transmitted packets [2, Section 19.3].
To support ECN, QUIC introduced the ACK frame type
0x03, as shown in Figure 4. ACK frames of this type
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ACK Frame {
Type = 0x03,
Largest Acknowledged,
ACK Delay,
ACK Range Count,
First ACK Range,
ACK Range ...,
ECN Counts {
ECTO Count,
ECT1 Count,
ECN-CE Count,

}

Figure 4: ACK frame format of type 0x03 in QUIC.
Based on RFC 9000 [2, Figure 25 and Figure 27]

additionally include the ECN counts of the receiver for the
packet number space it acknowledges. By using this ACK
frame type, the receiver is able to inform the sender about
the total number of ECT(0), ECT(1), and CE codepoints
it received.

4.2. Example: ECN with QUIC

Figure 5 illustrates how QUIC with ECN works. After
establishing a connection and agreeing on the use of ECN,
the sender sets the ECT(0)/ ECT(1) codepoint in the IP
header (1) to signal the use of ECN to routers. In (2), the
router experiences a congestion. Instead of dropping the
packet, it sets the CE codepoint in the IP header (3). The
receiver maintains the ECN counts n, m, and &k for the
number of ECT(0), ECT(1), and CE codepoints received
(4). The receiver includes these counts in the ACK frame
(5, 6) when acknowledging the received packet. Due to
the increase in the CE count, the sender then reduces its
sending rate.

4.3. ECN validation

To determine whether the network path supports ECN,
the sender sets ECT(0) (or ECT(1)) in the first few pack-
ets. If none of these packets are acknowledged, the sender
assumes the packets have been dropped and that the path
does not support ECN. The sender then disables ECN.

If the sender receives an ACK frame containing the
ECN counts, he has to validate them [2, Section 13.4]. It
is important that all ACK frames being used for ECN val-
idation increase the largest acknowledged packet number.

There are several scenarios that lead to a failed ECN
validation. In the following, we define A_ECT_0O as the
ECT(0) count in the current ACK frame. S_ECT_0 stands
for the total number of ECT(0) codepoints set by the
sender. Similarly, A A_ECT_0 defines the difference be-
tween the ECT(0) count in the current ACK frame and the
ECT(0) count in the previous ACK frame. A S_ECT_0
represents the number of packets that are newly acknowl-
edged and were sent with the ECT(0) codepoint set. In
the same way, A_ECT_I, A A_ECT_I, A A_CE and
S _ECT I are defined.

As specified in [2, Section 13.4], the following condi-
tions are verified:
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Figure 5: ECN with QUIC

1) The ACK frame contains ECN counts

2) AA_ECT_ 0+ AA_ECT_CE > AS_ECT_0
3) AA_ECT_1+ AA_ECT_CE > AS_ECT_1
4) A_ECT_0<S_ECT_0

5) A_ECT_1<S_ECT_1

If any of these conditions do not hold, ECN has to be
deactivated. 1 validates that the receiver mirrors the ECN
codepoints and that the ECN field of the IP header does
not get cleared from a node on the network path. 2 and
3 are used to detect the remarking of ECN codepoints.
For instance, a node on the network path could change a
CE codepoint to ECT(0), although the packet was initially
sent with an ECT(1) codepoint. Since ACK frames can get
lost, it is possible that e.g. AA_ECT_0 >= AS_ECT_0
holds, which explains the inequality used in 2 and 3.
However, the total number of A_ECT_0/ A_ECT_1 can
never exceed S_ECT_0/S_ECT 1. Thus, 4 and 5 are also
used to detect the remarking of ECN codepoints.

5. Support of ECN with QUIC

One of the biggest challenges of using ECN over
QUIC is the lack of support. Sander et al. [16] have been
able to show that by the time of their study in 2023, QUIC
with ECN could only be used with less than 2% of the
hosts they investigated. In order to use ECN with QUIC,
the codepoints have to be mirrored (see Section 4.1),
and the validation of the ECN codepoints has to succeed
(see Section 4.3). By conducting several experiments, they
were able to pinpoint the causes of the low support of ECN
with QUIC. This section discusses the main findings of
Sander et al. [16].

5.1. Missing ECN counts

In case it is possible to access the ECN codepoints of
the IP header, the QUIC standard [2, Section 13.4] defines
the mirroring of ECN codepoints as a MUST. However, a
previous statement in the standard makes QUIC support
seem to be optional, causing ambiguities [18]. Actually,
only 20% of QUIC hosts that were tested by Sander et al.
include the ECN counts in the ACK frames. The interop
runner [19] shows that only 6 out of 17 tested QUIC
implementations support ECN.

5.2. Undercounting of ECN codepoints

Mirroring the ECN codepoints is not sufficient for
using ECN with QUIC. Instead, the sender also validates
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the reported ECN counts (see Section 4.3). Sander et
al. [16] were able to show that over 90% of the domains
that support ECN mirroring fail this validation stage. Over
one-half of them acknowledged fewer ECN codepoints
than they had been sent with. They were able to show
that this is mainly because of issues in the QUIC imple-
mentation used by the receiver and not due to nodes in
the network.

5.3. Remarking of ECN codepoints

About one-third of the domains investigated report
ECT(0) codepoints as ECT(1) codepoints. This is, how-
ever, not caused by the used QUIC stack but mainly by the
network operator Arelion (ASN 1299). When repeating
the measurements from various geographically distributed
origins, the overall observed pattern stays the same. In
fact, globally, only about 0.3% of the tested domains
meet all the requirements during the validation phase.
Even if the validation is successful, it does not mean that
the endpoint or routers on the network path actually use
ECN. [16]

6. Possible Improvement

The current QUIC standard [2] specifies the use of
ACK frames with the type 0x03 when using ECN. As
explained in Section 4.1, these ACK frames contain the
total count of ECN codepoints the receiver has observed.
This information, for instance, is used by the Prague
Congestion Control Algorithm [20]. However, it still lacks
the information on which packet was marked with which
codepoint. This fine-grained information could be valu-
able to react even more efficiently and effectively to CE
packets, according to Seemann et al. [21]

Therefore, they proposed a new QUIC ACK frame
type, which includes the ECN codepoint that was set in
the packets of each ACK range. If necessary, ranges have
to be split into multiple ranges such that all packets within
a range share the same ECN codepoint. [21]

It remains to be seen if this idea will be included in
future versions of QUIC and if congestion algorithms can
actually profit from this fine-grained information.

7. Conclusion

In this paper, we have explained how ECN works and
how it can be used with QUIC. ECN is used to notify a
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sender about congestion in the network. To achieve this, a
router can mark a packet with the congestion experienced
codepoint. QUIC then mirrors the codepoint back to the
sender using ACK frames, and the sender can reduce its
sending rate.

We have also discussed that the biggest impediment of
using ECN with QUIC is the missing support in common
QUIC implementations and misbehaving network opera-
tors.

While ECN can optimize QUIC’s congestion control
by trying to avoid retransmissions, it is currently barely
used. Having more QUIC implementations supporting
ECN would be essential for a wide adoption and usage
of ECN with QUIC. In order to demonstrate the impact
of using ECN with QUIC on throughput, latency, and
packet drops quantitatively, performance measurements
and comparisons could be conducted as part of future
work. Depending on the results, this could speed up the
support and use of ECN with QUIC.
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