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Abstract—Smart cards dominate the market in many differ-
ent aspects, such as digital payment with a credit card or for
any application for security, authentication or identification.
In order for them to be used so widely, manufacturers offer
interfaces to communicate with their respective cards even
though they might implement completely different protocols
for a variety of applications. These protocols can be public
or proprietary. The main concern is a manufacturer decom-
missioning their product as part of the software development
lifecycle, which might lead to electronic waste. This paper
looks into designing a general setup and procedure to in-
tercept and interpret the communication of any smart card
implementing a PKCS#11 compatible library of a manufac-
turer. We introduce multiple tools for intercepting the traffic
of these cards and present experiment-based strategies for
reverse engineering their implementation details. Qur paper
could serve as a basis for drastically increasing the lifespan of
smart cards. The presented strategies could then be used by
the open source community to keep the cards updated, while
also contributing to reducing the amount of unnecessary
electronic waste.

Index Terms—smart card, integrated circuit card, pkecs#11

1. Introduction

Smart cards are widely used. From being used for
banking with a credit card all the way to healthcare,
smart cards lay the foundation of our digital society. The
ISO/IEC 7816 [1], [2] standard defines characteristics,
like the commands, to avoid the issue of having incom-
patible Integrated Circuit Cards (ICC) across different
countries and to enable interoperability in interindustry.
The implementation of the protocol used by the card
is not necessarily open source and can be proprietary.
Therefore, the manufacturers offer an interface to be able
to communicate with the card.

We follow the assumption of manufacturers complying
with the product development lifecycle, where decom-
missioning is part of the cycle [3]. The fundamental
issue of proprietary cards is the users being fully reliant
on the manufacturer for updates. Once the manufacturer
decommissions their product, it can lead to cards having
no support for newer operating system versions, rendering
them unusable without the required updates, and therefore
turning them into electronic waste.

This paper looks into an experiment-based method
for reverse engineering these naturally discontinued and
outdated proprietary cards to make them open source,
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granted that the manufacturer does not already release
the protocol of their card to the open source community
voluntarily. The idea behind that is being able to extend
the lifetime of these ICCs by having the possibility of
updating their middleware.

The remainder of this paper has the following struc-
ture: First, in Section 2 we provide background informa-
tion by outlining the necessary key concepts. In Section 3,
we proceed with evaluating and explaining the different
challenges and choices made for our approach. Section 4
presents the setup for reverse engineering and goes into
detail for a variety of experiments to extract information.
Lastly, we compare our paper to a related paper by A.
Nicoli¢ et al. [4] in Section 5 and then briefly summarize
the most important findings in Section 6.

2. Background

In this section, we give an overview of the key con-
cepts needed to understand the basics of the communica-
tion of smart cards.

2.1. PKCS#11

The Public-Key Cryptography Standard #11 defines a
platform-independent Application Programming Interface
(API), which is called "Cryptoki". The API specifies a
set of functions to perform cryptographic operations. It
is object-based and offers all the functionality to create,
use, modify and delete cryptographic objects such as RSA
key pairs, certificates and domain parameters for DSA
or Diffie-Hellman. Cryptoki is essential for manufacturers
because they can provide the API as a dynamically linked
library for the C programming language to users, e.g., in
the form of a .d11 file. This way, the manufacturer can
abstract the implementation details while still allowing to
bridge the communication between the ICC and the client
with the provided library. By replacing the .d11 file, the
manufacturer can update the implementation of their ICC
while leaving the ICC’s functionality unchanged.

Alongside cryptographic objects, the standard provides
multiple relevant definitions for this paper. Tokens are
defined as devices with the ability of executing crypto-
graphic functions as well as being able to store these
cryptographic objects. A Slot is a reader that can hold a
Token. For example, a smart card is considered a Token,
while a smart card reader is viewed as a Slot. These two
can have a connection with each other, which is defined
as a Session [5].
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2.2. APDU

An Application Protocol Data Unit (APDU) is a data
packet used for the communication between ICCs and a

card reader. An APDU is a byte array containing infor-
mation defined in the ISO/IEC 7816-4 standard [1].

TABLE 1: Command APDU

Field Description Length in bytes

CLA Class of command 1

INS Instruction code 1

P1-P2 Parameters 2

Lc Length of Command data 0,1o0r3

Command data | Command data Variable length

Max. length of Response

Le data 0,1,2o0r3
TABLE 2: Response APDU

Field Description Length in bytes

Variable, at most
Response data | Response data L.
SW1-SW2 Status bytes 2

There are command and response APDUs. Their for-
mat is shown in Tables 1 and 2, respectively. The first is
responsible for sending the necessary data of the opera-
tion, which entails the instruction, parameters and more
as described in Table 1. Some operations do not require
any parameters or data. The latter returns the response
to the host machine. This response contains two status-
bytes SW1-SW2 indicating whether the command has
been successful or not. Depending on the operation, this
response can contain optional data. For reference, Figure 2
in Section 4.2.1 shows an example for command and
response APDUs. Each command is strictly defined with
its own corresponding sections for data in the byte array.
For example, NIST SP 800-73 Pt.2-5 PIV [6] has its
own set of public commands, defining the byte values
for the APDUs for each command, which still follow
the ISO/IEC 7816 standard. On the other hand, there can
be manufacturers keeping these specifications private [1],

[7].
3. Analysis

The problem statement is to reverse engineer as many
details of the signing protocol of ICCs as possible. For
example, this includes all of the supported mechanisms
and parameters for each ICC as well as the correspond-
ing mapping to the byte values in the command and
response APDUs. The difficulty of reverse engineering
lies in finding a starting point and commonalities within
the protocols. Manufacturer-independent interfaces such
as PKCS#11 and Minidriver [8] can solve these problems.
They define the functionality as well as mechanisms used
for cryptographic functions, as described in Section 2.1.
Additionally, they offer a selection of variable parameters
that can be modified and used to extract information out
of the protocols, which is further explained in Section 3.3.
The structure provided by the manufacturer independent
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interfaces is what makes the problem statement approach-
able. This lays the foundation for the different experiment-
based approaches for reverse engineering the structure of
commands presented in this paper.

3.1. PKCS#11 and Smart Card Minidriver

Smart card minidrivers [8] are interfaces, similar to
PKCS#11, that can be written by smart card manufac-
turers. They are exclusive to Microsoft, which is a dis-
advantage in comparison to PKCS#11 because not all
manufacturers or providers support it. Additionally, there
is no option to debug the communication on Linux. In
comparison to PKCS#11, minidriver offers a less clear
command mapping. In conclusion, the minidriver is less
flexible and more difficult to reverse engineer. For these
reasons, we exclusively cover ICCs with an existing im-
plementation of PKCS#11 in the context of this paper.

3.2. Virtual Card Reader and Logging

The process of reverse engineering in the context of
this paper involves intercepting the data sent between
the card reader and the ICC. We identified two viable
possibilities to intercept and view this data, which are the
virtual card reader and logging.

A virtual card reader implements a driver interface of
a card reader with no underlying hardware. This software
can only relay the data to a card reader, resulting in the
possibility of intercepting the sent data. More specifically,
this can then be used to view and interpret the data, which
consists of command and response APDUs. An example
for an implementation of a virtual card reader is vpcd [9].
This approach would be compatible with the existing
PKCS#11-compatible software, therefore not requiring a
test driver.

Logging, on the other hand, is intercepting the data
between the card and the card reader using software such
as pesced on Linux or APDUPIlay on Windows. Therefore,
both Windows and Linux are viable options for this ap-
proach.

Both presented options for intercepting are suitable,
however, in the context of this paper, we decided to use
logging. On Linux, logging APDUs can be done with
pesced, which is a Personal Computer/Smart Card Daemon,
using the --apdu and --debug options [10]. An alternative
to pcscd is APDUPIlay for Windows [11].

Since the PKCS#11 API is provided in C, the code for
the experiments is also written in C. A different option
is to use a wrapper such as TUGraz IAIK [12] in order
to be able to use the manufacturers library in a different
programming language such as Java or Python. However,
using a wrapper is only preference and not necessary since
the functionality stays the same.

3.3. Approach to Interpret Commands

In this section, we give an overview of selected
PKCS#11 functionality, which serves as a basis on how
to:

« Find functions that are able to be reverse engi-
neered.
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o Find modifiable parameters within these functions.

e Choose fitting and relevant values for these param-
eters in order to extract information.

o Interpret the data of these commands.

e Design and conduct further experiments for tar-
geted information disclosure.

Firstly, we need to choose a command or a series of
commands to send to a card. The APDUs have different
fields where we can input different parameters.

Since the ICC follows the protocol of a vendor specific
library implementing the PKCS#11 standard, there is a
given list of all possible parameters for all functions
defined in the standard. In order to reverse engineer the
implementation of the ICC, all possible combinations of
the functions and parameters have to be tried. The goal is
to find out all of the supported functionalities as well as
the mappings between them and their respective bytes.

C_GenerateKeyPair generates new private and public
key objects. It is possible to choose the mechanism, such
as RSA, and create a template for the respective keys,
where the attributes can be further specified. When con-
sidering RSA for example, the private or public exponent
as well as the key length (modulus bits) can be set to their
desired values. Additionally, the attributes can specify
what each key will be used for: The private key can be
set to be used for signing, while the public key can be set
to be used for verifying. This is intended for preventing
improper uses. Furthermore, the amount of attributes for
each template is a parameter of the function, which can
be changed for different key pairs.

Similarly to C_GenerateKeyPair, C_GenerateKey
generates a secret key for, e.g., AES or a set of domain
parameters for, e.g., Diffie-Hellman. Analogously to the
generation of key pairs, the mechanism, the attributes
and the amount of the attributes can be specified. Some
examples for attributes in this context are specifying the
uses for keys to encryption or decryption as well as the
key length and key type.

There are cryptographic functions defined by the
PKCS#11 standard, such as C_Encrypt, C_Decrypt,
C_Digest, C_Sign and C_Verify. Despite having dif-
ferent functionalities, these functions share many simi-
larities by being split into multiple function calls and
because of their parameters. Each function can be suf-
fixed with Init, to initialize the respective operation,
such as C_EncryptInit. This step is required and sp-
eficies the mechanism, such as RSA or Elliptic Curve
Cryptography (ECC) for the C_Sign operation as well as
the respective key for the selected operation. Afterwards,
the operation itself is called where the data and the
location of the output with their respective lengths can
be defined [5].

PKCS#11 also defines multiple hashing and signing
mechanisms, where the padding can be changed, such
as CKM_SHA256_RSA_PKCS, performing SHA-256 hash-
ing and RSA signing with PKCS#1 v1.5 padding or
CKM_SHA256_RSA_PKCS_PSS with PSS padding [13].

All of these various parameters for each command
can then be used to interpret the bytes of the command
APDUs as well as the response APDUs. Since we know
exactly which parameters we put into the function we
can specifically look for the changing bytes in the log.
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Considering there are many different options, the approach
yielding the most consistent results is to only change one
parameter value at a time. Upon only changing a single
parameter value, most of the bytes within the APDU stay
the same, while specific values will differ with every
change of the respective parameter, narrowing down the
location of the bytes of the input parameter over multiple
function calls. This limitation allows for a more precise
interpretation of these values and mapping them to their
respective algorithm in both the command and response
APDU.

4. Design

In this section, we present a specific soft- and hard-
ware setup to be able to conduct experiments. These
experiments are designed to extract information out of
the proprietary implementation details of a card with a
corresponding vendor library implementing the PKCS#11
standard.

4.1. Software and Hardware Setup

Figure 1: Experimental Setup

Target
i proprietary
Protocol

Vendor-specific | [coMMandiresponse APDUS|

Test Driver :
PKCS#11 PKCS#11 library |
. Logger
|

The experiments are conducted as shown in Figure 1.
Firstly, a card with an instance of the PKCS#11 standard,
such as PIV [6] or ISO/IEC 7816-15 [14] is needed.
Additionally, a card reader is required to be able to
communicate with the card. This reader is connected to
a machine, where the raw communication between the
card and reader is intercepted and logged. An application
interacting with the PKCS#11 library on the computer is
the client, which is acting as a test driver in this case. This
test driver is responsible for the control and management
of the experiment. The test driver is a program calling a
series of selected commands for the current experiment
in order to communicate with the card. These commands
should be appropriately selected to disclose the details of
the routines of the card as well as the concrete values of
the APDU fields, as discussed in Section 3.3.

4.2. Experimental Approach

The following experiments are designed by the authors
for possible approaches for the problem statement. All
experiments are conducted using the soft- and hardware
setup described in Section 4.1. Each experiment should be
designed in a way such that a single operation with all of
the associated functionality can be disclosed. For example,
this would include not only encryption but also the ini-
tialization of the operation as well as the creation of the
respective key with specified attributes. This potentially
leads to a lot of data in the form of multiple APDUs,
that has to be analyzed. Therefore, it can be effective
to keep the same environment, such as keys or data for
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multiple iterations as well as to minimize the changes
of parameters. In the following, we present step by step
approaches to extract information of the implementation
of any card using the PKCS#11 protocol.

4.2.1. Password Encoding. The ISO/IEC 7816-15 [14]
standard defines attributes for passwords, which are also
used in ICCs following protocols of vendor specific li-
braries implementing the PKCS#11 standard. It defines
five different possible encodings for passwords: binary
coded decimal, half-nibble binary coded decimal,
ascii-numeric, utf8 and is09564-1. Since passwords
can have variable lengths, padding can be necessary.
PKCS#11 allows password values to contain any valid
UTF-8 character, which can be restricted to a subset
depending on the Token. In this context, we assume
that passwords can only hold numerical values with six
characters.

The VERIFY command, which can be used to translate
the C_Login command, is defined in ISO 7816-4 [1]. It is
more like a recommendation for the structure and values
of the APDUs. Therefore, manufacturers can make their
implementations completely different. This fact makes
reverse engineering more difficult but not impossible.

There are two relevant PKCS#11 functions for this
experiment: C_OpenSession and C_Login. The first one
is responsible for creating a Session between the Token
and the Slot. The latter is for sending the password to log
the user into the Token [5].

The login allows for a limited amount of attemps to
enter the correct password before locking the user out of
the Token. Once locked out, the supervisor can unlock
the card again. Since we are working on a proprietary
card, we do not require access to the supervisor actions.
Therefore, we need to send different passwords while also
avoiding locking the card in order to find the encoding.
For this experiment, we choose an arbitrary password such
as 123456 and call C_Login.

Figure 2: Possible APDUs for C_Login

Client ICC

00 20 00 80 06 31 32 33 34 35 36

Y

63 C2

A

Figure 2 shows possible command and response AP-
DUs for the password 123456. In this case it is trivial
to find the password within the bytes, which is the last
6 bytes of the command APDU marked in red. The
password in this example is encoded as ascii-numeric.
If it is not clear where the password is located on the
first attempt, we can modify a single digit, e.g., 123455
and call C_Login once more. The resulting bytes can now
be compared again. For more data, we create the initial
situation, meaning the correct password has to be entered,
to reset the password retry counter and C_Logout has to
be called, to log the user out of the Token. Afterwards,
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the process can be repeated again while changing a single
digit of the password. With enough collected data, the
sent password’s byte values can now be mapped to the
password encoding used by this card.

4.2.2. C_Sign. The goal for this experiment is to iterate
through all combinations of mechanisms that are compat-
ible with a fixed key pair. In order to compute signatures,
we have to generate a key pair and provide data that should
be signed. For this experiment, the data can be fixed in
the beginning, since there are no further implementation
details that can be disclosed with more data sets. The next
step is to choose a key type, such as RSA or ECC, for
which we can generate a private key and public key pair
using C_GenerateKeyPair. However, before calling the
function, we define the template for the key pair. When
considering RSA for example, this can include setting
attributes such as the private and public exponent to valid
arbitrary values, e.g., 3 as well as the key length to,
e.g., 2048 or 4096. With the specified parameters, we can
now create a Session using C_OpenSession, followed by
logging into the Token with C_Login, if required, and call
the C_GenerateKeyPair function.

The relevant parameters for the signature function
are the mechanism, the signature key and the data. The
generated key pair can now be used for multiple sig-
natures. For each generated key pair from the previous
step, we iterate through all possible mechanisms such as
CKM_SHA256_RSA_PKCS_PSS, CKM_SHA384_RSA_PKCS and
CKM_ECDSA, where the scheme, digest and padding are
dynamic. Upon specifying all of the needed parameters,
the signature can be done using C_SignInit and C_Sign
and we can proceed with creating a new key pair and
repeating the steps. For the purpose of reverse engineering
the signature operation itself, it is sufficient to generate a
fixed key pair for each iteration through the mechanisms.
For more details about the structure and values of the at-
tributes for keys, there should be a new key pair generated
for every single possibility of valid options provided by
the PKCS#11 standard.

Since cards implementing a PKCS#11 compatible li-
brary do not have to support all mechanisms defined by
that standard, the return value can be checked to see if
the selected mechanism is supported by the card [5], [13].
Granted it is supported, we gain some information about
the implementation with this approach. We can inspect the
APDUs to find out the mapping for each mechanism in
the command and response APDUs. This process can be
continued, by trying all possibilities for mechanisms and
attributes during the key creation. However, the changes
each iteration should be kept to a minimum to maxi-
mize the amount of information that can be confidently
mapped.

5. Related Work

The research presented in the paper of A. Nikoli¢ et
al. [4], describes tools and strategies for reverse engineer-
ing smart card middleware of proprietary manufacturers.
In contrast to this paper, their work focusses on the
middleware to gain more information about the Windows
smart card architecture as opposed to our research, where
we present tools and techniques for analyzing smart cards
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implementing PKCS#11 specifically. Nikoli¢ et al. show
multiple different approaches such as performing static
analysis through disassembly, dynamic analysis and the
analysis of the communication traffic, consisting of com-
mand and response APDUs, as described in this paper. It
should be noted, however, that their research is limited
to smart card middleware following the Windows Smart
Card Minidriver Specification. Their paper successfully
applies their described methods to the Serbian Electronic
ID Card, where a platform-independent library has been
developed to allow for use of this card on other operating
systems.

6. Conclusion

This paper addresses the problem of manufacturers
decommissioning their products without publishing their
implementation for possible updates. In our research, we
discuss multiple tools to intercept the flow of communica-
tion between smart cards and card readers. Additionally,
we highlight the challenges of reverse engineering smart
cards and their solutions through manufacturer indepen-
dent libraries such as PKCS#11. Most importantly, our
research introduces multiple step by step strategies to
extract information about the implementation details of
smart cards. This paper can serve as a basis for reducing
the amount of electronic waste by enabling the possiblity
of updates for the middleware.

Future research may include the reverse engineering
of smart cards following different standards, using similar
concepts as described in this paper. Furthermore, there
is the possiblity to automate parts of the experiments by
creating a program that can automatically generate all
possible parameter combinations for the operations.
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