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Abstract—As modern network systems become increasingly
complex and dynamic, traditional approaches to Root Cause
Analysis (RCA) encounter inherent limitations when con-
fronted with the needs of real-time analysis, scalability and
the processing of vast volumes of generated input data. RCA
refers to the process of identifying the root causes of observed
failures within a network system. In this regard, Machine
Learning (ML) approaches have emerged as a compelling
alternative, capitalizing on their ability to process large-
scale data and uncover complex patterns and distributions.
This paper presents popular ML techniques and discusses
their applicability to derive models for RCA in network
fault management, highlighting their strengths, scalability
and limitations.

Index Terms—network failure diagnosis, root cause analysis
models, telemetric data, machine learning

1. Introduction

With the growing complexity and expansion of modern
network topologies and the rising amount of generated
traffic and connected devices [1], efficient network man-
agement has become more needed than ever. Network
management encompasses all applied processes and tools
designed to ensure the reliability, efficient performance
and security of the network infrastructure [2]. In particular,
root cause analysis (RCA) is considered to be a central
aspect of network management. RCA models are designed
to backtrack and identify the set of potential root causes
that are responsible for a network failure [3].

Traditionally, constructing such models relies on the
domain expertise of human operators, with the eventual
aim of deriving a knowledge base of rules to diagnose
network failures [4]. These rules depend on telemetric data
measurements collected from various network devices and
monitoring tools. The relevant input data for RCA mod-
els may include interface statistics or system logs from
routers, or performance metrics such as CPU and memory
usage from servers and endpoints [5].

However, as modern network traffic becomes more
complex, vast amounts of data are being generated, which
makes it impossible for humans to entirely process it.
This results in traditional models failing to exploit all
of the collected data and ignoring certain features that
could potentially decrease the diagnostic output accu-
racy. Moreover, the process of constructing these rules
is time consuming, unsuitable for environments where
real-time reaction is essential, and not scalable to larger
networks [4].
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In this context, and in light of the recent success
of machine learning (ML) applications in many areas of
technology and science [6], ML techniques have emerged
as a promising alternative to traditional RCA models. ML
models feed off large volumes of input data [7], which is
increasingly available on modern networks. In this paper,
we present and discuss popular ML approaches that can
be applied for deriving RCA models in networks based
on input telemetric data.

The remainder of this paper is structured as follows:
Section 2 presents key concepts of RCA in the context of
network management. Section 3 highlights briefly previ-
ous related works. Section 4 introduces various suitable
approaches for deriving RCA models and discusses their
strengths and limitations.

2. RCA in Network Management

This section presents the fundamental concepts and
terminology related to the field of network management
and RCA, which are essential to understand the subse-
quent discussions of the approaches used to derive RCA
models.

Failure: The
expected response
does not arrive
before time-out.
Transaction is
aborted

Error: IP headers
are discarded
because of
incorrect body

Fault: One of
interfaces gets out
of sync every
.25ms

Alarm: Transaction
aborted alarm.

Error: Bursts of
noise are generated
causing bit errors
in IP packets

D Database client

Error: IP packets
are discarded
because of bad
header

Figure 1: Illustration of different terminologies in RCA
process (Figure from [8])

2.1. Terminology

We introduce the following terminologies, based on
the previous works [9] [4]:
Network Error: is defined as the discrepancy between
a condition of the network system and its theoretically
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correct condition and is caused by one or many faults.
Network Faults: are also called root causes. These are
network errors that can cause other errors but are not
themselves caused by other errors. In other words, a
network fault is the root cause of some error.

Network Failure: is an error that is observable from out-
side the system through external indicators called symp-
toms such as alarms raised upon anomaly detection. Upon
detecting the failure, the telemetric data and statistics
generated by network devices are then collected and used
as input for the RCA model for diagnosis and producing
the most likely root causes as outputs.

Root cause analysis: RCA is the process of determining
the set of faults or root causes that generated originally
the network failure observed by the given set of symptoms
and associated with the generated telemetric data. Figure 1
illustrates these concepts using a network scenario where a
failure occurs when a client attempts to access a database
server. The failure is detected through a raised alarm,
triggered by the absence of a response from the server. The
fault originates from a hardware issue in the interface of
a router along the path between the client and the server,
causing bit errors in packets sent by the client, which are
subsequently discarded by the server. This scenario also
demonstrates how faults can originate at locations far from
where their failure manifestations are observed.

2.2. RCA Workflow

The complete RCA process, starting from the model
construction to the inference of probable root causes for
a network failure, adheres to the workflow depicted in
Figure 2. The first step would be to collect labeled tele-
metric data, which are historically observed data instances
in network devices upon detecting symptoms of a network
failure. Each instance is annotated with the corresponding
fault or set of faults as labels. Combined with domain
and system knowledge, an appropriate RCA model is con-
structed. These additional knowledge sources, however,
are not always necessarily used, particularly when large
datasets are available and the RCA models rely entirely on
ML approaches with complex architectures. These models
act from the outside as black boxes, extracting patterns
from large datasets without requiring domain or system
knowledge. Once training is complete and the RCA model
is constructed, it can be used for inference. Telemetric
data generated in response to new network failures is fed
into the model to produce as an output the expected root
causes. Furthermore, if a change in the network system
occurs upon for example removing or adding new devices,
the RCA model is updated.

3. Related Work

The preceding survey [3] highlighted the existing RCA
models in various IT systems disciplines and not specifi-
cally in the context of network management. The survey
emphasized the generation and inference algorithms of
the models, with particular attention paid to performance
aspects. In addition, previous papers [10] [8] discussed
the challenges of fault localization in complex modern
network systems and presented an overview of recent
techniques and models as proposed solutions.
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Figure 2: RCA workflow (Diagram was adapted from [3])

4. Approaches for RCA Models Derivation

This section provides an overview of various suitable
approaches and techniques for deriving RCA models. In
particular, we start by briefly introducing non-ML models
and then proceed to delve in depth into ML models, high-
lighting their advantages, disadvantages, and scalability as
summarized in Table 1.

4.1. Non ML Models

Non-ML models for RCA are based on deterministic
approaches that do not involve any training algorithms or
optimization techniques on the input telemetric data given
the corresponding labels. While they are often easier to
interpret and understand, their effectiveness is limited
in modern, dynamic networks where it becomes quite
challenging for such models to describe the complex
distribution of the correlation between symptom data
and faults. A review of the literature reveals numerous
examples of such models that were used as the primary
solution for RCA and localizing the root causes of
network failures. In the following we list two widely
applied approaches.

Rule-based Models: These models rely on predefined
logical rules that are derived from human expertise in
domain and system knowledge [11]. The rules are often
expressed as if-then statements and the models rely on
forward-chaining inference to produce potential faults as
an output by executing the rules that were triggered, i.e.,
those whose conditions matched the input data [8]. One
common method for representing the rules is through the
use of codebooks, which map each network fault to a set
of symptom data that should be observed in the faulty
component itself and any affected components resulting
from the original fault. The underlying root causes are
then diagnosed by identifying the closest match to the
observed input data. Reali et al. [12] employed this
technique within a real Next Generation Network (NGN)
that deployed wireline Voice over Internet Protocol (VoIP).

Pattern Mining-based Models: Pattern mining is a

central task in the subfield of data mining that aims to an-
alyze data in order to extract recurring patterns and strong
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TABLE 1: Summary of Advantages and Disadvantages of ML Approaches for RCA

ML Approach

Advantages

Disadvantages

Decision Trees

Human-interpretable models; logical rules are
easy to extract and align with domain knowl-
edge; efficient inference execution.

Susceptible to overfitting and noisy network
data; require ensemble methods for better gen-
eralization; limited in scalability.

Artificial Neural Networks

Capable of handling large-scale network data
and capturing complex distributions; perform
well in presence of noisy telemetric data.

Acts as a black box; lacks interpretability;
training process can be expensive especially
for complex architectures.

Support Vector Machines

Effective for high-dimensional telemetric data
in network’s RCA; can deal with non linear

Training is computationally expensive for
large scale datasets; can underperform when

complex distributions

trained to predict a large number of root
causes.

Clustering
data is available.

Useful when no historical labeled telemetric

Requires pre-selection of the number of clus-
ters; unable to identify specific root causes but
can only group based on similar observations.

Bayesian Networks

data-driven inference.

Human-interpretable models; readable depen-
dencies; can combine domain knowledge with

Model construction is expensive for large-
scale networks; requires expert knowledge to
define graph structure.

correlations [13]. This helps to facilitate decision-making
for many tasks such as classification and prediction. In
the context of network management, pattern mining tech-
niques have been applied to analyze telemetric network
data, enabling the discovery of meaningful patterns that
assist in fault localization and RCA. For instance, Lo-
zonavu et al. [14] applied sequential pattern mining [15]
to discover correlations between network alarm instances.
This approach constructs a directed weighted graph, where
the nodes and directed edges represent the relations be-
tween different alarms and the associated weights illus-
trate the strength or also called the confidence of these
relations. By deploying these dependencies, the model
starts its inference with a network entity that reported an
alarm. It then determines which other alarms are corre-
lated, enabling the system to pinpoint the faulty network
elements more precisely.

4.2. ML Models

ML is a scientific discipline concerned with the design
of models capable to learn patterns and distributions
of input data. The latter is typically partitioned into
three complementary subsets: training, validation and
testing sets [16]. The training set is used to train the
model by optimizing its parameters to minimize a loss
function between true outputs and predicted outputs by
the model. The validation set fine-tunes hyperparameters
and prevents overfitting, while the testing set assesses
accuracy and generalization on unseen data [16]. This
subsection reviews popular ML techniques that can be
applied for RCA in network systems and summarizes
the advantages, disadvantages and scalability of these
approaches, as illustrated in Table 1.

Decision Trees: Decision Trees have been widely
applied to fault localization and RCA in network systems.
In particular, it is a supervised learning technique that
requires labeled telemetric data annotated with the corre-
sponding network faults [17]. Each distinct network fault
or set of faults is represented by a class and the collected
metrics such as interface statistics, bandwidth and memory
usage are referred to as attributes.

A decision tree is a tree-like model that classifies data
instances into classes represented by leaf nodes based on
their attribute values. Internal nodes represent a test of
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an attribute and each outgoing branch from an internal
node represents a possible range of values of this attribute.
Learning a decision tree involves deciding which attribute
and its associated test should be selected at each internal
node to optimally split the data into branches. In general,
optimal splits are picked by maximizing the "Gain" in
information. The gain can be computed using various
criteria, such as Entropy or Gini Index but the choice itself
should not affect the ultimate model performance [18].
The inference algorithm for new instances is then applied
by traversing the learned tree from the root node and
following the branches based on the attribute values until
a leaf node is reached which acts as the predicted root
cause(s) of the model.

Chen et al. [17] deployed a decision tree based model
combined with post processing performed on paths of the
tree in order to identify causes of failures in large internet
systems. In the field of RCA in network management,
decision trees can be preferred as they have the advantage
of yielding human interpretable results, which makes it
easier to follow and understand the decisions made along
the output path [10]. Furthermore, the model exhibits
efficient runtime performance for the inference algorithm,
rendering it well-suited for systems where time sensitivity
and real-time analysis are crucial factors [3]. However, the
scalability of these techniques can be limited to using only
specific attributes of the input data, and the accuracy of the
model can be severely degraded in the presence of noisy
input data, a problem that is exacerbated in large-scale
networks [17].

In fact, to address the last limitation and to improve
generalization on unseen data, Random Forest (RF)
techniques can be employed. RF is an ensemble learning
method and its core concept lies in constructing multiple
decision trees during the training process, rather than
deriving only one. The inference outputs of the trees
are then combined typically through majority voting, to
make more robust and accurate predictions. For instance,
Sauvanaud et al. [19] implemented an RF algorithm to
localize root causes in Virtual Network Functions (VNFs).

Artificial Neural Networks (ANNs): ANNs are com-
putational models inspired by the structure and learning
mechanisms of biological neural networks (NNs) in the
human brain. An ANN consists of multiple layers of inter-
connected neurons. Each neuron receives multiple inputs
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from the previous layer, processes them, and generates a
single output that is fed to each neuron in the next layer.
This processing involves a weighted sum of the inputs,
an addition of a bias, and the application of an activation
function. The weights and biases represent the learned
parameters of the model [20].

In the context of RCA in networks, the neurons of
the input layer represent the telemetric data during net-
work failures and the output neurons correspond to the
root causes. The root cause associated with the output
neuron exhibiting the highest value represents the pre-
dicted fault of the model. Wietgrefe et al. [21] developed
a system called Cascade Correlation Alarm Correlator
(CCAC) based on an ANN to predict the root causes
of alarms in cellular phone networks. Each input neuron
represents an alarm type and takes a binary value (active
or inactive), while each output layer neuron corresponds to
a failure’s cause. The findings of [21] indicate that CCAC
yields high prediction accuracy even in the presence of
noise in the training data such as missing or irrelevant
alarms. Furthermore, in a comparative study conducted by
Wietgrefe et al. [22], it was demonstrated that CCAC is
more accurate at predicting alarm causes than traditional
approaches such as rule-based reasoning models. In gen-
eral, ANN approaches have the ability to process the large-
scale telemetric data produced by modern networks and
can produce accurate predictions even with the presence
of noisy data.

The above advantages may justify the fact that ANNs
have been the subject of extensive research and are
widely employed in numerous domains and fields [20].
However, it seems that ANNs have not achieved the
same dominance in the area of RCA in network systems,
unlike other disciplines. The primary reason behind this
is that these models, especially those possessing complex
architectures like deep ANNS, act from outside like black
boxes and return predicted root cause(s) as an output, but
it is almost impossible for human operators to backtrack
and provide a logical explanation for it [3]. Moreover,
such approaches use exclusively the labeled input dataset
to construct the RCA models and are difficult to combine
with available domain knowledge to derive meaningful
and interpretable rules [3].

Support Vectoring Machines: Support Vector Ma-
chine (SVM) is another popular ML technique that can
be applied to RCA and fault management in networks.
SVM is essentially a linear supervised classifier that is
based on the margin maximization principle [23]. To deal
with non linear problems, which is the case in network’s
RCA, the input data can be preprocessed and mapped to
higher dimensions using kernel methods. This process is
called non-linear SVM [4].

Based on the training labeled telemetric data, an SVM
is learned to find optimal separating hyper planes with
each plane representing a network failure root cause(s).
In the literature, we can find the application of SVM
methods to a variety of network management tasks. For
instance, the study conducted by Zidi et al. [24] applied
an SVM-based model to detect failures in Wireless Sensor
Networks (WSNs). WSNs consist of autonomous devices
collaborating together through a wireless channel. The
training dataset included both normal data measurements
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as well as measurements associated with different types
of faults. Once the SVM model is trained, the inference
algorithm predicts if new observations belong to a normal
or a faulty case. The experimental results conducted by
Zidi et al. [24] show that their SVM method achieves
high accuracy rates.

In general, SVMs have the advantage of performing
well in scenarios with high-dimensional input data [3],
making them suitable for analyzing complex telemetric
datasets in network management. However, SVMs seem
to underperform when trained to predict a relatively
large number of output classes, a common scenario
when representing the diverse root causes of network
failures [25]. As a result, their applicability can be limited
to specific network failure scenarios.

Clustering: Clustering methods are unsupervised
learning techniques that group data instances into clusters
based on similar features or patterns, without the need
for labeled data [9]. This is useful in network’s RCA
when the training telemetric data is not accompanied by
the corresponding root causes. Such scenarios may arise
due to a lack of historical labeled data or the presence
of excessively noisy data, making supervised learning
impractical.

Sozuer et al. [26] applied clustering techniques to
identify correlated alarms belonging to the same cluster
during network failure. This helps pinpoint the faulty
network elements more precisely and localize the root
causes. However, clustering models require predefining
the number of clusters, and without expertise knowledge
of the underlying network system, an incorrect choice can
result in meaninglessly grouping telemetric measurements
that do not originate from the same root cause(s) [9].

Bayesian Networks: A Bayesian Network (BN) is
a probabilistic graphical model that represents variables
and their conditional dependencies through a directed
acyclic graph (DAG) [25]. The conditional probabilities
are learned using techniques like Maximum Likelihood
Estimation (MLE) or Bayesian Estimation [3]. In the
context of RCA in networks, Bayesian Networks can
model the causal relationships between the telemetric
data, symptoms, and faults that act as variables of the
model. For example, if an interface fault in a router causes
increased latency and packet drops, a BN can capture these
dependencies and help infer the root cause when these
symptoms are observed.

Ruiz et al. [27] developed a BN model to identify
the root causes of network failures at the optical layer.
Khanafer et al. [28] proposed a failure diagnosis model
using BN approach for Universal Mobile Telecommu-
nications System (UMTS) networks. The dependencies
between the variables in BN models are intuitively easy
for human operators to understand. Moreover, the explicit
representation of causes and effects enhances readability,
making it easier to derive meaningful rules and integrate
them with domain and system knowledge. However, con-
structing BNs can be computationally expensive, partic-
ularly for large-scale networks, and requires significant
expertise to define the graph structure and which variables
are included. Additionally, their scalability may be limited
when dealing with high-dimensional datasets [25].
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5. Conclusion

In this paper, we examined various approaches that
can be applied to derive RCA models in network systems.
Initially, we showed that traditional non-ML models, while
easier to read and interpret, face major limitations when
employed in dynamic and large-scale networks. We then
proceeded to explore in depth ML models. Our review
demonstrated that these techniques are able to handle large
amounts of input telemetric data and identify the root
causes of network failures more accurately and adaptively.
Nevertheless, challenges such as explainability, compu-
tational cost, and exclusive reliance on input data still
remain. A possible future work could aim to address these
limitations by exploring hybrid models that combine the
strengths of ML techniques with domain knowledge from
traditional approaches, leading potentially to more robust
RCA solutions.

References
[11 A.M. Odlyzko, “Internet traffic growth: Sources and implications,”

in Optical transmission systems and equipment for WDM network-
ing II, vol. 5247. SPIE, 2003, pp. 1-15.

L. Tawalbeh, Network Management, 04 2020, pp. 99-115.

M. Solé, V. Muntés-Mulero, A. I. Rana, and G. Estrada, “Survey
on models and techniques for root-cause analysis,” arXiv preprint
arXiv:1701.08546, 2017.

M. Nouioua, P. Fournier-Viger, G. He, F. Nouioua, and Z. Min,
“A survey of machine learning for network fault management,”
Machine Learning and Data Mining for Emerging Trend in Cyber
Dynamics: Theories and Applications, pp. 1-27, 2021.

(2]
(3]

(4]

[S] T. Wang and G. Qi, “A comprehensive survey on root cause anal-
ysis in (micro) services: Methodologies, challenges, and trends,”

arXiv preprint arXiv:2408.00803, 2024.

R. Pugliese, S. Regondi, and R. Marini, “Machine learning-based
approach: global trends, research directions, and regulatory
standpoints,” Data Science and Management, vol. 4, pp. 19-29,
2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2666764921000485

“Training Data Quality: Why It Matters in Machine
Learning v7labs.com,”  https://www.v7labs.com/blog/
quality-training-data-for-machine-learning- guide, [Accessed
03-12-2024].

M. tgorzata Steinder and A. S. Sethi, “A survey of fault
localization techniques in computer networks,” Science of
Computer Programming, vol. 53, no. 2, pp. 165-194, 2004,
topics in System Administration. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S0167642304000772

S. P. Kavulya, K. Joshi, F. D. Giandomenico, and P. Narasimhan,
“Failure diagnosis of complex systems,” Resilience assessment and
evaluation of computing systems, pp. 239-261, 2012.

(6]

(71

(8]

(91

[10] A. Dusia and A. S. Sethi, “Recent advances in fault localization in
computer networks,” IEEE Communications Surveys & Tutorials,

vol. 18, no. 4, pp. 3030-3051, 2016.

T. Marques, “A symptom-driven expert system for isolating
and correcting network faults,” IEEE Communications Magazine,
vol. 26, no. 3, pp. 613, 1988.

G. Reali and L. Monacelli, “Definition and performance evaluation
of a fault localization technique for an ngn ims network,” IEEE
Transactions on Network and Service Management, vol. 6, no. 2,
pp. 122-136, 2009.

(1]

[12]

Seminar IITM WS 24/25

65

[13] P. Fournier-Viger, W. Gan, Y. Wu, M. Nouioua, W. Song,
T. Truong, and H. Duong, “Pattern mining: Current challenges and
opportunities,” in International Conference on Database Systems
for Advanced Applications. Springer, 2022, pp. 34-49.

M. Lozonavu, M. Vlachou-Konchylaki, and V. Huang, “Relation
discovery of mobile network alarms with sequential pattern min-

ing,” in 2017 International Conference on Computing, Networking
and Communications (ICNC). 1EEE, 2017, pp. 363-367.

J. Pei, “Mining sequential patterns efficiently by prefix-projected
pattern growth,” in Proc. of 17th International Conference on Data
Engineering (ICDE 2001), 2001, pp. 215-224.

O. Hazzan and K. Mike, Core Concepts of Machine Learning.
Cham: Springer International Publishing, 2023, pp. 209-224.

M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer, “Failure
diagnosis using decision trees,” in International Conference on
Autonomic Computing, 2004. Proceedings., 2004, pp. 36-43.

Routledge, 2017.

(14]

[15]

(16]

(17]

[18]
[19]

L. Breiman, Classification and regression trees.

C. Sauvanaud, K. Lazri, M. Kaaniche, and K. Kanoun, “Anomaly
detection and root cause localization in virtual network functions,”
in 2016 IEEE 27th International Symposium on Software Reliabil-
ity Engineering (ISSRE), 2016, pp. 196-206.

[20] S. Agatonovic-Kustrin and R. Beresford, “Basic concepts of
artificial neural network (ann) modeling and its application
in pharmaceutical research,” Journal of Pharmaceutical and
Biomedical Analysis, vol. 22, no. 5, pp. 717-727, 2000.
[Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0731708599002721

H. Wietgrefe, K.-D. Tuchs, K. Jobmann, G. Carls, P. Frohlich,
W. Nejdl, and S. Steinfeld, “Using neural networks for alarm
correlation in cellular phone networks,” in International Work-

shop on Applications of Neural Networks to Telecommunications
(IWANNT). Citeseer Stockholm, Sweeden, 1997, pp. 248-255.

H. Wietgrefe, “Investigation and practical assessment of alarm
correlation methods for the use in gsm access networks,” in
NOMS 2002. IEEE/IFIP Network Operations and Management
Symposium.’Management Solutions for the New Communications
World’(Cat. No. 02CH37327). 1EEE, 2002, pp. 391-403.

[21]

(22]

[23] M. M. Adankon and M. Cheriet, “Support vector machine,” Ency-

clopedia of biometrics, pp. 1303-1308, 2009.

S. Zidi, T. Moulahi, and B. Alaya, “Fault detection in wireless
sensor networks through svm classifier,” IEEE Sensors Journal,
vol. 18, no. 1, pp. 340-347, 2018.

N. G. Lo, J.-M. Flaus, and O. Adrot, “Review of machine learning
approaches in fault diagnosis applied to iot systems,” in 2079
International Conference on Control, Automation and Diagnosis
(ICCAD), 2019, pp. 1-6.

S. Sozuer, C. Etemoglu, and E. Zeydan, “A new approach for
clustering alarm sequences in mobile operators,” in NOMS 2016-
2016 IEEE/IFIP Network Operations and Management Sympo-
sium. 1EEE, 2016, pp. 1055-1060.

M. Ruiz, F. Fresi, A. P. Vela, G. Meloni, N. Sambo, F. Cugini,
L. Poti, L. Velasco, and P. Castoldi, “Service-triggered failure
identification/localization through monitoring of multiple param-
eters,” in ECOC 2016, 42nd European Conference on Optical
Communication. VDE, 2016, pp. 1-3.

R. M. Khanafer, B. Solana, J. Triola, R. Barco, L. Moltsen,
Z. Altman, and P. Lazaro, “Automated diagnosis for umts networks
using bayesian network approach,” IEEE Transactions on vehicular
technology, vol. 57, no. 4, pp. 2451-2461, 2008.

(24]

(25]

(26]

[27]

(28]

doi: 10.2313/NET-2025-05-1 11



