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Abstract—Wireless Local Area Networks (WLANs), stan-
dardized in IEEE 802.11 and known as Wi-Fi are funda-
mental in daily internet communication. However, collision
and interference may hinder Wi-Fi performance. This paper
delves into models applied in layer 1 and 2 to mitigate
performance issues. It presents 3 Machine Learning (ML)
and Artificial intelligence (AI) based approaches. We exhibit
Chen et al.’s [1] model called Aifi to remove interference as
well as Ali et al.’s [2] approach to reduce collision. Then we
proceed with Coronado et al.’s [3] mechanism that utilizes
ML to determine the frames’ length for each station.

Index Terms—Wi-Fi, WLAN, IEEE 802.11, machine learn-
ing, deep learning, artificial intelligence, physical layer, data
link layer.

1. Introduction

The paper illustrates the deployability of AI and ML
in Wi-Fi optimization, especially interference mitigation,
collision avoidance, and frame aggregation. It demon-
strates how each approach mitigates and enhances Wi-Fi
performance. Wireless interference significantly impedes
Wi-Fi performance, and mitigating its effects remains a
critical challenge. Most available solutions to this issue
rely on CSMA/CA [4]–[6], which lacks efficiency in re-
moving interference. To diminish the issue, Chen et al. in
[1] create an interference cancellation technique called Aifi
that leverages the power of artificial intelligence to esti-
mate and remove the interference. The models estimate the
interference based only on the available physical informa-
tion. Aifi shows promising results in reducing load latency.
Beyond interference mitigation, channel access represents
the most extensively addressed topic regarding the influ-
ence of ML on Wi-Fi performance. Ali et al. [2] propose
a machine learning-based approach to dynamically choose
the optimal contention window value to avoid collisions,
while simultaneously accounting for the dynamic Wi-Fi
environment. This model [7, Section A.1] shows steady
throughput in dense networks. Frame aggregation in IEEE
802.11 is another area of improvement in layer 2. The
two approaches provided by the 802.11 standard fail to
accommodate the Wi-Fi dynamics. Thus, Coronado et al.
[3] use supervised learning techniques to provide the op-
timal frame size for each station. The authors’ model has
significantly lowered the retransmission rate. The paper
further analyzes in Section 2 Chen et al.’s [1] approach
to remove interference. Section 3.1 studies in depth Ali
et al.’s [2] model and its outcome whereas Section 3.2
decomposes the strategy adopted by Coronado et al. [3]

and elucidates how ML is deployed in Wi-Fi. Then the
paper recapitulates and outlines the main challenges that
endanger AI and ML deployability in Section 4.

2. AI and ML in Optimizing the Physical
Layer

Artificial intelligence and machine learning play a crucial
role in mitigating the trade-offs and the issues that we
face in the physical layer. In this section, we address
interference and specify how ML and AI mitigated it
based on the physical layer information.

2.1. Interference and its Mitigation

The approach to mitigate interference is based on
CSMA/CA [4]–[6] . At first, the sender senses the carrier
to determine if another device is sending at that moment.
This process is called the carrier sense (CS). If the channel
is busy, collision avoidance (CA) is triggered, resulting
in a delay as the transmission is postponed. However,
CSMA/CA is limited as it can not fully eliminate the
interference. Chen et al. in [1] come up with the idea
to analyze the information available in the physical layer
instead of probing in the air.

2.2. Background and Motivation
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Figure 1: Physical Information in a Wi-Fi Frame [1]

The Figure 1 illustrates how the physical information
is encapsulated in a Wi-Fi frame. As shown above, on
the x-axis the frequency is divided into subcarriers. There
is always an alternation between a block of data that
carries the user’s data and a pilot block used to observe
the difference between the received signal and an ideal
one. Channel State Information (CSI) [8] and Pilot Infor-
mation (PI) [8] are extracted from the pilot subcarrier. A
Long Training Field (LTF) preamble is spanned over all
the subcarriers to synchronize them. The LTF preamble
provides detailed specifications about the channel, mainly
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used for channel estimation. Symbols stored in the sub-
carriers and the LTF preamble are illustrated by the y-
axis. CSI gives the overall channel response and provides
information on how the channel affected the signal. PI is
a subset that specifically focuses on phase shifts and is
used for phase synchronization. Since the pilot subcarrier
and the LTF preamble are based on a Binary Phase Shift
Keying (BPSK) [1, Section 2.1], the difference between
two consecutive PI samples or CSI samples is always a
fixed Phase [1]. BPSK is a modulation technique based
on two phases that are seperated by 180° and can also be
termed 2-PSK. However, interference may alter the phase
variation in PI and the frequency domain, represented
by CSI, from linear to nonlinear. This nonlinearity is
explained by the channel estimation [1] as follows:

HI =
YI

X
=

HX + I

X
= H +

I

X
(1)

In (1) HI illustrates the channel estimation with the
presence of the interference I , whereas H refers to the
interference-free channel estimation H = Y/X with Y
reflecting the non-interfered signal. YI refers to the re-
ceived LTF signal in the presence of interference and X is
the predefined LTF signal. The fraction I/X characterizes
the effect of interference and the origin behind the phase
variation’s nonlinearity.

2.3. System Overview

Chen et al. in [1] contribute a mechanism called Aifi
that starts by extracting the interference features from
the PI and CSI information to estimate interference on
different data subcarriers with the help of a regression
neural network. Regression neural network is a machine
learning technique. Depending on the training data, the
regression neural network predicts the outcome, i.e., the
interference estimation. In this case, the training data is
a set of interfered Wi-Fi signals [1, Section 3] that are
subject to non-identical interference patterns and channel
conditions to guarantee the generality and adaptability
of the Neural Networks (NNs). These predictions are
then improved via a refinement neural network to acquire
more precise interference estimations. Aifi conducts an
interference removal process on the data subcarriers and
corrects the data encoding errors across the subcarriers.

2.3.1. Interference Estimation. Aifi extracts the inter-
ference features [1, Section 3.1] as follows:

I = (HI −H)X (2)

When the transmitting signal X is known, I can be
uniquely identified by the channel estimation [9]–[11]
without interference H and with interference HI . For this
matter, Aifi uses a Convolutional Neural Network (CNN).
The idea behind CNN is to use the provided training data
to figure out what the filters also called kernels should
be. In addition, it helps with pattern recognition which
in this case refers to the interference patterns. The CNN
starts by extracting features from the interfered and non-
interfered signals and then proceeds with the subtraction
as shown in (2). This demonstrates that Aifi does not
require prior knowledge about patterns of the interfering
signal. The training data that serves as an input to our

NNs, Aifi starts by collecting non-interfered PI and CSI
information from Wi-Fi frames with a minimum Signal
Interference and Noise Ratio (SINR) of 23 dB. The higher
the SINR, the better the quality of the signal, and thus
the lower the relative impact of interference and noise on
the signal. The estimations collected from the interfered
and non-interfered signals used in training are stored as
pairs. That way Aifi can remove the channel estimation
triggered by irrelevant factors, e. g. device mobility. If
the NNs are well trained to extract the features, Aifi can
be efficient even though the training does not englobe
all the possible interfering signals. After collecting the
interference features from PI, Aifi proceeds with an RNN
also known as Deconvolutional Neural Network (DeNN).
DeNN performs reverse operations of CNN and captures
the non-linearity of the data subcarriers by focusing on
their generic features [1, Section 3.1].

Figure 2: Regression NN [1, Section 3.1]

Output = w1 · x1 + w2 · x2 (3)

The interference features extracted from the PI are ex-
pended into an intermediate grid with 0 padding, as de-
picted in Figure 2, to match the size of the data sub-
carriers. A one-Dimensional (1D) filter is applied to the
intermediate grid. In a 1D filter, only the rows or the
columns contribute to the output. In Figure 2, the filter
is applied to the columns. The specificity of the 1D filter
is its one-dimensional array kernel. The kernel length is
set to 2 to process every pair of adjacent elements. In
Figure 2, 1D filter has two trainable weights w1 and w2.
Those weights are initially initialized randomly and then
updated during the training process. The 1D filter slides
across the intermediate grid operating as shown in (3). In
this operation, x1 and x2 illustrate the adjacent elements
over which the filter is applied. x1 is weighted by w1

likewise to x2, i.e., weighted by w2 and their weighted
sum provides the output. The size of the 1D filter is
chosen in a way to leverage the continuity [1, Section
3.1] between every two consecutive subcarriers.

PI Features (M_1)

CSI Features (M_2)
Scale+Softmax

Key interference
features

Refined interference

Figure 3: Feature Refinement NN [1, Section 4]

W = softmax
(
M1 ·M2√

Scale

)
(4)

However, the estimation based only on the interference
features captured from the PI lacks accuracy. To solve this
issue Chen et al. [1] use the interference features from
CSI to enhance the estimations’ accuracy. This is done
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via stacked refinement NNs to ensure the highest learning
power level. The main purpose of the refinement NN is
to learn the weight matrix (W ) as depicted in (4). (W )
reflects the correlation [1, Section 4] between PI and the
CSI interference features. As shown in Figure 3 the PI
features (M1) and the CSI features (M2) serve as input
to the softmax function. The

√
Scale in (4) is a constant

that prevents the correlation from growing in magnitude,
leading to a smaller gradient. The weight matrix is then
applied to the key interference features extracted from
either the PI or the CSI. As a result, a refined interference
is obtained.

2.3.2. Interference Removal.

X = (XI − I) ·W (5)

Aifi uses a fully connected NN to imitate the equalization
process in the commodity Wi-Fi that utilizes Zero-Forcing
(ZF) [9], [12]. ZF tackles the signal’s interference by
applying the inverse of channel estimation to the signal [1,
Section 3.2]. The fully connected NN ensures flexibility
by computing multiple iterations and learning the optimal
weights W . In addition, it emulates the equalization in
the feature space offering efficient fine-tuning abilities to
remove the interference. As shown above in (5), the (XI)
refers to the received signal that contains the interference,
while (I) is the estimated interference from Section 2.3.1.
By multiplying the subtraction with the learnable weights,
the interference-free signal X is obtained.

2.3.3. Data Payload Correction. Aifi starts with resid-
ual interference detection and handling. Indeed, when
the interference is too strong, the interference-removing
process may fail to obliterate it. This is due to the limited
resolution [1, Section 3.3] of the signal in PI and CSI.
To mitigate this issue, Aifi incorporates a supplementary
neural network to correct the decoding errors repercussed
by the interference. Aifi then proceeds to emulate the
Wi-Fi encoder. In this stage, Aifi utilizes a Long-Short-
Term Memory (LSTM) network. LSTM is a type of a
reccurent network used to mitigate the issue of long-term
dependency in sequential data. In the recurrent NN the
output of the previous input is fed into the node as part
of the input. LSTM enhances this structure by adding an
internal state mechanism. The state comprises three gates:
the forget gate, the input gate, and the output gate. Each
gate can be assigned a number between 0 and 1. LSTM
learns the dependency between consecutive symbols and
in case of an error, the LSTM network attempts to correct
it by rebuilding the correct data payload. Aifi takes the
output of the LSTM network and transforms it into the
final data payload with the help of a demodulation neural
network. This type of neural network tends to mimic the
decoding behavior in the commodity Wi-Fi.

2.4. Real-Word Experimentation

The relevance of Aifi in boosting the network’s perfor-
mance in real-world applications, especially the loading of
web pages is evaluated by Chen et al. [1]. The experiment
is performed on a couple of well-known web pages e. g.
Google.com, Delta.com, Twitter.com, Twitch.com [1, Sec-
tion 8.2] and a predefined Wi-Fi transmission of 24Mbps.

Before we delve into analyzing the outcome of the ex-
perience, we need to explain the Frame Reception Rate
(FRR). FRR is defined as:

FRR =

∑
successfully received frames∑

transmitted frames
(6)

As shown in (6), low FRR reflects a high impact of in-
terference. Interference engenders high packet loss. High
packet loss repercusses elevated latency. As depicted in
Figure 4, in the case of low FRR (FRR ≤ 30%) we
can see that Aifi prevails the most. When the interfer-
ence is too strong (FRR = 0%), we can remark that
Twitter had the highest load latency (200 seconds). The
loading functionality of Twitter was nearly unresponsive.
However, with Aifi deployed, the load latency plummeted
(80 seconds). The loading functionality of Twitch is now
usable. All the web pages (Google.com, Delta.com, Twit-
ter.com) experienced this huge load latency reduction with
Aifi deployed, when the interference is prevailing. When
the FRR is medium (between 40% and 70%), the load
latency is reduced from around 160 seconds to around
50 seconds on average for all the web pages. And even in
the case of high FRR (FRR > 70%) Aifi ensures that the
load latency is less than 3 seconds. It offers a good web
browsing experience. To sum up, the model can transform
the web pages’ loading outstandingly.
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Figure 4: Latency of webpages loading [1, Section 8.2]

3. AI and ML in Optimizing the Data Link
Layer

The main strength of AI and ML relies upon their
power to gain knowledge rapidly, generalize it, and learn
from previous experiences. In this section, we delve into
the panoply of approaches that use AI and ML to optimize
the data link layer.

3.1. Channel Access

Most applied approaches are tightly linked to the
Distribute Coordination Function (DCF). DCF is a
CSMA/CA-based channel access mechanism [13]. Devices
randomly select a backoff counter from the Contention
Window (CW) range. This backoff counter represents the
waiting time of this device before accessing the chan-
nel to avoid collision. The CW range is the following
{0, 1, 2, . . . ,min{2c+k−1 − 1, 255}}. (c) is a constant re-
lated to the physical configuration and (k) illustrates the
number of transmission attempts starting from k = 1. One
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of the commonly known trade-offs is the choice of the
CW values. Indeed, choosing small CW values provide
quicker transmissions but increase the collision risk and
thus reduce input, whereas large CW values minimize
the probability of collision but increase the idle time
of the channel leading to a reduction in the throughput
[7, Section A]. The following sections provide the major
findings on how to mitigate this issue with the help of
ML.

3.1.1. Collision Reduction. In high-density 802.11ax
WLANs, Ali et al. [2] use a combination of Reinforce-
ment Learning (RL) [14] and Intelligent Q-learning-based
Resource Allocation (IQRA). The purpose of RL is to
optimize a policy to yield maximum reports. The report
in our case refers to the increase of throughput and the
reduction of collision probability. An RL consists of an
agent, a set of states (S), and Actions (A). When the
agent acts a ∈ A, the agent transitions from one state
to another. As opposed to DCF which resets the CW
value every time the channel is idle, the CW value is now
calculated by analyzing the channel collision probabilities
that are based on the Channel Observation-based Scaled
Backoff (COSB) [15] mechanism. Before scaling the CW,
COSB measures how often the channel is busy. It then
predicts the likelihood of collisions according to failed
transmissions or retransmission attempts while accounting
simultaneously for the number of active devices. That
way the IQRA mechanism can manage between exploring
new actions [7, Section A.1] like new CW adjustment
and choosing the optimal actions [7, Section A.1] by
increasing or reducing the CW (according to COSB).
Optimal actions reflect the safest strategy of leveraging the
already available information to be efficient in the current
environment. The IQRA mechanism always accounts for
the unstability of the Wi-Fi environment.

3.1.2. Real-Word Experimentation. Results from the ns-
3 network simulator [7, Section A.1] for dense networks
(with 50 stations) as shown in Figure 5 illustrate the pos-
itive effect of IQRA on the network throughput compared
to the standard 802.11 protocol. IQRA provides a nearly
constant network throughput during the whole Simulation
time (from 0s to 60s) around 38MB s−1 contrary to the
standard protocol that shows relatively low throughput. In
the standard protocol, the network throughput decreases
from 38MB s−1 to around 27MB s−1.
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Figure 5: Network Throughput Comparison [7, Section
A.1]

3.2. Frame Aggregation

Frame aggregation consists of combining smaller frames
into a bigger one to improve efficiency in communication.
Larger frames can reduce the overhead, however, they are
more prone to transmission errors. One error in one of the
subframes can cause the retransmission of the large frame.
To tackle this trade-off, the 802.11 standard introduced
two basic approaches. The first method is called Aggre-
gated Mac Service Data Unit (A-MSDU) [16]. A-MSDU
is more efficient as it has only one Frame Check Sequence
(FCS) but is less robust. If one subframe is corrupted
the entire frame is discarded. The second method is the
Aggregated Mac Protocol Data Unit (A-MPDU) [16]. A-
MPDU offers more robustness because each subframe has
its own FCS but it introduces more overhead. The optimal
approach is to apply those methods simultaneously to
harmonize between robustness and efficiency. The 802.11
standard does not account for the CSI’s dynamic nature.
Thus, to optimally choose the frame size, we leverage
the dynamic features of ML. To optimally select the
frame size under dynamic conditions, Coronado et al. [3]
implement a low computational complexity [3, Section 1]
technique based on a Random Forest Regressor (RFR) for
the Modulation and Coding Scheme (MCS) settings and
the frame aggregation. The MCS is a metric that reflects
several parameters between the Access Point (AP) and the
station including data rate, channel width, etc. The model
is deployed on the management plane and fed periodi-
cally with the control plane’s knowledge, e. g. channel
conditions and user state. This model is considered to
have low computational complexity because the type of
ML model deployed requires minimal resources, reduced
training time, and provides fast outcome predictions. A
Random Forest (RF) is a ML model that uses an ensemble
of decision trees to make its prediction. Each random
forest is characterized by three parameters: the size of the
nodes, the number of trees, and the number of features.

3.2.1. Model Description. The model utilizes the features
like the station details as input [3, Section 4.3.5]. It
assigns an RFR for each MCS and limits the depth of the
tree to 3. By this limitation, the model avoids overfitting
and reduces the complexity of the tree. The model then
undergoes a tenfold cross-validation. Indeed, the data is
split into 10 parts. The model is trained on 9 folds and is
evaluated on the fold left. The model is deployed on the
management plane. The management plane is responsible
for controlling the network. An appropriate frame length
is constantly provided for a specific MCS and in the
next iteration, the model reconfigures itself by using the
feedback from the real obtained goodput. In due course,
the model can correct the next prediction with a prediction
error factor [3, section 4.3.5].

3.2.2. Real-Word Experimentation. The setup consists
of an AP, a Software-Defined Networking (SDN), and the
ML model deployed on the management plane. A SDN
ensures the configuration and monitoring of an efficient
and dynamic network environment. The experiment [3,
Section 5.1] consists of moving the stations within a 30m
radius of the AP while varying simultaneously the mobil-
ity and the MCS index (MCS-0, MCS-2, MCS-7). Each
MCS index illustrates a unique combination of modulation
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type, coding rate, and several other parameters. Perfor-
mance is evaluated on the goodput metric [3, Section 5.2].
The simulation is repeated 10 times with 14 seconds runs.
The model illustrated its ability to dynamically improve
goodput by about 18.36% compared to static techniques
like max aggregation and no aggregation. The model tends
to outperform all the other approaches, especially when
the bitrate is high (25MB s−1) and the MCS is equal to 7.
The approach has significantly lowered the retransmission
rate.

4. Conclusion and Challenges
The impact of ML and AI is undeniable in improving

Wi-Fi performance. This paper provides a comprehensive
overview of 3 recent ML-based approaches deployed in
the first two layers. It starts with the approach of Chen
et al. [1] called Aifi. This approach shows its efficiency
in mitigating interference and reducing 80% bit errors.
Aifi improves the FRR by a factor of 18. However, the
applicability to various wireless technologies may pose
both an impediment and a challenge for Aifi. Indeed,
this approach applies to only OFDM-based systems [1,
section 9]. Some wireless systems have different physical
structures and may provide their physical information
differently. Then the paper proceeds by analyzing Ali et
al.’s [2] approach. This model ensures steady network
throughput by reducing the chances of collision based
on a combination of RL [14] and IQRA. For the frame
aggregation, we scrutinize Coronado et al.’s [3] approach.
This model provides the optimal frame length for each
station and ensures a low retransmission rate. However,
ML and AI may raise privacy and security concerns.
The pace of AI and ML deployability outran the pace of
their regulations. The success of AI and ML depends on
future standardizations to avoid data transfer that involves
sensitive information used for the training of ML models.
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