Usage of Path Property Emulation Tools

Julien Schiffer, Stefan Lachnit*, Sebastian Gallenmiiller*
*Chair of Network Architectures and Services
School of Computation, Information and Technology, Technical University of Munich, Germany
Email: schifferju@tum.de, lachnit@net.in.tum.de, gallenmu@net.in.tum.de

Abstract—There are many different emulation tools, some
with similar but different functions and goals. The most
common ones are Mininet and NetEm. They are often used to
test and validate the work of researchers. This includes new
algorithms or programs. However, it is not always clear why
a particular emulation tool was used. The following paper
presents and categorizes the use of those tools. Meanwhile,
it becomes clear that current emulation tools have technical
limitations and are sometimes reaching their limits, which
is why there will be even more powerful tools in the future.

Index Terms—Network Emulation, Path property, Emulation
tools, Mininet, Netem

1. Introduction

As the Internet grows, the corresponding programs
and requirements become more complex. It is not only
important that applications work at all, but speed also
plays a significant role. There are a lot of devices with
different hardware on which the programs should still be
usable quickly. Therefore, tests must be carried out to
check how programs behave with other parameters, such
as high latency and bandwidth. The aim is to recreate real
network conditions. Entire virtual networks can also be
created to carry out tests.

The use of such tools offers many advantages com-
pared to testing on real networks. The most significant
advantage is efficiency. Networks can be set up and used
much faster. Moreover, the costs of real hardware are
eliminated. Only with large and complex networks can
the performance decrease, meaning the test results are not
100 % accurate. Nevertheless, the cost benefits outweigh
the disadvantages in most cases, which is why emulation
tools are used so frequently.

In the following paper, the emulation tools are pre-
sented and compared with each other, documenting their
use over the last five years.

2. Emulation Tools

2.1. Function

Emulation tools make it possible to recreate real hard-
ware or software environments to test their behavior in a
controlled environment. Realistic networks or systems are
simulated without the need for the underlying hardware.
The tool must be as similar as possible to the original sys-
tem. Network emulation tools, in particular, allow certain

Seminar IITM WS 24/25

43

conditions to be emulated by changing individual param-
eters. This allows for better evaluation of experiments.

For example, it is possible to artificially increase the
latency and see how the same application works on less
powerful devices. Other limitations, such as low band-
width or high packet loss, can also be emulated. It is also
possible to emulate real networks, which function like real
networks.

2.2. Most Common Emulation Tools

Mininet is by far the most frequently used tool in the
papers. It can mimic a real network by creating virtual
hosts, switches, controllers, and connections [1]. That
is why it is primarily used when researchers want to
focus on Software-defined Networks (SDN). It can also
simulate targeted network failures. The simulations result
in data sets that can be used to train models [2]. Because
only one device is required, Mininet is very cost-efficient.
However, Mininet-based networks cannot exceed the CPU
or bandwidth available on a single server. This leads
to bottlenecks when too many network components are
emulated, resulting in increased latency, packet loss, or
inaccurate bandwidths.

Another well-known tool is GNS3 [3]. Compared to
Mininet, GNS3 is a more robust network emulator that
is mainly used for simulating traditional networks. It can
connect real network devices, such as Cisco routers and
switches, to virtual machines (such as Linux servers).
GNS3’s emulation is more realistic because it uses official
operating system images (such as Cisco I0S). However,
these are often licensed, so it can be challenging to
get hold of them. In addition, GNS3 is more resource-
intensive due to emulating real devices, which is why it
is slow on more extensive networks.

Emulab [4], meanwhile, connects physical and virtual
networks. Real hardware (physical devices) and also vir-
tual machines are used. Emulab enables the use of many
physical machines in a distributed environment, which
increases scalability.

Containernet is an extension of Mininet [5]. In addi-
tion to Mininet’s functions, it enables the use of Docker
containers as hosts, which allows the use of real services
(e.g., microservices).

NetEm [6], on the other hand, focuses on changing
specific parameters. It is possible to add latency, simulate
packet loss and jitter, limit bandwidth, and much more.
This makes the tool well-suited for performance testing
and software optimization.

doi: 10.2313/NET-2025-05-1 08

TABLE 1: Usage of Path Property Tools in Paper

overall Mininet NetEm GNS3 EmuLab other
2020 10 5 1 0 3 1
2021 12 7 1 1 0 3
2022 6 5 1 0 0 0
2023 5 2 1 1 0 1
2024 6 2 2 0 0 2
sum 39 21 6 2 3 7

Dummynet [7] is similar to NetEm; it was developed
only on FreeBSD, but nowadays, it is also usable on
MacOS or Linux. NetEm, on the other hand, is based
on Linux and is only installable on a Linux-based oper-
ating system. Dummynet focuses more on traffic shaping,
which is why it is more flexible and efficient in those
areas. However, that also needs a deeper configuration and
more system resources. Both are applied on the network
interface and act as an intermediate layer between devices
and the network.

2.3. Installation

Setting up Mininet is easy. The first step is to install
a Mininet VM image and then open it in a virtualization
system(Quelle). This setup is quick because the Mininet
VM has a pre-built environment that is ready to be used.
NetEm, on the other hand, can only be installed on a
Linux-based operating system such as Ubuntu because it
is not a standalone program(Quelle). The corresponding
websites provide ’codes’ that make it possible to use
those tools. For example, in NetEm, 10% packet loss
is simulated with the code: sudo tc gdisc change dev
eth0 root netem loss 10%.

Comparable programs can be installed on FreeBSD
(Dummynet [7]).

3. Usage in papers

In the following, we reviewed the papers of ACM
SIGCOMM and ACM CoNEXT and found all the papers
in which path property emulation tools are used. Table 1
shows the use of the various tools from 2020 to 2024.

H3

5]

&

)

« 0

m

. H2

Figure 1: An Example Network Topology

Seminar IITM WS 24/25

44

3.1. Mininet

Mininet was used 21 times, representing about half of
all papers using emulation tools. In references [8], the
authors created an automatic Mininet topology genera-
tor. This creates "an evaluation testbed for any kind of
measurements that require a ground-truth dataset" [8]. A
ground truth dataset is a reference standard for evaluating
models or algorithms. The accurate and verified dataset
information must often be created manually, which the
authors want to automate in this paper. The paper focuses
primarily on Resource Public Key Infrastructure(RPKI)
measurements, but they want to make the approach possi-
ble for all measurements requiring a ground truth dataset.
The first step is to collect the required data from pub-
lic sources to create a directed graph. Since Mininet is
not powerful enough to simulate the entire topology, the
framework must reduce the graph to approximately 4000
nodes while maintaining important properties such as the
degree distribution of the nodes. The abstracted graph is
then translated into a Mininet configuration file, which, in
this case, generates a realistic RPKI deployment scenario.
The developed program allows filtering on a self-selected
set of nodes in the Mininet topology, which can create a
ground truth dataset.

In Paper [9], an algorithm is created that finds the
ideal path between two nodes in a network. It is not
about the length of the path but about better traffic load
distribution. Figure 1 shows a network created in Mininet,
where different hosts are connected to a controller via
many switches. Data is sent from the hosts with different
bandwidths to check whether their algorithm will find the
best path. There are three scenarios: once both hosts send
with less than 50% of link bandwidth, once one host sends
with more than 50%, and the last time both send the data
with more than 50% bandwidth. In all three scenarios, the
algorithm prevented overload, proving the quality of the
algorithm.

It is also possible to train data sets with Mininet, done
in [2], [10]. In the paper [2], datasets of network failures
were simulated in Mininet to train decision-tree-based
models. For this purpose, random traffic was emulated
in selected topologies, and then failure was injected by
manually setting the status of links and nodes to failure.

Sometimes, a network consisting of a client and a
server, both dual-stacks, is emulated [11]. Then, the la-
tency and bandwidth of the IPv4 and IPv6 paths can be
adjusted.

It is also possible that the features of Mininet are
not sufficient. For example, in Paper [12], IPMininet,
an extension of Mininet that supports SRv6, is used.
SRv6 is a modern and flexible routing technology that
directly integrates the segment routing principle into the
IPv6 protocol. This makes routing more efficient because
packets carry explicit path information, and the behavior
of networks is made programmable. IPMininet also allows
the evaluation of network conditions, such as packet loss,
by emulating network loss. This allows the authors to test
their SRv6 plugin.

Primarily, Mininet is used to simulate networks with
routers, switches, and hosts. Often, the bandwidth, latency,
and other parameters are actively set. In Paper [13],

doi: 10.2313/NET-2025-05-1 08

routers are used whose links have a bandwidth limit of
1000 Mbits~! and a constant delay of 2 ms.

The other papers also briefly address the use of
Mininet to emulate topologies [14]-[25] but do not elab-
orate further.

In summary, Mininet can be used flexibly. Fundamen-
tally, it is used to emulate networks on which tests are
carried out. These include testing network performance
or the functionality of one’s algorithm. Sometimes, data
sets are created from the information obtained, which are
used to train models.

w
W

N DDS
B AWStream

B DDS
‘ﬁ‘ B AWStream

N
N

—
—

Streaming delay (s)
Streaming delay (s)

=)
o

375 500 10

45 920
Network latency (ms)

400 450
Bandwidth (kbps)

(a) Bandwidth vs. streaming delay (b) Latency vs. streaming delay

Figure 2: The response delay of AWStream and DDS with
different network bandwidth and latency

3.2. NetEm

The use of NetEm in papers has been entirely one-
sided. It is mainly described that parameters such as
bandwidth and latency in networks have been varied [13],
[26]. In paper [26], this was done to test the performance
of DDS, a streaming technique. It is a model developed for
video streams from cameras to be sent to servers, which
will be processed using deep neural networks (DNNs).
DNNs are an artificial neural network used to solve com-
plex machine-learning tasks. In Figure 2, the streaming
delay of DDS compared to an already established system
(AWSStream), with different bandwidth and latency, is
shown. The exact comparison is possible through the
emulation in NetEm.

Other parameters, such as packet loss and long delay
(due to a high round-trip time), can also be emulated [27],
[28]. A 5G setup, a combination of increased jitter (fluctu-
ations in the delay), lower bandwidth, and delays, and an
LTE-M model were also simulated, which usually offers
very low latency and high bandwidth.

In Paper [29], the bottleneck link’s speed and the
bottleneck buffer’s size were configured to gain control
over the network. This affects the network performance
so that the authors can evaluate the response to network
congestion and packet loss.

In summary, the users of this emulation tool are satis-
fied with the tool. There are limitations when the load is
too high (for example, too much jitter), but this was not
a problem in the papers mentioned.

3.3. Emulab

In Reference [30], extensive simulations are performed
with Emulab. Different network topologies are emulated,
with different conditions, to demonstrate the performance
of "MPCC, a high-performance multipath congestion con-
trol architecture” [30]. It was explicitly declared that
"[u]nless stated otherwise all link latencies, bandwidths,
and buffer sizes are 30 ms, 100 Mbits™' and 375kB (the

Seminar IITM WS 24/25

45

Bandwidth-Delay Product), respectively." [30] All values
are detailed and explained with potential limitations for
other values. It is noted that the experiments in Emulab
cannot be 100% transferred to real networks. Therefore,
live experiments were also carried out in which files were
downloaded from various locations in the cloud. This also
implies that the tests in Emulab alone cannot provide
complete information about the tool in practice.

The Paper [31] also emulates parameters such as la-
tency, focusing on dynamic changes in network condi-
tions.

It should be noted that papers that use Emulab con-
duct extensive and detailed experiments [17]. Emulab is
designed for larger network emulations, increasing the
complexity and time needed to understand the program.

3.4. GNS3

In Paper [32], [33], Gns3 was used similarly to
Mininet to create virtual networks and test algorithms.
Paper [32] is about Snowcap, which requires GNS3 to
function. A detailed guide is provided explaining how to
use Snowcap, one of the requirements being GNS3.

3.5. Other Tools

There is one paper that uses Dummynet [34]. Again,
realistic network conditions were simulated, which were
intended to represent mobile networks. These are known
for fluctuating latencies, achieved in Dummynet by con-
stantly adjusting the queue delays with target jitter values.
The method caused latency fluctuations without letting
packets arrive in the wrong order, which more realistically
simulates mobile networks. Dummynet was used here
because it is more focused on traffic shaping than NetEm,
offering greater flexibility in emulation. However, the
paper mentions that Dummynet is limited by a maximum
queue size of 100, which does not allow for entirely
flexible emulation.

Nanonet is an emulation tool conceptually based on
Mininet and primarily aimed at segment routing experi-
ments [35]. Segment routing is routing traffic in networks
on predefined routers instead of making a new decision at
each router. In Paper [35], they simulate network nodes
connected to each other for a realistic simulation of
network behavior. Nanonet then calculates the shortest
path between the nodes. An even distribution of traffic
on the paths was ensured to measure the maximum link
utilization with a specific instance. This allowed testing
and comparing different approaches for optimizing link
weights.

Another extension of Mininet is G2-Mininet, which
analyzes the Quantitative Theory of Bottleneck Struc-
tures (QTBS). QTBS is a mathematical theory developed
to analyze and optimize communication networks. The
paper simulated various network topologies (fat trees,
folded clos, and Dragonfly) to test QTBS. More than 600
networks were simulated over more than 800 hours to
confirm the correctness of the model.

In Paper [36], SimBricks, a Network System Evalua-
tion with Modular Simulation, was introduced with ns-
3 integrated. Ns-3 [37] is also an emulation tool that
can process and synchronize packets using the Ethernet

doi: 10.2313/NET-2025-05-1 08

network interface. SimBrick uses ns-3 to simulate net-
work layers and connections between virtual and physical
network topologies.

The paper [5] takes advantage of the fact that Con-
tainernet is based on containers that form a network of
interconnected nodes. Such a network is created with each
container running a KIRA routing server that provides
IPv6 connectivity and some containers running additional
5G core network functions. This is part of the KIRA
routing architecture intended to enable autonomous and
fault-tolerant network control. Containernet is mainly used
to emulate the network topology and test node failures.

A tool yet to be mentioned is BESS. It allows the
user to control network properties such as latency at a
more detailed level than other tools such as NetEm [38].
This enables fine-grained control of network traffic. In
the paper [38], it is used "to control the access link
speed, queue size, and add delay to ingress and egress
packets" [38] of a switch. In addition, BESS can measure
important data such as queue occupancy and packet loss,
which enables more precise analysis.

The last paper introduces Klonet [39]. It is a new
network emulation platform that was created for educa-
tional purposes. It is criticized that current emulation tools
are inadequate for integrating network hardware due to
insufficient scalability and other factors. The paper also
creates a table with the tools currently in use and shows
factors such as hardware support, container support, and
VM support.

3.6. Summary

Mininet NetEm GNS3 EmulLab
Function Simulation of Simulation of Simulation of Testing and
Software- latency, packet | physical and experimenting
Defined loss, etc. virtual devices | with real
Networks networks
(SDN)
Architecture Virtual Works as part | Virtual Hardware and
Switches, of Linux Traffic | machines, software
Hosts and Control physical testbed
Controllers devices and
switches
Scalability Goodforsmall | Dependingon | Very good for High scalability
to medium the hardware smallto large (both small
networks networks and large
networks)
Realism High proximity | Notan exact Close toreal Very high
to SDN-based | replica, only networks realism
networks simulates through real
properties hardware

Figure 3: Comparison of Path Property Emulation Tools

Many different emulation tools are used for different
reasons. In Figure 3, the most commonly used tools
are compared. For example, Mininet was often used in
the papers, mainly to emulate small and medium-sized
networks. NetEm was used to emulate network proper-
ties but was only mentioned briefly. Although GNS3 is
more flexible in the size of the emulated networks, the
tool was mostly only mentioned in passing. Papers that
use Emulab have mainly carried out very extensive and
detailed experiments that comprise several pages of the
paper. The complexity of the tool can explain this. For
example, while the functions of NetEm are limited to
emulating parameters on one host, Emulab can emulate
large networks with complex properties on several hosts,
switches, and routers.

Seminar IITM WS 24/25

46

Nevertheless, the current tools are not perfect. Some-
times, the current applications do not meet the require-
ments. Very few tools can simulate specific hardware
properties or modern technologies such as containers.
Also, with large, realistic networks, many tools reach
their limits. This has led to tools such as Klonet and
Containernet, which are new emulation tools with more
options that can be used in a broader variety of ways.

4. Conclusion

Path property emulation tools play a crucial role in net-
work research and development. It is possible to precisely
simulate network properties such as latency, bandwidth,
loss, and jitter. Depending on the requirements, choosing
the right emulation tool can be cost and time-efficient,
mainly when a lot of data has to be processed.

However, since the established tools are imperfect,
their results cannot always be 100% transferred to the
real world. With the rapid development of the Internet,
there will be even more powerful and diverse future tools
capable of more. Technologies such as artificial intelli-
gence also mean a lot is still possible in this area, making
it possible that currently established tools will become
outdated and no longer be used.

Nevertheless, the current tools make an essential con-
tribution to the development of modern networks. Even if
they are imperfect, most of the tools have been in use for
several years and will continue to be used in various ways
and on a wide scale.

References

(1]
(2]

Mininet, https://mininet.org/overview/, 19.10.2024.

X. Zuwo, Q. Li, J. Xiao, D. Zhao, and J. Yong, “Drift-bottle:
a lightweight and distributed approach to failure localization in
general networks,” in Conference: CoNEXT ’22: The 18th Inter-
national Conference on emerging Networking EXperiments and
Technologies, 11 2022, pp. 337-348.

[3] GNS3, https://www.gns3.com/, 19.10.2024.
(4]

[5]

Emulab, https://www.emulab.net/portal/frontpage.php, 19.10.2024.

P. Seehofer, H. Mahrt, R. Bless, and M. Zitterbart, “Demo: En-
abling autonomic network infrastructures with kira,” in Conference:
ACM SIGCOMM ’23: ACM SIGCOMM 2023 Conference, 09 2023,
pp. 1165-1167.

NetEm, https://man7.org/linux/man-pages/man8/tc-netem.8.html#
OPTIONS, 19.10.2024.

[71 DummyNet, https://cs.baylor.edu/~donahoo/tools/dummy/tutorial.

htm, 19.10.2024.

N. Rodday, R. Baaren, L. Hendriks, R. Rijswijk-Deij, A. Pras,
and G. Dreo, “Evaluating rpki rov identification methodologies
in automatically generated mininet topologies,” in Conference:
CoNEXT ’20: The 16th International Conference on emerging
Networking EXperiments and Technologies, 11 2020, pp. 530-531.

(8]

[9] K. Abiram and T. Kathiravelu, “Congestion avoidance in data
communication networks using software defined networking,” in
Conference: CoNEXT '21: The 17th International Conference on
emerging Networking EXperiments and Technologies, 12 2021, pp.

463-464.

H. Mostafaei, S. Miri, and S. Schmid, “Poster: Reactnet: Self-
adjusting architecture for networked systems,” in Conference: 17th
International Conference on emerging Networking EXperiments
and Technologies (CoNEXT 2021 Posters), 12 2021.

[10]

doi: 10.2313/NET-2025-05-1 08

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

F. Rochet, E. Assogba, M. Piraux, K. Edeline, B. Donnet, and
O. Bonaventure, “Tcpls: modern transport services with tcp and
tls,” in Conference: CoNEXT ’21: The 17th International Confer-
ence on emerging Networking EXperiments and Technologies, 12
2021, pp. 45-59.

L. Navarre, F. Michel, and O. Bonaventure, “Srv6-fec: bringing
forward erasure correction to ipv6 segment routing,” in Conference:
SIGCOMM ’21: ACM SIGCOMM 2021 Conference, 08 2021, pp.
45-47.

J. Zhang, C. Zeng, H. Zhang, S. Hu, and K. Chen, “Liteflow:
towards high-performance adaptive neural networks for kernel
datapath,” in Conference: SIGCOMM '22: ACM SIGCOMM 2022
Conference, 08 2022, pp. 414-427.

T. Jepsen, A. Fattaholmanan, M. Moshref, N. Foster, A. Carzaniga,
and R. Soulé, “Forwarding and routing with packet subscriptions,”
in Conference: CoNEXT ’20: The 16th International Conference
on emerging Networking EXperiments and Technologies), 11 2020,
pp. 282-294.

A. Sacco, F. Esposito, and G. Marchetto, “A distributed reinforce-
ment learning approach for energy and congestion-aware edge
networks,” in Conference: CoNEXT °20: The 16th International
Conference on emerging Networking EXperiments and Technolo-
gies, 11 2020, pp. 546-547.

H. Nagda, R. Nagda, I. Pedisich, N. Sultana, and B. Loo, “Fdp:
a teaching and demo platform for sdn,” in Conference: CoNEXT
"20: The 16th International Conference on emerging Networking
EXperiments and Technologies, 11 2020, pp. 524-525.

D. Senf, H. Shulman, and M. Waidner, “Performance penalties
of resilient sdn infrastructures,” in Conference: CoNEXT ’20: The
16th International Conference on emerging Networking EXperi-
ments and Technologies, 11 2020, pp. 528-529.

P. Bol, R. Lunardi, B. B. Franga, and W. Cordeiro, “Modular
switch deployment in programmable forwarding planes with switch
(de)composer,” in Conference: SIGCOMM °21: ACM SIGCOMM
2021 Conference, 08 2021, pp. 30-32.

D. Guo, S. Chen, K. Gao, Q. Xiang, Y. Zhang, and Y. Yang, “Flash:
fast, consistent data plane verification for large-scale network
settings,” in Conference: SIGCOMM ’'22: ACM SIGCOMM 2022
Conference, 08 2022, pp. 314-335.

S. Sagkriotis and D. Pezaros, “Accelerating kubernetes with in-
network caching,” in Conference: SIGCOMM °22: ACM SIG-
COMM 2022 Conference, 10 2022, pp. 40-42.

S. Renganathan, B. Rubin, H. Kim, P. Ventre, C. Cascone, D. Moro,
C. Chan, N. McKeown, and N. Foster, “Hydra: Effective runtime
network verification,” in Conference: ACM SIGCOMM °23: ACM
SIGCOMM 2023 Conference, 09 2023, pp. 182-194.

K. Namjoshi, S. Gheissi, and K. Sabnani, “Algorithms for in-place,
consistent network update,” in Conference: ACM SIGCOMM ’24:
ACM SIGCOMM 2024 Conference, 08 2024, pp. 244-257.

C. Jiang, Z. Li, S. Rao, and M. Tawarmalani, “Flexile: meeting
bandwidth objectives almost always,” in Conference: CoNEXT
'22: The 18th International Conference on emerging Networking
EXperiments and Technologies, 11 2022, pp. 110-125.

L. Brown, A. Gran Alcoz, F. Cangialosi, A. Narayan, M. Alizadeh,
H. Balakrishnan, E. Friedman, E. Katz-Bassett, A. Krishnamurthy,
M. Schapira, and S. Shenker, “Principles for internet congestion
management,” in Conference: ACM SIGCOMM ’24: ACM SIG-
COMM 2024 Conference, 08 2024, pp. 166-180.

J. Yen, T. Lévai, Q. Ye, X. Ren, R. Govindan, and B. Raghavan,
“Semi-automated protocol disambiguation and code generation,” in
Conference: SIGCOMM °21: ACM SIGCOMM 2021 Conference,
08 2021, pp. 272-286.

Seminar IITM WS 24/25

47

[26]

(27]

(28]

(29]

[30]

[31]

[32]

(33]

[34]

(35]

(36]

[37]
(38]

(39]

T. John, P. Vaere, C. Schutijser, A. Perrig, and D. Hausheer, “Linc:
low-cost inter-domain connectivity for industrial systems,” in Con-

ference: SIGCOMM ’21: ACM SIGCOMM 2021 Conference, 08

2021, pp. 68-70.

M. Sosnowski, F. Wiedner, E. Hauser, L. Steger, D. Schoinianakis,
S. Gallenmiiller, and G. Carle, “The performance of post-quantum
tls 1.3, in Conference: CoNEXT 2023: The 19th International
Conference on emerging Networking EXperiments and Technolo-
gles, 12 2023, pp. 19-27.

A. Tahir, P. Goyal, I. Marinos, M. Evans, and R. Mittal, “Efficient
policy-rich rate enforcement with phantom queues,” in Conference:
ACM SIGCOMM °24: ACM SIGCOMM 2024 Conference, 08 2024,
pp. 1000-1013.

M. Arghavani, H. Zhang, D. Eyers, and A. Arghavani, “Suss: Im-
proving tcp performance by speeding up slow-start,” in Conference:
ACM SIGCOMM °24: ACM SIGCOMM 2024 Conference, 08 2024,
pp. 151-165.

T. Gilad, N. Rozen-Schiff, P. Godfrey, C. Raiciu, and M. Schapira,
“Mpcc: online learning multipath transport,” in Conference:
CoNEXT °20: The 16th International Conference on emerging
Networking EXperiments and Technologies, 11 2020, pp. 121-135.

T. Meng, N. Rozen-Schiff, P. Godfrey, and M. Schapira, “Pcc pro-
teus: Scavenger transport and beyond,” in Conference: SIGCOMM
’20: Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures,
and protocols for computer communication, 07 2020, pp. 615-631.

T. Schneider, R. Birkner, and L. Vanbever, “Snowcap: synthesizing
network-wide configuration updates,” in Conference: SIGCOMM
'21: ACM SIGCOMM 2021 Conference, 08 2021, pp. 33-49.

M. Brown, A. Fogel, D. Halperin, V. Heorhiadi, R. Mahajan, and
T. Millstein, “Lessons from the evolution of the batfish configu-
ration analysis tool,” in Conference: ACM SIGCOMM ’23: ACM
SIGCOMM 2023 Conference, 09 2023, pp. 122-135.

N. Agarwal, M. Varvello, A. Aucinas, F. Bustamante, and R. Ne-
travali, “Mind the delay: the adverse effects of delay-based tcp on
http,” in Conference: CoNEXT °20: The 16th International Confer-
ence on emerging Networking EXperiments and Technologies, 11
2020, pp. 364-370.

M. Parham, T. Fenz, N. Siiss, K.-T. Foerster, and S. Schmid, “Traf-
fic engineering with joint link weight and segment optimization,”
in CoNEXT ’21: Proceedings of the 17th International Conference
on emerging Networking EXperiments and Technologies, 12 2021,
pp. 313-327.

H. Li, J. Li, and A. Kaufmann, “Simbricks: end-to-end network
system evaluation with modular simulation,” in Conference: SIG-
COMM ’22: ACM SIGCOMM 2022 Conference, 08 2022, pp. 380—
396.

ns 3, https://www.nsnam.org/, 19.10.2024.

A. Philip, R. Athapathu, R. Ware, F. Mkocheko, A. Schlomer,
M. Shou, Z. Meng, S. Seshan, and J. Sherry, “Prudentia: Findings
of an internet fairness watchdog,” in Conference: ACM SIGCOMM
'24: ACM SIGCOMM 2024 Conference, 08 2024, pp. 506-520.

J. Guo, D. Wu, C. Ma, Y. Hongfang, G. Sun, L. Luo, Y. Xu,
and N. Zhang, “Poster: A hybrid virtual-real emulation platform
for computer network education,” in Conference: ACM SIGCOMM
Posters and Demos ’24: ACM SIGCOMM 2024 Conference:
Posters and Demos, 08 2024, pp. 45-47.

doi: 10.2313/NET-2025-05-1 08

