
Overview of Threshold PQC Schemes

Joon Kim, Filip Rezabek∗, Dr. Holger Kinkelin†
Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: joon.kim@tum.de, ∗rezabek@net.in.tum.de, †kinkelin@net.in.tum.de

Abstract—Threshold schemes distribute a signing key among
multiple parties, requiring their collaboration to perform
cryptographic tasks, thereby mitigating the risk of key
compromise. As quantum computing advances, recent re-
search has increasingly focused on combining these schemes
with post-quantum secure cryptographic primitives such as
lattices. This paper analyzes three significant advancements
on post-quantum secure threshold schemes. First, Boneh
et al.’s universal thresholdizer converts any cryptographic
scheme into a threshold version, offering great flexibility,
but it suffers from inefficiencies from homomorphically
evaluating entire circuits. Second, Kamil et al. improve upon
this by selectively applying homomorphic evaluation to an
existing (n, n)-threshold scheme, extending it to a (t,N)-
scheme. Lastly, Cozzo et al. thresholdize FALCON using
multiparty computation techniques, but the mixture of linear
and non-linear operations in FALCON results in relatively
long signing times.

Index Terms—Threshold Cryptography, Lattice-based

1. Introduction
The rapid development of quantum computing poses a

significant threat to the security of classical cryptographic
systems [1] [2]. Traditional encryption schemes, such as
RSA and ECC, rely on the computational hardness of
problems, which, however, can be solved in polynomial
time by quantum computers [3]. As a result, these cryp-
tographic systems, widely deployed e.g. in securing the
internet and financial transactions are no longer considered
future-proof in the face of advancing quantum technology.
This pressing concern has led to the emergence of post-
quantum cryptography (PQC), which is based on math-
ematical problems, that are believed to be hard even for
quantum computers [3].

In parallel with the need for PQC, there is a grow-
ing interest in threshold cryptography. This technique
strengthens security in distributed systems by decentral-
izing control across multiple participants [4] [3]. This
approach has a wide range of applications, including cloud
computing and blockchains [5].

As organizations work to secure data against quantum
and other emerging threats, the combination of PQC and
threshold cryptography offers a compelling solution for
achieving both quantum resilience and enhanced fault-
tolerant security in critical systems. In light of this, this
paper provides an overview of lattice-based cryptography
and threshold cryptography, followed by a survey of re-
cently proposed threshold PQC schemes. It focuses on the

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 1: Two different basis vector pairs ∈ R2 build the
fundamental domain Z2 [10].

works of Boneh et al. [6], Kamil et al. [7], and Cozzo
et al. [8].

2. Background
This section provides a brief overview of lattices and

threshold cryptography.

2.1. Lattices
Lattices are as a key component of PQC due to their

mathematical structure and the computational hardness of
the problems they pose, which will be introduced in the
following [9].
2.1.1. Lattice Fundamentals

Lattices are algebraic structures composed of points
in n-dimensional space that are formed by the integer
combinations of a set of basis vectors [9].

Definition 1. A lattice L(B) is the span of its basis
vectors B = {b1, . . . ,bn} of Rn [9], so that

L(B) =
{∑

aibi : ai ∈ Z
}

(1)

The cryptographic significance of lattices stems from
the fact that a given lattice L can be represented by
multiple bases [10]. While a "good" basis can simplify
certain computational tasks, a "bad" basis can make these
tasks exceedingly difficult [10]. For instance, in Figure 1,
the red pair of long vectors and the blue pair of short vec-
tors provide valid alternative bases for the same domain
Z2. However, answering mathematical questions like "Is
(1,0)T ∈ L(B)?" would be more challenging when using
the long and nearly parallel vectors as B in Figure 1 (the
"bad" basis). This is in contrast to the shorter, orthogonal
vectors (the "good" basis). Beyond this, there exist other
computational problems related to lattices that are con-
sidered hard and make lattices appealing for use in PQC,
which will be presented in the following.

Definition 2. Shortest Vector Problem (SVP):
Given a lattice basis B and some norm ∥ · ∥, find a

Seminar IITM WS 24/25 31 doi: 10.2313/NET-2025-05-1_06



(nonzero) vector v ∈ L(B) such that ∥v∥ = λmin(L(B)),
where λmin is the minimum distance in the lattice [9].

Definition 3. Closest Vector Problem (CVP):
Given a lattice basis B, some norm ∥·∥, and an arbitrary
vector q ∈ Rn, find a lattice-point l ∈ L such that ∥l− q∥
is minimal [9].

These problems can also serve as the foundation for
other more practical, equation-based challenges. Two ex-
amples of such challenges follow.
2.1.2. Learning with Errors

The Learning With Errors (LWE) problem serves as
the foundation for many PQC schemes [11]. It starts with
a simple system of linear equations A · s = b, where
A ∈ Zn×m, s ∈ Zm, b ∈ Zn. Solving this system can
be done efficiently using standard techniques, such as
Gaussian elimination. LWE complicates this by adding
a small noise vector e ∈ Zn, leading to the system
A · s = b+ e. The challenge now is to recover the secret
vector s despite the added noise, which makes the problem
computationally hard [11]. A formal definition of LWE
follows.

Definition 4. Learning with Errors (LWE):
Let Zq = Z/qZ be the ring of integers modulo q. Given
are A and b, where:

A ∼ Zn×m
q is a matrix sampled uniformly,

b = A · s+ e a vector in Zn
q with added noise e

with e ∈ Zn
q as a small error vector. Recover the secret

s ∈ Zm
q [11].

The hardness of LWE stems from its close connection
to SVP and CVP [11]. For example, in an LWE instance
of the form A · s = b + e, where A ∈ Zn×m

q , s ∈ Zm
q ,

b ∈ Zn
q , the matrix A can be viewed as a lattice basis, with

each column representing a basis vector. As a lattice point
is a linear combination of these basis vectors, A · s can
be considered a lattice point, while b is a random vector
in Zn

q . Given that the error vector e is small, solving an
LWE instance to recover the secret vector s can almost
always be done by solving CVP, searching for s with
minimal ∥As− b∥. A formal proof of LWE’s hardness
can be found in [11].

Moreover, the presented LWE-problem can be ex-
tended by introducing specific algebraic structures. For
instance, the R-LWE uses a polynomial ring rather than
a ring of integers as in standard LWE and uses poly-
nomial multiplications, for which efficient algorithms
that are similar to Fast-Fourier-Transformation can be
used [11] [12]. A formal definition of R-LWE follows.

Definition 5. Ring Learning with Errors (R-LWE):
Fix a polynomial f(x), consider the polynomial ring
modulo f(x), i.e., Zq[x]/f(x). Given are noisy samples
(ai(x), bi(x)), where:

ai(x) ∼ Zq[x]/f(x), bi(x)← ai(x) · s(x) + ei(x)

with ei(x) ∈ Zq[x]/f(x) as a small error polynomial.
Recover the secret s(x) ∈ Zq[x]/f(x) [11].

2.1.3. Inhomogeneous Short Integer Solution
Another practical hard problem is the Inhomogeneous

Short Integer Solution Problem (ISIS) [13], which shares

structural similarities with LWE but includes an additional
constraint of a size bound. In fact, ISIS can also be
reduced to CVP and SVP [13]. A formal definition of
ISIS follows.

Definition 6. Inhomogeneous Short Integer Solution:
Given A ∈ Zn×m

q , b ∈ Zn
q , and β ∈ R, find s ∈ Zm

q

satisfying A · s = y mod q with ∥s∥2 ≤ β [13].

2.2. Threshold Cryptography
In addition to lattices, threshold schemes can enhance

security by distributing cryptographic operations or secrets
across multiple participants [14]. The general concept of
threshold cryptography will be introduced in the follow-
ing.
2.2.1. Threshold Cryptography Fundamentals

In most large companies with hierarchical structures,
significant decisions, such as signing major contracts,
are typically made only after a majority of the board
members reach an agreement. Threshold cryptography
follows a similar principle of collaboration. In a (t,N)-
threshold scheme, a secret key sk is split into N shares
(sk1, ..., skN ), with each share distributed to different par-
ticipants. In cryptographic scenarios where the complete
secret key sk is required, at least t participants must col-
laborate, combining their shares ski to reconstruct the key
sk and complete their threshold task with it. This ensures
that if an attacker compromises fewer than t participants
or servers (e.g., t−1), they cannot reconstruct the full key
sk and the system still remains secure [14] [15]. Main
threshold tasks are introduced in the following.

Key generation (KGen): Two methods exist for
KGen:

• Generation by a trusted authority: A trusted third
party generates the public and private key pair
(pk, sk). The secret key sk is then distributed among
n participants using methods like (t,N) - Shamir Se-
cret Sharing (SSS) [14]. This sharing method divides
sk into N shares ski using Lagrange interpolation
polynomials λi, ensuring that any t−1 shares reveal
no information about the secret sk.

• Distributed key generation (DKGen): Multiple partic-
ipants jointly compute the public key pk and secret
shares ski, which ensures that no single party has
access to the complete secret key sk [16].

Threshold signatures: Any subset of t participants
can collaborate to generate a signature, ensuring that the
signature remains independent of the specific subset of t
parties involved. Moreover, the signature size should be
independent of t and N [15].

Threshold decryption: Any subset of t parties can
decrypt a ciphertext ctx [15].

3. Analysis
This section presents and analyzes three influential

contributions to lattice-based threshold PQC schemes.

3.1. Boneh et al. (2017)
The work by Boneh et al. [6] provides two pri-

mary contributions. First, they construct a threshold fully-
homomorphic encryption (TFHE) scheme based on the
LWE problem. Building on this framework, they con-

Seminar IITM WS 24/25 32 doi: 10.2313/NET-2025-05-1_06



struct an "universal thresholdizer" [6], a tool capable
of converting non-threshold cryptographic schemes into
their threshold variant. These two key contributions are
presented and analyzed in the following.
3.1.1. Threshold Fully Homomorphic Encryption

Boneh et al. construct a TFHE scheme, building on
the existing FHE scheme developed by Gentry, Sahai, and
Waters (GSW) [17], which is presented below.

Simplified GSW-FHE scheme [17]: Fix the mes-
sage µ and the matrix G.

• FHE.Setup → (pk, sk): Sample a random ma-
trix A, a random vector s, and a noise vector

e. Set pk =

(
A

sTA+ eT

)
and sk =

(
−s 1

)
.

• FHE.Encrypt(pk, µ) → ctx: Return ciphertext
ctx = A·R+µ·G, where R is a random matrix
with entries in {0, 1}.

• FHE.Decrypt(pk, sk, ctx) → µ: Compute the
linear product y = ⟨sk, ctxk⟩, where ctxk is
the kth column of the matrix ctx, and return 0
if y is small and 1 otherwise.

Using this scheme, one can encrypt the message with pk
from FHE.Setup and evaluate an arbitrary cryptographic
algorithm directly on the encrypted message, which ex-
plains its fully homomorphic capability. The decrypted re-
sult can be retrieved through FHE.Decrypt. The security of
FHE.Encrypt relies on the hardness of the LWE problem,
as a slightly modified LWE instance is constructed during
FHE.Setup, with the introduction of a random matrix R
during encryption. An example python implementation is
available in [18].

The (t,N)-threshold variant of this scheme (TFHE) by
Boneh et al. [6] consists of following steps: TFHE.Setup,
TFHE.Encrypt, TFHE.PartDec, and TFHE.FinDec. In
TFHE.Setup, instead of using a single secret key sk as
in FHE.Setup, the secret is split into N secret shares
ski, which are distributed by a trusted third party. For
decryption, each party computes a partial decryption
pi = ⟨ski, ctxk⟩ using their secret share ski during
TFHE.PartDec. These partial decryptions pi are then com-
bined to reconstruct the full decryption p in TFHE.FinDec.
For example, by employing (t,N)-SSS in TFHE.Setup, p
can be successfully reconstructed in TFHE.FinDec using
any t partial decryptions. However, directly combining
the partial decryptions could potentially leak information
about the secret shares due to the simple operations in-
volved, such as the linear product. To address this, Boneh
et al. introduce noise during TFHE.PartDec, modifying
the decryption process to pi = ⟨ski, ctxk⟩+noise, which
resembles the structure of a LWE instance b = A · s+ e.
3.1.2. Universal Thresholdizer

Using the constructed TFHE scheme and non-
interactive zero-knowledge proofs (NIZK), Boneh et al.
develop the universal thresholdizer [6], which is presen-
tend in the following.

UT: Fix a circuit C of a cryptographic scheme and
a subset U of t parties.

• UT.Setup(µ) → (pp, sk1, . . . , skn): Generates

the public key pk and secret shares ski from
TFHE.Setup, computes the ciphertext ctx with
TFHE.Encrypt(µ), and the commitment comi =
Com(ski). The public parameters pp are defined
as (pk, ctx, {comi}i∈[N ]).

• UT.Eval(pp, ski, C) → (ctx′, pi, πi): Evalu-
ates the given circuit C on the ciphertext
ctx, producing the evaluated ciphertext ctx′

and computes the partial decryption pi =
TFHE.PartDec(pk, ctx′, ski). It then generates
a NIZK proof πi regarding the correctness of
pp and ski.

• UT.Verify(pp, C, pi, πi): Checks the NIZK
proof πi.

• UT.Combine(pp, {pj}j∈U ) → p: Combines
partial decryptions pi and reconstruct p using
TFHE.FinDec.

Using this scheme, any cryptographic protocol, such as
a signature scheme, can be transformed into its threshold
version. First, the cryptographic protocol is encoded into
a circuit C composed of gates. After UT.Setup, each party
generates a partial signature during UT.Eval by using the
encoded circuit as input. The partial signatures are then
verified and combined using UT.Verify and UT.Combine,
respectively.

Although this approach of UT offers flexibilities with
its capability to thresholdize non-threshold schemes, it
also presents certain limitations. First, it relies on a trusted
third party in UT.Setup, lacking DKGen, which is con-
sidered more secure. Second, executing an entire circuit
in TFHE can be computationally expensive, particularly
when the circuit involves heavy steps like challenges
or rejection sampling. Moreover, the noise flooding in
TFHE.PartDec leads to inefficient scaling complexities,
with Ω(N logN) for sizes of secret key shares and Ω(λ3)
for signatures, where λ indicates the security parame-
ter [6]. These drawbacks are addressed in subsequent
work.

3.2. Kamil et al. (2023)
Kamil et al. [7] address restrictions of UT [6] with the

following solutions:
1) Instead of TFHE, they utilized a threshold linearly

homomorphic encryption (THE) scheme, which is se-
lectively applied only to the relevant steps of the pro-
tocol, rather than to the entire circuit. Additionally,
the constructed THE scheme incorporates DKGen.

2) They combine the state-of-the-art (n, n) threshold
pq-signature scheme by Damgård et al. [19] with
the constructed THE and DKGen, extending it to a
(t,N)-threshold scheme.

3.2.1. THE With DKGen
Kamil et al. construct a THE scheme as a threshold

variant of the R-LWE-based HE scheme by Brakerski et
al. [20] and extend this with DKGen based on (t,N)-
SSS [14]. Morover, they take care to add noise when com-
bining partial decryptions pi, following the same rationale
as Boneh et al. [6]. The simplified version of their built
scheme is presented below.

Seminar IITM WS 24/25 33 doi: 10.2313/NET-2025-05-1_06



• THE.DKGen [7]: Fix a ring element aE ∈ Rq,
a small prime number k, and a subset U of t
parties.

1) Every party Pi samples si, ei ∈ Rq and
computes bi = aE · si + k · ei and its (t,N)-
Shamir secret shares si,j of si.

2) Pi sends (bi, si,j) to every other party Pj

3) Every party Pi computes its public key pk =
(aE , bE =

∑
bj) and secret share ski =∑

sj,i.
• THE.Encrypt(pk, µ) → (ctx): Samples
r, e′, e′′ ∈ Rq and outputs ctx = (u, v) =
(aE · r + k · e′, bE · r + k · e′′ + µ)

• THE.PartDec(ctx, ski)→ (pi): Samples noise
Ei and output partial decryption pi = λi · ski ·
u+k ·Ei with λi being the Lagrange multiplier
for party Pi.

• THE.FinDec(ctx, {pj}j∈U ) → (p): Outputs
the complete decryption p = (v − ∑

j∈U pj)
mod q mod k.

In essence, Kamil et al. extend the base HE
scheme [20] to THE by including SSS and generating
individual R-LWE instances, each with its error ei. Ac-
cordingly, the security of the scheme relies on the R-LWE
assumption from the base scheme [20]. C++ implemen-
tations of the base scheme and a similar version of THE
are available in [21].
3.2.2. Combining THE with scheme by Damgård et

al.
Based on the existing (n, n)-signature scheme by

Damgård et al. [19], Kamil et al. utilize steps from the
constructed THE to extend this to an arbitrary threshold
scheme. The following presents the simplified protocols,
with the modified steps highlighted in bold.

KGenTS(aTS , aE , t, n) with fixed ring elements aTS , aE

Sample si, yi := ⟨aTS , si⟩, ctxs,i ← THE.Enc(pkE, si)

y :=
∑

j∈[n] yj , ctxs :=
∑

j∈[n] ctxs,j

return pk := (aTS , y), ski, aux := (pkE , ctxs)

THE.DKGen

return pkE, ski

Collect (yj , ctxs,j)j∈U\{i}

Figure 2: Passively secure (t,N) KGen protocol [22].

• KGen: The protocol first triggers THE.DKGen to
generate the public key pkE and the secret key share
ski. Building on the existing protocol by Damgård et
al. [19], it homomorphically encrypts the randomly
generated si. The combined encrypted randomness,
ctxs, is then computed and returned as auxiliary
information for subsequent operations.

• Signing: During signing, the protocol homomorphi-
cally encrypts the randomness ri and computes the
encrypted signature ctxz by combining the encrypted
random values ctxr,j from other parties, the auxil-
iary value ctxs from KGen, and the challenge c. A

SignTS(ski, aux, U, µ) with a subset U of t parties and message µ
Sample ri, wi := ⟨aTS , ri⟩, ctxr,i := THE.Enc(pkE , ri)

w :=
∑

j∈U wj , c := H(w, pk, µ)
ctxz := c · ctxs +

∑
j∈U ctxr,j

pi := THE.PartDec(ctxz, ski)

return σ = (c, z := THE.FinDec(ctxz, {pj}j∈U\{i}))

Collect (wj , ctxr,j)j∈U\{i}

Collect (pj)j∈U\{i}

Figure 3: Passively secure (t,N) signing protocol [22].

subset of t parties then cooperatively decrypt ctxz

homomorphically, yielding the final signature z after
combining the partial decryptions pj .

In short, Kamil et al.’s modified protocol enhances the
existing (n, n)-signature scheme by introducing random-
ness into KGen and generating the encrypted signature
ctxz using THE during signing, instead of the unencrypted
signature z. This modification successfully extends the
original protocol into a (t,N)-threshold variant. Further-
more, in contrast to UT, which requires a non-threshold
scheme as input, this scheme is inherently a threshold
scheme and does not depend on any external scheme. At
the 128-bit security level with t = 3 and N = 5, this
scheme produces signatures of size 46.6 kB of size 13.6
kB [7], offering a significant improvement in efficiency
compared to other recent protocols such as Threshold
raccoon [23].

3.3. Cozzo et al. (2019)
In contrast to the two presented works that utilize

HE [6] [7], Cozzo et al. [8] discuss possibilities to thresh-
oldize promising PQC schemes such as FALCON [24]
based on secure multiparty computation (MPC) [25]. Non-
threshold version of FALCON will be presented first.

Input : µ, sk = B ∈ R2×2
q with small Bi,j , pk ∈ R2

q with B · pk = 0
Output: σ

1. c← H(r ∥ µ) with random r ∈ {0, 1}320
2. Sample t ∈ R2

q such that pk⊤ · t = c.
3. z ← round(t, B) such that z ∈ L(B)
4. s← (t− z) ·B
5. If s is not short, return to 3
6. Return σ = (r, s)

Figure 4: Simplified FALCON signing protocol [24]
FALCON follows the concept of hash-and-sign. It be-

gins by computing a hash value c and search for t from an
ISIS instance pk⊤ · t = c, which is possible by computing
t← (c, 0) ·B−1 [24]. Afterwards, t is rounded to a close
lattice-point z ∈ L(B) and the signature s is computed
with the difference between t and z. Plus, a rejection
sampling with the condition checking the shortness of s is
included to enhance security of B. FALCON is fairly run-
time efficient and compact, requiring only 0.3 miliseconds
for signing and prodzcing signatures of 1.3 kB [24].

To thresholdize FALCON, Cozzo et al. [8] suggest
utilizing MPC, enabling multiple parties to jointly per-
form computations using their individual inputs while
ensuring the privacy of those inputs [25]. First, a linear
secret sharing scheme (LSSS) can be used to distribute
sk and pk, enabling linear operations to be performed

Seminar IITM WS 24/25 34 doi: 10.2313/NET-2025-05-1_06



on the secret shares rather than directly on the secret
key [26]. Furthermore, considering that FALCON involves
both linear operations (e.g. step 2 in Figure 4) and non-
linear ones (e.g. rejection sampling), LSSS-based MPC
schemes are well suited for the linear operations, while
garbled circuits (GC)-based MPC can handle the non-
linear components [8].

This separation of needed MPC techniques requires
costly conversions between LSSS and GC representations,
leading to a major bottleneck and a longer signing time of
5.7 seconds [8]. Moreover, this threshold-FALCON pos-
sesses further limitations such as the absence of DKGen.

4. Conclusion
In conclusion, the presented three papers show re-

cent advancements on threshold PQC schemes, presenting
different ways to design threshold schemes. Boneh et
al. [6] introduced the "universal thresholdizer," a tool
capable of transforming any cryptographic scheme into its
threshold variant through a black-box execution. Kamil
et al. [7] identified remaining inefficiencies in the "uni-
versal thresholdizer" and proposed a new scheme using
THE instead of TFHE. Cozzo et al. [8] utilize LSSS
and MPC techniques, rather than HE, to thresholdize
FALCON. Future work could focus on further optimizing
the protocol proposed by Kamil et al. [7], e.g. by intro-
ducing compression techniques used in schemes like FAL-
CON [24] or DILITHIUM [27] [28]. Moreover, exploring
PQC schemes based on other mathematical primitives
beyond lattices [29], such as hash functions or isogenies,
presents an avenue for further research.

References
[1] P. W. Shor, “Polynomial-time algorithms for prime factorization

and discrete logarithms on a quantum computer,” SIAM Journal
on Computing, vol. 26, no. 5, p. 1484–1509, Oct. 1997. [Online].
Available: http://dx.doi.org/10.1137/S0097539795293172

[2] B. Brubaker, “Thirty years later, a speed boost for
quantum factoring,” 2023, quanta Magazine, October 17,
2023. [Online]. Available: https://www.quantamagazine.org/
thirty-years-later-a-speed-boost-for-quantum-factoring-20231017/

[3] K. Sedghighadikolaei and A. A. Yavuz, “A comprehensive
survey of threshold signatures: Nist standards, post-quantum
cryptography, exotic techniques, and real-world applications,” in
Proceedings of the arXiv Conference, no. 2311.05514, 2024, pp.
1–2. [Online]. Available: https://arxiv.org/abs/2311.05514

[4] L. T. A. N. Brandão and R. Peralta, “Nist first call for
multi-party threshold schemes (initial public draft),” National
Institute of Standards and Technology (NIST), Tech. Rep.
NIST IR 8214C IPD, 2023, january 2023. [Online]. Available:
https://doi.org/10.6028/NIST.IR.8214C.ipd

[5] M. E. Manaa and Z. G. Hadi, “Scalable and robust cryptography
approach using cloud computing,” Journal of Discrete Mathemat-
ical Sciences and Cryptography, vol. 23, no. 7, pp. 1439–1445,
2020.

[6] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R.
Rasmussen, and A. Sahai, “Threshold cryptosystems from thresh-
old fully homomorphic encryption,” vol. 10, no. 1, 2024.

[7] K. D. Gur, J. Katz, and T. Silde, “Two-round threshold
lattice-based signatures from threshold homomorphic encryption,”
in Proceedings of the Cryptology ePrint Archive, ser. Lecture
Notes in Computer Science (LNCS), vol. 1318. Springer, 2023.
[Online]. Available: https://eprint.iacr.org/2023/1318

[8] D. Cozzo and N. P. smart, “Sharing the LUOV: Threshold post-
quantum signatures,” Cryptology ePrint Archive, Paper 2019/1060,
2019. [Online]. Available: https://eprint.iacr.org/2019/1060

[9] J. H. Silverman, “An introduction to lattices, lattice reduction, and
lattice-based cryptography,” IAS/Park City Mathematics Series, pp.
1–5, 2023.

[10] T. Laarhoven, J. van de Pol, and B. de Weger, “Solving hard
lattice problems and the security of lattice-based cryptosystems,”
in Proceedings of the Cryptology ePrint Archive, no. 533.
International Association for Cryptologic Research (IACR), 2012,
pp. 2–4. [Online]. Available: https://eprint.iacr.org/2012/533

[11] O. Regev, “The learning with errors problem,” Survey on
Learning with Errors (LWE), pp. 1–23, 2005. [Online]. Available:
https://cims.nyu.edu/~regev/papers/lwesurvey.pdf

[12] C. Peikert, O. Regev, and N. Stephens-Davidowitz,
“Pseudorandomness of ring-LWE for any ring and modulus,”
in Proceedings of the Cryptology ePrint Archive, no. 258.
International Association for Cryptologic Research (IACR), 2017.
[Online]. Available: https://eprint.iacr.org/2017/258

[13] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for
hard lattices and new cryptographic constructions,” Cryptology
ePrint Archive, Paper 2007/432, 2007. [Online]. Available:
https://eprint.iacr.org/2007/432

[14] A. Shamir, “How to Share a Secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[15] Yvo Desmedt and Yair Frankel, “Threshold Cryptosystems,” Ad-
vances in Cryptology, pp. 305–315, 1989, cRYPTO ’89.

[16] C. Komlo, I. Goldberg, and D. Stebila, “A formal treatment of
distributed key generation, and new constructions,” in Proceedings
of the Cryptology ePrint Archive, no. 292. International
Association for Cryptologic Research (IACR), 2023. [Online].
Available: https://eprint.iacr.org/2023/292

[17] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-
faster, attribute-based,” in Proceedings of the Annual International
Cryptology Conference (CRYPTO). Springer, 2013.

[18] K. Teranishi, “ECLib: An open-source homomorphic encryption
library,” 2024, accessed: 2024-09-22. [Online]. Available: https:
//github.com/KaoruTeranishi/EncryptedControl

[19] I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi, “Two-
round n-out-of-n and multi-signatures and trapdoor commitment
from lattices,” in PKC 2021: 24th International Conference on
Theory and Practice of Public Key Cryptography, Part I, ser.
Lecture Notes in Computer Science (LNCS), J. Garay, Ed., vol.
12710. Virtual Event, May 10–13: Springer, Heidelberg, 2021,
pp. 99–130.

[20] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” in ITCS 2012: 3rd
Innovations in Theoretical Computer Science, S. Goldwasser, Ed.
Cambridge, MA, USA, January 8–10: Association for Computing
Machinery, 2012, pp. 309–325.

[21] A. A. Badawi, A. Alexandru, J. Bates, F. Bergamaschi, D. B.
Cousins, S. Erabelli, N. Genise, S. Halevi, H. Hunt, A. Kim,
Y. Lee, Z. Liu, D. Micciancio, C. Pascoe, Y. Polyakov, I. Quah,
S. R.V., K. Rohloff, J. Saylor, D. Suponitsky, M. Triplett,
V. Vaikuntanathan, and V. Zucca, “OpenFHE: An open-source
fully homomorphic encryption library,” 2022, cryptology ePrint
Archive, Paper 2022/915, Accessed: 2024-09-22. [Online].
Available: https://eprint.iacr.org/2022/915

[22] K. D. Gur, J. Katz, and T. Silde, “Two-round threshold lattice-
based signatures from threshold homomorphic encryption,” in
Proceedings of the Cryptology ePrint Archive, ser. Lecture Notes
in Computer Science (LNCS), vol. 1318. Springer, 2023, pp.
18–19. [Online]. Available: https://eprint.iacr.org/2023/1318

[23] R. del Pino, S. Katsumata, M. Maller, F. Mouhartem, T. Prest,
and M.-J. Saarinen, “Threshold raccoon: Practical threshold
signatures from standard lattice assumptions,” Cryptology ePrint
Archive, Paper 2024/184, 2024. [Online]. Available: https:
//eprint.iacr.org/2024/184

[24] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon:
Fast-fourier lattice-based compact signatures over ntru,” Falcon
Project, Tech. Rep., 2020, specification v1.2 — 01/10/2020.
[Online]. Available: https://falcon-sign.info/

Seminar IITM WS 24/25 35 doi: 10.2313/NET-2025-05-1_06



[25] Y. Lindell, “Secure multiparty computation (mpc),” Unbound Tech
and Bar-Ilan University, 2019, accessed: 2024-10-18. [Online].
Available: https://eprint.iacr.org/2020/300.pdf

[26] R. Cramer, I. B. Damgård, N. Döttling, S. Fehr, and G. Spini,
“Linear secret sharing schemes from error correcting codes and
universal hash functions,” in Proceedings of Eurocrypt 2019.
Springer, 2019. [Online]. Available: https://www.iacr.org/archive/
eurocrypt2015/90560182/90560182.pdf

[27] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehlé, “Crystals-dilithium: A lattice-based digital
signature scheme,” Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2018, Issue 1, pp. 238–268,

2018. [Online]. Available: https://tches.iacr.org/index.php/TCHES/
article/view/839

[28] C.-D. Team, “CRYSTALS-Dilithium: A Lattice-Based Digital
Signature Scheme (GitHub Repository),” 2017, accessed:
17 September 2024. [Online]. Available: https://github.com/
pq-crystals/dilithium

[29] M. Buser, R. Dowsley, M. F. Esgin, C. Gritti, S. K. Kermanshahi,
V. Kuchta, J. T. Legrow, J. K. Liu, R. C.-W. Phan, A. Sakzad,
R. Steinfeld, and J. Yu, “A survey on exotic signatures for
post-quantum blockchain: Challenges & research directions,”
Cryptology ePrint Archive, vol. 1, no. 1, pp. 4–7, 2022. [Online].
Available: https://eprint.iacr.org/2022/1151.pdf

Seminar IITM WS 24/25 36 doi: 10.2313/NET-2025-05-1_06


