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Abstract—The increasing demand for faster and more se-
cure web services have driven significant advancements in
networking protocols. This paper explores the potential
of QUIC, a modern transport protocol, to accelerate web
proxies and REST APIs, which are critical components in
today’s Internet architecture. We provide an overview of
the REST (Representational State Transfer) paradigm and
web proxies. Aswell, we explore basic and in-development
features of QUIC and related work. The paper then anal-
yses the problems, requirements and challenges of REST
APIs, Web Proxies, and Content Delivery Networks and
maps features of QUIC to them to show their potential for
acceleration. The paper finds that QUIC can enhance the
performance, security and reliability of REST APIs served
through web proxies and CDNs. Still, there are connections
between QUIC, REST APIs, and web proxies that need
further research.

Index Terms—quic, content delivery networks, rest, web
proxies

1. Introduction

In an era where web traffic is growing rapidly, the
need for reliable, fast, and secure networking protocols
has never been more critical. The most widely adopted
solution for ensuring secure web communication is the
Hypertext Transfer Protocol Secure (HTTPS), which in-
tegrates the Transmission Control Protocol (TCP) with
Transport Layer Security (TLS). While HTTPS was and
still is the standard for secure web traffic, its reliance on
TCP has introduced several challenges and problems, par-
ticularly with the increasing and changing needs of mod-
ern web applications. To address these challenges, Google
proposed QUIC in 2016 for standardization, among other
things, with the goal of enhancing the performance and
security of web communications beyond what TCP could
traditionally offer [1].

When considering mechanisms for client-server com-
munication, REST (Representational State Transfer) or
RESTful APIs have become the predominant paradigm.
REST outlines architectural requirements that APIs (Ap-
plication Programming Interfaces) must follow [2]. In
many implementations, requests to REST APIs are routed
through web proxies. These web proxies can provide
several advantages, such as improved security, reduced la-
tency, and enhanced performance [3]. Given these benefits,
the role of web proxies in optimizing the performance of
REST APIs is of significant interest.
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This paper explores the potential of QUIC to accel-
erate REST APIs, specifically in scenarios in which web
proxies are involved. We aim to analyze how the features
of QUIC can address the challenges and requirements of
REST APIs when served by web proxies, thereby offering
a more efficient and secure solution.

The remainder of this paper is structured as follows:
Section 2 provides background information about QUIC,
REST, Web Proxies, and CDNs (Content Delivery Net-
works), Section 3 presents related work and sets this paper
apart from others. In Section 4, we analyze the problems,
challenges, and requirements of REST APIs served by
Web Proxies. In Section 5 we then map the features of
QUIC to the problems that we found in Section 4. The
paper concludes with a summary of our findings in Section
6.

2. Background

This section gives an overview of the relevant con-
cepts for the following problem analysis and mapping of
features to the problems.

2.1. QUIC Protocol

QUIC is a transport protocol, which was developed by
Google and later standardized by the Internet Engineering
Taskforce (IETF) [1]. Unlike traditional protocols like
TCP in combination with TLS, QUIC is built on top of
the User Datagram Protocol (UDP) and contains features
that aim to reduce latency, enhance security and improve
the overall efficiency of web communication.

2.1.1. Key Features of QUIC. QUIC introduces several
features that differentiate it from the traditional TCP+TLS
combination:

e 1-RTT and 0-RTT Handshakes: While TCP
requires at least one round-trip time (1-RTT) for
the handshake and TLS needs 1-RTT as well,
QUIC combines these steps [4]. Figure 1 shows
how QUIC establishes a secure connection with
a single round-trip. Moreover, QUIC supports O-
RTT handshakes for repeated connections, thereby
data can be sent immediately [5].

¢ Built-in Encryption: QUIC mandates encryption
by default and uses TLS 1.3 for secure communi-
cations [6]. From the start of the communication,
the built-in encryption provides confidentiality, in-
tegrity, and authenticity. As a result, QUIC does
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Figure 1: Timeline of QUIC’s initial 1-RTT handshake,
a subsequent successful 0-RTT handshake, and a rejected
0-RTT handshake [5].

not need an extra encryption layer like TLS on top
of TCP.

o Connection Migration: QUIC allows to migrate
a connection and continue it seamlessly when a
client’s IP address changes e.g. when switching
from Wi-Fi to cellular data. While TCP uses a 4-
tuple, QUIC utilizes a connection ID to identify a
connection from a client to a server [7].

e Stream Multiplexing: QUIC can handle multiple
streams of data within a single connection without
the issue of head-of-line blocking, which occurs
in TCP when packet loss in one stream can delay
the delivery of data in other streams [8]. By using
different StreamIDs, packet loss does not affect
all streams, but only streams that are in the lost
packet [9]. Figure 2 illustrates how QUIC behaves
in comparison to TCP when encountering packet
loss while having multiple streams.

The following two are extensions to QUIC that are partic-
ularly relevant for scenarios with a web proxy layer and
CDNs. There is still ongoing work and development on
these extensions:

e MASQUE (Multiplexed Application Substrate
over QUIC Encryption): MASQUE is an exten-
sion for QUIC which allows to multiplex traffic of
different applications with a single QUIC connec-
tion. It can create a secure tunnel to a proxy and
because of that, it is particularly useful for appli-
cations like VPNs or proxy services with multiple
streams, since the streams can be handled securely
within one connection [10], [11]. An example
scenario with a proxy server is demonstrated in
Figure 3.

e QUIC-Aware Proxying: QUIC-Aware Proxying
allows clients to tunnel QUIC connections and
adds a new "forwarded" mode as stated in [12].
It allows to use special-purpose transforms rather
than full re-encapsulation and re-encryption of
QUIC packets when they are forwarded by a

proxy.

2.2. REST APIs

REST is a paradigm that outlines principles for build-
ing scalable and stateless web services. It was first intro-
duced by Roy Fielding in 2000 in [2], since then REST
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has become the dominant framework for designing APIs
[14].

2.2.1. Key Principles of REST. As defined by Roy
Fielding in [2], REST is based on the following principles:

« Stateless: Each request from a client to a server
has to contain all necessary information, as the
server does not memorize the client state between
requests.

« Client-Server Architecture: REST separates con-
cerns by defining distinct roles for clients (han-
dling user interaction) and servers (managing data
and logic).

o Uniform Interface: A consistent and standardized
interface is used. Typically HTTP methods (GET,
POST, PUT, DELETE) are used to interact with
resources.

¢ Code on Demand: Web servers can send exe-
cutable programs to clients. Oftentimes commu-
nication is needed in advance to assure that the
client is able to process the offered ressource.

« Layered System: REST systems are layered, al-
lowing intermediaries like proxies to manage re-
quests without clients being aware.

o Cache: Responses can be marked as cacheable to
enable reuse of responses for identical requests,
thereby improving performance.

2.3. Web Proxies and HTTP Caching

Web proxies act as intermediaries between clients and
servers. They forward requests from clients to servers
and vice versa. While offering several benefits, such as
enhanced security, traffic filtering and more, proxies can
optimize network performance by caching frequently re-
quested (static) content [15], [16]. Thereby proxies can
reduce the load on the origin server and decrease response
times.

The concept of HTTP caching enables web proxies
to store copies of previously fetched content. When a
client requests the same resource (e.g. a static web page),
the proxy can serve it from the cache instead of sending
another request to the origin server, which improves speed
and efficiency. Caching mechanisms can be controlled by
HTTP headers like Cache-Control and Expires, which
can for example configure if you want your data to be
cached or not [17]. Since caching eliminates the need for
repetitive requests to the server, it significantly improves
loading times and bandwidth usage [3].

2.4. Content Delivery Networks

A Content Delivery Network (CDN) is a network
of distributed servers around the world that deliver web
content to users. They deliver content based on their
geographic location, the origin of the webpage and a
content delivery server [18]. The main goal of a CDN is to
serve content to clients fast and reliable. Oftentimes CDNs
are used to deliver static content like images, stylesheets,
and scripts, but also dynamic content like API responses.
When requesting content from a website using a CDN,
the request is redirected to the nearest CDN server (edge
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Figure 3: Proxy setup using MASQUE for QUIC-based
tunneling [13], [10].

server) [19]. This redirection is typically achieved by per-
forming AnyCast or a DNS resolution, where the domain
name is mapped to the IP address that is closest to the edge
server. This architecture that serves content from servers
that are geographically closer to the client results in lower
latency. By caching content on edge servers, CDNs can
not only improve response times, but also reduce the load
that the origin server has to handle [20].

3. Related Work

There are several papers that have explored the per-
formance of QUIC’s specific features. For instance, Kiih-
lewind et al. [10] analyzed implications of MASQUE,
while Cook et al. [21] examined how O-RTT connection
establishment of QUIC effects certain performance met-
rics in different conditions, like mobile networks. Other
research provides general analyses of QUIC. Megyesi et
al. [22] evaluated and compared QUIC’s performance with
other variants. This paper aims to provide a conceptual
overview of how QUIC’s features can address and improve
the specific challenges of a web proxy to accelerate REST
APIs.

4. Problem Analysis

This Section analyses the problems and challenges
of REST APIs. These challenges come from limitations
in the underlying transport protocols (most of the time
TCP+TLS) or constrains of the REST paradigm.

4.1. Latency Due to Connection Establishment

REST APIs normally use HTTP over TCP, which
results in a three-way handshake to establish a connection
[23]. When adding TLS for encrypting data, additional
two RTTs are needed for the handshake process before
any data can be sent, although TLS 1.3 provides new
features that allow a faster connection establishment [24].
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This sequential handshake procedure results in latency,
particularly bad for applications that require quick/real-
time interactions. These circumstances imply an increased
response time, where each connection results in a de-
lay that affects user experience and general application
performance. In scenarios with a web proxy layer, this
additional layer could potentially increase latency and
impact performance of the REST APIL.

4.2. Head-of-Line Blocking

HTTP/2 over TCP suffers from Head-of-Line Block-
ing due to in-order delivery of packets as illustrated in Fig-
ure 2 and explained in [21]. This phenomenon can cause
delays in delivery of data, hence affecting the performance
of a REST API that relies on punctual responses. In certain
scenarios this phenomenon implies reduced throughput,
longer wait times of API responses and especially has
an impact on concurrent requests where multiple API
requests are sent over a single TCP connection.

4.3. Connection Migration Challenges

REST APIs are frequently accessed by mobile clients
that are likely to switch their network interfaces from time
to time, such as from Wi-Fi to cellular data. Because of
that the client’s IP address can change during active ses-
sions. Traditional TCP connections, identify a connection
via the client’s IP address and a port number, hence any
change in the network interface leads to the termination
of the TCP connection. If a client wants to request again
from a REST API, it is necessary to establish a new
connection. This process introduces additional latency due
to the required TCP handshake and TLS negotiation. In
scenarios with a web proxy layer or CDN is, this issue is
further extended due to the additional layers of network
traversal and new connections that need to be managed.
Vargas et al. [25] highlights that a significant portion of
API requests in CDNs consist of small, frequent JSON
messages from mobile clients. The inability of TCP to
handle connection migration efficiently leads to an in-
creased latency and lower performance for these clients.
This phenomenon implies reduced throughput and longer
wait times for API responses.

4.4. Security Overhead

REST APIs typically use TLS to encrypt data, thereby
ensuring confidentiality and integrity [23]. The overhead
of encrypting and decrypting data consumes CPU re-
sources of both clients and servers [4]. This can lead
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to increased response times and reduced throughput in
scenarios with many concurrent connections and high
load. This overhead is particularly significant for REST
APIs with frequent and small requests, where the relative
cost of encryption / decryption is high compared to the
actual payload size. Proxies that inspect or cache content
often terminate TLS connections and act as intermediaries
between client and server. This requires separate TLS
handshakes for each leg, introducing additional latency
and computational load.

4.5. Inefficient Multiplexing

REST APIs often utilize HTTP/2 to enhance perfor-
mance through multiplexing, which allows multiple re-
quests and responses to be sent concurrently over a single
TCP connection, as described in [8]. But since HTTP/2
operates over TCP, packets must be delivered in order.
This leads to head-of-line blocking, where the loss of a
single packet delays all other packets until the lost packet
is retransmitted. This limitation reduces the effectiveness
of multiplexing and can cause delays in delivering API
responses.

4.6. Caching

Cache validation mechanisms which use headers like
Cache-Control and ETag often require additional RTTs
for clients to confirm data freshness, increasing latency
[26]. The statelessness of REST can lead to redundant data
transmission (all meta informations need to be transfered)
[27]. Encryption adds further complications, since the TLS
connection between client and server is terminated at the
proxy or CDN. This requires the proxy to decrypt and
inspect the data, which can be computationally expensive
and introduce additional latency.

5. Mapping QUIC Features to Problems

In this section, we map the features of QUIC intro-
duced in Section 2 to the problems and challenges of
Section 4. By mapping QUIC’s features to the challenges
of REST APIs served through web proxies and CDNs, we
show how QUIC can enhance performance, security, and
reliability.

5.1. Reducing Latency Due to Connection Estab-
lishment

QUIC combines the transport protocol and encryp-
tion layer. It reduces the number of round trips required
to establish a secure connection. For new connections,
QUIC can establish a secure connection in 1-RTT, and
for repeat connections, it can achieve 0-RTT connection
establishment, allowing data to be sent directly [1], [5].
By reducing the connection establishment latency, QUIC
improves the responsiveness of REST APIs, especially in
situations where short-lived connections to APIs via web
proxies or CDNs are made.
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5.2. Eliminating Head-of-Line Blocking

QUIC eliminates head-of-line blocking by implement-
ing stream multiplexing at the application layer over
UDP, which does not enforce in-order delivery. Streams
of QUIC are independent, which means that the loss of
packets in one stream does not affect packets in other
streams [8]. As a result, REST APIs are able to handle
multiple paralell requests more efficiently, with reduced
latency and improved throughput.

5.3. Handling Connection Migration Challenges

QUIC connections are identified by a ConnectionID
instead of a 4-tuple consisting of both IP addresses and
ports [7]. This abstraction allows the connection to stay
active even if the network address of the client changes.
As a result, clients can seamlessly continue their sessions
without the overhead of reconnecting and renegotiating
cryptographic parameters. This feature is useful for im-
proving the reliability and performance of REST APIs
that are accessed by clients with mobile devices.

5.4. Addressing Security Overhead

By mandating encryption and including it into the
transport layer, as described in [6], QUIC simplifies the
security model. Additionally, QUIC’s handshake process
contributes to faster and more efficient secure connections.
This improves security for REST APIs served via web
proxies or CDNs. Apart from that, QUIC encrypts most
of the header information, hence there are less possibilities
for attacks, where attackers try to learn from the header
information.

5.5. Multiplexing Efficiency

QUIC stream multiplexing allows REST APIs to han-
dle multiple paralell requests with a single connection
[9]. The independent streams prevent delays because of
packet loss in one stream from affecting others, resulting
in higher throughput and lower latency. This is beneficial
for web proxies and CDNs that manage high volumes of
simultaneous API requests.

5.6. Caching and QUIC

QUIC over HTTP/3 supports HTTP caching mech-
anisms. Eventhough QUIC encrypts most of the trans-
port layer headers for security, HTTP/3 allows necessary
header fields to remain accessible to intermediaries for
caching [28]. Nevertheless, the encrypted nature of QUIC
shows challenges for transparent caching proxies that rely
on inspecting unencrypted headers.

5.7. CDN Integration with QUIC

CDNs can be improved with QUIC’s features, such as
connection migration. This persistence can reduce latency
and improve the user experience. QUIC’s handling of
multiple streams and reduced connection establishment
times allow CDNss to deliver content more effectively [20].
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For instance, QUIC allows edge servers send content with
lower latency and higher throughput, which is especially
beneficial for REST APIs that rely on CDN infrastructure
to reach a global audience. MASQUE and QUIC-Aware
Proxying can also improve CDNs, since these functions
are only partially available with the traditional TCP+TLS
stack.

5.8. MASQUE and QUIC-Aware Proxying for
Improved Proxy Performance

MASQUE allows clients to tunnel to proxies using
QUIC and enable multiplexed traffic over a single QUIC
connection [11]. This is useful for things like VPNs
or proxy services that handle multiple streams within
one connection. QUIC-Aware Proxying allows clients to
tunnel QUIC connections or forward packets through
an HTTP/3 proxy without terminating the connection at
the proxy [12]. By using the extended CONNECT-UDP
method over HTTP/3, the proxy can forward QUIC pack-
ets between the client and the target server transparently.
The result is a reduced overhead associated with terminat-
ing and re-establishing connections at the proxy, but also
the inability of CDNSs to optimize things like caching.

6. Conclusion

This paper explored the conceptual potential of QUIC
to accelerate REST APIs served through web proxies and
CDNs. The paper identified key challenges / problems
of REST APIs that mostly stem from traditional TCP-
based protocols. Among these problems were latency from
connection establishment, head-of-line blocking and con-
nection migration issues. We mapped these problems to
QUIC’s features like including reduced handshake times,
built-in encryption and connection migration.The paper
demonstrated how QUIC can enhance performance, se-
curity and reliability. Adopting QUIC for REST APIs
offers improvements, paving the way for faster and more
secure web services that meet the evolving demands of
today’s internet infrastructure. Nevertheless there are still
connections between QUIC, REST and web proxies that
need further research, for example weither QUIC can be
beneficial for certain properties of REST like uniform
interfaces and statelessness.
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