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Abstract—To lower costs and help the environment, green
software engineering is becoming more and more critical to
lower software’s energy consumption. Therefore, this paper
reviews methods to measure the energy consumption of soft-
ware, including hardware-based methods like Intel RAPL,
AMD APM, and an experimental approach named SEFlab.
Furthermore, it covers software-based estimations created
with eLens, GreenOracle, and Silicon Labs Energy Profiler.
Hardware-based methods can achieve precise measurements
at runtime but suffer from a long setup time. It is also
difficult to detect which current comes from which software.
The software-based methods are helpful in development
because they are easy to set up and can visualize the
energy consumption fine-grained in the code. The paper
also includes information about CloudSIM and proprietary
methods of market-leading cloud distributors like Amazon to
reflect the current research results in energy-efficient cloud
computing.

Index Terms—energy consumption, software measurement,
runtime monitoring, software-based estimation, distributed
systems

1. Introduction

The quantity of information and communication tech-
nology (ICT) is rising yearly; therefore, energy con-
sumption and costs are breaking record after record. The
SMARTer 2030 Report forecasts that, in 2030, ICT will
be responsible for 2% of all carbon emissions [1]. Because
carbon dioxide will be the primary contributor to global
warming, it is essential to lower the energy consumption
of software to combat the climate crisis [2]. To achieve
this objective, the developers must take exact energy mea-
surements of their software.

There can be many methods for analysing software
energy consumption; therefore, this paper outlines some
measurement methods. It contains black-box testing meth-
ods measuring energy consumption at runtime and white-
box software-based estimation methods integrated into
development environments. This review details Intel Run-
ning Average Power Limit (RAPL), AMD APM, and
SEFlab as runtime measurements, besides GreenOracle,
eLens, and Silicon Labs Energy Profiler as software-based
estimation methods. Furthermore, it analyzes the accuracy
and precision and lines out the difficulties and concerns
of the mentioned methods.

Cloud Computing has risen exponentially over the
last few years [3]. More complex measuring structures

are needed to provide a platform for researchers and
developers to test and optimize their systems. Therefore,
this paper reflects CloudSIM 7G, a state-of-the-art, robust
simulation toolkit for cloud computing. To introduce an
example of monitoring methods at major cloud service
providers, AWS CloudWatch is detailed.

2. Related Work

A paper by Felix Rieger and Christoph Bockrish [4]
concludes a summary of different studies. They reviewed
existing research on green software design and assessment
methods, such as Silicon Labs and SEFlab, which are
contained in this paper.

Andreas Schuler and Gabriele Kotsis [5] ana-
lyzed event-based, utilization-based, code-analysis, and
measurement-based methods for mobile platforms like
Android or iOS, thereby reviewing individual system
parts’ energy consumption. Within their study, they cate-
gorized existing methods and stated problems that must be
solved. In total, they reviewed 134 studies between 2011
and 2021, most of them applying the Android platform.

3. Energy Measurement Methods

The following section introduces the different methods
for analyzing software energy consumption. The passage
will describe the mode of operation and the functional
framework of these individual methods and also state
some of their limitations.

3.1. Intel RAPL

Intel RAPL allows the user access to sensors inside
the CPU, allowing the CPU’s and DRAM’s accumulated
power consumption to be distinguished. Intel introduced
the method with their Sandy Bridge lineup [6], [7].
The information is stored in Machine-Specific Registers
(MSRs) [1], [7], [8]. Rather than capturing physical mea-
surements, these registers store architectural events from
the cores, processor graphics, and I/O, which are pro-
cessed with energy weights to estimate the active power
consumption of the package [9]. The collected consump-
tions are displayed in Joules and are updated on average
every millisecond, therefore, the granularity is 15.3 µJ for
SandyBridge [6]–[8] and 61 µJ for Haswell and Skylake
architectures [7].

Table 1 shows the different relevant storing registers.
With Intel RAPL, CPU package power, the total consump-
tion of the processor cores and the consumption of the
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TABLE 1: List of available RAPL sensors, Table 1 in [1]

RAPL_PKG Whole CPU package
RAPL_PP0 Processor cores only
RAPL_PP1 A specific device in the uncore
RAPL_DRAM Memory Controller

DRAM controller can be measured. A significant disad-
vantage of Intel RAPL is that there is no possibility of
measuring the power consumption of individual cores [1].

Intel RAPL has severe security issues, as explored
by Z. Zhang et al. [10]. Especially on Linux systems,
unprivileged users can read the measurements offered by
Intel RAPL through the "sysfs" interface. Furthermore,
the same can be done on MacOS with specialized system
calls.

They analyzed the memory power consumption using
DRAM access procedures. With an AVX system call,
they stored data in the DRAM and measured the energy
consumption. They discovered that writing small segments
consumes less power than writing larger segments. Then,
they implemented a receiver and a sender, which can
be placed, for example, one in the container and one
in the management system. With some adjustments, they
established a covert channel that can transmit 0 and 1
through those energy measurements while bypassing all
the security implementations. On their testing systems,
they achieved a bandwidth of 50 bps while maintaining
an error rate below 2% on every system [10].

3.2. AMD Energy

In comparison, AMD Application Power Management
(APM) can measure the energy consumed by each core
and the total socket power. The socket power measure-
ments differ from those of Intel’s package power because
it is not the sum of all cores but includes cache and
other CPU internal parts. In contrast to Intel RAPL, it
does not provide the consumed energy in Joules, but the
average consumption over the last timeframe. On a system
with AMD Opteron 6274, a timeframe was about 3.8 ms
long and results in a granularity of 3.8 mW. Only the
information of the last segment is stored in the registers.
This approach is more accurate than Intel RAPL when
measuring microscopic procedures because considering
two timeframes instead of one does not have a tremendous
impact. The disadvantage of AMD Energy is that no
power measurement of the DRAM is possible [6].

3.3. SEFlab

Ferreira et al. [11] conducted further investigations to
create the SEFlab, a hardware-based black-box measuring
lab. It is especially suitable for processors produced before
the introduction of Intel RAPL.

They tried to get exact measurements of both CPUs,
memory, fans, mainboard, and HDD. With some addi-
tional testing, they could distinguish each wire to their
consumer except the power for memory banks and fans
because those are distributed directly on the motherboard.
To address this problem, they measured the power con-
sumption of the memory and fans and subtracted it from

the measurements of the mainboard results. All these
measurements were collected with a sampling frequency
of 30kHz and then stored and processed in the data
acquisition system (DAQ). The DAQ transmits the data
to the measurement PC, where the data is visualized.
Furthermore, they extracted a pulse via USB from the
server and inserted it via a serial port. With that, they could
get exact measurements when the software is executed on
the server. Bram Visser did a validation analysis of SEFlab
and discovered an error margin around 1% [11]. SEFlab
is still an experimental approach that requires much work
to adapt to other hardware.

3.4. eLens

A concept for estimating energy consumption is eLens.
It combines per-instruction energy modeling and program
analysis to trace executed paths. eLens bases the estima-
tions on bytecode. The conversion process to bytecode is
further introduced in Section 4 of this paper. eLens can
be integrated into IDEs like Eclipse to estimate different
application parts. Therefore, the developers do not need
additional hardware if a SEEP described below is avail-
able. The algorithm can estimate the energy consumption
per line of code, path, method, and application [12].

For eLens to work correctly, a software environment
energy profile (SEEP) is needed. The SEEP contains the
per-instruction energy costs of every hardware component
in the target machine. The researchers of eLens hope
that manufacturers will publish SEEPs of their products
in their future. Since SEEPs are currently not available,
the researchers generated their own SEEP with the LEAP
setup [12].

The Low Energy Aware Platform (LEAP) is a testbed
invented at the University of California, Los Angeles. It
contains an Intel Atom CPU on a mini-ITX motherboard.
With a Digital Acquisition Device (DAQ), they can sample
at a rate of up to 10kHz. The system can be further
adapted to measure all parts necessary for various applica-
tion types. In cooperation with its nanosecond timestamp
counter, it can report fine-grained energy consumption
results while executing a task [13].

eLens contains three main parts, as shown in Figure
1. The Workload Generator converts the possible user
interactions into path information, which can be processed
further in the Analyzer and Source Code Annotator. The
generator is needed, because it would be inaccurate if
all paths were executed n times. The Analyzer then re-
ceives the paths from the workload generator and assigns
each path’s matching energy estimates extracted from the
SEED. Afterwards, the Source Code Annotator visualizes
the results from the Analyzer, which can then be integrated
via the Eclipse plugin. For example, the single lines
of code are highlighted in blue for lower consumption
and then go up in steps to red representing enormous
consumption [12].

3.5. GreenOracle

GreenOracle is an energy estimation software for An-
droid applications. It uses machine learning based on a
big data approach; the creation of the dataset is further
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Figure 1: Structure of eLens, Fig. 1 in [12]

detailed in the accuracy and precision section of this pa-
per. The software then calculates the energy consumption
based on grouped system calls, processes with similar
functions and energy consumption. With the fast execution
and easy adaptation to new versions, app developers can
assess energy-consuming parts of the code in progress.
The results are promising, and it is universally applicable,
while the achieved results are comparable to those of
eLens. Nevertheless, GreenOracle is easy to use and does
not require specialized hardware [14].

3.6. Silicon Labs Energy Profiler

In the world of "Internet of Things" (IoT), many
household devices are connected to servers worldwide.
Microcontrollers are needed to enable such functional-
ity, which can manage and connect these devices while
using only a little power. Silicon Labs provides a com-
plete working environment with in-house software and
hardware, which is available on the market. With their
cooperating hardware the developer can assess the energy
consumption of software since the 5th version of the Sil-
icon Labs Studio. They manufacture 32-bit ARM Cortex
cores, which can be programmed via the Silicon Labs
SDK afterward [15].

The microcontroller EFM8 and EFM32 have a com-
patible debug interface which can be connected to a
Silicon Labs starter kit containing a power supply. With
the Advanced Energy Monitor (AEM) interface included
in the SDK, the energy consumptions can be displayed
within the IDE. The development environment has inte-
grated the Silicon Labs Energy Profiler (SELP); therefore,
multiple devices can be measured and compared simulta-
neously.

The visual user interface efficiently displays the live
energy consumption with a waveform. The AEM interface
provides a single-node and a multi-node view, where
the user can see the animated live consumption. This
presentation method allows the developer to efficiently
assess all the needed information, make changes to the
code, and measure again. Furthermore, the interactions
between several devices can be measured and visualized.

The system is modular overall and helps the developer
getting complex measurements done in seconds, saving
many work hours; e.g., the software allows the user to look
into variable timeframes and modules, providing complete
control and customization.

The IDE can manage the software autonomously, so
the developer can start, pause, and end the measured soft-
ware directly inside the development studio. Furthermore,
recording the measurements is possible for later analysis,
and the user can enable code correlation, whereby the soft-
ware can assign the energy consumptions to each function
because both code analysis and energy measurement run
in parallel [16].

3.7. CloudSIM

Cloud SIM 7G is the 7th version of this open-source,
java-based simulation tool. The system is not designed to
assess the energy consumption of individual software but
primarily to determine how to distribute the software most
efficiently. The developers can simulate energy consump-
tion of, for example, network components in geograph-
ically distributed systems while recreating the network
traffic of their software. The developers of CloudSIM have
integrated the CloudNetSIM++ software from OMNeT++
for this purpose. Using this, researchers can compare per-
formances of, for example, star and mesh topology while
connecting the data centers. It can manage TCP, UDP,
and HTTP traffic. The system then outputs the calculated
energy consumption per data center or hardware compo-
nent type. With the extension ERouter, the consumption
of switching and routing appliances can be assessed. It is
an extensive system with an easy-to-use GUI (graphical
user interface) that enables researchers and developers to
simulate, optimize, and assess their software [17], [18].

3.8. AWS CloudWatch

AWS (Amazon Web Services), Google Cloud, and
Microsoft Azure implement several proprietary measure-
ment methods [19]–[21]. For example, AWS announced
CloudWatch, allowing developers to see all system com-
ponents’ current hardware utilization. These approaches
cannot measure absolute energy values but give the devel-
opers an indication of how energy-efficient those methods
are compared to other software versions [19]. AWS Cloud-
Watch works on all AWS EC2 systems, which all run Intel,
AMD and proprietary AWS Graviton processors [22].

4. Accuracy and Precision

The following paragraphs will detail the experimental
testing setups and measurement results, assessing the ac-
curacy and precision of Intel RAPL, SEFlab, eLens, and
GreenOracle.

The measurements of Intel RAPL improved from
Sandy Bridge-EP to Haswell-EP [8]. The testing group
of Khan et al. [7] did extensive research on the accuracy
of Intel RAPL power measurements. They established
a testing setup with an Intel Core i7-4770 @ 3.40Ghz,
a Haswell workstation CPU, and an Intel i5-6500 @
3.20Ghz, a Skylake Desktop CPU. Their analysis used Mi-
crobenchmarks, which address only a specific part of
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the CPU, and application-level benchmarks like Stream
or ParFullCMS. The benchmark Stream showed a strong
correlation (coefficient of 0.99) between the RAPL pack-
age power, and the power drawn from the wall socket.
It should be noted that this is only feasible at constant
temperatures. Especially when testing the Haswell CPU,
they observed a significant impact on longer benchmarks
when the temperature is rising. They measured a correla-
tion of 0.93 between package power and temperature read-
ing. Therefore, if measuring with RAPL technology, the
developers should remember that all the tests should have
comparable core temperatures. Overall they estimated a
mean error of 4% for Sandy Bridge and 1.7% for Haswell
CPUs [7].

The accuracy of the SEFlab cannot be distinguished
precisely because of the lack of testing different hardware.
However, in their testing lab, they could measure very
accurate results on runtime. In future work, it will also
be possible to get precise predictions when enough data
is collected [11].

The researchers compared the accuracy of eLens by
comparing the measurements of the ground trough (GT)
metered with LEAP and eLens. First, they downloaded
unmodified Android applications from the Google Play
Store and afterwards converted the Dalvik bytecode to
Java bytecode using the dex2jar tool. Some applications
cannot be transformed and were excluded from their val-
idation process. Furthermore, the code has to run on the
LEAP Platform and during the path measuring process,
0.01% of all paths threw an exception. All the remaining
applications were given to eLens as input. They com-
pared the estimations of eLens with the measured GT,
but different problems occurred during this process. The
GT counted waiting times on human input; the LEAP
could not determine which energy consumption was just
background noise, and the LEAP had only a sampling
rate of 10 kHz. The rate is just enough to measure func-
tions that run longer than 10 ms. This lack resulted in
many functions where the GT cannot be distinguished.
Therefore, they did not compare the measurements at the
line of code granularity. The average error for the whole
program level was 8,8% but was consistently below 10%.
At the method level, the average was 7.1% and also below
10% in any case. For the hardware components, RAM
and WiFi, they got a maximal error of 12% and one
measurement with GPS, where an error of 8.1% occurred.
These are excellent results in comparison to other software
estimation methods. For example, the average-bytecode
strategy at the whole program level had an average error of
133% and the no-path-sensitivity analysis 267%. Primarily
because not only the CPU consumption is assessed, but
also other hardware components can be included in the
calculation [12].

To get high accuracy, the developers of GreenOracle
collected 24 different Android applications with a total of
984 versions from F-Droid [23], GitHub, and partly from
a direct website. Then they used the Green Miner [24], a
hardware-driven energy profiler consisting of a Raspberry
Pi, a Galaxy Nexus phone, and an Arduino Uno. The
Raspberry Pi executes the tests on the phone and stores
the measured data, while the Arduino Uno collects the
energy consumption of the phone. The predefined tests
consist of standard usage of the app and the user inputs

are emulated with Unix shell. They executed all tests in
airplane mode. After repeating each test 10 times, they
collected all system calls with the trace command in
several independent tests. Finally, they grouped similar
system calls and created a table of only 13 different system
calls. With advanced machine learning, they achieved
an average error of 5.96% using super vector machine
regression (SV) because other regression types generated
worse results. However, they recommend ridge regression
because the worst case is much better than SV regression.
That concludes with a mean error of 6.17% and a worst-
case error of 13%. These results are comparable to eLens
stated above [14].

5. Error Analysis

During the testing of SEFlab, they encountered some
contradictions with similar experiments, for example, an
experimental analysis by H. Chen, S. Wang, and W.
Shi. [11], [25]. They did not assess these issues within
the paper. Furthermore, they did not address the impact
of rising temperatures of the SOC when running more
extended tests. They stated in the paper that CPU usage
is highly correlated with its power draw. Figures 2 and
3 show that the utilization is initially at 100%, but the
power draw is not at its peak. They explained this by
apparent contradictions in their benchmarks and the lack
of scalability reported in [11], [26]. For mobile usage,
many processors are designed to be highly efficient at idle
but are inefficient at peak performance. This structure is
necessary because, on mobile devices, the idle time is
much longer than the time when the peak performance is
needed [26]. Another point that may impact the findings
is that energy density on the internal head-spreader (IHS)
rose over several chip generations. For example, a Xeon
CPU from 2004 has a TDP of 103W on a heat spreader
with a size of 42.5 mm x 42.5 mm (1806.25 mm2) [27]. In
contrast, a last-generation Intel Core like the 14900K has
a TDP of 125W and a turbo of up to 253W on a 45 mm
x 37.5 mm (1687.5 mm2) IHS [28]. That is an increase of
29.9% per mm2 of energy density. This increase can cause
a higher temperature range of the SOC and, therefore,
different scalabilities because the resistance of the SOC
rises with rising temperatures and consumes more energy
for the same performance [29].

6. Conclusion and Future Work

As shown in the review, there are many ways to assess
software energy consumption. Nevertheless, to this date,
no method has perfect accuracy and is easy to adapt
to all scenarios. The hardware-based methods described
in the first part are more precise than software-based
approaches regarding runtime measurements. However,
these hardware-based methods are time-consuming, and it
is challenging to distinguish between total system power
usage and power usage caused by the software. The
software-based estimation methods are easy to adapt but
have some uncertainties but still are suitable for more
applications. eLens and GreenOracle are not yet available
to standard developers and still need more straightforward
integration with state-of-the-art software development sys-
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TABLE 2: Overview of methods mentioned in the paper

Method Platform Compati-
bility

Error

INTEL RAPL Only Intel CPUs
since Sandy-Bridge
+ DRAM (since
Sandy-Bridge Server)

4% (Sandy-
Bridge) 1.7%
(Haswell)

[6],
[7]

AMD APM Only AMD CPUs
since 15h generation

No measured
values [6]

SEFlab AMD & Intel CPUs
as above + additional
hardware components

~1%
[11]

eLens Android based CPU +
RAM, GPS, WiFi

< 10%
[12]

GreenOracle Android based CPU < 13%
[14]

SL E. Profiler SL Microcontroller No measured
values [16]

CloudSIM distributed systems No energy val-
ues [17],

[18]
AWS CloudWatch AWS EC2 instances No energy val-

ues [19]

Note: In this table, SL stands for Silicon Laboratories.

tems. CloudSIM provides the most advanced, freely avail-
able technology in this paper, but the system has many
possible future improvements; ideas could include running
individual software in simulation, which would be ana-
lyzed in a manner comparable to eLens or GreenOracle.
Big cloud distributors have advanced proprietary monitor-
ing tools to shorten costs but they do not provide absolute
energy values.

In conclusion, much work is needed in this segment
to overcome the current boundaries, but more advanced
technologies are being developed every year. Platform-
independent and easy-to-use methods are not available
to date. Only Intel RAPL, Silicon Labs Energy Profiler,
CloudSIM, and AWS CloudWatch are commonly used
in the industry. Especially for network applications, Intel
RAPL is used because this method can deliver precise
measurements, and most test setups in universities are
Intel x86-based. However, more software-based methods
with hardware integrations like eLens are also coming,
making analyzing energy consumption much easier.
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