
Performance Impact of the IOMMU for DPDK

Marcel Gaupp, Sebastian Gallenmüller∗, Stefan Lachnit∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: m.gaupp@tum.de, gallenmu@net.in.tum.de, lachnit@net.in.tum.de

Abstract—The DPDK framework is used in a range of
industries where high-performance packet processing is re-
quired. One of the available DPDK drivers is based on the
VFIO Linux API, which makes use of the system’s IOMMU.
The VFIO based drivers are particularly useful for virtual
machines.

Previous research suggested that the IOMMU can have
significant performance impacts on I/O operations. This
paper measures the performance differences between a VFIO
driver and an UIO driver, which does not use the IOMMU.
We measure throughput and latency of NICs in a repro-
ducible testing setup.

The results show that the performance difference is not
significant in the average case and that a few packets show
higher latency. This is explained by the caching behavior of
the TLB.

Index Terms—computer networks, system buses, measure-
ment, high-speed networks

1. Introduction

The Data Plane Development Kit (DPDK) enables
the development of various high-performance network
applications. It is used in data centers, the network edge
and infrastructure systems where data processing is per-
formance critical.

Virtual machines (VMs) are often used to improve
scalability and security. The secure and efficient use of
network interface controllers (NICs) within VMs require
special consideration. The use of the VFIO Linux API
enables the secure assignment of devices to virtual ma-
chines.

In this paper, we compare the performance of two
DPDK drivers: An older UIO based driver and the newer
VFIO based driver. The VFIO driver mainly differs from
the UIO driver in its use of the I/O Memory Management
Unit (IOMMU). We show how the IOMMU affects the
throughput and latency performance of NICs when used
with DPDK.

This paper is structured as follows: Chapter 2 presents
related work this paper is based on and differentiates
our work from theirs. Chapter 3 introduces background
information on PCIe, DPDK, and the IOMMU required
to understand the analysis. Chapter 4 analyses differences
of the different drivers and how these differences might
affect performance. Chapter 5 describes the measurement
setup and methodology. Chapter 6 presents and interprets
our results and explains how they could have come to be.

Chapter 7 concludes with a summary of our findings and
their implications.

2. Related work

This paper is based on the findings of Neugebauer
et al. [1] which show a significant drop in bandwidth if an
IOMMU is used with low packet sizes. Their experiments
differ from ours in that they allocated memory buffers
sequentially within varying ranges in host memory. In our
experiments, we relied on MoonGen’s memory allocation
strategy, which is not sequential.

Furthermore, Neugebauer et al. did not apply their
research on DPDK, but on the use of PCIe in general.
That is why they decided not to use the hugepages fea-
ture of Linux which increases the page size. Hugepage
support is required by DPDK, which is why we did enable
hugepages.

3. Background

Several key components contribute to the resulting
performance analysis. This section provides an overview
of the foundational knowledge about PCIe, DPDK and the
IOMMU.

3.1. PCIe

The Peripheral Component Interconnect Express
(PCIe) is a communication and interconnect standard
interface [2]. It is the de-facto interface for connecting
peripheral I/O devices, like NICs, to x86 based computers
[1].

It uses a packeted communication protocol to send
data between devices. Direct Memory Accesses (DMAs)
are data transfers between the device and the host memory.
In PCIe, they are implemented by Memory Read and
Memory Write packets.

3.2. DPDK

DPDK is a set of libraries which provide a framework
for creating network applications [3]. One use case is
the creation of poll mode drivers (PMDs). PMDs can
achieve higher performance in bandwidth and latency than
their interrupt based counterparts, because they disable
interrupts and poll write-back descriptors in host memory,
thus leaving more bandwidth on the PCI bus for packet
data [1].

Seminar IITM SS 24 61 doi: 10.2313/NET-2024-09-1_11

Figure 1: Page Table Walk, taken from [6]

3.3. IOMMU

Newer systems include an IOMMU. If enabled, ev-
ery DMA passes through the IOMMU. The IOMMU
interprets the memory address as an I/O Virtual Address
(IOVA) and translates it into a physical address [4]. This
is similar to how an MMU translates virtual addresses of
a process on the CPU into physical addresses.

Without an IOMMU, giving a virtual machine access
to a DMA capable device would give the VM access to
all of the host memory, because the DMAs can access all
physical addresses [5]. This poses a threat to the security
and robustness of the system as memory locations not
belonging to the VM can be read and overwritten. Thus
hypervisors have to emulate the device with a managed
memory space. The hypervisor intercepts the real device’s
DMA and copies the data to the VM’s memory space. This
indirection has a detrimental effect on performance.

The IOMMU isolates the IOVA space from the phys-
ical address space, therefore restricting the devices to the
configured memory pages. Like with MMUs, the mapping
is configured in page tables. Multiple memory locations
need to be accessed, as shown in Figure 1 to find the
page of an IOVA [6]. The results of this page table walk
are cached in the Translation Lookaside Buffer (TLB),
which is where subsequent address translations of recently
looked up pages are found in.

4. Analysis

The Linux kernel currently provides 2 interfaces for
accessing IO memory from userspace: Userspace I/O
(UIO) and Virtual Function I/O (VFIO).

Both types of drivers provide an interface which al-
lows to map the device’s memory ranges to the address
space of an userspace process.

UIO requires kernel code, which initializes the device,
defines device memory ranges to be mapped and poten-
tially registers an interrupt handler [7]. Once its driver is
bound to the device, UIO provides a device file located at
/dev/uioX. Its file descriptor can be used with a call to
mmap() to map the defined memory ranges to userspace.

VFIO extends this by allowing the creation of Virtual
Functions and by allowing configuration of the IOMMU
[8]. Virtual Functions are virtual copies of the device,
which can be assigned to multiple virtual machines. This
enables the sharing of the physical NIC in multiple VMs
with almost no overhead.

TABLE 1: Node Configuration

Component Description

CPU Intel(R) Xeon(R) CPU D-1518 @ 2.20GHz
Microarchitecture Broadwell
Memory 32 GiB
OS Debian 12
Kernel Linux 6.1.0-17
NIC Intel X552 10 GbE SFP+

The configuration granularity of VFIO is that of an
IOMMU group [9]. An IOMMU group is a group of
devices which can be isolated from the rest of the system.
How many and which devices are in such a group depends
on the system topology. Once all devices are bound to
the VFIO driver, the device file /dev/vfio/group can be
used with calls to ioctl() and appropriate arguments to
access device memory and to configure the IOMMU.

The IOMMU enables virtual addressing for DMAs.
The virtual address of each access is translated by the
IOMMU to the corresponding physical address. The trans-
lation is cached inside the TLB. On a TLB-miss, the
page table, which resides in host memory, has to be
walked. Because this page walk needs to access multiple
memory locations, we theorize that page misses could
incur significant performance impacts.

Since the UIO drivers do not use the IOMMU while
the VFIO drivers do, one would expect to measure differ-
ences in throughput and latency.

5. Implementation

We conducted our experiments on a three node setup
depicted in Figure 2. All nodes are identically configured
as shown in Table 1. The optical splitters allow the node
named bitcoingold to passively listen into the commu-
nication between bitcoin and bitcoincash.

For deploying and running our scripts on these hosts,
we used the Plain Orchestrating Service (pos) [10]. It is
a framework, which allows full automation of orchestra-
tion, measurement and evaluation with the goal to make
the experiments easily reproducible. Our experimentation
scripts1 can be executed on a pos testbed controller con-
nected to the three nodes configured as described before.

For packet generation and measurement we used
MoonGen [11]. MoonGen is a Lua wrapper for DPDK and
will, as such, use the DPDK driver bound to the NIC. We
ran the MoonGen tasks with 4 threads where applicable,
so that no operation would be CPU bound.

The drivers we compare and their con-
figuration are listed in Table 2. While other
options like uio_pci_generic and vfio
enable_unsafe_noiommu_mode=1 exist [12], our
chosen drivers have been available for the longest time.
Therefore, they particularly are of interest for legacy
applications.

5.1. Throughput

For the throughput measurement, we used the bitcoin
and bitcoincash nodes and ignored the bitcoingold

1. https://gitlab.lrz.de/marcel.gaupp/dpdk-iommu-effects

Seminar IITM SS 24 62 doi: 10.2313/NET-2024-09-1_11

Figure 2: Topology

TABLE 2: Driver Configuration

Kernel Module Boot Parameters

igb_uio intel_iommu=off iommu=pt
vfio-pci intel_iommu=on

host. One host was configured as a load generator and the
other was configured as a Layer-2-Forwarder. The load
generator generated packets as fast as possible and the
forwarder returned them to the sender. Both nodes only
used one interface port (eno7) to communicate.

The load generator sent packets from sizes 48 Bytes
to 88 Bytes in increments of 4 Bytes. The packets were
sent for 60 s for each packet size. igb_uio was always
selected as the driver, assuming as a UIO driver it would
be at least as fast as the other option.

This command was run on the load generator:

/root/moongen/build/MoonGen
/root/code/pktgen.lua 0
-s "$PACKET_SIZE" --threads 4

The pktgen.lua script sends UDP packets to some
nonexistent destination on the given DPDK port id (0).
$PACKET_SIZE was a pos loop variable, which differed
for each experiment run.

The measurements were made on the forwarder, which
was the device under test (DUT). We measured ingress
and egress throughput for each driver configuration. This
command was run on the DUT:

/root/moongen/build/MoonGen
/root/code/l2-forward.lua 0 0

The l2-forward.lua script simply forwards every packet
received on the first port to the second port (both 0). It also
produces an average throughput statistic every second.

5.2. Latency

For the latency measurement, once again, the bitcoin
and bitcoincash nodes were configured as load generator
and forwarder, with the forwarder being the DUT, which
is tested with both drivers. But this time the forwarded
response was sent back on the other interface port:

/root/moongen/build/MoonGen
/root/code/l2-forward.lua 1 0

The bitcoingold node was configured to timestamp
the packets in both directions. The NIC supports hard-
ware timestamping and achieves an accuracy of below
100 ns [11]. The time difference between the same packet
being received by the DUT and the same packed being
transmitted by the DUT was recorded as the latency. The
packets were identified by a unique identifier in the UDP
payload. To generate these packets, this was run on the
load generator:

/root/moongen/build/MoonGen
/root/code/traffic-gen.lua 1 0
-t "$DURATION" -s $PACKET_SIZE -r $RATE

The traffic-gen.lua script generates UDP packets with
an increasing 32-bit integer as the payload. Packets were
sent on interface port 1, while port 0 received packets for
statistics. The transmission rate was fixed at 1 Gbit/s and
the duration was 60 s.

This time we varied the packet size starting at 64
Bytes, doubling until the MTU of 1500 Bytes was reached.

To measure the latency, the capturing host
(bitcoingold) ran this command:

/root/moongen/build/MoonGen
/root/code/sniffer.lua 1 0
-t 300 --seq-offset 42

This script captures and timestamps the packets on
interface ports 1 and 0 and records their times-
tamps and identifiers in the latencies-pre.mscap
and latencies-post.mscap respectively. The runtime
-t 300 is set to 300 s, much longer than the packet
generation time of 60 s. But the script is killed once

Seminar IITM SS 24 63 doi: 10.2313/NET-2024-09-1_11

50 55 60 65 70 75 80 85
0

2

4

6

8

10

Packet Size

A
ve
ra
ge

T
h
ro
u
gh

p
u
t
[G

b
it
/
s]

uio rx
uio tx
vfio rx
vfio tx

Figure 3: Throughput

the pos framework detects that the packet generator has
stopped running. The --seq-offset option specifies the
offset of the identifier from the start of the Ethernet frame.
We calculated this with the Ethernet header being 14
Bytes, the IPv4 header being 20 Bytes and the UDP header
being 8 Bytes: 14 + 20 + 8 = 42

Afterwards, we processed these records to generate
histogram data:

/root/moongen/build/MoonGen
/root/moongen/examples/

moonsniff/post-processing.lua
-i latencies-pre.mscap -s latencies-post.mscap

This generates the hist.csv, which pairs latencies in
nanoseconds with their occurrence count.

6. Evaluation

The results show that the average performance impact
is not as significant as we expected.

6.1. Throughput

Figure 3 shows the average ingress and egress through-
put of both driver variants. However, all variants are
similar enough such that no difference is visible.

For sizes 48 B to 64 B, the throughput is constant but
slightly lower than the capacity of the NIC. It increases
from 64 B to 80 B where it reaches the full 10 Gbit/s.

The lower throughput for packet sizes below 80 B
can be explained by the packetized structure of the PCIe
protocol [1]. For smaller network packet sizes the size of
the PCIe level packets are dominated by the PCIe packet
headers. Therefore, less data is transmitted while the PCIe
bus bandwidth is used up.

For packet sizes below 64 B our theory is that the
hardware pads the size up to 64 B because this is the
minimum Ethernet frame size.

6.2. Latency

The latency’s percentiles below 99 show very little
variation as show in Figure 4. We notice a slight linear
increase of the latency for increasing packet sizes.

If we look at the higher percentiles shown in Figure 5,
significant differences between the drivers become visible.
This means that something has an effect on a few packets
and this effect differs for the drivers.

We theorize that the TLB does not get completely
filled up and that only the first packet of the corresponding

200 400 600 800 1,000 1,200 1,400
0

1

2

3

4

5

6

Packet Size

L
a
te
n
cy

[µ
s]

vfio 99%ile

uio 99%ile

vfio 50%ile

uio 50%ile

vfio 1%ile

uio 1%ile

Figure 4: Latency middle percentiles

200 400 600 800 1,000 1,200 1,400
0

200
400
600
800

1,000
1,200
1,400
1,600

Packet Size

L
at
en
cy

[µ
s]

vfio 100%ile

vfio 99.999%ile

vfio 99.99%ile

vfio 99.9%ile

vfio 50%ile

uio 100%ile

uio 99.999%ile

uio 99.99%ile

uio 99.9%ile

uio 50%ile

Figure 5: Latency upper percentiles

page causes a page walk to happen. This explains how
only a few packets (the packets causing a page walk) do
have a measurable difference.

This result differs from those of Neugebauer et al.
[1] because they allocated DMA buffers linearly, while
we used MoonGen’s allocations which reuse buffers. A
linear allocation strategy covers a wider range of memory
addresses and uses more memory pages. Because fewer
memory pages are used this results in the TLB not filling
up.

Furthermore, we were forced to use hugepages, which
increases the page size from 4 KiB to 2 MiB. Not only
does this reduce the page count per memory used, it also
increases the size of the page tables. This significantly
reduces how often a full page walk has to be executed.

7. Conclusion

This paper answers whether the IOMMU does have
a performance impact if used with DPDK. We show that
the vfio-pci driver for DPDK and its use of the IOMMU
do not have a significant performance impact for regular
memory access patterns. Only the first few accesses show
increased access time. Further accesses of cached pages
show no measurable delay if accessed via an IOMMU.

VFIO drivers do not come at a performance cost. That
is why we believe that the use of them will make systems
more reliable and virtual machines more efficient securely
without compromise.

References

[1] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-
Buedo, and A. W. Moore, “Understanding pcie performance for
end host networking,” in Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 327–341. [Online]. Available:
https://doi.org/10.1145/3230543.3230560

[2] H. Zhu, Data Plane Development Kit (DPDK): A Software Op-
timization Guide to the User Space-Based Network Applications.
CRC Press, 2020.

Seminar IITM SS 24 64 doi: 10.2313/NET-2024-09-1_11

[3] “About dpdk,” 2024, accessed 15. June 2024. [Online]. Available:
https://www.dpdk.org/about/

[4] O. Peleg, A. Morrison, B. Serebrin, and D. Tsafrir, “Utilizing the
IOMMU scalably,” in 2015 USENIX Annual Technical Conference
(USENIX ATC 15). Santa Clara, CA: USENIX Association, Jul.
2015, pp. 549–562. [Online]. Available: https://www.usenix.org/
conference/atc15/technical-session/presentation/peleg

[5] R. Jithin and P. Chandran, “Virtual machine isolation,” in Recent
Trends in Computer Networks and Distributed Systems Security,
G. Martínez Pérez, S. M. Thampi, R. Ko, and L. Shu, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 91–102.

[6] Intel Virtualization Technology for Directed I/O Architecture Spec-
ification, 4th ed., Intel Corporation, June 2022.

[7] J. Corbet, “Uio: user-space drivers,” LWN.net, 2007, accessed
16. June 2024. [Online]. Available: https://lwn.net/Articles/232575/

[8] ——, “Safe device assignment with vfio,” LWN.net, 2012, accessed
12. June 2024. [Online]. Available: https://lwn.net/Articles/474088/

[9] The Linux Kernel documentation / VFIO - “Virtual Function
I/O”, 2024, accessed 16. June 2024. [Online]. Available:
https://docs.kernel.org/driver-api/vfio.html

[10] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The pos
framework: a methodology and toolchain for reproducible network
experiments,” in Proceedings of the 17th International Conference
on Emerging Networking EXperiments and Technologies, ser.
CoNEXT ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 259–266. [Online]. Available: https://doi.org/
10.1145/3485983.3494841

[11] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and
G. Carle, “MoonGen: A Scriptable High-Speed Packet Generator,”
in Internet Measurement Conference 2015 (IMC’15), Tokyo, Japan,
Oct. 2015.

[12] DPDK documentation / Linux Drivers, 2024, accessed 12.
June 2024. [Online]. Available: https://doc.dpdk.org/guides-24.03/
linux_gsg/linux_drivers.html

Seminar IITM SS 24 65 doi: 10.2313/NET-2024-09-1_11

