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Abstract—Blockchain technology has seen the emergence of
new cryptocurrencies that use smart contracts. A smart
contract is a self-executing code that, when deployed, is
compiled into lower-level bytecode, which is usually more
complex to grasp from a human perspective than high-level
language. This complexity can hide several errors or vulnera-
bilities, potentially leading to stolen assets and undermining
the network’s stability. Consequently, there is a need for
tools and decompilers to reverse engineer the process, gain
an understanding of their logic, and enhance their security.
With this paper, we seek to understand and compare various
techniques for enhancing smart contract transparency on
the major Blockchains of Ethereum, Algorand, and Dfin-
ity’s Internet Computer. We collect recent literature mainly
focused on smart contract deployment, decompilation, and
analysis tools. These tools and their approaches are examined
and evaluated based on the transparency level they pro-
vide. Subsequently, we conclude that Ethereum has the best
decompilation support, positioning it as a trustworthy and
transparent Blockchain to build decentralized applications.

Index Terms—Smart Contracts, Ethereum, Algorand, Dfin-
ity, Decompilation, Reverse Engineering

1. Introduction

Blockchain has gained significant popularity over the
last few years, and even financial institutions are adopting
it for their transactions [1]. Several Peer-to-Peer systems,
such as Ethereum (introduced in Subsection 3.1), support
smart contracts [2] that act as trustworthy, self-executing
middlemen. Ethereum compiles the smart contract’s high-
level code into less readable bytecode to be processed by
the distributed network. This procedure complicates the
possibilities of error and vulnerability detection.

One of the significant factors that intensified the scien-
tific community’s interest in smart contracts decompilation
was the "DAO Attack" [3]. This happened in 2016 due
to a vulnerability in smart contract code; an attacker
succeeded in controlling around 60 million US dollars
worth of Blockchain tokens, called Ether, on Ethereum.
Researchers have since started focusing more on meth-
ods that analyze, debug, and potentially decompile the
bytecode to understand the vulnerabilities and prevent the
recurrence of such attacks.

Our goal in this paper is to examine the efforts de-
ployed in reverse engineering the process of smart con-
tracts on Ethereum, Algorand, and Dfinity’s Internet Com-

puter, aiming to provide an overview of the effectiveness
and usability of these tools.

1.1. Blockchain

Blockchain [4] was unveiled to the world in 2009
with the introduction of Bitcoin [5]. It was presented as
a tool enabling decentralized, immutable, and transparent
digital transactions. However, these properties may vary
depending on the type of Blockchain. We differentiate
three types of Blockchains [6]: Public, private, and hybrid
Blockchain. In this paper, our work mainly focuses on
public Blockchains. This type of Blockchain is an open,
distributed ledger system that is available to everyone.

Decentralized systems, such as Blockchain, are de-
signed to eliminate the need for a central authority to
monitor the network traffic and approve transactions.
These tasks are performed by network users, also known
as nodes. The immutability property of this architecture
means that all data recorded on the public ledger can
no longer be modified after the approval of the network
nodes [7]. This property is ensured thanks to "a consensus
mechanism, cryptography, and back-referencing blocks."
The transparency of this technology stems from the fact
that all transactions on the Blockchain are recorded on a
public ledger. These actions are visible and verifiable by
all participants [4].

1.2. Smart contracts

Nick Szabo [8] introduced the term smart contract and
presented it as "a set of promises, specified in digital form,
including protocols within which the parties perform on
these promises." [9].

Nowadays, smart contracts use Blockchains as their
underlying platform [10]. After agreeing on the contract
details, these are translated into computer code that can be
executed automatically. To replicate the decision-making
process, smart contracts usually rely on programming
structures, such as "if-else statements," and every action
taken is recorded on the ledger and cannot be changed.
A penalty can also be predetermined if a contract’s party
does not honor the agreement. This penalty is automati-
cally subtracted from the violator’s deposit.

A smart contract life cycle [10] starts from writ-
ten code in a programming language supported by the
Blockchain. This code is compiled and stored in the
network; henceforth, it cannot be altered. Additionally,
the funds of participating members are frozen in their
digital wallets. The execution of smart contracts is similar
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to buying from a vending machine [11]. In contrast to
buying from a supermarket, where you need to interact
with a cashier, the process of purchasing from a machine
is fully automated; The buyer throws in enough coins,
presses the button, and gets the product. The final step
involves unlocking parties’ funds and updating the states
of all contract parties.

Since our main focus is reverse engineering smart
contracts, presenting the procedure and the challenges en-
countered is important to our transparency study process.
A decompiler’s job is to convert bytecode back into its
source code format. This protocol [12] generally unfolds
as follows: Firstly, the tool tries to decode the binary files
of the contract and converts them into a stream of in-
structions and other important data. This phase is prone to
errors due to various language version compatibility issues
with binary file formats. The instruction streams generated
in the previous step are transformed into assembly code.
This is particularly challenging as it is hard to differentiate
between program code and data. Assembly programs are
then developed into various Intermediate Representation
(IR) forms, from abstract syntax trees to control-flow
graphs. Without control structures, this process is com-
plex. Finally, the process is concluded by generating high-
level code from the previous IRs. The reconstruction is a
challenging procedure in Ethereum, for example, due to
the absence of identifiers (variable names and types).

In this survey, we study the decompilation and analysis
processes of various tools and evaluate their effectiveness.

2. Related work

Numerous studies have covered this topic but usually
target only one Blockchain. For instance, Liu et al. [12]
conducted an empirical study of Ethereum’s smart contract
decompilers, gathering the insights and challenges of the
major tools present on the market in one paper. On Algo-
rand, the research mainly focused on formal verification
and analysis tools. Notable contributions include the work
by Bartoletti et al. [13] and analysis tool Panda [14].
On the other hand, efforts on Dfinity’s Internet Computer
for smart contract decompilation were relatively limited,
with the primary focus on WebAssembly (discussed in
Subsection 3.3) decompilation efforts made by Dfinity
[15] and Google [16] to debug and analyze the low-level
language code. In this paper, we aim to bridge these gaps
by providing a comprehensive overview of smart contract
transparency across these various ecosystems.

3. Representative Blockchains

The following sections present a detailed overview
of each ecosystem focusing on how they manage and
implement smart contracts.

3.1. Ethereum

Buterin [17] introduced Ethereum in 2013 as an "al-
ternative protocol for building decentralized applications,"
it has since fulfilled its promise, developing into one of
the major platforms in the Blockchain space. Ethereum’s
Blockchain technology goes beyond financial transactions;

it has several real-life applications such as insurance,
saving wallets, or even cloud computing.

Ethereum’s differs from the Bitcoin Blockchain by in-
tegrating a Turing-complete high-level programming lan-
guage, Solidity. A Turing-complete [18] language is a
programming language capable of creating and computing
any wanted program. Additionally, a run-time environ-
ment that supports smart contracts [19], called Ethereum
Virtual Machine (EVM) was implemented. It executes
smart contract’s bytecode, also known as EVM Byte-
code. These tools allow users to directly interact with
the Blockchain by creating their own smart contracts and
decentralized applications (dApps) for different purposes
beyond just currency exchange. As a result of Solidity’s
properties, the network members are able to perform
any computable function within the Ethereum ecosystem.
However, the execution is not free of charge; it is influ-
enced by the "gas" cost, which is merely the price of
computational efforts on the Blockchain [17].

3.2. Algorand

First presented in 2017 as a low latency and highly
scalable cryptocurrency, Algorand [20] uses a Pure Proof
of Stake [21] consensus mechanism. To ensure security,
this mechanism applies various techniques based on the
Byzantine Agreement protocol (BA*). It creates groups of
nodes called "committees" that approve the transactions.
BA* ensures that 2/3 of the weighted users in the commit-
tee are honest. The same protocol applies cryptographic
sortition to privately choose committee members, hence
protecting them from targeted attacks. The random sor-
tition process is guaranteed by the so-called "Verifiable
Random Function" (VRF), a random number generator
that expresses, among others, the probability of the user
being part of the committee. Moreover, Algorand’s Byzan-
tine Agreement allows committee members to contribute
once, and then they are generally replaced. This prevents
members from being deliberately targeted by attackers and
jeopardizing the consensus. This protocol is designed to
reach consensus on transactions securely. One of Algo-
rand’s main features is its low-level bytecode-based stack
language, the Transaction Execution Approval Language
(TEAL) [22]. Introduced as a non-Turing-complete pro-
gramming language, this property helps reduce the risk
of attacks [13]. However, Python provides a high-level
language alternative. "Pyteal" is specially tailored to write
smart contracts on Algorand. TEAL is executed as a script
and returns a boolean that either approves or rejects the
transaction. An important additional feature of Algorand
is its Virtual Machine (AVM) [14], capable of executing
the bytecode resulting from compiled TEAL code.

Smart contracts in Algorand are categorized into sin-
gle State and Algogeneous contracts [22]. Single State
contracts can be used for various purposes such as trans-
actions and creating applications. Such smart contracts can
be Stateless or Stateful and they have distinct functions.
Stateless smart contracts are primarily used for transac-
tion validation. They approve and deny transactions and
can also serve as "signature delegators". On the other
hand, stateful smart contracts are mostly used to store
and manage data on the Blockchain. Both smart contract
types could be combined to produce complex applications.
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Algogenous contracts represent a more advanced type of
smart contracts. They comprise the functionalities of both
Stateless and Stateful contracts. This design allows it to
do multiple tasks, combining validation and verification.

3.3. Dfinity’s Internet Computer

Dfinity’s Internet Computer [23] represents a relatively
new member of the Blockchain family. The particularity
of this Blockchain is its use of a hybrid model, named
DAO-controlled network, which is a consensus mecha-
nism based on subnets that use a permissioned consensus
mechanism. These subnets are chosen by the network
nervous system (NNS) to manage the network functions.
This step is similar to PoS, as the members of the network
stake tokens to vote for the entities that create "replicas"
and perform other tasks. These replicas are stored on
distributed servers to ensure their security. On the Internet
Computer, smart contracts are written in a high-level
language, such as Rust [24] or Motoko, a Dfinity-tailored
language that aligns with IC’s semantics. The written
high-level code is then compiled down to WebAssembly
(Wasm), a binary instruction format that provides a way to
run code on the web. After the compilation, the program
is then deployed on the Blockchain in a Canister [23].
A Canister is similar to the concept of a "process" in
traditional computing, they are coded in Wasm and consist
of a program and its state. Canisters run autonomously on
the Internet Computer and interact with each other through
an interface called Candid.

4. Smart Contract Transparency

The methodologies applied for the transparency anal-
ysis differ from one Blockchain platform to another. The
following subsections handle the specifics of smart con-
tracts transparency approaches used by major platforms.

4.1. Smart Contracts decompilation on Ethereum

Writing smart contracts directly in EVM bytecode, an
assembly-like language [25], is an intricate operation and
rather prone to errors. Therefore, Ethereum supports var-
ious high-level programming languages besides Solidity
to implement smart contracts, such as Vyper [26]. The
compilation process from high-level to EVM bytecode
occurs before deploying to the network. A smart contract’s
bytecode comprises three parts [12]: a deployment code is
responsible for deploying smart contracts on Ethereum. It
is put to execution as soon as it is created. It also checks
if the function can receive Ether payments. Runtime Code
defines the contract’s functionality on the Blockchain.
Auxiliary data contains a hash value linked to the metadata
of the deployed contract and can be used for verification.

Having established the fundamental challenges of
smart contract decompilation in Subsection 1.2, we will
now focus on the approaches and solutions adopted by
decompilers to tackle these issues.

The EVM uses 256-bit pseudo-registers containing
160-bit addresses called "accounts" to identify them.
EVM’s pseudo-registers fundamentally operate as a stack,
which facilitates passing parameters to perform various

operations [27]. This observation is exploited by Porosity
[27] to extract the addresses from the bytecode using bit-
masks to isolate the 160-bit address from the 256-bit EVM
pseudo-registers. Gigahorse [28] addresses the issues of
disassembly and intermediate representation by applying
"Context-sensitivity" that considers varying states and
conditions available at each step of the program. Basically,
heuristics are used to determine the program control-flows.
Elipmoc [29], a decompiler based on Gigahorse, uses the
same principle but creates IRs using only stack locations
that might contain jump targets. Using this technique,
Elipmoc claims a 99,5% success rate in fully decompiling
Smart Contracts. A better ratio than Gigarhorse’s 62,8%
decompilation rate.

4.2. Smart Contracts Transparency on Algorand

Although significant efforts have been deployed to-
ward smart contract decompilation on Algorand, fully de-
compiled smart contracts are still not the standard. Other
approaches and methodologies are frequently employed.

Stateless Smart Contracts on Algorand or ASC1 [13],
are programmed using non-Turing-complete language to
reduce vulnerability risks. However, there are still poten-
tial threats without a formalized mathematical model that
ensures the contract’s accuracy and security. Bartoletti et
al. [13] decided to create a formal model that defines the
behavior of Algorand accounts, transactions, and smart
contracts using a state machine that acts to fundamentally
understand their functioning and experiment on them. An
attacker model was also developed to simulate attacks on
their formal smart contract model. This model can po-
tentially be a valuable tool for debugging and identifying
security flaws and susceptible points of attack.

Panda [14], a security analysis tool of Algorand smart
contract, has an architecture composed of several com-
ponents. The main components we are interested in are:
(1) The user interface for user input and settings, (2) a
Blockchain Explorer that fetches the TEAL bytecode from
the contract and disassembles it, (3) a control-flow graph
(CFG) Builder generates graphs from TEAL programs,
and (4) a symbolic executor analyzes these CFGs and pro-
cesses each command symbolically. Moreover, detection
rules are defined to address any already known vulnera-
bilities. Sun et al. [14] have reported several security con-
cerns on Algorand. They were later categorized into five
key groups. Three of these categories affect application
operations, while the remaining two are vulnerabilities in
smart signatures (also known as stateless smart contracts).
We examine the vulnerabilities related to stateless smart
contracts.

The first refers to an "Unchecked Transaction Fee."
This vulnerability is generally caused by transaction fees
that are not properly restricted. This allows an attacker to
set high transaction fees and deplete the account’s funds.

The second weakness was called ’Unchecked Trans-
action Parameters.’ This describes vulnerabilities arising
from inadequate verification of transaction parameters.
One of the function arguments in the transaction code sets
the authorized address for future exchanges. An attacker
can gain access to the signature account by modifying
this field. Another important parameter directs where the
remaining balance of an account should go when the
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transaction is closed. The attacker can drain all the Algos
(Algorand’s native currency) from the signature account
by setting this parameter to their address.

4.3. Smart Contracts transparency on Dfinity’s
Internet Computer

To have an overview of the transparency efforts of
smart contracts on the Internet Computer, one needs to
look at the IC’s Wasm Libraries and the key tools provided
and developed by Dfinity, especially for Canisters. The
ic_wasm library (v0.7.1) [15] includes an experimental
feature that instruments Canisters, which can help debug
and analyze their code. For instance, the instrumented
Canister can provide additional endpoints to access the
execution trace log and the current cycle counter. Further-
more, certain flags can also be added to trace logging of
a specific function during its execution. Google on the
other hand has developed a toolkit to debug and analyze
WebAssembly code, namely The WebAssembly Binary
Toolkit (WABT) [16]. This repository contains several
helpful tools, for instance, wat2wasm and wasm2wat
convert between WebAssembly text and binary formats.
Furthermore, wasm-objdump generates an objdump pro-
viding a general overview of the code structure. Addition-
ally, this toolkit contains a Wasm stack-based interpreter
that executes binary files. Another significant tool is a
Wasm decompiler that converts a Wasm binary file into
an intelligible C-like syntax, providing readable partial
decompilation. Although WABT is not directly associated
with Dfinity’s Internet Computer, it still has potential
general application to a wide range of wasm-written code.
However, this toolkit’s capabilities might eventually be
less effective in some IC-specific cases.

5. Discussion

In Section 4, we explore the methodologies and ap-
proaches used to fully decompile smart contracts or an-
alyze them through other methods, such as debugging.
Given that each discussed platform differs by its funda-
mental architecture, consensus mechanism, smart contract
deployment, publication date, and development phase, a
direct comparison might not provide equitable insights.
Therefore, we perform a case-by-case analysis to better
understand the state of smart contract’s transparency on
each ecosystem independently.

Ethereum has the most advanced development phase
compared to the other platforms, with functional smart
contracts decompilers and relatively high success rates.
Although each decompiler claims to have one of the best
correct decompilation ratios, these percentages generally
depend on the used dataset and smart contract types. Con-
sequently, we will refer in our analysis to the work of Liu
et al. [12] as the main source of data. This recent empirical
study tests with the same dataset on major decompilers
and rates their execution based on mathematical formulas.

When applying decompilers on normal datasets with
the compiler optimizations turned on, Gigahorse [28],
Vandal [30], and Ethervm [31] had success rates all
above 99.70%. Whereas Panoramix [32] succeded 98,14%
of the time, leaving Erays [33] with the least success

rate of 63,92%. Another test on a dataset of buggy
contracts yielded a 100% decompilation rate for Giga-
horse and EtherVM. Vandal had one failed decompilation,
Panoramix encountered 21 failures, and Erays could not
decompile 359 buggy contracts.

These results indicate that smart contract decompilers
on Ethereum have achieved significant milestones. How-
ever, there is still room for improvement, especially with
the accuracy and completeness of the decompilation.

Algorand’s Panda and the formal model offered im-
portant insights to address the transparency problem in
smart contracts, but their approaches are limited. Panda,
for instance, can be helpful when detecting vulnerabilities,
but the symbolic executor cannot process a certain type
of opcode. Additionally, there are some challenges when
identifying the Validator when the smart signature uses
implicit invoking. The formal model, on the other hand,
provides a theoretical approach to understanding smart
contracts. This might not be suited for practical evaluation
since it does not capture every behavior of the Algorand
implementation in real life and mainly focuses on stateless
smart contracts.

On IC, using the instrumentation feature of ’ic_wasm’
could be a tool for understanding smart contracts. Al-
though valuable for bug identification, it lacks the re-
quired transparency to fully comprehend the logic of the
contract. WABT, however, presents significant means for
Wasm analysis and debugging. The tools offered can even
partially decompile code. However, this toolkit is more
of a general debug and analysis tool and not IC-specific,
therefore, its ability to address certain tasks from the
Internet Computer might be limited.

Table 1 summarizes the available tools for smart con-
tract decompilation and transparency across the different
ecosystems, based on the papers mentioned in this survey:

TABLE 1: Availability of Smart Contract Transparency
tools across Blockchains

Platform Debug Analysis Par. Dec1 Full Dec2

Ethereum ✓ ✓ ✓ ✓
Dfinity ✓ ✓ ∼3 ×

Algorand ✓ ✓ × ×

1. Partial Decompilation
2. Full Decompilation
3. Not enough data available to make a statement

Table 1, shows a complete set of tools available for
Ethereum, ranging from debugging to full decompilation.
While Algorand only has debugging and analysis tools,
Dfinity offers additionally a potential partial decompiler as
well as debugging and analysis transparency instruments.
The key factors responsible for these disparities differ
from one ecosystem to another. Ethereum for instance,
is a more mature and established Blockchain. It has ex-
perienced rapid growth in popularity, and its applications,
Decentralized Finance (DeFi), for example, have reached
200 billion US dollars in 2021 [34]. Indicating significant
transaction traffic and enough data for scientists to work
on. Algorand [22] and Dfinity’s Internet Computer [23],
on the other hand, are still relatively new. But Dfinity has
an advantage since its high-level code is compiled into
WebAssembly. A widely utilized programming language
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with various applications [35], in contrast to TEAL which
is exclusively used on Algorand.

6. Conclusion and future work

In this paper, we analyze and compare multiple ap-
proaches to achieve smart contract transparency. These
techniques range from decompiling to analysis and debug-
ging. Their applicability depends on the Blockchain itself;
for instance, in Algorand, only debugging and analysis
tools were available. Dfinity’s Internet Computer intro-
duced, additionally to analysis and debug tools, a potential
partial decompiler. On the other hand, smart contracts
were successfully fully decompiled on Ethereum. The
high transparency level of smart contract decompilation
on Ethereum makes the platform more attractive for users
and developers to create secure and optimized applications
in a trustworthy and secure environment.

Future work could look into integrating machine learn-
ing for vulnerability detection and decompilation of smart
contracts. Sendner et al. [36], and Gioka et al. [37] have al-
ready initiated research efforts towards this topic. Improv-
ing the decompilation and analysis tools will help antici-
pate potential risks and attacks, rendering the Blockchain
a more secure platform for developing decentralized ap-
plications.
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