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Abstract—Due to the reduced cost and increased flexibil-
ity, Network Function Virtualization (NFV) is a lucrative
alternative for middleboxes compared to dedicated hard-
ware. However, current NFV implementations are mostly
VM-based despite the current trend toward containers for
software deployments in the industry.

This paper analyzes the current state of research on
container-based NFV for middleboxes. We identify several
issues that will need to be solved for widespread deployment,
especially for low-latency applications. Finally, we discuss for
which service level requirements container-based NFV might
be viable for middleboxes.

Index Terms—containers, nfv, cnf, middleboxes

1. Introduction

In recent years, Network Function Virtualization
(NFV) has become a hot topic both in research and the
industry. It promises to replace expensive dedicated hard-
ware for specific network functionality with inexpensive
off-the-shelf server hardware that provides these functions
using software in virtual machines or containers. Espe-
cially for middleboxes, this presents the advantages of
increased flexibility, scalability, updateability, and main-
tainability. So far, most implementations are based on
system virtual machines.

At the same time, more and more software develop-
ers have started deploying their products in containers.
Containers are a lightweight alternative to full-system
virtual machines, which come with little overhead com-
pared to bare-metal installations while providing a degree
of isolation that is only slightly below virtual machines.
Combined with automated container orchestration soft-
ware such as Kubernetes1, they offer automated scaling
depending on the load and automated failover should one
container fail. Finally, because these containers all run
on a single kernel, no static resource allocation, such as
CPU pinning, is necessary for containers, which allows
for overprovisioning of resources, i.e., for more services
per machine as long as the combined load of all services
remains within limits.

While VM-based NFV has proven to be practical,
using containers instead of virtual machines might also be
lucrative for middlebox operators. However, this presents
new challenges, as service level agreements might define
strict limits on metrics like bandwidth, latency, reliability,
and jitter. For example, the 5G ultra-reliable low-latency

1. https://kubernetes.io/

communication (URLLC) service category specifies an
overall round-trip time of at most 1 ms and a reliability
of at least 99.999% [1]. This requires a reevaluation of
the viability and practicability of container-based network
functions—also called Cloud-Native Network Functions
(CNFs)—for middleboxes.

In this paper, we first provide an overview of some
related work on this topic. We then discuss several po-
tential issues, study the current state of research on them,
and analyze the proposed solutions. We also offer potential
approaches for solving some of these issues. Finally, we
conclude with a discussion on whether containers might
be viable for middleboxes.

2. Background
In this section, we define several terms that we will

use throughout this paper.

2.1. Middleboxes

The term “middlebox” refers to all packet process-
ing units that provide functionality beyond basic routing.
Typical examples of middleboxes are firewalls, intrusion
detection and prevention systems, and Network Address
Translations (NATs).

2.2. Network Function Virtualization

The classical approach to middleboxes was using dedi-
cated hardware for each function. Due to their low-volume
nature, these devices are very costly. Furthermore, they
are inflexible, with no possibility of customizing their
behavior. Additionally, it is often impossible to install
updates; and even if updates are possible, they have to
be provided by the hardware vendor.

NFV solves these problems. It typically comprises
virtual machines running on regular off-the-shelf server
hardware, which can provide the same functionality in
software [2]. These typically only offer simple functions
and are composed together (in a process called “Service
Chaining”) to provide complex functionality.

Apart from solving the aforementioned problems with
dedicated hardware, NFV also offers a few additional
advantages. As the functions are implemented in simple
virtual machines, they can be migrated from one server to
another, e.g., for maintenance. They can also be replicated
to dynamically adjust to increased load or changes in
service level agreements. Finally, multiple Virtual Network
Functions (VNF) can be run per machine, further reducing
the overall hardware cost.
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Figure 1: Comparison between VMs and Containers. Con-
tainers bundle processes and isolate resources such as the
file system at the Host-OS level, thereby removing the
Hypervisor and Guest-OS overhead.

2.3. Containers

Most NFV solutions are currently based on system
virtual machines. Containers are a lightweight alternative;
their architecture is shown in Figure 1. Instead of virtu-
alizing hardware components and resources, they rely on
mechanisms of the underlying operating system’s kernel
to provide an isolated view of system resources. This
results in a more efficient architecture in which neither
a guest operating system nor a hypervisor is required,
but processes exist directly on the host operating system
instead. These are bundled into groups called “containers”
with a common view on resources such as the file system
(and, thereby, system libraries) and network devices. The
container engine (which sets up, monitors, and destroys
the containers) and isolation mechanisms themselves in-
troduce very little overhead [3] and are comparatively
cheap to create and destroy [4].

Due to their architecture, resource allocation for con-
tainers is far simpler than for regular virtual machines.
For example, containers do not generally need to statically
allocate CPUs, memory, or storage [5].

However, the overall attack surface is increased since
all containers operate on a common host operating system.
A vulnerability in the host kernel, such as a privilege
escalation, can be used to compromise the kernel not only
for the malicious container but also for all containers and
services on the system [6].

3. Related Work

Several studies identify hindering factors for commer-
cial deployments of CNFs for middleboxes [7]. This paper
focuses on container-based network functions specifically
and will therefore not discuss the general problems of
NFV for middleboxes.

Some previous work has already identified and dis-
cussed several problems. This section overviews attempts
to develop complete CNF platforms that can be used
for middleboxes. We will later discuss relevant literature
concerning each issue in the relevant sections.
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Figure 2: Architecture of OpenNetVM [8].

In 2016, Zhang et al. [8] presented OpenNetVM2. It
executes the CNFs in separate Docker containers. The
architecture is shown in Figure 2. Packets are exchanged
in a shared memory region to avoid repeatedly copying
packet data. Only the addresses of the packets within
the shared memory region are transferred; the network
functions read and write them in ring buffers and separate
chaining threads on the host forward them from one
network function to the next. Rx- and Tx-Threads transfer
the packets between the shared memory and the Network
Interface Cards (NICs). OpenNetVM uses the Data Plane
Development Kit3 (DPDK), a high-performance userspace
network driver and application framework, for communi-
cation with the NICs.

Zheng et al. [9] implemented MVMP, which extends
OpenNetVM’s architecture by sharing a ring buffer be-
tween chained functions to eliminate the chaining threads.
In their evaluation with a simple forwarding application,
they measure a near-identical throughput to a reference
DPDK application that runs on the host system directly.

Dzeparoska et al. [10] made an effort to develop
CNFs for Cloudify, “an open source cloud orchestration
framework” [11]. As opposed to [8] and [9], their VNFs
exclusively operate in an Software Defined Networking
(SDN) environment based on OpenStack4 and interact
with the network using Linux bridges and virtual ethernet
devices. Dzeparoska et al. [10] compared the latency of
their container-based solution to Cloudify’s existing VM-
based solution and consistently measured a significantly
lower latency for containers.

4. Potential Issues with CNF Middleboxes

In this section, we identify several potential problems
that might hinder the widespread usage of CNFs for
middleboxes and discuss their current state in research.

4.1. Lack of Data for Realistic Scenarios

Plenty of literature exists regarding container-based
network functions and their performance advantages com-
pared to VM-based NFV. Some studies develop and eval-
uate real-world applications with multiple chained VNFs

2. https://sdnfv.github.io/onvm/
3. https://www.dpdk.org/
4. https://www.openstack.org/
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Figure 3: Typical evaluation setup with forwarding func-
tion.

with promising results [12]. However, most of them do
not study realistic middlebox scenarios. For example,
much work focuses on VNFs in SDN that are part of
a control plane, which do not have the same bandwidth
and latency requirements as middlebox VNFs on the data
plane. While some have analyzed the performance of mid-
dlebox applications (such as intrusion detection systems)
in particular, their experiments’ deployment scenarios are
still unrealistic.

In the end, there are several aspects that realistic
experiments should consider:

4.1.1. Insufficient System Load. Many studies on con-
tainer-based network functions analyze their performance
with simple forwarding or acknowledging applications,
shown in Figure 3. While these are great for reducing
noise in the measured data and isolating the performance
overhead of the container environment, they do not pro-
vide realistic scenarios, as resource contention might re-
main an unidentified problem. For example, none of the
studies mentioned in Section 3 use realistic resource-
intensive workloads [8]–[10]. As a result, the true impact
of a high system load on the bandwidth and especially
the latency is still unknown, particularly with high CPU,
memory, and/or I/O bandwidth usage.

This becomes especially problematic for scenarios
with multiple (possibly chained) VNFs per host: In 2023,
Attaoui et al. [13] conducted a study on existing work
regarding the placement of VNFs. In section IV subsec-
tion A specifically, they mention that “containers fight for
the same resources in the system” [13]. Because existing
container engines do not provide enough fairness guaran-
tees for resource distribution, this can result in contentions
on system resources. The authors also explicitly recom-
mend using multiple virtual machines and strategically
distributing VNF containers within those to alleviate the
problem despite the reintroduction of additional virtual-
ization overhead.

4.1.2. “Clean” Traffic. For most publications on CNFs,
the performance evaluation is based on “clean” traffic: the
packets were of constant size, perfectly paced (i.e., spread
equally on the timeline), and had no short bursts. When
handling real-world traffic, the VNFs are expected to
deal with imperfect traffic without significant performance
implications. Yet, the behavior of container-based VNFs
in these scenarios has yet to be analyzed.

4.1.3. Insufficient Data on (Tail) Latencies. Modern
systems can have stringent requirements on (tail) laten-
cies. For example, the 5G URLLC scenario specifies an
overall end-to-end round-trip time limit of as little as
1 ms [1]. Combined with the high-reliability requirement
of 99.999% [1], this imposes significant challenges for
VNFs on the 5G URLLC data plane.

All publications mentioned in Section 3 do not an-
alyze latency at high-percentile tails. Additionally, most
publications on CNFs only analyze the average latency, if
they analyze the latency at all.

Only a few publications directly address very low
tail latency requirements. Gallenmüller et al. [14], [15]
analyzed the difficulties in archiving low high-percentile
tail latencies for bare-metal network functions on Linux.
Gallenmüller et al. [16] also successfully reduced the
latency of a real-world application (in particular, the in-
trusion prevention system Snort 35) significantly. While
their work proves that Linux can generally be a suitable
platform for low-latency network functions, several de-
ployment obstacles must be overcome. Most notably, a
specific realtime-optimized Linux kernel with several ker-
nel parameters and CPU pinning (i.e., reserving a specific
CPU core and restricting a task to it) is required.

Wiedner et al. [17] extended this work to containers
and proved that CNFs are generally a viable option for
very low (tail) latency applications. Wiedner et al. [18]
also analyzed the impact of cgroups v2 (a fundamen-
tal building block for Linux containers responsible for
resource isolation) on tail latencies in container-based
VNFs. However, these publications also only evaluate with
a single forwarding network function.

In summary, while it has been shown that very low
tail latencies are possible in principle, practical container
network function implementations for these scenarios have
yet to be developed.

4.1.4. Container Interferences. Multiple container-based
VNFs on a single host might interfere with each other. For
example, as previously mentioned, containers fighting for
a common set of resources can decrease performance [13].
The effects of these interferences have yet to be analyzed.

One potential problem stems from synchronization.
Since most experiments only use simple forwarding func-
tions for evaluation, the impact of thread synchronization
is never measured. However, since all threads operate on
the host kernel directly (c.f. Figure 1), all thread synchro-
nization is centered on it. This may have implications on
the (tail) latency for middlebox VNFs that extensively use
thread synchronization, e.g., for concurrent accesses on
data structures.

A similar problem arises from in-kernel contention.
In VM-based NFV, many kernel tasks, such as memory
management, are distributed across all VNFs. In contrast,
for container-based network functions, it is plausible that
in-kernel contention (e.g., on the memory allocator or
scheduler) could further increase the (tail) latencies.

Finally, TLB shootdowns cause latency spikes [14],
[15], [19]. Each core has an independent Translation
Lookaside Buffer (TLB), which effectively caches address

5. https://www.snort.org/snort3
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translations. Since the CPU does not enforce TLB consis-
tency, modifications or invalidations of address mappings
are not immediately visible to all cores. Therefore, the
issuing processor must send a so-called TLB shootdown—
a broadcasted Inter Processor Interrupt (IPI) that disrupts
all other CPUs’ execution in order to flush all TLBs.
On VM-based NFV, these TLB shootdowns are restricted
within the guest operating system and the virtual machine;
in contrast, on container-based network functions, they are
broadcasted to all cores and thereby disrupt all VNFs.

4.2. Resource Contention from Overprovisioning

VM-based NFV naturally does not suffer from re-
source contention due to static resource allocation; since
the hypervisor typically assigns each VM a (mainly) static
share of CPUs, memory, and I/O devices, different VNFs
are independent regarding resource distribution. However,
one of the major advantages of containers is that static
resource allocation similar to VMs is not necessary—the
host operating system allocates the individual resources
on demand. But this can cause resource contention in
container-based network functions with a significant per-
formance impact [13]. Additionally, Wiedner et al. [17]
and Gallenmüller et al. [14], [15] have shown that CPU
pinning is essential for low tail latencies.

This is directly at odds with another expectation on
containers: the ability to overprovision the system re-
sources such as CPU time and memory. In this context,
overprovisioning means creating more containers than the
system resources allow under full load. In other words, if
all containers were to use all of their available resources
simultaneously, the operating system would not be able to
fulfill the requirements of all containers. This can make
sense for containers as it is rare that all containers simulta-
neously require all resources and because it is possible to
migrate and thereby offload VNFs to other hosts in cases
of high resource pressure [5].

Additionally, resource overprovisioning is essential for
self-healing container replication as implemented in Ku-
bernetes, for example. Spawning multiple instances of the
same VNF not only allows for dynamic scaling based on
load but also allows the orchestrator to spawn fallback
containers that do not yet accept any work but are ready
to take over at any point should another active container
fail. Such backup containers are idle for most of their
lifetime and would thereby waste resources under static
resource allocation.

In the end, there is a lack of an analysis of the impli-
cations of resource overprovisioning beyond the studies
that reveal general problems with resource contentions in
CNFs. However, data on this matter would be critical since
software developers should be able to decide whether
static resource allocation is unavoidable under a given set
of service level requirements.

4.3. Latency Spikes at CPU Migration

CPU migration (i.e., the kernel moving a task from one
core to another) needs to temporarily stop the execution
of the VNF, which causes a latency spike. The new core
also does not have the data ready in its caches, further

negatively impacting performance. For this reason, Gal-
lenmüller et al. [14], [15] recommend isolating the con-
tainer threads to a single core. However, this effectively
results in static resource distribution for CPU cores, as this
core is now reserved for this single thread, which hinders
overprovisioning. As a result, newer approaches to thread
migration are necessary for low-latency applications.

We propose that this problem is solvable. Instead of
leaving the migration to the kernel’s dispatcher, CPU core
migration should only be done by replacing the application
thread. In other words, the application should spawn a
new worker thread on the new core, request the existing
threads to stop accepting packets, and finally terminate the
previous threads.

Of course, this approach also has drawbacks. The new
application has not yet established its memory working
set, so the caches are not filled with relevant data. Simi-
larly, on NUMA systems, moving the relevant data from
one node to the other might be necessary, which is difficult
considering that the thread on the previous node might
still actively use this data. Additionally, creating processes
and threads involves TLB shootdowns on all cores, which
could result in latency spikes in other independent VNFs.
Finally, this approach requires both the old and new cores
to be allocatable at the same time. As a result, if a system
wants to remain able to move a thread from one core to
another, it always needs to keep a spare core unoccupied.

In the end, this problem will need to be addressed by
future work.

4.4. Service Chaining

Depending on the service level requirements, differ-
ent approaches to service chaining might be necessary.
Most research on service chaining of CNFs focuses on
throughput [20], with some measuring the average latency
as well [21].

If the overall end-to-end latency of the complete chain
is not critical, regular approaches using default Linux
networking mechanisms such as bridges and virtual eth-
ernet (veth) devices [20] or SDN mechanisms such as
Open vSwitch6 might be sufficient [10], [21] and poten-
tially preferable due to their simplicity and flexibility. On
the other hand, if high throughput and low (tail) latency
are essential, more sophisticated approaches based on
shared memory might be necessary [8], [9]. The current
approaches could probably still be optimized by further
reducing the amount of threads touching the packets,
e.g., by placing NICs into the container directly using
Single Root I/O-Virtualization (SR-IOV), which could, for
,example eliminate the dedicated Rx- and Tx-Threads in
OpenNetVM and thereby potentially lead to improved
cache locality. Additionally, the existing approaches are
still comparatively inflexible.

5. Conclusion

There is no scientific consensus on whether CNF-
based middleboxes are viable. While several papers suc-
cessfully implemented CNFs [8]–[10], others are more

6. https://www.openvswitch.org/
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skeptical and actively encourage the use of VMs in-
stead [13], [16]. We showed that there are several aspects
in which we lack sufficient data to come to a conclusive
answer. In particular, the behavior with real-world applica-
tions and data, tail latencies in realistic scenarios, and in-
terferences of concurrent CNFs are still largely unknown.
We also demonstrated that resource overprovisioning can
cause resource contention and that a VNF CPU migration
could result in latency spikes, for which we proposed
a new approach to reduce the impact. Finally, we also
showed that while service chaining for CNFs has been
explored, we believe there to be room for improvement.

Ultimately, we also conclude that the suitability of
CNFs for middleboxes heavily depends on the service
level requirements. Assuming that the security benefits
of virtual machines over containers are negligible for
the use case, if only high bandwidth and efficiency are
required, CNFs are well-tested and a good choice. If a low
average latency is specified, container-based middlebox
VNFs could still be viable. However, if very low tail
latencies should be guaranteed, several pitfalls remain.
Nevertheless, we believe that all of the aforementioned
problems can be solved, even though much future work
is still required.
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