B.A.T.M.A.N Unpacked: A Guide to the Protocol’s Fundamental Concepts

José Afonso Gastaldi de Aradjo Teixeira, Leander Seidlitz*
*Chair of Network Architectures and Services
School of Computation, Information and Technology, Technical University of Munich, Germany
Email: joseafonsogat@ gmail.com, seidlitz@net.in.tum.de

Abstract—B.A.T.M.A.N is a routing protocol designed for
ad-hoc mesh networks. Throughout its development, various
versions of the core algorithm were released that addressed
issues of previous ones. This paper explains the core ideas
behind the B.A.T.M.A.N protocol and highlights the differ-
ences between its different versions.

Index Terms—B.A.T.M.A.N, ad-hoc mesh networks
1. Introduction

Mobile ad hoc networks are often used as a replace-
ment for traditional structured wireless networks where
a client has to communicate directly to an access point
that alone holds all the routing knowledge. In a mobile
ad hoc network, each device (usually called a node) that
is part of the network follows a protocol that allows it to
relay information (packets/frames) to its local-link neigh-
bours, which comprise all nodes that are close enough for
direct communication. This creates a path across various
nodes that ultimately allows two mutually distant nodes
to communicate.

This type of network was first developed for military
applications in the early 1970s [1] but as technology
advanced and commercial devices such as cellphones and
laptops got smaller, cheaper and more powerful, there was
also more motivation to develop protocols that handle self-
creating, self-organizing and self-administering networks
that do not rely on fixed structures to function.

The B.A.TM.A.N (Better Approach to Mobile Ad-
hoc Networks) was developed by the Freifunk community
in Berlin and since the release of kernel version 2.6.38
it is part of the official Linux kernel. This paper aims
at explaining the core components of the B.A.TM.A.N
protocol and summarize the improvements that have come
along with every generation of the protocol.

2. BAATM.A.N

The development of the B.A.T.M.A.N protocol started
around 2006 and, as of completion of this paper, in-
cludes 5 major versions/generations. One can think of
generations I to V as the abstract ideas, the blueprints of
the protocol, whereas B.A.T.M.A.N Deamon (batmand)
and B.A.TM.A.N Advanced (batmanadv) are the actual
implementations/programms that turn the idea into reality.

B.A.T.]M.A.N is a mobile ad hoc protocol well suited
for mesh networks with unstable links. Naturally, other
protocols such as the OLSR (Optimized Link State Rout-
ing) protocol exist, but what makes B.A.T.M.A.N stand
out is that in this environment there is no need for
nodes to gather knowledge about the state or topology

Seminar IITM SS 24

of the network any time. Even though the algorithms of
different generations differ from one another, the basic
idea remains the same. Each node must only rely on
the metadata received (or the lack of it) by Originator
Messages (OGMs) that are broadcast in the network to
decide about the best next hop to forward packets. How
the nodes use the information from the OGMs varies from
generation to generation because of the neighbour ranking
system used in each one.

Next, we dissect the Originator Message and formally
present each field contained in such packets used in
B.A.TM.A.N III. Later versions of B.A.TM.A.N intro-
duced new fields, but the ones from B.A.T.M.A.N III
continue to be the backbone of newer OGM versions.

Originator Message (OGM) format.

0 1 2 3
0123456789%0123456789012345678901
+—t—t—t—1 b=+ —+—+ b=+ —+—+ i - i t—+—+—+ —t—t—+
| Version |u|p| | TTL | GWFlags |
+—t—t—+—1 : ' b=+ —+—+ + +— + bt —+—+ bttt
| Sequence Number | GW Port |

+—t—t—t—1 b=+ —+—+ b=+ —+—+ i - i t—+—+—+
| Originator Address |
+—t—t—+—1 b+ —+—+ b=+ —+—+ + +— + bt —t——+

——+—+

Figure 1: Layout of an Originator Message [1]

o Version: Value defined by the protocol; if a packet
has a different VERSION number than expected, the
packet is ignored.

o Is-direct-link Flag: Indicates whether the neighbour
node is also a direct neighbour of the Originator or
not.

« Unidirectional Flag: Indicates whether the neighbor
node is bidirectional or not.

o Time to Live (TTL): The maximum number of hops
an OGM can undergo before it is dropped.

« Gateway Flags (GWFlags): Set to 0 if the node
is not an internet gateway; otherwise it contains the
connection bandwidth (upload/download).

« Gateway Port (GWPort): Set to 0 if the node is
not an internet gateway; otherwise, it specifies the
tunneling port to use.

« Sequence Number: The number that uniquely iden-
tifies the OGM in a given timeframe.

e Originator Address: The IPv4 (MAC address in
B.A.T.M.A.N Advanced) of the B.A.T.M.A.N inter-
face that generated the OGM.

These data are essentially all that is required by the
protocols to establish the correct and efficient paths among
nodes in the mesh, allowing them to make well-informed
and timely routing decisions. (Fields related to internet
gateways are explained in more detail in 6).

doi: 10.2313/NET-2024-09-1 02

In the next sections of this paper, each neighbour
ranking system and the differences in the format of the
OGMs are explained in detail. It is also important to note
that generations I and II are mentioned in B.A.TM.A.N
IIT’s section since they are considered to be initial flawed
prototypes in the early development of the protocol [2].

3. B.AA.T.M.A.N III

In this section, a comprehensive explanation of how
Originator Messages flood the network precedes the de-
scription of the neighbour ranking system of the third
generation of B.A.T.M.A.N. [1], to facilitate a better un-
derstanding of the protocol.

3.1. How Does the Protocol Operate?

Every node in the network broadcasts Originator Mes-
sages periodically, with the purpose of announcing its
existence to other nodes. Every OGM contains a sequence
number which uniquely identifies it, enabling the distinc-
tion between new and duplicates OGMs. That way an
OGM is only counted once.

An Originator (an interface of a node) will create an
OGM with all the metadata necessary, as listed in section
2, and broadcasts it to all its local-link neighbours. These
neighbours will again process the OGM and foward it to
all of their neighbours. It is easy to see that the network
will be flooded with OGMs until the packets are lost or
the Time To Live (TTL) reaches 0 which will make a
receiving node silently drop the packet.

A neighbour Ranking System was implemented based
on the number of unique OGMs a neighbour has relayed
from a specific Originator, where the neighbour with the
most relayed OGMs is considered the current Best Link
to the Originator. This ranking process is very dynamic
and can change path as new OGMs are broadcasted.

Later when a node receives a standard non-OGM
packet, it will know immediately which neighbour is the
next best hop towards the destination and will forward the
packet to that chosen neighbour, ultimately completing the
purpose of the protocol.

3.2. Neighbour Ranking System

Each node maintains a list of Originators [1] it
knows of, with some basic data collected about them from
OGMs received. For each known Originator, an entry is
created that contains all important information about this
Originator, such as address, gateway capabilities, Host
Network Announcement (HNA) list, and the current se-
quence number. For each Originator there is also a frame
called a NBRF (Neighbour Ranking Sequence Frame) [2],
nicknamed “sliding window”, in which a fixed number of
the last OGMs received from that specific Originator is
stored (as an ordered list).

When a new OGM arrives from that specific Origina-
tor, a new entry is posted in the sliding window along with
the identification of the neighbour from which the OGM
came. If the window is full, the last entry is dropped. If
the OGM’s sequence number is greater than the current
sequence number (current greatest), this field is updated
with the new incoming sequence number.

The best ranking neighbour for that Originator is
constantly re-evaluated, selecting the one with the most

Seminar IITM SS 24

entries (OGMs received from) in the sliding window,
accredited as the best next hop for communication with
that specific Originator.

3.3. Generation I and II Design Flaws

Generations I and II are considered to be initial pro-
totypes in the early development of the protocol [2].
Generation III is a direct upgrade that fixed the design
flaws. Below are the main flaws of these versions.

3.3.1. Generation I. B.A.T.M.A.N does not check if a
link is bidirectional or not. This is a design flaw because
B.A.T.M.A.N only uses bidirectional nodes; this means
that if a node receives packets from another node, it must
also be able to send packets back. Unidirectional links are
useless and a burden to the network under Generation I.

The simple fact of receiving a self-originated packet
from a neighbour already suggests that that link is bidi-
rectional, but to confirm this, a node will keep a record of
the sequence number of its self-originated OGMs when
broadcasting it to its neighbours. When the node possibly
receives a self-originated OGM from one of its neigh-
bours, it will check whether the sequence number is within
a certain range (BI_LINK_TIMEOUT) of the node’s cur-
rent sequence number. If it is, and the Unidirectional
Flag (UDF) is not set, then the check is successful. In
Generation II a bidirectional link check was implemented.

3.3.2. Generation II. The inherent flaw with this version
is that a node will retransmit all OGMs it receives from
its neighboring nodes. This might not look like an issue at
first, but when a node forwards OGMs from all its direct
neighbours, it may create an illusion of quality that is not
real, and can even create loops. Here is an example:

3,6,9,12
3,6,9,12

1,2,4,5,8

Figure 2: Not Best-Ranking Neighbour Problem [2]

The numbers next to the arrows correspond to the
sequence numbers of OGMs originated from D. If a packet
has to be forwarded from node C to D, it is easy to see
that the best path towards D is through E. That is because
E has relayed the most amount of OGMs from D, 4 in this
case, whereas nodes B and F have just relayed 3 and 2
OGMs, respectively, which indicates packet loss through
these paths. The issue is at node A, because it relays
OGMs coming from both nodes, B and F, to C, resulting in
A relaying 5 OGMs in total to C, which creates an illusion
of it being a better path than it actually is from C’s point
of view. Generation II chooses A as the next best hop
towards D, even though A is connected to weaker links.

To solve the issue a node must, upon receiving an
OGM, only foward it if the neighbour the packet came
from is the current best next hop towards the Originator,
otherwise the packet is processed and then dropped.

doi: 10.2313/NET-2024-09-1 02

4. BA.TM.AN 1V

B.A.T]M.A.N III’s main problem concerns the asym-
metric links between nodes. An asymmetric link between
two bidirectional interfaces occurs when packet loss in
one direction is different from that in the other direction,
which may lead to a false analysis of the perfect next hop
towards an Originator.

An example would be a network with nodes A, B,
and C where all nodes are connected. OGMs from Node
A propagate to B and to C. Since the links are asymmetric
arbitrary packet loss values are chosen. B receives 100%
of packets from A but A receives only 5% of the packets
from B. C receives 90% of A’s packets, which in turn also
receives 90% of C’s packets back. Finally, B and C receive
80% of the packets sent to each other. If the network is
using B. A TM.A.N III, node B would think it has the
perfect link towards A, which would be a single hop, but
in fact this is not the best choice to make, as there is a
huge packet loss from B directly to A. The better choice
would be to hop to C and only then jump to A.

B.ATM.ANIV [3] introduces a new concept of how
to determine the best next hop towards an Originator, the
quality of transmission, i.e., how likely it is a neighbour
node will actually receive the packets sent. The key vari-
ables are Receive Quality (RQ), Echo Quality (EQ) and,
of course, Transmit Quality (TQ) [4]. These metrics are
always between a node and a specific neighbour.

e RQ: number of OGMs received from a specific neigh-
bour (generated by this neighbour) divided by the
number of expected OGMs in a given time frame.

e EQ: number of self-originated OGMs received back
from a specific neighbour divided by the total number
of self-originated OGMs in a given time frame.

o TQ: the node calculates this value by dividing the
Echo Quality by the Receive Quality from its neigh-
bour — EQ + RQ. It estimates the reliability of a
transmission to a neighbour.

The Originator Message is also updated to carry a 1-
byte long TQ value. When a new OGM is created the TQ
value is set to the maximum and with each hop, this value
is readjusted and tends to decrease. Three main aspects
influence the adjustments of the OGM’s TQ:

1) The local transmit quality of the node. When a
node receives an OGM, it will multiply its local TQ
towards the previous sender by the incoming TQ,
which is the value found in the OGM. This way,
each node receiving an OGM packet knows the TQ
towards the Originator of the message. When for-
warding the packet to other neighbours the updated
OGM’s TQ should be updated to T'Q) = T'Qincoming X

TQlocal

2) Penalties due to asymmetric links. Networks that use
Wi-Fi, for example, use acknowledgment messages
(ACKs) when a packet is sent, so the sender gets
the confirmation that the message actually arrived,
otherwise the sender will continue resending the
message until a timeout occurs. If a node knows that
the Receive Quality of packets towards a neighbour is
low, it will adjust the TQ of the OGM before sending
it to that specific node, as to: T'Quew = T'Q X asym
where asym = (100% — (100% — RQ)?)

Seminar IITM SS 24

3) Penalties due to the number of hops. Even in a perfect
scenario where every path from A to B holds a TQ
of 100% it is still advantageous to choose the path
with fewest hops, since more hops usually translate
into more latency. BATMAN IV makes sure that at
every hop the node receiving the OGM will decrease
its TQ value by a fixed value, regardless of any other
penalty before forwarding the packet.

Each node keeps "sliding windows" of types lo-
cal and global. A node will have a local sliding win-
dow for each of its neighbours so it can track the last
TQrocaL_winpow _size (the amount of entries that the
window can hold) OGMs received from that neighbour to
calculate the current link quality. A node will also have
a global sliding window for each originator that the node
has knowledge of. Within this window there will be the
average TQ values of each distinct neighbour leading to
that specific originator.

In summary, nodes will use these sliding windows to
make a competent analysis of which neighbour is best
suited for the next hop towards the destination.

5. BATM.AN V

B.ATM.A.NV [5] is the latest generation of the pro-
tocol by the time this paper is completed. It deviates from
the packet loss metric implemented in the previous gener-
ation, as this time the focus is on packet throughput. It was
observed that B.A.T.M.A.N IV is not optimal in dealing
with meshes with nodes that present little to no packet
loss, but diverse throughput capabilities. Furthermore, to
diminish the nodes’ overhead due to processing so many
OGMs with such short intervals between them, a "divide
and conquer" approach was used. The original OGM, used
until generation IV, had the purpose of finding neighboring
nodes through bidirectional checks and, most importantly,
to flood the network with link quality information so that
nodes could make better routing decisions. B.A.T.M.A.N
V divides these functionalities into two distinct types
of packets, ELP (Echo Location Protocol) packets and
OGMV2 packets. Each of these two types of packets will
be described in the following subsections.

5.1. ELP

These packets, similarly to OGMs, possess version
numbers, sequence numbers, and the Originator’s address.
Once a neighbour receives such a packet, it will process
it by first performing the necessary checks to ensure the
validity of the packet, and then updating its Neighbours
List with new information. If the neighbour is new and is
not yet in the list, the list gains a new entry; otherwise,
the Last Time Seen and Last Sequence Number fields
of the existing entry for this neighbour are updated.

The key distinction with ELP packets is that after
their processing, they will not be re-broadcast as an OGM
would; their path ends after one single hop. (It is only used
to keep the receiving node’s Neighbours List updated.)

5.2. OGMv2

It is similar to the previous generation OGMs, but
instead of carrying the TQ value, there is a new field for
the throughput measurement. When a node interface re-
ceives this type of packet, it will perform the usual validity
checks on version, source, destination and self-originated

doi: 10.2313/NET-2024-09-1 02

message. If the OGMv2 passes the initial checks, its
sequence number is checked if it is within the range
of a "protection window". The packet is dropped if the
sequence number is too old or unexpectedly new.

The interface will then update the information it has
about the Originator, such as the sequence number and
last seen timestamps. Because the throughput of the path
towards an Originator is as high as that of its weakest
link, the throughput value may need to be updated if the
throughput of the neighbour that receives the OGMvV2 is
lower than the throughput value in the OGMv2. There is
also a 5.8% hop penalty applied to the throughput value
in order to create a decreasing metric over multiple hops.

If the OGMV2 already comes from the current best
neighbour towards the Originator, the packet is just re-
broadcast. If it does not come from the best neighbour,
but the OGMv?2 throughput is higher than that of the best
neighbour, the best neighbour is updated and the packet
is re-broadcast. If the packet neither comes from the best
neighbour nor has a higher throughput, it is not forwarded.

6. Connection to Outside Networks

Using the B.A.T.M.A.N protocol, standard nodes are
able to communicate with distant nodes that are also inside
the mesh and use the same protocol. That is, the protocol
allows the creation of an isolated network, a bubble with
no outside communication. Creating an isolated network
is an accomplishment in itself; however, a scenario may
arise where a client node desires to communicate with
a server or another client located outside the mesh, for
instance, on the internet. To allow a B.A. T M.A.N mesh
network to interact with other networks, there can be
special nodes put in place in the network to provide
additional functionality. These nodes can also function as
an internet gateway, which is basically a bridge between
two separate networks. To announce that a node is also
a gateway, the node must declare this functionality when
creating its OGMs and add the correct information in the
following fields:

« GWFlag: Specifies the upload and download speeds
in kbit per second;

o« GWPort: Specifies the port number for tunnel com-
munication with the gateway node;

« HNA Extension Messages: These are appended after
the OGM and contain the (outside) network address

and a netmask.
A client node can receive OGMs from multiple gateway

nodes and decide which one they want to establish a
connection with, based on connection quality or speed,
or even a mixture of both parameters. It is common for
the client to set his/her preferences manually, but an auto-
selection mechanism is also available if needed.

For B.A.T.M.A.N generations that work on the layer
3 of the OSI model, a client node needs to encapsulate
the Internet data in an UDP/IP datagram. This means that
packets destined for the outside network must be wrapped
into UDP packets when forwarding the data to the gateway
node. As mentioned earlier, gateway node OGMs will
specify which port number should be used for gateway
functionality. Upon receiving a packet, the gateway node
will read the port number from the outer UDP header and
if the port number is correct, it will “decapsulate” the

Seminar IITM SS 24

10

packet, keeping only the original IP packet to forward it
to its final destination.

7. B.A.TM.A.N Advanced

One can think of generations I to V of B. A TM.A.N
as the abstract ideas, the blueprints of the protocol.
B.A.T.M.A.N Deamon and Advanced are the actual im-
plementations/programms that turn the idea into reality.
B.A.T.M.A.N Deamon is the name of the older implemen-
tation of the protocol and operates on layer 3 of the OSI
model. In contrast, B.A.T.M.A.N Advanced currently uses
B.A.T.]M.A.N IVbut also operates on layer 2. This means
that instead of using IPs and packets, it encapsulates data
and fowards them as raw Ethernet frames using MAC
(Media Access Control) addresses to route them across
the mesh until they reach their intended destination node.
Since this implementation uses MAC addresses, one can
make the comparison between the mesh network and a
virtual switch. Each node can be interpreted as a port
of this switch, so when non-mesh nodes connect to a
mesh node, they get the illusion of having connected to a
switch port, thus being in a local network. The underlying
network topology invisible to them.

7.1. Data Forwarding in B.A.T.M.A.N Advanced

B.A.T.M.A.N Advanced excels at using different net-
work interface types to foward data. Based on the link
qualities defined by the algorithm B.A.T.M.A.N Advanced
can choose which hard interface of a node is best suited
for communication (e.g. Wi-Fi or Ethernet) in order to
ensure the best path. This also means another interface
outside the mesh can be bridged to a mesh mode with
the batO interface which will then seamlessly foward the
data. B.A.T.M.A.N Advanced uses raw Ethernet frames so
it is not possible to just send that type of data over Wi-
Fi because Wi-Fi and Ethernet have different formats and
protocols. Here is an example of what a communication
through a Wi-Fi connection:

SENDER RECEIVER
Wi-Fi Wi-Fi
header (@) header

Ethernet Ethernet Ethernet Ethernet

header header \/\ header header

payload payload payload payload
"i'v'i" "7T7" — : 7V'7‘ «,7“,77' ‘%f—/‘
batmanadv bat0 Wi-Fi Wi-Fi bat0 |[batmanadv
Interface Interface I—I

Figure 3: B.A.T.M.A.N Advanced encapsulation process

In the figure above, node A is the sender and B the
receiver. B.A TM.A.N Advanced in node A will craft
the raw Ethernet frame and then the Wi-Fi driver will
encapsulate the data into a Wi-Fi frame. The data will then
be sent from A’s Wi-Fi card to B’s. The Wi-Fi interface
will receive the data, the driver will decapsulate it and
deliver it to the batO interface. After that the B. A.TM.A.N
Advanced protocol from B will take over and process the
data in its desired format.

7.2. Distributed ARP Tables

A mesh network using B.A.T.M.A.N Advanced can
be used as an intermediary that connects non-mesh

doi: 10.2313/NET-2024-09-1 02

clients. The problem is that these clients will only know
each other’s IP address, but not their MAC addresses,
which are the key data necessary for communication on
B.A.TM.A.N Advanced networks.

In the traditional case, when a non-mesh client linked
to mesh node A wants to communicate with one linked to
mesh node B, it send an ARP request to A. A broadcasts
the request until it eventually reaches B, which would
respond with the MAC, or else the packets are lost, which
will eventually result in A having to wait for a timeout
before requesting again.

The advantage of using a distributed ARP Table [6] is
that after the initial misses, a cache memory of IP to MAC
entries is stored in the nodes. This means that groups of
nodes are able to cache subsets of entries (IP & MAC)
of the non-mesh clients they are linked to. Thanks to a
distributed hash fuction, even if a node does not have the
needed entry, it will know exacly where the entry could
be found. Given an IP address to any node, it will apply
the hash function and forward the request to a group of
nodes where the key-value pair (MAC,IP) is stored. This
allows unicast of the ARP requests, thus the likelihood of
packet losses is significantly lower.

8. Conclusion

In conclusion, the B.A.T.M.A.N protocol and its cur-
rent implementation in B.A.T.M.A.N Advanced as a Linux
Kernel driver is a viable option for networks where a fixed
infrastructure is not trusted, too expensive or unreliable
such as in military operations scenarios or in areas of
natural disasters. The protocol has good application in
these areas because the protocol is suited for unreliable

Seminar IITM SS 24

11

nodes that can unexpectedly go offline since the protocol
will automatically find a substitute route from point A to B
without severing the connection, something that makes it
an invaluable tool for creating self-healing networks. One
of the most relevant examples of its practical and success-
ful application is the Freifunk Community in Germany,
which has been using the B.A.T.M.A.N protocol for its
mesh networks throughout many German cities in order to
provide free Wi-Fi, demonstrating the protocol’s potential
to facilitate community-driven, decentralized networking
solutions on a larger scale.

References

[1] A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich, “Better
approach to mobile ad-hoc networking (b.a.t.m.a.n.),” Internet
Engineering Task Force, Internet-Draft draft-openmesh-b-a-t-m-a-
n-00, Mar. 2008, work in progress. [Online]. Available: http:
/Iwww.ietf.org/internet-drafts/draft-openmesh-b-a-t-m-a-n-00.txt

A. Neumann, C. E. Aichele, and M. Lindner, “B.a.tm.a.n.

status report,” Tech. Rep., Jun. 2007. [Online]. Available:
https://downloads.open-mesh.org/batman/papers/batman-status.pdf

(2]

(3]

“Batman-iv,” https://www.open-mesh.org/projects/batman-adv/wiki/
BATMAN_IV, 2024, accessed: 26.03.2024.

A. Quartulli and R. Lo Cigno, “Client
ment and fast roaming in a layer-2 mesh network,”
Technical Report DISI-11-472, Universita degli Studi di
Brescia, October 2011, version 1.0. [Online]. Avail-
able: https://www.researchgate.net/publication/265010299_Client_
announcement_and_Fast_roaming_in_a_Layer-2_mesh_network

(4]

announce-

(5]

“Batman-v,” https://www.open-mesh.org/projects/batman-adv/wiki/
BATMAN_V, 2024, accessed: 26.03.2024.

“Distributed ARP Tables,” https://www.open-mesh.org/projects/
batman-adv/wiki/Distributed ARPTable, 2024, accessed: 26.03.2024.

(6]

doi: 10.2313/NET-2024-09-1 02

