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Abstract—Networking stacks are the backbone of communi-
cation and information exchange. This paper investigates the
TCP/IPv4 and UDP/IPv4 network stack of Linux, the most
common server OS. We describe a trace of the most critical
networking functions of the Linux kernel 5.10.8. Although
Linux networking code documentation exists, it is often out-
dated or only covers specific aspects like the IP or TCP layer.
We address this holistically, covering a packet’s egress and
ingress path through the Linux networking stack. Moreover,
we highlight intricacies of the implementation and present
how the Linux kernel realizes networking protocols. Our
paper can serve as a basis for performance optimizations,
security analysis, network observability, or debugging.
Index Terms—linux kernel, network stack, packet processing

1. Introduction
Nowadays, almost everything is networked, from a

personal computer to a fridge [1]. Although networking
is essential for modern computing, few know the com-
plexity of getting a packet to and from a wire. Given the
prevalence of Linux-based servers [2], [3], it is common
for packets to traverse through the Linux network stack.
However, understanding the intricacies of the complex
packet processing within Linux takes time and effort.
Nevertheless, this knowledge is often critical as it aids
performance optimizations, security analysis, debugging,
and network observability.

We base our investigation of the ingress and egress
packet path on version 5.10.8 of the Linux kernel1. It
is well-documented, stable, and contains modern features
such as a Just-in-time (JIT) compiler for Berkely Packet
Filters [4]. Primarily, we make observations on the kernel
source code, which we link to referenced kernel symbols.

Although Linux kernel networking is becoming more
diverse, e. g., with the addition of Multipath TCP [5], most
traffic utilizes the standard TCP and UDP protocol stack.
Moreover, despite the acceleration in IPv6 adoption, most
devices still communicate over IPv4 [6]. Hence, we limit
this analysis to TCP/IPv4 and UDP/IPv4.

The remainder of the paper has the following structure:
Firstly, we compare this paper with existing literature in
Section 2. Then, in Section 3, we explain the design of
the general Linux networking stack and the sk_buff data
structure. In Section 4, we inspect the intricacies of both
the ingress and egress packet paths. Finally, in Section 5,
we briefly summarize the most important findings.

1. https://elixir.bootlin.com/linux/v5.10.8/source

2. Related Work

We evaluated literature on the Linux network stack to
the best of our knowledge. While doing so, we made the
following observations.

Outdated Linux kernel versions. More elaborate
papers emerged in the 2000s, using Linux kernel version
2 or 3 [7]–[9]. Although the implementation of older
protocols in the network stack is stable, much time has
passed. Therefore, we investigate possible deviations.

Fragmented Information. Many papers focus on spe-
cific layers, most commonly the TCP and IP implemen-
tation [10]–[13]. Others determine the causes of network
overhead [14], [15]. A holistic view is lacking in those
cases. In particular, even when authors describe the path
of a packet throughout multiple layers [7]–[10], they omit
UDP—in contrast to this paper.

Although there is a talk covering the whole ingress
and egress path for Linux version 5 [16], it is high-level,
mainly giving an intuition. Hence, we aim for a middle
ground between detailed layer-specific information and
high-level network stack tracing.

3. Background

We assume a basic familiarity with Linux and net-
working. However, we briefly describe essential Linux
networking concepts relevant throughout the packet path.

3.1. Linux Networking Stack

Socket (INET)

TCP UDP

IPv4

Ethernet

Network Card
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Figure 1: Depiction of the technologies used in the stan-
dard TCP/IP and UDP/IP stack in Linux, from user space
to the wire.

As shown in Figure 1, a socket either passes a packet
to the user space application or receives a packet from
the implementation of the transport layer protocol, i. e.,
TCP or UDP. The IP layer then routes the packets to
the network layer. Below this layer, Linux allows filtering
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traffic via firewall rules. The network interface card (NIC)
forwards the packets that it receives from the receive (RX)
buffer to the kernel and transmits packets read from the
transmit (TX) buffer.

3.2. Socket Buffers (sk_buff)

The kernel saves packets in C structures called
sk_buff. Almost all functions along the packet path inter-
act with it. sk_buff tracks packet metadata and maintains
a start and end pointer to packet data in memory [17].
Using references to packet data allows for efficient packet
modification by adjusting the pointers, e. g., when strip-
ping a header away. Furthermore, sk_buff structures
can be shared efficiently between different processes us-
ing memory references [17]. Consequently, cloning a
packet is also efficient since only the metadata has to be
copied [17], assuming a read-only workload. We show this
in Figure 2. These properties of sk_buff form the basis
of efficient packet processing on Linux.
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Figure 2: Two simplified sk_buff structures point to
different locations within the same packet buffer. head
marks the padded start of the buffer while tail points
to the end of the actual packet data. data points to the
currently processed header.

4. Packet Flow

Here, we are interested in both the ingress and egress
paths. Both paths operate independently.

4.1. Egress Path
Firstly, we analyze the egress path, i. e., how Linux

sends packets—from a user space application to the NIC
as shown in Figure 3. Essentially, the egress side con-
structs the protocol headers, pushing them to sk_buff
structures, which it sends out.

4.1.1. Socket Layer. All starts with a socket that
has an associated domain, e. g., AF_UNIX, AF_XDP, or,
in our case, AF_INET for IPv4. A system call wrap-
per function like write() or sendto() enables us to
send data over the socket, e. g., as provided by the
GNU C library [18]. In the context of this paper, we
choose write(filedescriptor, buffer, length) to
avoid unnecessary complexity. Writing to a file descriptor
is a prime example of the UNIX philosophy Everything
is a file since a file descriptor abstracts the socket [19].

For sockets, write() invokes the sock_sendmsg()
function. It obtains the socket struct sock from the
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Figure 3: Egress path of a packet in case of TCP as
described in Section 4.1 (adopted from [10]).

file descriptor provided by the user space application.
Generally, sockets operate on socket control messages
containing the process’s Process ID (PID), User ID (UID),
and Group ID (GID) [19]. sock_sendmsg() retrieves this
control message from the task_struct, a Linux data
structure that contains this information for the calling
process. With this information, sock_sendmsg() typically
passes the packet through Linux Security Modules (e. g.,
SELinux) to filter traffic.

Finally, it calls the corresponding transport layer
handler, in our case TCP or UDP, via the macro
INDIRECT_CALL_INET. The macro autonomously chooses
the corresponding IPv4 or IPv6 variant of the transport
protocol entry function, depending on the protocol speci-
fied in sk_prot, a field of the sk_buff.

4.1.2. Transport Layer. Here, we arrive at the IPv4
related entry functions, tcp_sendmsg() for TCP and
udp_sendmsg() for UDP.
TCP. tcp_sendmsg() first waits for TCP connection
establishment. Then, it allocates sk_buff structures for
the segments and enqueues them to the socket write
queue, as shown in Figure 3. tcp_sendmsg() also
guarantees adherence to the Maximum Segment Size
(MSS). After processing the queue, the kernel in-
vokes tcp_write_queue_tail(). It also builds the TCP
header and pushes the data from the user space into
the sk_buff. If the data fits into the existing buffer,
skb_add_data_nocache() is used. Otherwise, it cre-
ates new buffers, which is more expensive. It then sets
the transport_header pointer to the beginning of this
header. Next, it builds the network layer protocol header
as specified in the socket options, e. g., IPv4 for AF_INET.
tcp_write_xmit() guarantees that the kernel holds back
data in case of congestion control restrictions. It also sets
retransmission timers, i. e., resends the packet if it does
not receive an ACK in time. Finally, tcp_transmit_skb()
reads the write queue containing previously constructed
segments and passes them to the network layer via the
queue_xmit() function specified in the socket.
UDP. Similarly, there is udp_sendmsg(). Again, the func-
tion writes to the socket write queue. Next, the function
waits until there are no pending frames for the UDP data-
gram. As before, the function builds the header, setting
the destination port and the other fields.
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There are corking and non-corking cases: cork-
ing describes waiting for frames to batch mul-
tiple UDP datagrams. Non-corking implies build-
ing sk_buff directly. After constructing the data-
gram, ip_route_output_flow() routes the packet and
builds the network layer protocol header. Lastly,
ip_append_data() creates an IP packet that combines
multiple UDP datagrams. Overall, simplicity and absence
of locking endorse that the UDP implementation is more
performant than its TCP counterpart.

4.1.3. IP Layer. IP processing starts with the func-
tion __ip_queue_xmit(). Firstly, the function determines
the route to the destination. If a route is already in
sk_buff->_skb_refdst, it skips the routing process. In
this case, the function builds the header immediately.
However, if there is no destination, the routing process
continues. It determines the destination from the socket
field of the sk_buff, that, e. g., is set if the socket pre-
viously received an IP packet. If this is not possible, it
queries the routing cache, called Forwarding Information
Base (FIB)—a table that is generated from the IP routing
table. Eventually, if there is still no route, it returns
host unreachable and stops the processing. Otherwise, the
kernel builds the IP header if it finds a route.

Now, ip_options_build() is called to set IP op-
tions. It marks the beginning of the header with the
network_header field of the sk_buff. Next, it triggers
the LOCAL_OUT stage of the Linux firewall mechanism
netfilter. Afterward, dst_output() calls the actual
routing function via a function pointer.

Then, the kernel calls the ip_output() routing func-
tion for the most common unicast packet. As the routing
is complete, this stage is called POST_ROUTING. It updates
the packet metadata and calls the NF_INET_POST_ROUTING
hook. It sets sk_buff metadata and invokes netfilter once
again. Furthermore, it fragments the packet if it exceeds
the maximum length (Maximum Transmission Unit).

Then, after passing the packet through the NF_
INET_LOCAL_OUT hook, ip_output() calls ip_finish_
output(). It increments the counters for multicast and
broadcast packets. It also checks that the sk_buff has
enough space for the MAC header. The destination MAC
address is either cached or determined by the neighbor
output function neigh_resolve_output(). The latter uti-
lizes the Address Resolution Protocol (ARP) [20]. In case
there is no ARP reply, it queues the packet again. After
obtaining the MAC address, the kernel constructs the
Ethernet header, adding it to the sk_buff.

4.1.4. Ethernet Layer. Firstly, dev_queue_xmit() sets
the mac_header field in the sk_buff, which is then passed
to tc_egress(). It queues the packet in the queueing
discipline (qdisc) [21]. As long as the NIC buffer is filled,
__qdisc_run() dequeues the packets from the buffer. Af-
ter some post-processing in validate_xmit_skb(), e. g.,
calculating the Ethernet checksum or adding VLAN tags,
the kernel calls ndo_start_xmit, and consequently, adds
the packet to the TX ring of the NIC. Eventually, the
NIC’s queue may be full. In this case, the kernel stops
the qdisc [21] and queues sk_buff. Finally, it maps the
packet to a fixed location in memory for Direct Mem-
ory Access (DMA) after adding more sk_buff metadata.

dev_direct_xmit allows circumventing the qdisc [21],
directly writing the packet to the TX ring of the NIC.
eXpress Data Path (XDP) [22] is a use case of this.
Eventually, the function notifies the NIC via an interrupt
to end the processing and frees the sk_buff.

4.2. Ingress Path

Now, we trace the path of a packet that arrives at
the NIC until a user space application reads it through a
socket, see Figure 4. Most notably, it analyzes the headers
to determine the following function call and strips them.
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Figure 4: Ingress path of a packet in case of TCP as
described in Section 4.2 (adopted from [10]).

4.2.1. Ethernet Layer. After verifying and optionally ze-
roing the Ethernet checksum and applying a MAC address
filter, the NIC copies the packet to the system’s memory
via DMA. Then, it notifies the operating system via an
interrupt and indicates the location of the packet data.
With this, the operating system can allocate an sk_buff.
Now, the kernel inserts metadata into the sk_buff, like
the protocol field (Ethernet), the receiving interface,
and the packet type, in our case, IP.

At this stage, the kernel knows the start of the Ethernet
header, so it sets the mac_header field to the beginning of
the sk_buff. Finally, it removes the Ethernet header from
the sk_buff before it passes it further up the network
stack. Next, the packet arrives in netif_receive_skb().
The function clones sk_buff and forwards it to the virtual
TAP interface. The TAP interface enables communication
between Virtual Machines (VMs) and the host within
the same network. Another important case here is for-
warding VLAN-tagged packets to the VLAN interface.
Furthermore, when the interface has a physical master,
i. e., it is a virtual interface or part of a network bridge,
rx_handler() steals the packet. rx_handler() also sets
the network_header field of the sk_buff. Finally, it calls
the IPv4 protocol handler function ip_rcv().

4.2.2. IP Layer. The Ethernet layer passes the packet to
the IP layer via the function ip_rcv(). Again, ip_rcv()
inspects the MAC address and drops foreign ones. Then,
the version, length, and checksum fields are verified.
Next, the function sets the transport_header field of
the sk_buff. It also applies netfilter’s PRE_ROUTING
rule. It implements the filter by forwarding the packet
to the NF_INET_PRE_ROUTING hook. The hook gets a
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pointer to the ip_rcv_finish() function that it calls
after completion. If a network layer master device is
registered, it passes the sk_buff to its handler. It calls
ip_route_input_noref(), which reads the IP header
from the sk_buff. Next, the kernel processes IP options
via ip_rcv_options(). Afterward, it calls the previously
selected routing function via dst_input(). There are
three options for routing a packet:
1) ip_forward: This function activates for packets not

addressed to the current machine. It proceeds by for-
warding the packet without additional processing.

2) ip_local_deliver(): If we are the final receiver of
the packet (localhost), the kernel does not forward the
packet but passes it up the networking stack.

3) ip_mr_input(): This function is for multicast packets,
i. e., addressed to a multicast address.

As we are mainly interested in how a packet is handled
at the final receiver, taking all layers into account, we
continue with ip_local_deliver(). Most importantly,
this function takes care of IP fragmentation by calling
ip_defrag(), queueing packets until receiving all frag-
ments. Afterward, the event NF_INET_LOCAL_IN triggers,
which in return calls ip_local_deliver_finish(), strip-
ping the IP header from the sk_buff. Finally, it passes
the packet from the IP to the TCP/UDP layer via the
dst_input() function to the tcp_v4_rcv() or function.
It determines the corresponding protocol handler by in-
specting the header pointing to the sk_buff.

4.2.3. Transport Layer. Now, we inspect the counterpart
of the egress TCP and UDP functions.
TCP. First, the segment arrives at the transport layer func-
tion tcp_ipv4_recv() with the sk_buff header pointer
moved to the start of the TCP or UDP header. Then,
it validates the transport header via pskb_may_pull(),
validating the TCP checksum. As before, it removes
the TCP header from the sk_buff. To pass the packet
further, it locates the corresponding TCP socket via
__inet_lookup_skb(). It writes the packet to the socket
receive queue (see Figure 4) and signals that new data
is available, e. g., via SIGIO or SIGURG. This notification
mechanism allows for efficient polling of sockets. As for
the egress, the kernel maintains the TCP state machine
during packet processing. e. g., it processes no new packets
for TCP connections terminated via a TCP_CLOSING.

We briefly highlight two important cases dur-
ing processing: TCP_NEW_SYN_RECV and TCP_TIME_WAIT.
TCP_NEW_SYN_RECV means that there is a new connection.
In this case, the kernel refuses the connection at TCP level
via tcp_filter(). During TCP_TIME_WAIT, the kernel
discards any further TCP segments.

Furthermore, there is a slow and a fast path. The
slow path contains more error checks and lookups. In
contrast, the fast path is optimized for speed, not allowing
introspection and traffic analysis. With the slow path,
we wait until the state machine is at TCP_ESTABLISHED
in tcp_v4_do_rcv(). Once updated, tcp_v4_do_rcv()
calls tcp_rcv_established(), which processes packets
both in the fast and slow paths. It also validates that
sequence numbers are ascending. The fast path copies the
packet directly to the user space. The kernel always tries to
use the fast path, if possible. But when, e. g., establishing

a TCP connection, this not possible since the kernel has
to track the new connection.

After handling the TCP state machine and choosing
the path, the kernel enqueues the packet into the socket
queue so the user program can read it (see Figure 4).

Since TCP is very complex, covering further aspects
is beyond this paper’s scope. However, [7], [10], [11]
describe it in more detail.
UDP. Compared to TCP, the implementation of UDP
is less complex. It starts with udp_rcvmsg() called via
dst_input() in the IP layer. First, the function calls
__skb_recv_udp() to read the datagram from the socket
with a previously calculated offset. In particular, it contin-
uously tries to read a sk_buff from the socket, eventually
stopping when a new UDP datagram arrives. The check-
sum of the datagram is then validated. Then, the function
copies the destination IP and UDP port to map the data-
gram to the correct socket. Consequently, it consumes the
UDP datagram via skb_consume_udp(). Finally, it adjusts
the peek offset, handles reference counters, and frees the
sk_buff via __consume_stateless_skb().

4.2.4. Socket Layer. Here, the kernel collects the new
data written to a TCP or UDP socket via the read()
function from a socket, dequeuing the packet from the
socket receive queue (see Figure 4). To match the use
of IPv4 in the egress, we use an AF_INET receiving
socket. The function sys_recv() enables this, first calling
sys_recvfrom() to look up the socket. Then, it calls
sock_recvmsg() to read from the socket and passes
the received message through Linux Security Modules,
similar to the egress. For IPv4, inet_recvmsg() calls
either tcp_recvmsg() or udp_recvmsg(). They dequeue
the packet’s content and write it to a userspace buffer,
e. g., an array on the heap. Finally, they free the sk_buff.

5. Conclusion
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Ethernetdev_queue_xmit() netif_receive_skb()
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Figure 5: An overview of the most important functions in
both egress and ingress for UDP, as described in Section 4.

This paper presented how a packet traverses the Linux
kernel for TCP/IPv4 and UDP/IPv4. Figure 5 illustrates a
recap of the packet egress and ingress path, highlighting
the most important functions of each layer. Moreover, we
described the intricacies of packet processing, including
routing, filtering, and queuing mechanisms employed by
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the Linux kernel. Furthermore, we have seen how the
different layers in the kernels communicate. By lever-
aging this knowledge, network administrators and de-
velopers can make informed decisions when optimizing
network performance, designing security measures, or
troubleshooting networking issues.

Overall, the observed changes to the existing literature
are primarily enhancements rather than rewrites, e. g.,
refactorings or security improvements. A prime example is
the choice of initial sequence numbers for TCP. For secu-
rity reasons, the kernel authors revised the underlying hash
algorithm multiple times [23]. The conservative changes
make sense, as the protocols remain mostly untouched
while the impact of errors is high. Performing a similar
analysis for Multipath TCP or QUIC is future work.
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