
Covert Communication over ICMP

Georgios Merezas, Lars Wüstrich∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: georgios.merezas@tum.de, wuestrich@net.in.tum.de

Abstract—In the ever-expanding landscape of the internet,
robust security measures are critical components of any
modern technology. As our dependence on digital networks
continues to grow, so does the sophistication of malicious ac-
tors seeking to exploit vulnerabilities that arise in all complex
systems. One of the many tools of these malicious actors is
ICMP tunneling, a method used for the establishment of
hidden channels within network environments. These chan-
nels allow hidden and unfiltered communication of infected
machines with potential attackers. The paper explores the
structure of ICMP packets and how it facilitates them to
tunnel TCP connections. Furthermore, it examines some
existing applications of ICMP tunneling, like botnets. Finally,
it proposes some countermeasures to ICMP tunneling.

Index Terms—ICMP tunneling, covert channels, botnets

1. Introduction

In the increasingly interconnected world that we live
in, the internet has become an integral part of our lives.
As everything in our lives becomes digitalized, the interest
of malicious actors in stealing and exploiting digital data
also increases. Command and Control (CnC) techniques
are used to send commands and receive data from in-
fected machines, which allows an attacker to continuously
communicate with them [1]. This can be lucrative when
one can steal business secrets or mine digital currency on
compromised devices [2]. State actors, too, have a use for
remote access to machines, either to spy or to launch Dis-
tributed Denial of Service (DDoS) attacks against foreign
businesses as a form of economic protectionism [3].

One way to achieve remote access to a host and keep
the communication hidden is to use ICMP tunneling [4].
This paper should provide insight into cybersecurity chal-
lenges that were first reported in 1997 [4] [5]. Addi-
tionally, it should highlight how simple network status
messages can be exploited in unintended ways. The con-
tribution of this paper is: (a) an explanation of ICMP
tunneling, (b) an exploration of its applications, (c) a
summary of existing proposals to prevent ICMP tunneling.

Section 2, introduces ICMP and ICMPv6, with their
standard use cases. In Section 3, we first explain how
ICMP tunneling works and then outline its capabilities.
In Section 4, existing applications of ICMP tunneling are
explored. Section 5, introduces preventative measures to
combat ICMP tunneling.

2. Background

Internet Protocol (IP) is a network layer protocol,
that forms the basis of the Internet. It is used to transmit
IP packets globally between hosts. An IP packet consists
of an IP header and IP data. IP data, i.e. the content that is
transmitted by a given packet, is appended after the header
(encapsulated within the IP packet). Such data is for
example ICMP or higher layer protocols. The IP header
specifies the source and destination addresses, if it is a
fragment, packet length, and other packet information. [6]

User Datagram Protocol (UDP) is a simple transport
layer protocol. It specifies the source and destination ports
of the datagram and a checksum for error detection. The
ports of UDP can be used to multiplex the communication
between two IP hosts. The only feature of UDP that can
be used for data loss, is the fact that error messages about
IP packets are sent when a packet is lost in transit. [7]

Transmission Control Protocol (TCP) is a widely
implemented transport layer protocol. Similar to UDP
it has ports for multiplexing and a checksum for error
detection. However, TCP has a distinct advantage over
UDP in that it builds the connection at the start of the com-
munication and destroys it at the end. Most importantly,
during the communication, it acknowledges segments it
has received (a segment being sent as an IP packet). This
feature builds the basis for congestion and flow control.
When the sender does not have enough acknowledgments
for the segments that have already been sent, it starts send-
ing them at a slower rate to avoid possible congestion in
the network between it and the receiver. When the sender
receives an acknowledgment for a fragment that was sent
too long ago or does not receive an acknowledgment in
some predetermined time, it tries to resend it. This means
that a TCP connection is reliable, and can fail only when
a packet can never reach its destination, e.g. in the event
of a complete network shutdown. [8]

Internet Control Message Protocol (ICMP) is a
network layer protocol part of the IP suite. It is primarily
used for error reporting and the exchange of control
information. ICMP messages are encapsulated within IP
packets as if they were a higher-level transport protocol,
like TCP or UDP. However, they are an integral part of
IP and are processed as a special case. Unlike TCP and
UDP, ICMP packets do not specify ports. [9]
ICMP is used by network utilities like ping [10] to send
ICMP Echo Requests and receive corresponding ICMP
Echo Reply messages. It is used to test if a host is reach-
able on an IP network. Another utility, traceroute [11],
sends out many IP packets after each other, incrementing

Seminar IITM WS 23 77 doi: 10.2313/NET-2024-04-1_14



their Time-To-Live (TTL). The TTL is decremented by
each router on the path to the destination. When the TTL
of a packet reaches 0, the last reached router sends an
ICMP Time Exceeded message to the sender. This way,
the utility maps the path between the source machine and
a remote host.
An ICMP messages consist of a header and content sec-
tions. The header is 4 bytes (B) long. It contains the type
(1B), the code (1B), and the checksum (2B). The type
specifies if the ICMP message is an ICMP Echo Request,
an ICMP Echo Reply, an ICMP Time Exceeded message,
etc. The code provides further information about the type,
e.g., why time was exceeded. The checksum is used for
error checking. The content section varies depending on
the type and code of the ICMP message, and it has no
preset length.
ICMPv6 is the version of ICMP used in conjunction with
IPv6. It serves similar purposes to ICMP in IPv4, except
for some enhancements to adapt to the features of IPv6.
For example, ICMPv6 has Neighbor Discovery Protocol
(NDP) instead of the ARP protocol in IPv4. ARP is used
to find the Layer 2 address of devices whose Layer 3 (IP)
address is known. NDP has the same functionality, in ad-
dition to many other improvements. Another example is an
ICMPv6 Packet Too Big message. It exists because only
the sender of the IPv6 packet can fragment it, whereas
IPv4 packets can be fragmented by any router on the way
to the destination.
Because the principal idea and structure of ICMPv6 is the
same as ICMPv4, in this paper the explained principles of
ICMP tunneling will be relevant for both IPv4 and IPv6
communication.

3. ICMP Tunneling

ICMP tunneling can be accomplished with any type of
ICMP message [4]. Most tools use ICMP Echo Request
or ICMP Echo Reply packets, which are normally used to
test host reachability. This makes it hard to filter against
malicious uses and, therefore, very appropriate to use for
hidden communication. [12]

Figure 1: ICMP Echo Request and Reply as defined in
RFC792 [9]

3.1. Prerequisites

The structure of ICMP allows for varied length data
after the header for type 0 (Echo Reply) and type 8 (Echo
Request) ICMP packets, as can be seen in Figure 1. This
is defined in RFC792 [9] to allow for flexible network
testing. For example, big ICMP Echo Request packets can
be sent to test network load [4]. There are no specifications
for the type of content in the data section of ICMP Echo

Request/Reply packets. This enables malicious actors to
use ICMP to transmit data to infected machines with
a smaller network footprint that may go unnoticed by
firewalls and other detection tools [12].

For ICMP tunneling to work, root access is
needed [13]. For more rudimentary programs than the ones
discussed further, root access is not always necessary. The
main prerequisite is that the tunneling program is installed
on the device that will be used for communication. This
can be either because it was infected by a malicious actor,
or due to the user of the machine wishing to hide their
communication from the local system administrator.

3.2. How it works

Using ICMP Echo Request and Reply packets, a mali-
cious attacker can embed information into the data section
and achieve communication. An infected machine can
listen for incoming requests and read the data that was
sent. It can then confirm with an ICMP Echo Reply that
the message was received.

3.2.1. Functional principle. ICMP tunneling does not
work out of the box simply by using kernel sockets. A
separate program needs to be written to facilitate this
communication. Such a program should be able to embed
the required content into ICMP packets and send them. It
then should be able to listen for incoming ICMP packets
and read the content of those participating in the disguised
communication. It should also be able to process the
embedded data and continue communicating.

An example of a program that communicates using
ICMP tunneling can embed TCP/UDP content into the
data section of ICMP Echo Request/Reply packets. As
most programs are already created to work with either
TCP or UDP, the two main transport layer protocols, such
an implementation can have wide applications.

It can be designed as a tool that intercepts some
program’s outgoing packets or all packets on some port. It
then translates them into ICMP Echo Request packets by
embedding each transport layer part of the packet into
the data section, before sending it out. The same tool
on the infected machine listens for ICMP Echo Requests
with certain predefined features that mark it as a tunneled
connection (e.g. a specific predefined Identifier). Then,
it intercepts the ICMP packet, extracts the TCP/UDP
content, and sends that to a process on the same ma-
chine. Thus, a TCP/UDP packet is transmitted between
two machines with ICMP. Essentially, such a tool has
the implementation of a kernel socket with the addition
of embedding the packet into an ICMP Echo Request.
Ptunnel [13] is a program that uses this concept. [12]

This type of ICMP tunneling requires administrative
or root privileges to be able to run. The aforementioned
ICMP tunneling tool Ptunnel, for example, requires root
access to be able to use raw sockets, i.e., without speci-
fying if they are TCP or UDP [13]. This makes it harder
to achieve the end goal, but not overall impossible.

3.2.2. Multiplexing. Figure 1 shows that ICMP Echo
Request/Reply packets contain an Identifier and a Se-
quence Number. These can mark a packet as a tunneled
connection, as mentioned previously. Additionally, they

Seminar IITM WS 23 78 doi: 10.2313/NET-2024-04-1_14



can be used to multiplex the communication, i.e., have
parallel streams that contain data for different purposes.
The hosts that are performing the communication can
match an incoming ICMP Echo Reply to an ICMP Echo
Request they made and, therefore, know which stream this
packet belongs to. Usually, ICMP Echo Request/Reply
communication already happens this way in, for example,
the ping utility.

Additionally, embedding UDP/TCP content in the data
section can lead to more parallel streams. For example,
one could treat the Identifier concatenated with the source
port of UDP as the ‘source’ and the Sequence Number
concatenated with the destination port of UDP as the
‘destination’. The ports of UDP and TCP are 2B or 16
bits long [8] [7], and so are the Identifier and Sequence
Number (see Fig. 1). In such a scheme, the port numbers
could go up to 2(16+16) or 232, instead of just 216 as they
are in TCP and UDP. Such high numbers would allow for
greater multiplexing capabilities.

3.3. Capabilities

While ICMP packets are similar to UDP and TCP,
they have distinct features that impact the quality of the
communication between hosts. In this analysis, we assume
that the ICMP communication is performed using ICMP
Echo Request and ICMP Echo Reply packets that embed
UDP or TCP into the data section, which can be seen in
Figure 1.

3.3.1. Payload size. The size of an ICMP Echo Request
or Reply packet, outside artificial size restrictions that may
be imposed by the OS or a firewall, is only limited by
the size of the IP packet that it is part of. For Ethernet
communication, the Maximum Transmission Unit (MTU)
size is typically 1500B [14]. The MTU defines the largest
possible size for the contents of the Ethernet frame, i.e.,
the maximum size of a single IP packet. The IP packet
itself has a minimum header size of 20B [6]. A TCP
header has a minimum size of 20B [8], while UDP is only
8B [7]. That means the maximum content size for TCP
is 1460B and for UDP 1472B. With the addition of the
ICMP header between the IP and TCP/UDP headers, the
maximum content size is reduced by 4B. Additionally, due
to the use of ICMP Echo Request/Reply packets, we need
to account for the 4B of the Identifier and the Sequence
Number. So, the final content that we can transmit has
a size of 1452B for a tunneled TCP packet and 1464B
for a tunneled UDP packet. This is only 8B less than the
standard TCP/UDP communication.

3.3.2. Reliability. ICMP packets do not differ signifi-
cantly from UDP packets. They both lack flow or con-
gestion control, unlike TCP. The ports of UDP can be
simulated with the Identifier and Sequence Number of
ICMP Echo Request/Reply packets. However, they have
one major difference. ICMP error messages are not sent
about other ICMP messages to prevent “the infinite regress
of messages about messages, etc.” [9]. This has conse-
quences for the reliability of ICMP communication. If an
ICMP message is lost, the sender will never be notified
about it and, therefore, cannot retry.

In the given schema, we do not have normal ICMP
Echo Request/Reply packets. By embedding TCP or UDP
content into the data section, we can use features of these
transport layer protocols that can affect the reliability of
the communication. If we use UDP, we do not achieve
more reliability because UDP does not have mechanisms
for tracking sent and received segments. If we embed TCP,
we can use its features to create a unique, reliable ICMP
communication protocol.

The reliability features of TCP explained in Section 2
can be implemented by an ICMP tunneling tool to make
the connection reliable. This transmission channel has
the disadvantage of not receiving error messages when
packets inevitably get lost in transit. Otherwise, it acts just
like a standard TCP connection. That is because usual IP
communication does not guarantee that a control message
is returned in case an IP packet is not delivered [9]. Some
failure needs to happen twice for the sender to not retry
to send a packet after it fails: when sending the IP packet
and when the ICMP error packet is sent back. In our case,
only one failure needs to occur for a packet to be lost. This
means that packets are resent more often, and the average
segment rate is lower.

4. Applications

The use of ICMP tunneling for communication has
the advantage of being hard to detect and filter against
by firewalls and Intrusion Detection Systems (IDS) [12].
Logically, most applications of ICMP tunneling are those
that should not be detected by third parties or are per-
formed by malicious actors. These are so-called covert
channels.

A covert channel is a communication channel that
is “not intended for information transfer at all” [15].
Therefore, applications that can or do use ICMP tunneling
use it as a covert channel.

A prime example of a covert channel is communi-
cation with a backdoor on an infected system. This can
provide complete access to the system without the firewall
blocking the channel. A more subtle covert channel would
be having an infected computer with software that sends
out stolen confidential data at random intervals [4].

4.1. Botnets

One of the ways that malicious actors use covert
channels is for CnC communication of botnets [1]. Botnets
are networks of infected computers that each run one or
more bots. They are created and controlled by a botmaster
who issues commands to these bots. These bots were
usually centrally controlled using the IRC messaging pro-
tocol [16]; nowadays, botnets are more often deployed as
peer-to-peer networks due to more sophisticated detection
methods and to avoid having one point of failure. These
collections of infected computers can communicate with
each other, perform DDoS attacks, and send spam. They
can also allow the attacker to have remote access to all of
the affected devices. Some examples of BotNets include
Mirai [17] [18], Mariposa [19], and others. [20] [21]

A botnet that uses ICMP tunneling is Pingback. Un-
like the discussed implementation, the malware does not
embed TCP into ICMP for communicating, rather it has

Seminar IITM WS 23 79 doi: 10.2313/NET-2024-04-1_14



its own data in ICMP Echo Request packets, as can be
seen in Figure 2. The malware is hidden inside a malicious
oci.dll file. This file is normally loaded with two other
.dll files by the msdtc Windows service. This service
loads an ODBC library to support Oracle databases. The
library tries to load three Oracle ODBC DLLs, one of
which is the oci.dll. When the malware is running, it
listens for ICMP Echo Request packets with sequence
numbers 1234, 1235 or 1236, and can execute shell com-
mands remotely. [22]

Figure 2: Pingback data struct, published in [22]

4.2. Data theft

Another use of covert channels is the breach of data
confidentiality. An attacker can extract data from a ma-
chine and send it out over a covert channel by infecting
it. Thus, private and confidential data is stolen without
any detection by the user or the network administrator.
This application is particularly harmful when it comes to
state actors performing espionage on foreign governmental
organizations [3]. Similarly, businesses can commit illegal
economic espionage and acquire business secrets to gain
a competitive market advantage. Criminal organizations
can steal private information and blackmail its owners into
paying them ransom.

A practical application is Cobalt Strike [23], a com-
mercial remote access tool that is used to “execute tar-
geted attacks and emulate the post-exploitation actions of
advanced threat actors.“ Amongst many features, it has
the capability to communicate with ICMP.

4.3. Integrated systems

Covert channels can also infiltrate integrated systems
that were previously offline [24]. For example, systems
in self-driving cars, or Internet of Things (IoT) devices,
like home assistants or security cameras. These networks
are based on the IP suite and are, therefore, vulnerable
to ICMP tunneling, amongst other covert channels. Their
cybersecurity is usually much more lax than that of more
sophisticated systems. This is due to their widespread use
allowing for greater possibilities of social engineering, and
the hardware vulnerabilities arising from the lesser focus
on security during their development [25]. Attacks against
them include the threat of spying through cameras and
microphones. More dangerous threats have the horrible
potential of ending multiple peoples’ lives if the attacker
can gain unrestricted access to the mechanical controls of
a car.

5. Prevention

There are preventative measures that limit the pos-
sibilities for communication using an ICMP tunnel [4].
Each one of them can be circumvented, or sometimes, a

measure can disrupt the normal user [4]. A sensible com-
bination of them can prevent all but the most sophisticated
attacks.

The main prerequisite for ICMP tunneling is the vari-
able data of ICMP Echo Request/Reply packets, both
in content and in length. Operating systems have preset
lengths and content for the ICMP Echo Request packets
that they generate. For example, Linux has a standard data
section length of 56B for ICMP Echo Requests, while
Windows has 32B [5]. An IDS can filter against all ICMP
packets that do not match the content of these two stan-
dards. Thus, the attacker needs to fragment the data into
more ICMP packets to pass the filter. Sometimes, though,
such a filter is disruptive. Big ICMP Echo Request packets
are helpful to test whether a network is capable of carrying
them [4]. Inspecting large packets for suspicious content
is even more difficult, especially if the covert channel uses
encryption. Determining if something is encrypted is not
always a fail-safe method [4].

Another way to limit the communication over ICMP
packets is to have stateful firewalls or NAT devices [4].
These track all ICMP traffic. If an ICMP Echo Request
is sent, the identifier and sequence number are saved.
Only a matching ICMP Echo Reply is let through to
the original host. Other firewalls create their own ICMP
packets that mirror the ones sent out by the host but with
their own data. If they receive an ICMP Echo Reply, they
then create an ICMP Echo Reply that matches the ICMP
Echo Request sent by the host. This effectively disrupts
the communication channel.

There also exists a proposal for a kernel module that
scans ICMP packets for any malicious content [4]. This
solution was proposed with the assumption that stateful
firewalls are too resource-heavy to be implemented on
personal machines. It was tested on 2003 hardware and
had acceptable performance at the time. Nowadays, it
should have very minimal overhead.

Another complex proposal is presented by Sayadi [5].
The detection includes two stages. In stage 1, the follow-
ing three steps are performed on an ICMP packet: (a) the
packet is checked for preset Linux and Windows lengths,
(b) the method tries to match the packet against only one
existing ICMP Echo Requests, (c) it is checked if there is
an absence of a spike of ICMP messages. If all checks,
performed after each other, succeed, then the message is
regarded as normal. If either of the three points fails, then
Stage 2 is triggered. Stage 2 tries to randomly pattern
match against the standard Linux and Windows content.
If it fails, the message is regarded as part of a covert
channel.

The evolving field of machine learning can also be
used to filter out covert channels in ICMP [26]. The pro-
posal by Cho [27] is a promising new addition to existing
tunneling prevention methods that use machine learning.
Their algorithm has a 99.9% accuracy in detecting covert
channels, an improvement over older proposals [28], [29].

All of the above methods have different approaches to
dealing with a tunneled ICMP connection. The proposals
on machine learning are promising, and their universality
needs to be explored further [26]. A balanced approach
of defensive methods needs to be taken, as at-scale im-
plementation of machine learning results in many false
positives [26].

Seminar IITM WS 23 80 doi: 10.2313/NET-2024-04-1_14



6. Conclusion

ICMP tunneling is used for establishing covert chan-
nels on IP networks. Using fact that data of the ICMP
Echo Request/Reply packets is not standardised in general,
a tool can embed its own content into ICMP packets.
An example application can embed TCP content, thus
trasmiting TCP packets without the network administra-
tors observing it. This connection can be multiplexed
using fields of the ICMP Echo Request/Reply header and
the TCP ports. The reliability of such a communication
is comparable to normal TCP, with the packet rate being
slightly slower and dependent on the rate of packet loss.

Since ICMP tunneling is used to hide communication
on networks, a tunneled connection between two hosts
results in a covert channel. Applications that make use
of covert channels can use ICMP tunneling to achieve it.
Some existing examples include botnets, like Pingback,
and remote access backdoors, like Cobalt Strike.

There are proposed theoretical solutions to prevent
ICMP tunneling, but practical applications are lacking.
Many proposals exist that have been tested in simulated
environments and perform very well. The field of machine
learning also has a lot of promising research, which how-
ever still needs to be practically implemented on a wide
scale. Further research of practical applications of these
preventative measures and how they can be effectively
combined together has to be conducted, to ensure that
ICMP tunneling is not a threat to modern networks.

References

[1] D. D. Jovanović and P. V. Vuletić, “Analysis and Characterization
of IoT Malware Command and Control Communication,” in 2019
27th Telecommunications Forum (TELFOR), 2019, pp. 1–4.

[2] H. Dhayal and J. Kumar, “Botnet and P2P Botnet Detection
Strategies: A Review,” in 2018 International Conference on Com-
munication and Signal Processing (ICCSP), 2018, pp. 1077–1082.

[3] J. Ford and H. S. Berry, “Leveling Up Survey of How Nation States
Leverage Cyber Operations to Even the Playing Field,” in 2023
11th International Symposium on Digital Forensics and Security
(ISDFS), 2023, pp. 1–5.

[4] A. Singh, O. Nordström, C. Lu, and A. L. M. dos Santos, “Ma-
licious ICMP Tunneling: Defense against the Vulnerability,” in
Information Security and Privacy, 8th Australasian Conference,
ACISP 2003, 2003, pp. 226–236.

[5] S. Sayadi, T. Abbes, and A. Bouhoula, “Detection of Covert Chan-
nels Over ICMP Protocol,” in 2017 IEEE/ACS 14th International
Conference on Computer Systems and Applications (AICCSA),
2017, pp. 1247–1252.

[6] J. Postel, “Internet Protocol,” RFC 791, Sep. 1981. [Online].
Available: https://www.rfc-editor.org/info/rfc791

[7] J. Postel, “User Datagram Protocol,” RFC 768, Aug. 1980.
[Online]. Available: https://www.rfc-editor.org/info/rfc768

[8] W. Eddy, “Transmission Control Protocol (TCP),” RFC 9293, Aug.
2022. [Online]. Available: https://www.rfc-editor.org/info/rfc9293

[9] J. Postel, “Internet Control Message Protocol,” RFC 792, Sep.
1981. [Online]. Available: https://www.rfc-editor.org/info/rfc792

[10] “ping(8) - Linux man page,” https://linux.die.net/man/8/ping, [On-
line; accessed 2024-03-02].

[11] “traceroute(8) - Linux man page,” https://linux.die.net/man/8/
traceroute, [Online; accessed 2024-03-02].

[12] K. Stokes, B. Yuan, D. Johnson, and P. Lutz, “ICMP Covert
Channel Resiliency,” in Technological Developments in Network-
ing, Education and Automation, K. Elleithy, T. Sobh, M. Iskander,
V. Kapila, M. A. Karim, and A. Mahmood, Eds. Dordrecht:
Springer Netherlands, 2010, pp. 503–506.

[13] D. Stødle, “Ping Tunnel,” https://www.cs.uit.no/~daniels/
PingTunnel/, 2004, [Online; accessed 2023-12-17].

[14] “IEEE Standard for Ethernet,” IEEE Std 802.3-2022 (Revision of
IEEE Std 802.3-2018), pp. 1–7025, 2022.

[15] B. W. Lampson, “A Note on the Confinement Problem,” Commun.
ACM, vol. 16, no. 10, p. 613–615, oct 1973. [Online]. Available:
https://doi-org.eaccess.tum.edu/10.1145/362375.362389

[16] J. Govil and J. Govil, “Criminology of BotNets and their detection
and defense methods,” in 2007 IEEE International Conference on
Electro/Information Technology, 2007, pp. 215–220.

[17] “Mirai BotNet Source Code,” https://github.com/jgamblin/
Mirai-Source-Code, 2016, [Online; accessed 2024-02-27].

[18] G. Gallopeni, B. Rodrigues, M. Franco, and B. Stiller, “A Prac-
tical Analysis on Mirai Botnet Traffic,” in 2020 IFIP Networking
Conference (Networking), 2020, pp. 667–668.

[19] P. Sinha, A. Boukhtouta, V. H. Belarde, and M. Debbabi, “Insights
from the analysis of the Mariposa botnet,” in 2010 Fifth Interna-
tional Conference on Risks and Security of Internet and Systems
(CRiSIS), 2010, pp. 1–9.

[20] M. Singh, M. Singh, and S. Kaur, “TI-16 DNS Labeled Dataset
for Detecting Botnets,” IEEE Access, vol. 11, pp. 62 616–62 629,
2023.

[21] “List of Botnets,” https://netacea.com/glossary/list-of-botnets/,
2021, [Online; accessed 2024-02-27].

[22] L. Macrohon and R. Mendrez, “Pingback: Backdoor At The End Of
The ICMP Tunnel,” https://www.trustwave.com/en-us/resources/
blogs/spiderlabs-blog/backdoor-at-the-end-of-the-icmp-tunnel/,
2021, [Online; accessed 2024-02-27].

[23] “Cobalt Strike,” https://attack.mitre.org/versions/v11/software/
S0154/, 2017, [Online; accessed 2024-02-27].

[24] A. Ondov and P. Helebrandt, “Covert Channel Detection Methods,”
in 2022 20th International Conference on Emerging eLearning
Technologies and Applications (ICETA), 2022, pp. 491–496.

[25] W. Iqbal, H. Abbas, M. Daneshmand, B. Rauf, and Y. A. Bangash,
“An In-Depth Analysis of IoT Security Requirements, Challenges,
and Their Countermeasures via Software-Defined Security,” IEEE
Internet of Things Journal, vol. 7, no. 10, pp. 10 250–10 276, 2020.

[26] Z. Sui, H. Shu, F. Kang, Y. Huang, and G. Huo, “A
Comprehensive Review of Tunnel Detection on Multilayer
Protocols: From Traditional to Machine Learning Approaches,”
Applied Sciences, vol. 13, no. 3, 2023. [Online]. Available:
https://www.mdpi.com/2076-3417/13/3/1974

[27] D. Cho, D. Thuong, and N. Dung, “A Method of Detecting
Storage Based Network Steganography Using Machine Learning,”
Procedia Computer Science, vol. 154, pp. 543–548, 2019,
proceedings of the 9th International Conference of Information
and Communication Technology [ICICT-2019] Nanning, Guangxi,
China January 11-13, 2019. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1877050919308555

[28] A. N. Mahajan and I. Shaikh, “Detect covert channels in TCP/IP
header using Naive Bayes,” International Journal of Computer
Science and Mobile Computing, vol. 4, pp. 881–883, 2015.

[29] T. Sohn, J. Seo, and J. Moon, “A study on the covert chan-
nel detection of TCP/IP header using support vector machine,”
in Information and Communications Security: 5th International
Conference, ICICS 2003, Huhehaote, China, October 10-13, 2003.
Proceedings 5. Springer, 2003, pp. 313–324.

Seminar IITM WS 23 81 doi: 10.2313/NET-2024-04-1_14


