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Abstract—As the interest in security in the networking com-
munity steadily increases, so does the interest in applying
Trusted Execution Environments (TEE). However, despite
the increased usage of TEEs, there is little information on
how they are actually employed. To shed more light on an
important tool for securing networking and its applications,
we will present usages of the technology with a focus on
networking. We found several proposals to utilize TEEs for
networking applications in research, such as TrustedGate-
way, where the entire traffic is routed through the TEE.
There are usages that enhance privacy by encrypting and
decrypting data directly in the TEE. Finally, there are uses
in cloud computing. We find that the usage of TEEs in
networking applications is not that common at this time
but seems to be a topic of active research.

Index Terms—trusted execution environment, cloud comput-
ing, networking

1. Introduction

Security in software products is of increasing impor-
tance, with bad actors aiming to gain access to data.
There are many approaches to fortify different services
and programs running on the network. One of these ap-
proaches is to employ Trusted Execution Environments
(TEE), which aim to separate selected processes from the
other parts of the machine. The processes are isolated
from the system, which ensures that neither their code
and data nor their execution can be compromised. Since
the world is very connected, we want to survey the usage
of TEEs to find how widely and for what purpose they
are used in scientific projects in networking or networked
applications. We will also determine whether there are any
approaches that use TEEs in such a context in the field.
For these approaches, we will show what the impact of
the inclusion of a TEE is, with a focus on networking
aspects, such as the impact on performance, e.g., latency
or bandwidth, that can be expected. In this paper, we
will first give a brief explanation of TEE, which will be
followed by a summary of some interesting and diverse
applications of TEEs in the space of networking and
distributed systems. One interesting approach is to utilize
a TEE to secure a gateway, which is called TrustedGate-
way. In this approach, all packets are passed through the
TEE to applications in the cloud space. Other approaches
use TEEs as a privacy-preserving measure. Since TEEs are
present in most architectures these days, as Intel, AMD,
and ARM have implemented them in hardware, their use
will most likely continue to increase as the formation of

the Confidential Computing Consortium (CCC) seems
to indicate. The three manufacturers, as well as large
companies in the cloud space, such as Microsoft and
Google, are a part of this organization. We will first start
with an outlook on related work in Section 2, which will
give an overview of what TEEs are and also provide some
information on the CCC. This will be followed by Section
3, where we will showcase applications that we found,
such as TrustedGateway, which runs all traffic through a
TEE. We will also take a look at applications that utilize
a TEE to provide privacy. We will give information about
the current usage of TEEs in cloud computing. In Section
4, a summary of the usages we found will be given,
alongside our opinion on which topics warrant further
research interest.

2. Related Work

In this section, we will present key components that
will be relevant to this survey in order to enable the reader
to follow the applications and reasons for their usage.
Furthermore, we provide a starting point to conduct further
research into the field.

2.1. Trusted Execution Environment

A TEE is a tamper-resistant software environment that
is part of the processor. It aims to provide trust that a piece
of code is executed as it should. According to Sabt et al.
[1], it relies on a chain of trust that is established during
the boot process in order to ensure that the environment
can establish the authenticity and confidentiality of the
code executed within it. Furthermore, the TEE provides
integrity protection and an attestation mechanism to pro-
vide proof for the execution. Both the TEE and the rich
environment, which houses the operating system, run on
a separation kernel to isolate them from each other. To
establish the TEE, Sabt et al. [1] propose the following
five key building blocks, as shown in Figure 1:

• Secure Boot Ensures that if code is modified, it
is detected and the chain of trust is seen as bro-
ken, provides a Trusted Computing Base (TCB),
which encompasses all security-critical hardware
and software of a system

• Secure Scheduling Provides Scheduling to ensure
that the rich environment is responsive

• Inter-Environment Communication Exchanges
data between the rich environment and the TEE
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Figure 1: Building Blocks of a TEE, adapted from [1]

• Secure Storage Utilizes authenticated encryption,
can only be used by the TEE

• Trusted I/O Path Provides trust for the peripher-
als to ensure that their input is not changed

There are many different TEEs available at this time,
but the most important ones are Intel SGX [2], and its
extension Intel TDX [3], AMD’s SEV [4], and ARM’s
TrustZone [5]. The first two are mostly found in devices
such as servers and PCs, while the ARM implementation
is found in mobile phones and commodity gateways,
among others [6]. These products are in continuous devel-
opment as attack vectors are found over time. This led to
the extension of Intel SGX with Intel TDX. The products
are dependent on specific hardware, which leads to issues
with the portability of code, as the interfaces differ be-
tween vendors. This resulted in efforts to standardize these
interfaces [7], though different approaches, such as Open-
TEE [8], which offers a virtual TEE to develop code and
compile it for different TEEs, were also developed. TEEs
aim to shield from all software and hardware attacks,
but there are some attack vectors that exist despite these
efforts, such as side-channel attacks, as shown by Wang
et al. [9]. Despite that, the number of applications for
TEEs seems to be ever-increasing, as research by Geppert
et al. [10] shows. They tried to ascertain use cases and
challenges for the use of TEEs, with a focus on cloud
computing use cases.

2.2. Confidential Computing

In 2019, the Confidential Computing Consortium was
created to advance the security of user data in the cloud
[11], to describe different means to ensure the security
and privacy of programs and data by utilizing TEE, as
outlined in their report [12]. One of their aims is to provide
secure and private ways to allow multiple physical nodes
to compute tasks, as is common in the cloud space, for
which they use TEEs to provide confidentiality as well as
integrity. The consortium consists of large companies in
the space. Key among them are the big hardware vendors
Intel, AMD, and ARM, together with cloud operators such
as Microsoft and Google [13]. They have outlined multiple
use cases in their paper [12], which they want to employ
to improve the security and privacy of "data in use" [12].

They aim to utilize the advantages of TEEs not only for
normal cloud operations but also to facilitate the increased
use of multi-party computation. This is aimed at data that
can not be given to another party due to privacy concerns.
In this setup, computation can still be done efficiently
without compromising the data’s security and privacy.

3. Applications of TEE in Networking

In the following section, we will give an overview of
some of the uses of TEEs in a networking context.

3.1. TrustedGateway

One application by Schwarz [6] aims to increase the
security of gateways. They deem the security of com-
modity gateways under threat, since most gateways have
an increasing number of additional, less secure services
running that offer services like FTP or a VPN into the
network guarded by the gateway. Since it is possible to
compromise the gateway via these additional services,
these attack vectors could be used to compromise the
core tasks of the gateway, as described in their paper.
As a solution to this problem, they move all network
traffic through a TEE. To achieve their goal, they im-
plemented the minimum needed for securely networking
traffic through the ARM TrustZone TEE. In order to keep
performance as good as possible and limit the amount of
TCB required, they only implemented switching, routing,
and the firewall into the TEE.

3.1.1. Design of TrustedGateway. Schwarz [6] proposes
two parts to realize their goal. The first is a networking
utility called NetTrug, which performs the networking
tasks. The second is called ConfigService, which is used
to configure NetTrug. Since we are primarily interested
in networking and not secure policy configuration, we
will focus on the NetTrug utility. The entire project is
implemented using Open-TEE (OP-TEE). It is com-
posed of two major parts, a partial networking driver
we trust and its untrusted counterpart running in the rich
environment. The second part is the I/O workers, which
remove the need for context switches by handling network
interrupts. NetTrug is the only application of the system
that has direct access to the network interface cards (NIC),
which are then considered trusted interfaces. There can
be untrusted interfaces, but these will still have to run
through NetTrug. The traffic is filtered by a stateful L3/L4
firewall, in their case NPF [14], but the utility itself has no
complete protocol stack. To make the filtering transparent
for the applications running in the rich environment, a
virtual network interface card (VNIC), which is based on
virtio-net and virtio-mmio, with input and output queues,
is used to connect NetTrug to the rich environment. To
prevent spoofing from both a system or outside attacker,
the following mechanism is in place: The IP addresses
for all NICs are static. Whenever a packet is sent or
received, the MAC address of the NIC is used. This limits
inbound traffic as well, as only traffic sent to one of the IP
addresses of the TrustedGateway is accepted. The network
stack deployed in the TEE is minimal. It offers Address
Resolution Protocol (ARP) resolution for itself and also
checks the traffic for ARP spoofing attacks originating
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from both the rich environment and an outside attacker.
It also replaces the MAC for the VNIC, which it swaps
into the destination spot when forwarding the traffic. Since
NetTrug does not offer an IP or UDP stack, to keep the
TCB small, it also does not offer DHCP or DNS services,
and the NIC’s IP addresses are statically assigned. The
security of the configuration of NetTrug must also be en-
sured, as otherwise, the entire effort would be for naught.
This is done by the second part of the TrustedGateway,
the ConfigService. It is an OP-TEE application, which
is binary-signed, integrity-checked, and protected against
version rollbacks. In order to protect it against attackers, it
only allows trusted devices to configure it, which is done
by the HTTPS client in the TEE. This client only performs
the TLS portion, while the TCP portion is performed in the
rich environment. It also utilizes custom request headers
to avoid cross-site request forgery attacks. There is a
master certificate that is uploaded at a physically attached
interface when first configuring the service, and the service
itself creates one when it is first started. The master admin
is the only entity that can add or remove further admin
certificates. Within this utility, it is possible to define rules
for the firewall or assign different IP addresses for the
NICs.

3.1.2. Performance of TrustedGateway. Schwarz poses
in their paper [6] that due to TrustedGateway extracting
only the strictly necessary services into the trusted envi-
ronment, the TCB required is reduced compared to a full
stack in an operating system, as it offers less functionality.
This, in turn, reduces the likelihood of vulnerabilities.
Furthermore, the performance impact of the setup on a
TCP connection was measured. To have a comparable
baseline setup for experimentation, they disabled NIC
offloading, as it is not implemented in TrustedGateway.
They set up three different experiments using iPerf3 [15],
with the first two running a receiver (1) and a sender
(2) in the gateway’s rich environment, respectively. The
third experiment was set up such that the gateway had to
forward the traffic to a host outside the network connected
to the gateway or receive traffic through the gateway.
The key performance metrics they observed were the
network throughput, the network latency, and the over-
head of the firewall inside the TEE. In experiment (1),
they noticed that the throughput was roughly 90% of the
normal throughput with 385 Mbit/s, with experiment (3)
delivering roughly the same results. In experiment (2),
in some cases, higher throughput than the baseline of
369 Mbit/s could be observed. In experiment (3), the
performance with the sender inside the network was at
around 93% of the baseline, which equates to 236 Mbit/s,
and when receiving, reached between 101.9% - 103.5%
of the baseline with 221 Mbit/s. The firewall overhead
was also observed in the same experiment setup and was
in the range of 0.5% to 1%, though the baseline value
is not mentioned, besides the result being called small.
The author attributes it to NPF’s static code. Another very
important metric was latency overhead, as it is critical for
low-latency networked applications, such as phone calls.
To test the latency in a user-like manner, they loaded
different websites from the Tranco List [16], which is
a list of websites that should be used in research, as
they are aimed to be hardened against manipulation. The

latency overhead was around 3.4% on average, peaking at
4.95%, though no baseline latency is given. The latency
is attributed to the TrustedGateway workers having to be
woken up, which the author tried to avoid by employing
an idle grace period. To evaluate low latency performance,
they sent ping packets from a host inside the network to
an outside host via the gateway. In this case, the aver-
age overhead was even lower, with around 2.7%, which
equates to 0.37ms of added latency when utilizing the
TrustedGateway compared to the stock setup. The config
service is also responsive despite the fact that it runs in
both the rich and trusted execution environment, with a
load time of around 1-2 seconds. Since the TCB is rather
small, with around 110k lines of code (LOC), rather than
the 4523k LOC included in the router’s default operating
system, including both the OP-TEE and its cryptography
library, the memory it needs is fairly small, with 32 MB
of which 20 MB are for trusted user apps, which could
offer other functionalities. This small code base should
increase security, as larger code bases are more susceptible
to issues simply due to their size. Overall, the usage of
a TEE for this purpose seems sensible, especially given
the fact that dedicated gateways are expensive, and this
allows for secure operation of the main purpose, namely
forwarding and protecting the network behind it.

3.2. TEE for Privacy

Since TEEs can provide confidentiality for the data
that they use as well as prove the integrity of their
computation, they are very useful for maintaining privacy.
Multiple proposals in the networking space, therefore,
utilize TEEs to provide privacy. We are going to focus on
two specific applications that show the breadth that TEEs
can be used for. In the first section, we are going to present
a TEE utilized by Risdianto et al. [17] to deploy traffic
policies across organizations. The second section focuses
on the use to provide secure communication between
Android devices which was proposed by Wang et al. [18].

3.2.1. TEE-based Collaborative Traffic Policy. Since
traffic between a company’s different sites tends to be
forwarded via the same routers and firewalls, there is a
possibility for policies to erroneously direct traffic via a
public link rather than a preferred private link. In order to
alleviate this problem and also allow different companies
to collaborate in a manner that does not require them to
exchange their policies, Risdianto et al. [17] propose the
use of a TEE-based approach. They aim to use it for pro-
grammable network switches, as are in use at many larger
commercial operations. They propose a way to compile
their policies such that the result can be combined with an
organization’s own rules. Both parties need to input their
data into the enclave, which refers to SGX’s per-program
TEE space, and then the data can be exchanged via an
SSL connection. Each connection is only usable once and
unidirectional, meaning that party A’s enclave transfers
its policy to B’s enclave, and B’s transfers it to A’s. Both
sides can then compile their policies into rules. During
this phase, there are also two steps to check for overlaps
between the rules. The first part is the inter-policy check,
which checks for exact matches between the rules. The
second portion is an intra-policy check, which employs
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a binary trie to find overlapping addresses and discards
addresses such as 0.0.0.0/0 as they can lead to leaks. The
rules are then compiled such that they can be installed on
a P4 switch, which is a software-defined network device
that can be programmed to perform on all layers of the
network stack using the language P4 [19].
The use of a TEE in this case is very interesting as
it allows for secure multi-party computation, enabling a
shared configuration without exposing your own policies
to a less trusted party. According to Risdianto et al. [17], it
does not have an impact on the performance of the routers
and firewalls, as this process only aims at the compilation
of rules rather than the actual operation. It also requires the
use of P4 routers. Furthermore, it makes use of the remote
attestation mechanism of SGX, as the policy compilation
is done in the TEE, which can be used to prove that
the same configuration was used by both parties. This
has the major advantage of making it simpler to create
a communication link between two organizations. It is,
however, important to add that several parts of SGX have
been proven to be vulnerable to attacks, even the remote
attestation, as summarized by Fei et al. [20].

3.2.2. TEE-Based Communication on Android. In the
second approach, Wang et al. [18] propose means to have a
secure communication channel between Android devices,
for which they leverage ARM’s TEE called Trustzone.
In order to secure communication between parties, each
device uses the Elliptic-Curve Diffie-Hellman (ECDH)
key agreement to create keys, which are stored inside the
TEEs and never leave them, to ensure that they can not
be exposed. The system is separated into two parts inside
the TEE, namely the key sender and the key receiver.
The key sender facilitates the public key generation and
the generation of the digital signature that is used to
provide integrity proof for the session key negotiation
messages. The key receiver is responsible for the public
key authentication, the session key generation, and key
storage. Both entities run in OP-TEE OS and are involved
in sending and receiving operations. Whenever a user
wants to send something to another party, they first type
the data in the rich environment, then send the data into the
TEE to encrypt it using the appropriate keying material,
which was negotiated before. Then, the encrypted message
is sent to the other party, which can only decrypt the data
in the TEE.
It is important to note that in their paper Wang et al.
[18] did not actually implement the networked portion.
Therefore, their performance analysis is not necessarily
correct, but they did analyze the amount of time that their
additional measures took and estimated the networking
portion. The ECDH key agreement took around 0.563s,
from which they assumed the transmission to take place
with 128KB/s, which results in a total transmission time
of 0.059s. However, this does not need to take place each
time two parties want to communicate, as the keys can be
kept for a longer time frame. Their method of handling
encryption with a TEE also has an impact on performance
compared to the standard Android Keystore technology
[21], but with an impact of around 11%, it should be man-
ageable as the agreement does not need to be performed
each time the two parties communicate. Wang et al. [18]
pose that the advantage of this approach is that there is

no need for a trusted third party while still allowing two
parties to ensure the integrity and confidentiality of their
communication. The TEE also decreases the risk of the
key being stolen, which can be a problem in Keystore, as
it stores the keys in a file. Overall, the performance of an
application is worse if a TEE is employed, as it requires
additional communication within a system, but it provides
more security.

3.3. Usage of TEE in the Cloud

Another interesting use of a TEE is one that seems
at the center of the CCC: The usage of TEEs in cloud
applications. Since "the cloud" refers to a large distributed
system that handles computation to offload tasks from
a local device, it is important that they can maintain
the confidentiality of their data as well as authenticate
that they processed it correctly. The three largest cloud
providers, AWS [22], Azure [23], and Google Cloud [24],
all offer services that give you access to a TEE. For both
Microsoft and Google, who are part of the CCC, this
is offered under confidential computing, with Microsoft
offering customers access to VMs with Intel SGX and
AMD SEV. However, the access to the TDX extension
is limited at this point. Google, on the other hand, only
offers SEV [25]. Both, however, also offer other types
of confidential computing, which offer different pieces to
ensure secure operation. Amazon offers its own service
that is built on top of Intel and AMD processors, as well
as its own architecture, Graviton. Intel TDX itself is also
built on top of SGX but is meant to offer capabilities that
enable cloud computation. Cheng et al. [26] have offered
an overview of the TDX technology. Intel TDX is built
for cloud computation, as it runs on top of Intel VT, their
virtualization technology. In the work by Geppert et al.
[10], they offer multiple use cases for TEEs in the cloud,
such as the ability to move data from on-site into the cloud
while maintaining protection. Another case is multi-party
computation, where the parties need to be able to rely
on each other to have computed correctly, which can be
proven by the attestation mechanisms offered by TEEs.
Overall, the usefulness of TEEs in cloud applications
seems very high, and they must be in use, as the three
biggest cloud providers offer them to their customers.
However, it is important to note that there is little actual
data on the manner in which TEEs are actually used in
cloud applications.

4. Conclusion

In this paper, we aimed to give a broad overview of
how networking and networked applications are realized
in the context of TEEs. We showed different avenues, from
directly running the network traffic through the TEE in the
case of TrustedGateway to using it as a means to enhance
privacy from both a network administration perspective
and to secure messages between two Android devices. We
also gave an overview of the current state of TEEs in the
cloud space, where we showed that they seem to be in
demand as the major operators offer services but could not
find concrete data on the subject. In summary, there is a
lot of interest in the technology, though mostly as a means
to increase privacy, for which TEEs are very well suited.
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However, there is not a lot of information about how to
create applications that use networking directly in the TEE
without leveraging the rich environment to perform the
Network I/O. Nonetheless, this area is interesting, and the
TrustedGateway approach offers a good idea of how that
could be done. Since it is a highly specific application, it
remains to be seen if the approach can be used in other
cases as well. In future research, it would be interesting
to see if more applications take an approach similar to the
one employed by TrustedGateway and how the usage of
TEEs in cloud applications develops.
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