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Abstract—The statistical model Extreme Value Theory (EVT)
predicts extreme events, e.g., extreme latencies in network-
ing. This paper summarizes recent applications of EVT in
networking from 2022 to 2023 to provide an overview of the
current state of the field. The selected nine papers cover the
application areas of Flow-Level Tail Latency, Ultra-Reliable
Low Latency Communication, Dynamic Service Chaining,
Mobile Edge Computing and Root Cause Location. EVT is
a powerful method to improve various services, especially for
those who need ultra-reliability. However, EVT has limita-
tions. The biggest ones are that the quality of EVT depends
on the data volume used, the confidence level employed in
the distribution fitting, and the approach used for return
level calculation.

Index Terms—extreme value theory, recent applications in
networking, literature review, survey

1. Introduction

Extreme Value Theory (EVT) is a statistical method
typically used to predict extreme events and model the
data’s tail behavior. Its application areas are wide-ranging,
from natural catastrophes to engineering. Recent appli-
cations, especially in networking, are of interest due to
their considerable potential for utilization. Therefore, this
paper summarizes the most relevant papers from 2022 to
2023. In order to estimate which works are relevant, the
citation and viewing numbers, as well as the standing
of the publisher, were taken into account. Papers that
do not actively incorporate EVT in their methodology,
such as those employing it merely for validating their
proposed systems (e.g., Chaccour et al. [1]) or relying
solely on an EVT-based model (e.g., Pan et al. [2]), are
excluded from consideration. This paper first introduces
EVT to establish a foundational understanding and then
presents the summaries of the selected papers. The papers
cover the application areas of Flow-Level Tail Latency
(Chapter 3.1.), Ultra-Reliable Low Latency Communica-
tion (Chapter 3.2.), Dynamic Service Chaining (Chapter
3.3.), Mobile Edge Computing (Chapter 3.4.), and Root
Cause Location (Chapter 3.5.). Some application areas
summarize more than one paper. In the end, the paper
concludes with its own take on the field.

2. Understanding Extreme Value Theory

As described by Coles in [3], EVT has grown into an
essential statistical model for applied sciences over the last

few years. EVT models the tail distribution of empirically
collected data and can even be used to predict future
extreme events. The characteristic feature of extreme value
analysis aims to quantify the stochastic behavior of a pro-
cess at extremely large or small levels. The extreme value
analysis typically requires an estimate of the probability of
extreme events that surpass the already observed events.
The following subsections present two commonly used
distribution approaches of EVT.

2.1. Generalized Extreme Value Distribution

The Generalized Extreme Value (GEV) distribution
combines the distribution families of Gumbel, Fréchet and
Weibull. Using the combination is more effective than
computing which distribution fits the dataset the best. The
combined distribution is shown in Equation (1). [3]
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Equation (1) has three parameters. µ describes the loca-
tion, σ the scale and ϵ the tail. By analyzing ϵ through in-
ference, the data autonomously identifies the most suitable
tail behavior, eliminating the need for subjective a priori
judgments regarding the adoption of a specific extreme
value family. Additionally, the uncertainty in the inferred
value of ϵ quantifies the lack of certainty about which of
the original three distribution families is most appropriate
for a given dataset. GEV is used to model the distribution
of block maxima. It separates the data into blocks of
the same length and fits the GEV to the resulting set of
block maxima. The choice of block size becomes critical
when applying this model to any dataset. This decision
involves balancing bias and variance. Smaller blocks may
lead to poor model approximation, while larger blocks
increase estimation variance. There are different methods
to estimate the parameters of GEV. The most common is
likelihood-based. However, by employing the likelihood-
based method, a challenge arises around the regularity
condition. This condition is essential for ensuring the
validity of typical asymptotic properties linked to the
maximum likelihood estimator. This challenge emerges
from the GEV model because the endpoints of the distri-
bution are functions of the parameter values. In the next
subsection, another EVT approach solves this problem. [3]

2.2. Generalized Pareto Distribution

Focusing solely on modeling block maxima is an inef-
ficient approach to extreme value analysis when additional
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data on extremes is accessible. [3]
As described by Haan et al. [4], the Generalized Pareto

Distribution (GPD) uses the Peaks over Threshold (PoT)
approach instead. PoT categorizes all data points surpass-
ing a chosen threshold as part of the tail. Equation (2)
and (3) describe the GPD approach.

H(z) = 1−
(
1 +

ϵz

x

)−1
ϵ

(2)

x = σ + ϵ (y − µ) (3)

GPD has the same three parameters as GEV. y is the
selected threshold. Altering the block size, even if it
remains large, would impact the GEV parameters but
not GPD. ϵ remains constant to block size changes, and
the computation of x in Eq. (3) also remains unaffected.
Variations in µ and σ are self-compensating. The GPD
distribution, once fitted, has various applications. One
possibility is to compute the return level corresponding
to a given return period. This calculated value represents
the extreme event. On average, an extreme event occurs
once during that period. [3]

3. Recent Applications in Networking

The following subsections summarize nine different
papers. Each summary consists of, when deemed nec-
essary, a brief introduction to the topic, followed by an
exposition of the proposed contributions of the discussed
paper. Then, this paper explains the methodology used to
make these contributions and presents the research results.
All nine papers apply the EVT as shown in Figure 1.
The papers first collect and filter data and then assess
whether the collected data is suitable for the application
of the EVT. Subsequent subsections discuss the criteria
for applying the EVT. The papers gather additional data
if the criteria are not met. On the other hand, if they are
satisfied, the parameters of the EVT (such as the threshold
value for the GPD approach) are calculated. Finally, the
papers validate and apply their EVT model.

3.1. Flow-Level Tail Latency

This subsection summarizes the paper of
Helm et al. [5].

Requirements at the end-to-end latency can be used
in service-level agreements for communication networks
and can, therefore, influence network planning and flow
admission. These latencies can be measured and used
as input for models, like EVT, to predict extreme la-
tency occurings. The paper uses the PoT approach for
100 networks with random topologies, flow specifics and
configurations to show that EVT can be applied to large
datasets. The authors use 14 billion latency and jitter
values from the measurements of Wiedner et al. [6].
Then, the EVT model is derived from the first 5 % of
the data and validated on the remaining 95 %. Flow-
level models outperform network-level models for high
percentiles, suggesting that EVT models are more suitable
at the flow-level when focusing on high percentiles of the
tail. In addition, these models have a lower relative error of
percentile values compared to network-level models. This
result indicates their superior suitability despite having
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Figure 1: Overview flow of how to use EVT

less data. The accuracy of predictions ranges from 75 %
to 85 % for twenty- and twofold time horizons. Two times
the time refers to a duration corresponding to two times
of the given horizon. The calculation is similar for twenty
times. The paper forecasts tail latency quantiles at the
flow-level with median absolute percentage errors between
0.7 % to 16.8 %. However, there are limitations to EVT.
It depends on the volume of data, the confidence level of
the distribution fitting, and the return level calculation. In
addition, EVT is only applicable if the data is identically
distributed and stationary. The authors use the Augmented
Dickey-Fuller (ADF) test to ensure stationary. While in
their setup, most flow latencies are stationary, this is not
a general assumption.

3.2. Ultra-Reliable Low Latency Communica-
tions

This subsection summarizes the four papers from
Mehrnia et al. [7]–[10]. These papers build on each other
and use previous proofed results.

Ultra-Reliable Low Latency Communications
(URLLC) is vital for 5th generation communication
networks. An accurate channel modeling is needed
since URLLC has a strict packet error rate and latency
requirements. The paper [7] introduces a wireless
channel modeling methodology based on EVT. The
methodology involves deriving the parameters of the
tail distribution by fitting the GPD to independent and
identically distributed (i.i.d.) samples. To obtain these
samples, the authors use declustering methods, Auto-
Regressive Integrated Moving Average, and Generalized
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Auto-Regressive Conditional Heteroskedasticity. After
applying EVT, the mean residual life and parameter
stability methods determine the optimum threshold. Next,
the algorithm Minimum Sample Size Determination
specifies the stopping condition to calculate the minimum
required number of samples. Lastly, probability plots such
as Probability/Probability (PP) and Quantile/Quantile
(QQ) validate the channel tail model. The proposed
framework requires significantly fewer samples than the
conventional extrapolation-based approach. In addition, it
fits the empirical data in the lower tail better.

The authors in [8] introduce a framework based on
EVT to compute the optimal transmission rate in Ultra-
Reliable Communication (URC). The authors consider a
URC system that encounters fading, leading to dimin-
ished received power values. The system consists of a
transmitter and receiver, sending packets over an unknown
stationary channel. First, GPD represents the channel. The
received power samples convert through declustering to
i.i.d samples. These samples fit the GPD to the lower tail,
and PP and QQ plots validate the Pareto model. Next,
the optimal transmission rate is estimated. The function
that selects the rate uses Pareto parameters. Finally, an
evaluation of the error probability verifies the selected rate.
The proposed framework outperforms traditional meth-
ods regarding reliability. Traditional methods use average
statistic channel models. Moreover, because of the usage
of the GPD threshold, the number of samples needed to
achieve a certain reliability could be minimized.

In [9], a novel EVT-based framework is proposed
to estimate the optimal transmission rate as well as the
confidence interval on a small number of samples. The
system model consists of one transmitter and one receiver
communicating over a channel. The ADF test checks if
the channel is stationary. If not, all factors that cause
time variation of the GPD parameters are determined and
collected as a sequence. This sequence is split into as
many groups as needed, making each group stationary.
The fixed transmission power is known in advance. First,
the transmitter sends a packet to the receiver over an
unknown channel. Then, the tail distribution is estimated
by applying a modeling methodology based on EVT on
the channel. Therefore, the statistics fit GPD to obtain
power values surpassing the provided threshold. Moreover,
the confidence intervals of wrong conclusions are derived
for various numbers of samples. The intervals correspond
to different probabilities. Lastly, the paper assesses the
transmission rate by using EVT. Thus, the intervals of
the Pareto parameters from different sample sizes are
incorporated to achieve the desired error probability in
URC. The paper validates its proposed framework with
data collected in different sizes in a car engine. The
targeted error probability is even met with limited data
known.

As described in [10], the statistical method Multivari-
ate Extreme Value Theory (MEVT) models the relation of
rare events based on multidimensional limiting relations.
MEVT is a further development of EVT and has additional
functions like modeling dependence structures and joint
distribution of several extreme events. The authors of [10]
base their proposed channel modeling methodology on
MEVT. The channel is for systems using Multiple Input
Multiple Output (MIMO)-URC for efficiently deriving the

lower tail statistic in multiple dimensions. The received
signal powers are the data for these statistics. To validate
the proposed methodology, the paper focuses on the bi-
variante or two-dimensional case. Before MEVT can be
applied, the collected data converts into a sequence of
i.i.d samples. Therefore, the above-introduced modeling
of paper [7] is applied. Next, MEVT fits the GPD to the
tail distribution to find optimal thresholds. Afterward, the
Fréchet transformation is applied to each data sequence.
Then, between the Fréchet sequences, the dependency
factor is estimated. Next, two approaches are employed
to fit Bi-Variate GPD (BGPD) to the joint distribution.
The approaches used are the logistical distribution and the
Poisson point process. Lastly, a mean constraint assess-
ment validates the fitted BGPD model. The methodology
is tested using one transmitter and two receivers in a car
engine and compared to conventional models based on
extrapolation. The proposed method performs significantly
better in accurately modeling multiple dimensions events
in URC.

3.3. Dynamic Service Chaining

This subsection summarizes the paper of
Qin et al. [11].

Physical Machines (PMs) host Virtual Machines
(VMs). VMs run software-based Virtual Network Func-
tions (VNFs), which are enabled by Network Function
Virtualizations (NFVs). The most essential requirement
for service function chaining is guaranteeing ultra-reliable
services. The existing research concentrates on average
inter-failure time and repair downtime to define the reli-
ability of VNFs. Due to uncertain PM failures, this does
not fully capture the stochastic nature of VNF failure.
The paper proposes a Dynamic Service Chaining (DSC)
framework to examine the high-order statistics and prob-
ability of VNF failure time threshold deviation. The GPD
approach of EVT characterizes the threshold deviation
statistics with a low occurrence probability. The Poisson-
Bernstein de la Harpe (PBdH) theorem describes extreme
cases of PM failure time. A two-timescale VNF frame-
work for mapping/remapping handles uncertain PM fail-
ure. The primary remapping framework works at a large
timescale using matching theory. The optimal backup
VNF framework operates at a smaller timescale. The
algorithm used to find this backup effectively reduces
computational complexity and balances switching costs
and reliability. In addition, the backup needs to be selected
beforehand. Simulation of the proposed DSC validates
the PBdH. The randomly generated network topology is
based on 20 nodes and 40 links. Other parameters are
normalized. The numerical results show that using EVT
to characterize extreme events improves service reliability
compared to average-based schemes.

3.4. Mobile Edge Computing

This subsection summarizes first the paper of
Liu et al. [12] and then of Ji et al. [13].

Traditional cloud computing has its resources pooled
centrally. Mobile Edge Computing (MEC) has an ad-
vantage compared to traditional approaches because it
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provides computing services close to the server. The au-
thors address the challenges of offloading mission-critical
tasks in MEC networks with Non-Orthogonal Multiple
Access (NOMA). The network of the paper consists of
a server and two sensor nodes, which supply the server
with data. The server computes latency-sensitive tasks
and works after the first-come, first-served principle. The
overall error probability is characterized by the derivation
of the Finite Blocklength (FBL) communication reliability
and latency violation error probability through the GPD
approach of EVT. The framework minimizes errors by
jointly allocating the communication phase, the compu-
tation phase, and the user transmits power within strin-
gent delay and energy constraints. The modified Block
Coordinate Descent method addresses the non-convex
problem by optimizing the time duration or proving the
problem by characterizing the joint convexity of FBL
error probability. Numerical simulations confirm the near-
optimal performance of the proposed approach. Moreover,
the paper’s proposed framework outperforms the NOMA
scheme with infinite blocklength solutions and the time-
division multiple access scheme.

The authors in [13] address the issue of energy-
efficient computation offloading in MEC systems on mo-
bile applications with sequential or parallel module depen-
dencies. First, the authors model mobile applications as
Directed Acyclic Graphs. By considering the parent and
children set of each computation module, the execution
dependency gets handled. Then, the GEV approach of
EVT is applied to explicitly address uncertainties and limit
the occurrence probability of extreme events. Afterward,
a newly developed ϵ-bounded algorithm, based on the
column generation technique and with theoretical opti-
mality guarantees, solves the offloading problem energy-
efficiently. ϵ is the tail of the GEV model, and the optimal
offloading policy is when ϵ is 0. Tools like Smart Diag-
noses, tPacketCapture, WiFi SNR and PETrA were used to
measure and record statistics. The result is a computation
scheme outperforming other state-of-the-art schemes, such
as Hermes and JSCO, in experiments conducted on an
Android platform. The proposed scheme consistently has
the lowest energy consumption as long as ϵ is smaller
than 0.05. When this happens, the local device can save
up to 50 % of energy. The cause for this is that JSCO
neglects to account for uncertainties inherent in dynamic
radio channels with queueing delays. In contrast, Hermes
introduces additional energy consumption attributed to
communication overhead resulting from the continuous
probing of the channel.

3.5. Root Cause Location

This subsection summarizes the paper of
Yang et al. [14].

The increasing complexity of online services can lead
to significant losses when abnormalities occur. The root
cause location is vital to guarantee the stable operation
of online services. Therefore, the paper proposes a lo-
cation method based on Prophet and Kernel Density Es-
timation (ProphetKdeRCL). ProphetKdeRCL consists of
two stages. The first stage is the abnormal detection of
performance indicators. This stage introduces the Prophet
Mutation Point Updating (PMPU) algorithm. The Prophet

model fits trend items better, and the timing anomaly
detection gets more accurate through the usage of an
improved version of EVT. PMPU solves the problems of
existing methods since it can detect irregularities in the
lowest range. The second stage locates the root cause of
abnormal indicators and uses two algorithms. One is an
anomaly degree measurement algorithm based on a Kernel
Density Estimation. The second one is a time window-
based causality analysis algorithm. This algorithm ana-
lyzes latency dependency via an intermediate structure
and a time window. The effectiveness of the proposed
algorithm is validated through testing and evaluations of
the public time series, the microservice application system
fault detection, and root cause location datasets.

4. Conclusion

Extreme Value Theory is a robust statistical method
for predicting occurring extreme events and tail behavior
modeling. The focus of this survey paper is on the most
recent applications in networking from 2022 to 2023.
This paper excludes papers that only build on EVT-
based models or EVT for validating the paper’s proposed
methodology. First, this paper establishes an understand-
ing of EVT. Therefore, it explains the distributions of
Generalized Extreme Value and the Generalized Pareto
Distribution in detail. Second, the nine selected papers
are summarized. Each summary consists of the contribu-
tion of the paper, used methodologies, and key findings.
Table 1 gives an overview of all discussed papers. Each
line represents one of the nine papers. The order is the
same as the papers are summarized in this paper. The
Approach column shows that EVT’s GPD approach is
preferred over the GEV approach. All papers validate their
EVT-based approaches and evaluate that their approach
is superior to traditional ones in the discussed scenarios.
They prove that accurate extreme event modeling and
improving reliability predictions are possible. Therefore,
they test their approach through virtual simulations or in
the real world. None of the papers published their data
to replicate their tests, and none have a Reproducibility
Badge from the Association for Computing Machinery.
Nevertheless, EVT has limitations, but only [5] highlights
them. The quality of the EVT depends on factors such
as the data volume, the confidence level employed in
the distribution fitting, and the approach to return level
calculation. Another weakness of EVT is that it can
only be applied if the data is identically distributed and
stationary. The data and used communication channels
have to be either tested for stationary or assumed to
be stationary, which leads to more calculation effort and
complex systems. In conclusion, it can be said that EVT
is a powerful tool to model and predict extreme values
if the right approach is selected, the data is optimally
fitted, and enough meaningful data volume is available.
If not, EVT increases the system complexity and delivers
wrong predictions. EVT is especially useful in the field of
telecommunication since the demand for a method that can
handle computation-intensive and latency-critical tasks is
met.
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TABLE 1: Overview table of all summarized papers

Paper Approach Validated Tested

Helm et al. [5] GPD Yes Virtual
Mehrnia et al. [7] GPD Yes Real-World
Mehrnia et al. [8] GPD Yes Real-World
Mehrnia et al. [9] GPD Yes Real-World
Mehrnia et al. [10] BGPD Yes Real-World
Qin et al. [11] GPD Yes Virtual
Liu et al. [12] GPD Yes Virtual
Ji et al. [13] GEV Yes Real-World
Yang et al. [14] improved EVT Yes Virtual
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