
ZDNS vs MassDNS: A Comparison of DNS Measurement Tools

Jeremy Dix, Patrick Sattler∗, Johannes Zirngibl∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: jeremy.dix@tum.de, sattler@net.in.tum.de, zirngibl@net.in.tum.de

Abstract—The DNS is an ever-growing essential part of
today’s Internet. Its ability to function well is crucial for
the Internet’s stability and maintainability. To ensure that,
the DNS needs to incorporate scalable and high-performing
technologies. Active DNS measurement on a large-scale basis
plays a critical role in developing these technologies. ZDNS
and MassDNS are two frameworks that provide toolsets for
performing such DNS measurements while taking different
approaches to accomplish this task. This paper describes
and compares these frameworks and their features in detail
and provides an overview of their respective resolution
accuracy. Most notably, it shows that both tools incorpo-
rate features, e.g., for internal recursion and lookup chain
exposure (ZDNS) or subdomain enumeration (MassDNS). It
demonstrates that, while both frameworks have a similar
accuracy under the same circumstances, MassDNS tends to
experience more timeouts in general. The paper aims to
help researchers and other interested parties choose the right
tool for their use case by better understanding their specific
capabilities.

Index Terms—dns, networking, performance, benchmark,
measurement, zdns, massdns

1. Introduction

Nowadays, the World Wide Web is bigger than ever
before. According to the Domain Name Industry Brief, it
currently comprises about 359.3 million domain names [1]
and is exponentially growing each year. The Domain
Name System (DNS) is critical for accommodating this
vast number of domains and is integral to the Internet’s
infrastructure. Its primary purpose is to convert human-
readable domain names into IP addresses.

Due to its fast growth [1], the DNS requires highly
performing, scalable, and secure technologies to keep up
with the increasing demand. In particular, the field of
active DNS measurement is crucial for conducting the nec-
essary research to create these technologies. For example,
a research team at the University of Twente published a
paper that describes the importance of extensive active
DNS measurement and its challenges, e.g., the burdens
imposed on the DNS by daily scans [2].

For conducting research involving active DNS mea-
surement, there is a need for high-performance tools that
can perform domain name resolution on a large scale. Two
such recently developed tools that are actively being used
for DNS research are ZDNS and MassDNS.

ZDNS is a command line tool implemented in Go [3],
created by Durumeric et al. at Stanford University as part

of the ZMap Project [4]. In contrast, MassDNS is a single-
threaded DNS stub resolver written in C, created by Birk
Blechschmidt, a security engineer at Deutsche Telekom,
and Quirin Scheitle, a former researcher at the Technical
University of Munich [5].

Comparing these two tools is particularly interesting,
as their feature set, purpose, and commitment to deliver-
ing high resolution speeds are very alike. MassDNS, for
instance, promises a speed of up to 350.000 lookups per
second [5]. However, while these toolsets have the same
primary purpose, they still differ in functionality, usability,
resolution accuracy, and scalability. Depending on the use
case, this might lead to one tool performing better. Hence,
this paper compares both tools w.r.t. the latter properties
to determine their suitability for specific use cases.

2. Related Work

ZDNS and MassDNS mainly contribute to the field
of active DNS measurement. Joint research projects like
TIDE [6] or OpenINTEL [7] are significant contributors
to this research area as well. OpenINTEL measures more
than 252 million domains every day, thus precisely log-
ging the state of the DNS over time [7]. The University
of Twente, as well as research organizations like SIDN
Labs [8], SURFnet [9], and NLnet Labs [10] are all
major contributors to OpenINTEL, as well as other active
DNS measurement research projects (e.g., [2], [11], [12]).
Notably, another DNS measurement platform, Censys
Search [13], uses ZDNS for its DNS measurements [3].
MassDNS is also used in various DNS measurement
research projects, e.g., [14] or [15].

The ZDNS developers themselves published a paper in
2022 in which ZDNS is compared to other DNS tools [3].
The paper explains ZDNS’ properties, highlights its per-
formance in large-scale domain resolution, and indicates
possible use cases.

Apart from ZDNS and MassDNS, several other tools
exist that were created by research teams for inter-
nal measurements in the context of various research
projects [2], [16]. Additionally, there are several Linux
tools with similar purposes, e.g., domain information
groper (dig) [17], or nslookup [18]. However, in contrast
to the frameworks presented in this paper, these solu-
tions/tools are generally not published, preventing other
scientists from using them in their research projects, or
they are not optimized for large-scale DNS measurements.

Lastly, tools like ZDNS and MassDNS typically rely
on third-party recursive resolvers, like Unbound [19] or
the Cloudflare public resolver (1.1.1.1) [20] to resolve

Seminar IITM WS 23 53 doi: 10.2313/NET-2024-04-1_10



domain names. These resolvers provide the necessary
infrastructure for communication with the name servers
in the DNS.

3. General Comparison

This chapter gives a comprehensive overview of both
tools’ features, compares their usability and implementa-
tion, and lists some of their approaches to fault mitigation.
Table 1 summarizes both tools’ most significant proper-
ties.

TABLE 1: Feature and property overview.

Feature ZDNS MassDNS

Number of fully supported record types 70 11
Supported L4 protocols UDP, TCP UDP
Concurrency method Goroutines epoll
Built-in resolver ✓ -
Iterative lookups ✓ ✓
Lookup chain exposure ✓ -
Additionally queried record types A, CNAME PTR
Native subdomain enumeration support - ✓
JSON output ✓ ✓

3.1. Feature Overview

Both tools serve the purpose of resolving domain
names by querying various resource record types. How-
ever, while ZDNS fully supports a total of 70 DNS record
types [21], MassDNS only supports the 11 most com-
monly used types for its human-readable output formats:
A, AAAA, CAA, CNAME, DNAME, MX, NS, SRV, PTR, SOA, and
TXT [5].

Moving on, ZDNS features its own standalone caching
recursive resolver library [22], which is built upon the
DNS library by Miek Gieben [23]. It consists of all DNS
resource record types, including the records from the DNS
Security Extensions (DNSSEC) [22].

ZDNS’ Built-in Resolver. While MassDNS exclu-
sively relies on third-party recursive resolvers to perform
DNS queries, ZDNS also has a built-in iterative resolver. It
makes use of the aforementioned library for its operation.
According to the developers of ZDNS, an advantage of
this resolver is its ability to circumvent potential rate limits
by public resolvers when querying with high concurrency.
This resolver also performs local recursion, which exposes
internal DNS procedures to the user, enabling them to
conduct more detailed research. Moreover, the resolver
includes a selective response cache. It minimizes the cache
entry size by only buffering Name Server (NS) and glue
records. By leveraging this technique, it prevents excessive
disposal of cache entries while reducing the number of
needed queries and helping the resolver with subsequent
recursion. [3]

Still, when comparing the performance of ZDNS’
iterative resolver to public resolvers like Cloudflare, it can
be seen that public resolvers are better suited for large-
scale lookups of billions of domains. This is due to bigger
caches, and thus better resolution accuracy with bigger
scale [3]. Therefore, for large-scale lookups, both tools
depend on external recursive resolvers to reach their full
potential.

ZDNS’ Lookup Modules. ZDNS encompasses sev-
eral lookup modules, namely mxlookup and alookup [21].
These modules can automatically perform additional
queries when processing Mail Exchange and Canonical
Name records in addition to looking up the records speci-
fied in the original query. The mxlookup module is able to
automatically perform additional A record lookups when
querying for MX records, while the alookup module can
interpret CNAME records and query their contents.

MassDNS’ Python Scripts. MassDNS has several
distinctive features as well. A couple of Python scripts
expand the use cases of MassDNS, particularly with re-
gard to reconnaissance scanning. For instance, a script for
automatically resolving previously queried PTR records
named ptr.py enables the user to efficiently perform
Reverse DNS [24].

In addition, the script subbrute.py allows for brute-
force subdomain enumeration with MassDNS [5]. It works
similarly to SubBrute, a high-performance DNS query
spider, which can perform DNS record and subdomain
enumeration [25]. MassDNS includes several more sub-
domain enumeration scripts, e.g., the script ct.py which
uses the crt.sh Identity Search to scrape for Certificate
Identity logs and extract subdomains from them [26].
These scripts present an advantage of MassDNS, as their
functionality in enumerating subdomains is useful for
reconnaissance scans and penetration tests, which are
performed for detecting potential security risks or vul-
nerabilities of domains.

3.2. Usability Comparison

Both DNS frameworks provide the user with various
CLI options for setting basic DNS lookup parameters, like
the timeout time and query retry count.

ZDNS additionally has the option to use the built-
in iterative resolver via setting the --iterative flag,
but also an option to enable UDP socket recycling (see
Section 3.3), as well as options for choosing specific
transport layer protocols or lookup modules. [21]

In contrast, most notably, MassDNS has an option to
unset the DNS Recursion Desired (RD) bit via setting
the --norecurse flag [5]. This option enables the user to
perform non-recursive lookups, and thus makes it easier
to carry out DNS cache snooping [27] or subdomain
enumeration (see Section 3.1).

Output. Further considering the output, there are
several similarities and differences in its format and ver-
bosity. MassDNS incorporates a total of 5 different out-
put formats: domain list output, simple text output, full
text output, binary output, and Newline Delimited JSON
(NDJSON) output [5], [28]. The simple text output can
be controlled by a total of 10 advanced options for high
customization [5]. It is important to note that out of
these output options, only the binary output conserves
the whole DNS response data consisting of all received
records [5]. All other formats only preserve the record
types mentioned in Section 3.1. Most notable, however, is
the JSON output format. It outputs all response packets as
JSON objects in the output style of dig, which are easily
programmatically interpretable, thus enabling researchers
to parse their results efficiently.

Seminar IITM WS 23 54 doi: 10.2313/NET-2024-04-1_10



ZDNS, on the other hand, only features output in
JSON, whereby different output verbosities exist: short,
normal, long, and trace. These verbosities can be further
customized through the --include-fields option. [21]

The ZDNS’ trace feature is particularly interesting,
as it can display the whole lookup chain/trace of every
request when performing internal recursion. It lists the
responses of all name servers of the trace, starting from
the root name server [3]. The dig tool has a similar
feature, which can be used via the +trace argument [17].
MassDNS, on the other hand, lacks an analogous feature.

In conclusion, although MassDNS supports more out-
put options than ZDNS, the most significant output variant
for further processing, namely the JSON output method,
is supported by both tools. However, in ZDNS, this output
format is customizable, whereas in MassDNS, it is not.

3.3. Implementation Differences

The performance and reliability of each tool highly
rely on its implementation. For this reason, key imple-
mentation aspects of both tools are compared below.

ZDNS and MassDNS both rely on different forms of
concurrency when executing queries. ZDNS uses Gorou-
tines, i.e., lightweight threads, for looking up names in
parallel. Each Goroutine is assigned a UDP socket, which
sends and receives DNS packets. By default, ZDNS reuses
its UDP sockets, meaning they are used repeatedly for dif-
ferent lookups until program termination. This improves
ZDNS performance and scalability, as the creation of new
sockets for each new query is circumvented. [3]

MassDNS, on the other hand, does not use threads
in its C implementation. It instead utilizes the epoll
I/O event notification facility together with a self-
written hashmap implementation to carry out concurrent
queries [29], [5]. MassDNS creates one UDP socket per
--bind-to entry and then assigns all sockets to the epoll
instance [5]. The hashmap respectively stores the domain
name queries that are supposed to be processed next,
so that the epoll instance can take the next batch of
domain names and use an available socket to execute
the lookups. Additionally, MassDNS can be run utilizing
multiple processes. However, it then operates using a
shared-nothing architecture [5], meaning that queries are
not synced between processes, and the outputs of each
process are stored in different files.

As mentioned above, both tools utilize UDP sockets
for their lookups, but ZDNS also allows for the use of
TCP sockets. A disadvantage of using the latter is that
it negatively affects performance, as TCP sockets do not
allow for reusability. [21]

3.4. Fault Mitigation Approaches

ZDNS and MassDNS share one big issue; they both
can overwhelm DNS servers and experience rate limiting
by public resolvers when run with high concurrency. To
resolve this issue, both tools provide an option to use
multiple resolvers for querying.

ZDNS offers this feature via its --name-servers op-
tion [21]. However, as described in Section 3.1, the latter
issue can be avoided entirely by using ZNDS’ built-in
resolver.

MassDNS offers a similar feature to use multiple
resolvers via its --resolvers option [5]. Besides that, for
dodging IPv6 resolver rate-limiting, MassDNS provides
the --rand-src-ipv6 <your_ipv6_prefix> option [5].
This option allows MassDNS to pick from a specified
subnet of source IPv6 addresses for each lookup, thus
effectively evading rate limits by some IPv6 resolvers.
Other than that, there is no other option to minimize the
load on DNS servers when using MassDNS except to
manually decrease the hashmap size or lower the retry
count from the default 50 [5].

4. Performance Evaluation

The performance of each tool in successfully resolving
domain names is crucial for assessing the capabilities of
both frameworks. It is evaluated by comparing each tool’s
resolution accuracy and fallibility. Furthermore, the Top
Level Domains (TLDs) of the domain names resolved
exclusively by one of the tools, but not the other, are
compared to demonstrate either tool’s effectiveness when
querying for domain names with specific TLDs.

4.1. Resolution Accuracy Comparison

The resolution accuracy of ZDNS and MassDNS was
compared by querying for A and AAAA records of a custom
dataset containing all domain names from the Cloudflare
(CF) Radar Top 1 Million (1 009 126 domain names on
11-30-2023) [30] and the Chrome User Experience Re-
port (CrUX) (995 207 distinct domain names on 11-30-
2023) [31]. These domain lists were chosen because they
are both publicly available and contain the most visited,
i.e., most resolved domains of the Internet.

Both tools were tested once using the Unbound recur-
sive resolver, while ZDNS was also tested using the CF
public resolver. The CF resolver was additionally chosen
for ZDNS, as, according to the ZDNS developers’ scans,
ZDNS overall works best when paired with CF [3]. The
built-in ZDNS iterative resolver was not tested, as Mass-
DNS does not feature a native resolver, thus rendering a
comparison inequitable.

Inherently, MassDNS uses 10 000 concurrent lookups.
However, due to ZDNS only using 1000 Goroutines by
default [21], MassDNS was tested with a hashmap size
of both 10 000 and 1000 to provide a more balanced
comparison. To minimize resolver overload, ZDNS was
tested using its default retry count of 1, while MassDNS’
retry count was lowered from 50 to 3.

Success Rates. The success rates discussed below
were achieved by ZDNS and MassDNS using the Un-
bound resolver and a concurrency level of 1000 lookups.
Figure 1 depicts the encountered error codes while query-
ing for A records using the aforenamed parameters.

First, considering the CF Radar query results, it be-
came apparent that, regardless of whether A or AAAA
records were queried, MassDNS had a slightly higher res-
olution success rate than ZDNS. For instance, MassDNS
successfully resolved 96.54% of A record queries, whereas
ZDNS resolved 96.51% of queries with success. In the
CrUX scan results, while ZDNS excelled in resolution
accuracy this time, the success rates of both tools were
also quite similar, but they both encountered a higher

Seminar IITM WS 23 55 doi: 10.2313/NET-2024-04-1_10



number of errors. In the case of A records being queried,
MassDNS had a slightly lower success rate of 95.39%,
while ZDNS marginally outperformed MassDNS with a
success rate of 95.49%.

In conclusion, the results show that, under equivalent
circumstances, both tools have a similar accuracy. Which
tool gets a slight advantage depends on the queried domain
list. However, as seen in Section 4.2, there is a major
disparity in accuracy when tweaking the tools’ parameters.

Error Comparison. Examining the status/error
codes in Figure 1 reveals some more interesting aspects.
When scanning the CrUX list, both tools encountered
about twice as many SERVFAILS and NXDOMAIN errors as
they did while querying the CF Radar list.

Concerning TIMEOUT encounters, each time, MassDNS
experienced more timeouts than ZDNS. For instance,
while resolving the CF Radar A records, MassDNS ex-
perienced 988 more timeouts than ZDNS. The timeout
difference is even more significant when looking at the
CrUX A record lookup results, where it amounts to 1420.
Considering that MassDNS only timed out 4973 times
in this scan, this represents a timeout increase of about
28.55% when compared to ZDNS.

ZDNS
(CF Radar)

MassDNS
(CF Radar)

ZDNS
(CrUX)

MassDNS
(CrUX)

0

10000

20000

30000

40000

A
m

ou
n
t

of
er

ro
rs

10655

20953
12060

14165

21405

34733

2852
2824

6188 6198

35260 34910

44859
45904

9693 10681

3553
4973

TIMEOUT

NXDOMAIN

MAXRETRIES

REFUSED

SERVFAIL

Figure 1: Comparison of A record query errors. The
MassDNS specific MAXRETRIES status code encompasses
SERVFAIL and REFUSED errors.

Resolved Domain Name Comparison. The domain
names that both tools resolved successfully were mostly
similar. For both domain lists, the similarity percentage
when querying A records amounted to about 99.76%.

However, when analyzing the domain names each tool
resolved exclusively, some noteworthy aspects became
visible. Table 2 depicts the TLDs where ZDNS and Mass-
DNS exhibited the most notable disparities in success-
ful resolutions. The table shows that ZDNS performed
slightly better when resolving .com domain names. The
tool resolved 853 domains which MassDNS could not
successfully query. In fact, ZDNS excelled when resolving
domain names for all TLDs listed in Table 2 except when
querying .ru domains. In this case, MassDNS outper-
formed ZDNS by uniquely resolving an additional 569
domain names.

TABLE 2: Number of TLDs either tool resolved exclu-
sively across all A record queries.

TLD ZDNS MassDNS

.com 853 352

.ru 223 792

.jp 589 153

.net 199 61

.info 130 55

.club 128 39

Total 2622 1929

4.2. Additional Findings

ZDNS paired with CF. Scanning the aforemen-
tioned domain lists (see Section 4.1) with ZDNS in com-
bination with the CF public resolver revealed that ZDNS
performs more effectively with it than with the Unbound
resolver. For instance, the success rate rose from 96.54%
to a near-perfect 99.26% when querying the CF Radar list
for A records. This result underlines that ZDNS is more
performant when paired with Cloudflare [3].

Timeouts in MassDNS. Running the previously pre-
sented scans with MassDNS using its default hashmap
size of 10K revealed an interesting aspect regarding the
times MassDNS experienced timeouts. For example, when
scanning the CF Radar list for A records, MassDNS en-
countered 72 148 timeouts when using 10K concurrent
lookups, which are 61 467 more timeouts than in the scan
presented in Figure 1. In other words, MassDNS encoun-
tered around six times as many timeouts when performing
10K concurrent queries compared to only 1000 parallel
lookups. A similar outcome was observed when scanning
the CrUX list.

This behavior implies that MassDNS overwhelms
name servers when querying with its default concurrency,
which leads to timeouts that stem from rate limits. This
notably adversely affects MassDNS’ success rate in ev-
ery scan. For instance, when scanning the CF Radar
for A records, the success rate decreased from 96.51%
to 90.66%. According to Durumeric et al., MassDNS’
success rate drops even further to about 65% when using
45K concurrent lookups [3].

5. Conclusion and Outlook

ZDNS and MassDNS are both capable tools for pure
large-scale domain name resolution.

ZDNS is highly preferable when reliability and exten-
sibility are the priority. Its main advantage is that it offers
a well-rounded, feature-rich package. Different properties,
such as support for numerous record types, advanced DNS
lookup modules, and a built-in resolver for, e.g., analyzing
lookup chains, make it a versatile instrument suitable for
intricate DNS analysis.

MassDNS is a more fitting choice if runtime takes
priority over reliability. Its exceptionally high default
concurrency rate renders it highly suitable for fast bulk
queries. However, MassDNS’ extensive parallelism comes
at the expense of reduced reliability as the timeout rate
increases. Nevertheless, MassDNS offers a variety of use
cases, especially in the fields of reconnaissance scanning,

Seminar IITM WS 23 56 doi: 10.2313/NET-2024-04-1_10



penetration testing, and Reverse DNS. The Python scripts
that MassDNS features are highly beneficial for applica-
tions in these areas.

Both tools plan to implement new features and combat
their shortcomings in the future. While ZDNS plans to
extend its functionality by adding support for DNS over
HTTPS and DNS over TLS [3], MassDNS aims to imple-
ment more adaptable concurrency mechanisms to prevent
overwhelming resolvers, as well as more reconnaissance
features, e.g., wildcard record detection [5]. These im-
provements will make both tools even more suitable for
their respective use cases.

References

[1] DNIB, “The domain name industry brief quarterly report,” https://
dnib.com/articles/the-domain-name-industry-brief-q3-2023, Tech.
Rep., 2023, [Online; accessed 1-March-2024].

[2] R. van Rijswijk-Deij, M. Jonker, A. Sperotto, and A. Pras, “A
High-Performance, Scalable Infrastructure for Large-Scale Active
DNS Measurements,” IEEE Journal on Selected Areas in Commu-
nications, vol. 34, no. 6, pp. 1877–1888, 2016.

[3] L. Izhikevich, G. Akiwate, B. Berger, S. Drakontaidis,
A. Ascheman, P. Pearce, D. Adrian, and Z. Durumeric,
“ZDNS: A Fast DNS Toolkit for Internet Measurement,” in
Proceedings of the 22nd ACM Internet Measurement Conference,
ser. IMC ’22. New York, NY, USA: Association for
Computing Machinery, 2022, pp. 33–43. [Online]. Available:
https://doi.org/10.1145/3517745.3561434

[4] The ZMap Team, “The ZMap Project,” https://zmap.io/, 2024,
[Online; accessed 1-March-2024].

[5] B. Blechschmidt and Q. Scheitle, MassDNS, https://github.com/
blechschmidt/massdns, [Online; accessed 1-March-2024].

[6] S. Meng, L. Liu, and V. Soundararajan, “Tide: Achieving
Self-Scaling in Virtualized Datacenter Management Middleware,”
in Proceedings of the 11th International Middleware Conference
Industrial Track, ser. Middleware Industrial Track ’10. New York,
NY, USA: Association for Computing Machinery, 2010, pp. 17–22.
[Online]. Available: https://doi.org/10.1145/1891719.1891722

[7] OpenINTEL, “Openintel,” https://openintel.nl/, 2024, [Online; ac-
cessed 1-March-2024].

[8] SIDN Labs, “About SIDN Labs,” https://www.sidnlabs.nl/en/
about-sidnlabs, 2024, [Online; accessed 1-March-2024].

[9] SURF, “About SURF,” https://www.surf.nl/en/about, 2024, [On-
line; accessed 1-March-2024].

[10] NLnet Labs, “About,” https://nlnetlabs.nl/about/, 2024, [Online;
accessed 1-March-2024].

[11] R. Sommese, M. Jonker, J. van der Ham, and G. C. M. Moura,
“Assessing e-Government DNS Resilience,” in 2022 18th Interna-
tional Conference on Network and Service Management (CNSM),
2022, pp. 118–126.

[12] R. Sommese, G. C. M. Moura, M. Jonker, R. van Rijswijk-Deij,
A. Dainotti, K. C. Claffy, and A. Sperotto, “When Parents and
Children Disagree: Diving into DNS Delegation Inconsistency,” in
Passive and Active Measurement, A. Sperotto, A. Dainotti, and
B. Stiller, Eds. Cham: Springer International Publishing, 2020,
pp. 175–189.

[13] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A.
Halderman, “A Search Engine Backed by Internet-Wide Scanning,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15. New York, NY,
USA: Association for Computing Machinery, 2015, pp. 542–553.
[Online]. Available: https://doi.org/10.1145/2810103.2813703

[14] J. Zirngibl, P. Sattler, and G. Carle, “A First Look at SVCB
and HTTPS DNS Resource Records in the Wild,” in 2023 IEEE
European Symposium on Security and Privacy Workshops, Jul.
2023.

[15] L. Degani, F. Bergadano, S. Mirheidari, F. Martinelli, and
B. Crispo, “Generative adversarial networks for subdomain enu-
meration,” 04 2022, pp. 1636–1645.

[16] J. Mao, M. Rabinovich, and K. Schomp, “Assessing Support
for DNS-over-TCP in the Wild,” in Passive and Active
Measurement: 23rd International Conference, PAM 2022, Virtual
Event, March 28-30, 2022, Proceedings. Berlin, Heidelberg:
Springer-Verlag, 2022, pp. 487–517. [Online]. Available: https:
//doi.org/10.1007/978-3-030-98785-5_22

[17] Internet Systems Consortium, Inc., dig - Linux man page, https:
//linux.die.net/man/1/dig, [Online; accessed 1-March-2024].

[18] A. Cherenson, nslookup - Linux man page, https://linux.die.net/
man/1/nslookup, [Online; accessed 1-March-2024].

[19] NLnetLabs, Unbound, https://github.com/NLnetLabs/unbound,
[Online; accessed 1-March-2024].

[20] Cloudflare, “What is 1.1.1.1?” https://www.cloudflare.com/
learning/dns/what-is-1.1.1.1/, 2024, [Online; accessed 1-March-
2024].

[21] Z. Durumeric, P. Pearce, D. Adrian, S. Kalscheuer, and B. Van-
derSloot, ZDNS, https://github.com/zmap/zdns, [Online; accessed
1-March-2024].

[22] B. Blechschmidt and Q. Scheitle, Alternative (more granular)
approach to a DNS library (fork), https://github.com/zmap/dns,
[Online; accessed 1-March-2024].

[23] M. Gieben, Alternative (more granular) approach to a DNS library,
https://github.com/miekg/dns, [Online; accessed 1-March-2024].

[24] Cloudflare, “What is reverse DNS?” https://www.cloudflare.com/
learning/dns/glossary/reverse-dns/, 2024, [Online; accessed 1-
March-2024].

[25] The Rook, subdomain-bruteforcer (SubBrute), https://github.com/
TheRook/subbrute, [Online; accessed 1-March-2024].

[26] R. Stradling, “crt.sh Certificate Search,” https://crt.sh/, [Online;
accessed 1-March-2024].

[27] O. Farnan, J. Wright, and A. Darer, “Analysing Censorship Cir-
cumvention with VPNs Via DNS Cache Snooping,” in 2019 IEEE
Security and Privacy Workshops (SPW), 2019, pp. 205–211.

[28] T. Hoeger, C. Dew, F. Pauls, and J. Wilson, NDJSON - Newline
delimited JSON, https://github.com/ndjson/ndjson-spec, [Online;
accessed 1-March-2024].

[29] epoll - Linux man page, https://linux.die.net/man/7/epoll, [Online;
accessed 1-March-2024].

[30] Cloudflare Radar, “Top 1000000 Domains,” https://radar.cloudflare.
com/domains, 2023, [Online; accessed 30-November-2023].

[31] Google, “Overview of CrUX,” https://developer.chrome.com/docs/
crux/, 2023, [Online; accessed 30-November-2023].

Seminar IITM WS 23 57 doi: 10.2313/NET-2024-04-1_10


