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Abstract—Content Delivery Networks (CDNs) play a crucial
role in enhancing user experience by caching frequently
accessed content. However, challenges arise when users re-
quest uncached content, leading to potential disruptions and
impacts on website performance. To address this, researchers
advocate for proactive caching, pre-emptively storing pre-
dicted future requests. This paper explores the application
of a language model to server logs for predicting users’ API
requests. Training the model on logged API calls, we analyze
the potential of language models in gaining insights into
user behavior. Despite challenges with dynamic data, the
model detects recurring patterns and learns API semantics.
While results may vary for sites with dynamic structures,
this approach opens avenues for future improvements, such
as introducing probability thresholds or focusing on specific
API endpoints. Challenges persist, requiring each website
to train its own model based on its API structure. Our ex-
ploration provides valuable insights into the possibilities and
limitations of language model-driven API request prediction.

Index Terms—content delivery networks, api, prediction

1. Introduction

In our rapidly evolving world, website owners often
rely on Content Delivery Networks (CDNs) to speed
up loading times for end-users. Yet, this decision poses
its own set of challenges, including determining which
content to cache on the CDN and minimizing cache misses
[1].

CDNs typically store popular and frequently accessed
content, a strategy that significantly reduces latency and
improves user experience. However, challenges arise when
a user requests content that is not readily available in
the CDN’s cache. In such cases, the CDN must either
retrieve the resource from the origin server or return an
error message to the user. This can lead to disruptions in
the user experience and potentially impact overall website
performance [2].

To address this challenge, researchers have proposed
the idea of predicting users’ next requests and preemp-
tively caching the required resources. In their survey,
Nanopoulos et al. [3] advocated for storing such items
in the cache prior to an explicit request being made. This
approach, known as proactive caching, aims to minimize
the latency associated with fetching resources from origin
servers, ensuring that users enjoy seamless and responsive
online experiences.

Building upon this concept, machine learning models
have emerged as promising tools for predicting users’
next requests. These models can analyze vast amounts
of server logs and historical data to identify patterns and
predict user behavior. This information can then be used
to preload relevant resources in the CDN cache, further
enhancing the user experience and reducing latency. [4]

In this paper, we explore the application of a language
model approach to server logs datasets to gain valuable
insights into user behavior and predict their next API
requests.

2. Background and Related Work

A Content Delivery Networks (CDN) is a network of
servers strategically located around the world that help
deliver web content to users with improved performance
and reduced latency [5]. Websites and online platforms
often utilize CDNs to enhance their services and meet the
growing demands of users.

CDNs work by storing cached copies of web con-
tent, such as images, videos, and static files, on servers
distributed across various geographic locations. When a
user requests content, the CDN automatically directs the
request to the server closest to the user, minimizing the
distance the data needs to travel. This proximity helps
reduce latency and improves the overall loading speed of
web pages [2].

In addition to improving performance, CDNs can
also help mitigate traffic spikes and distribute the load
on servers, ensuring smooth and uninterrupted access to
web content even during periods of high demand. By
offloading the delivery of content to a CDN, websites can
optimize their infrastructure, enhance user experience, and
better handle global traffic [2].

2.1. Web Usage Mining

Colley et al. [6] were some of the first ones interested
in predicting user’s requests. Knowing user’s intentions
can create a seamless user experience, increase conversion
and sales [7] if the users are recommended something they
did not know they needed [8]. In the context of server and
CDNs, knowing user intentions can be used to predict
the user’s next API request and preload the resources.
This would decrease loading time for the users and ensure
effective user interaction. [3]

There are several proposed web usage mining ap-
proaches for working on server logs [9]:
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• Association rules - the technique for finding the
web pages visited together. One disadvantage of
the associate rules approach is that it does not take
into account the notion of time difference.

• Frequent Sequences - considering ordered time-
sensitive sequences. This technique tries to dis-
cover sequence patterns followed by users.

• Frequent Generalized Sequences - a relaxation of
frequent sequences, that allows to study user’s
navigation in a flexible way. [10]

Gery et al. [9] evaluated the three web usage mining
approaches on datasets of different sizes and discovered
that the Frequent Sequences (FS) performed best in terms
of accuracy. The authors emphasize the suitability of the
FS technique for analyzing time series and propose an
optimal user session time of 25 minutes.

Nigam et al. [11] tried a different approach to pre-
dicting user requests. The research studies the effect of
Markov model depth on the user’s next request predic-
tion. Nigam et al. compare first-, second- and third-order
Markov models for predicting the next web page. They
propose metrics such as model generation time, prediction
time prediction accuracy and coverage for measuring pre-
diction success. In [11] Nigam et al. perform experiments
on three datasets. However, the proposed test datasets only
have between 29 and 92 different pages, which would
correspond to the number of unique API calls.

2.2. Content Delivery Networks Scaling

Content networking is gaining popularity as a go-
to technology because it significantly boosts enterprise
network performance for media-rich content, all while
keeping costs lower compared to traditional methods of
web scaling [12]. As CDNs expand their user base, the
content stored on CDNs becomes very diversified. Each
content category imposes distinct demands on the CDN’s
caching systems. CDN has to introduce various config-
uration parameters in order to be able to serve such a
wide range of content [13], [14]. Manual tuning of these
parameters can be challenging.

With the pursuit of increased efficiency and reduction
of cache misses, some reinforcement learning techniques
to autonomously manage resources were proposed [13],
[15], [16]. Current approaches to caching predominantly
utilize "model-free" reinforcement learning (RL), where
the system embarks on the learning process without
knowledge of the underlying structure, free from any
preconceived notions or biases about the task at hand
[17], [18]. These systems learn decision-making through
first-hand experience, guided by a reward mechanism
that reinforces the right decision-making and encourages
continued exploration of effective strategies.

While model-free RL holds immense promise for op-
timizing caching strategies, the RL community has iden-
tified three major hurdles that need to be addressed:

• Data-Intensive Learning: Model-free RL algo-
rithms typically require vast amounts of training
data, usually in the millions of samples. Accumu-
lating such a large dataset can be time-consuming
and resource-intensive [16].

• Overfitting Vulnerability: Model-free RL algo-
rithms are susceptible to the risk of overfitting to
the train data. This means that they may perform
well on the training set but struggle to generalize
to new and unseen data. In the context of caching,
overfitting could lead to suboptimal caching deci-
sions [19].

• Complex Debugging and Maintenance: Model-
free RL algorithms can be sensitive to hyper-
parameters, which make them extremely difficult
to debug [15], [20].

These challenges pose significant obstacles to the
practical implementation of model-free RL for caching
in CDN servers.

2.3. RNNs for API Requests Analysis

Reddy and Rudra [21] applied RNN for detecting
injections in API requests. They compare three popular
RNN approaches for sequential data analysis: bidirec-
tional Vanilla-RNNs, bidirectional LSTMs and bidirec-
tional gated recurrent units (GRU) for requests classifica-
tion. The obtained results prove the effectiveness of RNN
approach on a API request data. Reddy and Rudra were
able to achieve the accuracy of 97% for the bidirectional
LSTMs and 98,5% for bidirectional GRUs. Arivukarasi
and Antonidoss [22] were also able to exploit natural
language processing (NLP) approach with RNNs to detect
phishing URLs. They achieved the highest accuracy of
98% using RNNs with LSTM layer.

3. Methodology

We applied the language model approach for training
the API request prediction model. In order to train the
language model for predicting the next API call, we used
a recurrent neural network (RNN). RNNs are designed to
work with sequential data and are, therefore, the perfect
choice for processing a series of API requests. A model
was created and trained with the TensorFlow Keras API.
The architecture consists of three layers: Embedding layer,
Long Short-Term Memory (LSTM) layer, and dense layer.
The Long Short-Term Memory layer is the key to captur-
ing long-term dependencies and is suitable for predicting
the next API calls based on several previous calls. The
architecture of the RNN used is depicted in Figure 1.

The embedding layer is responsible for converting the
integer-encoded token (in our case, an API request) into
a dense vector. This step is needed to detect semantic de-
pendencies between API requests and meaningfully model
them in a vector space.

The second layer, LSTM, is responsible for preserving
the cell state and the hidden state of the machine learning
model. [23] It operates on a read-write-forget principle.
The network learns which information is relevant and will
be needed later and which information can be forgotten.
The main advantage of the LSTM layer in contrast to clas-
sical vanilla RNN is that it solves the vanishing/exploding
gradient problem, which appears when passing the gradi-
ent recursively for n steps [24].

The third dense layer outputs probabilities over the
vocabulary, in our case, the whole API request set, for a
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Figure 1: Architecture of RNN

given number of previous API calls. To achieve probabilis-
tic prediction, the softmax activation function was used.
For the training configuration, we applied a commonly
used categorical cross-entropy as a loss function, adaptive
optimizer Adam, and accuracy as a training metric. We
used early stop approach to avoid overfitting, this method
stops the training process when the accuracy on the valida-
tion set starts plateauing. The number of epochs therefore
was different, between 5 and 20 epochs, dependent on the
window size.

3.1. Data Preprocessing

Due to safety and commercial data considerations,
there are limited real data server log datasets available.
Many research groups opt to use server logs from their
own intranet or record API traffic, creating a server logs
dataset specifically for analytical purposes.

In order to test the proposition of being able to predict
the next user request, we used an open dataset of server
logs of an Iranian online shop, "Online Shopping Store
- Web Server Logs" [25]. The dataset comprises more
than 10 million logs in Common Log Format (CLF)
that Apache uses and contains some valuable information
about website usage [26].

Standard CLF server log looks like this:

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700]
"GET /apache_pb.gif HTTP/1.0" 200 2326
"http://www.example.com/start.html"
"Mozilla/4.08 [en] (Win98; I ;Nav)"

It contains the client’s IP address, request time,
method used by the client (GET), information on re-
quested resources (/apache_ pb.gif ) and the protocol used
(HTTP/1.0). The log also contains the respond status code
(200), size of the object returned to the client (2326) as
well as the referrer and user agent.

For the purposes of demonstrating the idea of pre-
dicting the next user request, users are distinguished by
a client IP address, and the sessions are limited to a 20-
minute time frame. The sliding window technique was
applied to create training and test sets. After testing sev-
eral sizes of the window, the best results were achieved
with window size 4, where the fifth request should be

TABLE 1: Dataset Statistics

Number Number unique Number unique Number identified
entries API requests clients 20-minute sessions

10 364 865 893 045 258 445 352 296

predictable from the previous four. The model was also
trained using window sizes ranging from 2 to 6, but the
larger window sizes led to overfitting and performed worse
on a test dataset.

3.2. Tokenization

Tokenization is the process of converting words into
integers for further model training. We used a custom
tokenizer in order to be able to treat the whole API
request as a single word. The custom tokenizer handles
special characters such as underscores and slashes within
the request to create a meaningful vocabulary. Sequences
are then padded to ensure uniform length of the vectors.

4. Results

In this section, we discuss the initial data and the
obtained results.

In the Table 1 you will find statistical metrics of the
dataset used.

We tested several window sizes to determine the num-
ber of previous requests on which the prediction for the
next API request will be based, ranging from 2 to 6.
Figure 2 shows the accuracy on training and test sets
with regard to window size. The results state that bigger
window sizes, such as 5 or 6, clearly lead to overfitting
since the accuracy difference on both sets becomes more
discrepant. The peak of accuracy on the test set appears
when applying the window size, capturing 3 or 4 requests.
The exact accuracy values can be found in Table 2.

Figure 2: Accuracy on training and test set for different
window size parameter

We only focused on the accuracy metric for the API
request prediction. The resulting model could not over-
come the 24% accuracy on a test set. This might seem
low; however, it is worth mentioning that the website,
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TABLE 2: Accuracy according to window size

window size Accuracy on training set Accuracy on test set

2 34.27% 19.07%

3 43.05% 23.04%

4 53.16% 24.39%

5 58.33% 24.11%

6 62.86% 22.98%

TABLE 3: Prediction Examples

Prediction Actual

/image/57378/ /image/57124/
productModel/100x100 productModel/100x100

/static/images/ /static/images/
guarantees/warranty.png guarantees/warranty.png

/static/images/amp/blog.png /static/images/amp/blog.png

where the API traffic was recorded, is an online shop, con-
taining large amount of dynamic data. The API requests
themselves often contain product id, product images paths
and other fine-granular details. Here are some examples
of such requests:

/product/30910
/image/15474?name=1387476275_tc16.jpg&wh=200x200

This is, of course, very hard to predict and may be
even impossible considering the continuously changing
online shop assortment. In the training set, the size of the
vocabulary or the token list, in our case the number of
distinct API requests, was about 6000 for the training set
with 300000 requests. The vocabulary size was dependent
on the current batch.

Often, the model would predict the right API endpoint
but fail to guess specific resource ID of the product or
image. You may find an example of this in the first row
of the Table 3.

However, the model shows better performance for the
identified patterns, and dynamic data unrelated APIs such
as return policy or guarantee resources. (See second and
third examples in the Table 3.)

We also tested a hypothesis of building in a thresh-
old on probability predictions, which would only preload
data if the probability was sufficient. Unfortunately, this
strategy failed to satisfy expectations. Instead, the most
often correctly predicted requests were simply the most
frequent ones.

Another suggestion on how to utilize the obtained tool
could be to only restrict the next API request predictions
for certain API endpoints. The most prominent example
would be search endpoint. For the user’s next search pre-
diction, the larger window size would also be applicable
[27].

5. Conclusion and Future Work

In pursuit of our goal to apply a language model
approach to API request prediction, we trained a language
model on a provided set of logged API calls. The vocabu-
lary of the language model consists of all unique recorded

API requests, and the word sequences are modeled based
on user sessions.

Due to the large number of possible API URLs and
dynamic data such as product IDs or image source ID,
our effort did not yield impressive results. However, it
still provided valuable insights into the future possibilities
and limitations of the API request prediction. The model
was able to detect some reoccurring patterns and learn
the semantics of the API endpoint. This approach could
be used for websites with a static structure and a limited
number of API endpoints.

Some possible solutions to the low accuracy problem
could be limiting the model to a certain set of API
dynamic data-insensitive endpoints. The main drawback
remains the fact that each website would have to train its
own machine learning model based on the API structure.

In the future, the idea of successively guessing the next
resource endpoint of the API URL should be examined.
In this approach, the API paths would not be treated
as single tokens but could be split up into hierarchical
resource endpoints. It could exploit the hierarchical URL
path structure.
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